
Under review as submission to TMLR

Influence Learning in Complex Systems

Anonymous authors
Paper under double-blind review

Abstract

High sample complexity hampers successful applications of reinforcement learning methods
especially in real-world scenarios whose complex dynamics are typically computationally
demanding to simulate. One idea is to decompose a large factored problem into small local
subproblems including only few state variables and model the influence that the external
portion of the system exerts on each of them. This principled approach allows to convert the
global simulator of the entire environment into local lightweight simulators, thus enabling
faster simulations, planning and solutions. The ability to represent accurately the influence
experienced by each local component is crucial for the effectiveness of this method. In this
work, we examine different aspects of the problem of learning approximations of the influence
in realistic domains. We empirically investigate several learning methods to conclude that
even for large and complex systems, in practice, the influence problem often turns into
a relatively manageable learning task. Finally, we discuss how to leverage effectively the
influence models for long horizon tasks for planning or reinforcement learning problems.
Our results show that in many cases short horizon trajectories collected from the global
simulator can be used to obtain accurate approximations of the influence for much longer
horizons.

1 Introduction

Controlling large distributed systems is a key task in a variety of artificial intelligence fields including
computing and information technology (Coulouris et al., 2001), energy systems (Järventausta et al., 2010)
and transportation (Dimitrakopoulos & Demestichas, 2010). Reinforcement learning (RL) became a standard
framework to study how agents learn and plan in uncertain environments. RL methods showed great promise
to tackle large sequential decision making problems (Kaelbling et al., 1998; Sutton & Barto, 2018). However,
despite their recent outstanding successes, RL techniques suffer from high sample complexity (Kakade, 2003;
Botvinick et al., 2019). In essence, an agent requires a large amount of simulated experience to attain
successful performance. Such sample-inefficiency becomes a real hurdle for environments with complex and
structured dynamics as in real-world scenarios. In these situations, running expensive simulators to collect
a sufficient number of observed samples might be too computationally demanding.

One solution consists of replacing the global model of the entire environment with simpler surrogate rep-
resentations which enable less expensive simulations. Based on this intuition, influence-based abstraction
(IBA) (Oliehoek et al., 2012) provides a principled framework to decompose large multiagent sequential
decision making problems into small local subproblems. The IBA approach has shown to lead to significant
speed-ups and better performance for RL (Suau et al., 2022b;b) and online planning (He et al., 2020; 2022)
problems.

The idea is to leverage the intrinsic factored structure of a broad range of domains to build local models
for single agents, including only few relevant factors and abstracting away a large portion of the system. To
overcome the implications of the information loss, each of these models is endowed with a representation
of the influence, which captures the effects of other agent’s policies and the non-local factors on the local
dynamics. This approach allows us to transform a global simulator for the entire environment into many
decoupled local simulators. Each one only encompasses few state variables together with the influence that
they mutually exert on each other.

1

Under review as submission to TMLR

In principle, the IBA abstraction process ensures no loss in value: the influence provides a sufficient statistic
of the policies of the other agents for one agent’s sequential decision making problem to compute optimal
solutions (Oliehoek et al., 2021). However, this quality guarantee comes at the cost of introducing a depen-
dency on the history of the local space. In fact, representing the external influence on the subset of local
variables corresponds to model the non-Markovian dependencies of local factors. To compensate for the lack
of Markovianity, the local model needs to be augmented with histories of local states and actions.

To give a concrete intuition of these concepts, we consider a traffic light control problem for which realistic
simulators that can scale to the size of entire cities are usually available. Figure 1 shows a traffic network
with a protagonist traffic light agent at intersection 1. Its sensors have the limited capacity to measure the
traffic density only in the proximity of the intersection. The red square in Figure 1 delimits a local model
for agent 1 which includes all the observed road stretches. We claim that to develop optimal schemes for
a single intersection, it is not necessary to collect and store data and reason over the entire large system.
For instance, the decisions taken at intersection 3 affect only indirectly the observations of agent 1 through
their impact on the car inflows from the north end of the local model (blue arrow). As such, their effects
on the sequential decision making problem of agent 1 is captured by the influence of the inflows from the
north end. Thus, it suffices to model the non-Markovian dependency of the vehicle streams from the north
end on the local traffic and actions. In fact, the abstraction process yields Markovianity breakdown: the
car’s eastbound outflow, denoted by the red arrow in Figure 1, first impacts the number of cars measured at
intersection 2; in turn, this affects the decisions of agent 2; whose results on the inflows in the local model
from the north end may be potentially experienced only after several time steps. This means that to predict
the north end inflows, the agent needs to reason over the entire history of eastbound outflows. A local model
for the protagonist agent should therefore encompass this history.

Figure 1: Traffic example. The red square delimits the road segments included in the local model for the
traffic light agent 1. The blue arrow represents the influence of the non-local part of the network on the local
model and the red arrow the non-Markovian effect of the local traffic on the external part of the system.

The local abstraction enables a significant reduction of the problem at the cost of introducing a (temporal)
sequential nature of the local state. This makes analytical computations of the influence or inference unfea-
sible even for small problems: the space of local histories grows exponentially in time, thus computing exact
influence requires solving an exponential number of possibly intractable inference problems. This motivates
the idea of learning approximate representations of the influence. We intend to leverage advances in ma-
chine learning which have shown excellent outcome in sequence modeling problems (Goodfellow et al., 2016;
Gamboa, 2017; Ismail Fawaz et al., 2019) to train approximate models which can generalize the influence
over local histories. In this way, we can build a local model characterized by a local state, which in the

2

Under review as submission to TMLR

traffic example corresponds to all the factors measuring vehicle densities at local level, and a representation
of the influence which approximates the car’s inflow probability given the past local history. Intuitively,
it is crucial to derive sufficiently accurate influence approximations to guarantee a small value loss, thus
ensuring near-optimal solutions. A detailed discussion and formal proofs related to this point are provided
in Congeduti et al. (2021).

While the use of influence approximations has already proven to yield successes (Suau et al., 2022a; He
et al., 2022), it remains unclear to what extend in real-world problems sufficiently accurate representations
of influence can be learned and which methods are most suitable for this task. Thus, the first point we
intend to address is whether we can train predictors using global simulations to approximate the influence
experienced by a small local model in various scenarios and how well different models perform as influence
approximators.

As a second step of our investigation, we intend to show that the lightweight local simulators can effectively
be employed for solving long horizon tasks. The idea is to demonstrate that the approximate local models
learned using short time sequences of experience from the global simulator can be used to sample long
trajectories for long horizon planning or RL tasks. In other words, the representations learned using short
time experience generalize well the influence over much longer time steps.

The rest of the paper is structured as follows: first the background on influence-based abstraction and the
necessary notation are introduced in Section 2; in Section 3, we formulate the formal influence problem and
describe the realistic domains used to test our methods; the results on the different models employed as
influence predictors are presented in Section 4; we discuss and investigate how to take advantage of influence
approximation models for long horizon tasks in Section 5 and finally derive the conclusions in Section 6.

2 Background

We consider sequential decision making problems for an agent formulated as Partially Observable
Markov Decision Processes (POMDPs) (Kaelbling et al., 1998). Formally, a POMDP is a tuple M =
(S, A, T , R, Ω, O, b0, h), where S is the finite space of the states of the environment, A the space of available
actions, Ω the observation space and h the problem horizon. At the beginning of the process, a state s0 ∈ S
is drawn from the initial distribution s0 ∼ b0 1. For any discrete time step t ≥ 0, the agent chooses an action
at ∈ A, the state changes according to the distribution st+1 ∼ T (· | st, at), the agent receives a reward mod-
eled as rt = R(st, at) and an observation ot+1 ∼ O(· | st+1, at). A policy π is a map from action-observation
histories ht = (a0, o1, . . . , at−1, ot) to probability distributions over action π(ht) ∈ ∆(A), which encodes the
agent’s behavior. The goal of the decision-maker is to optimize the expected cumulative reward for following
a policy π after a history ht is observed, Vπ(ht) = E

[∑h
k=t rk | π, ht

]
. The policy attaining the maximum is

denoted by π∗ and the corresponding optimal value as V∗.

We take the perspective of a single (local) agent i in problems with multiple interacting agents. Precisely, we
fix the policies for the external agents π−i. Then, the best response problem for agent i can be formulated
as a POMDP where the variables representing the actions of the other agents a−i become part of the state
of the environment. For this reason, we include the actions of the other agents a−i in the state variables of
the sequential decision making problem of agent i .

We target specific domains whose state space can be decomposed in state variables or factors, called factored
POMDPs (Hansen & Feng, 2000). This structural property allows to exploit conditional independencies
between factors. In particular, it allows to abstract away those factors that have no direct effects on the
agent’s observations and reward to form an abstract local model (Oliehoek et al., 2021). The factors included
in the local model, the local factors, denoted by slocal retain enough information for the agent to take optimal
decisions. The influence sources ssrc, are defined as the external state variables (factors and external actions)
that directly affect the local factors. All the remaining variables form an external portion of the state
discarded in the local abstraction. Accordingly the state can be decomposed as s = (sext, ssrc, slocal).

1To ease the notation, we use small letters to denote both random variables and their realizations and capital letters to
denote sets and functions. For instance, s0 ∼ b0 stands for the random variable representing the state at time 0 is distributed
according to b0.

3

Under review as submission to TMLR

For instance, consider the traffic network introduced in the previous section by Figure 1 from the perspective
of the traffic light agent at intersection 1. The state of the space can be thought of as composed by several
factors measuring the vehicle densities at different road stretches and the actions of the other traffic light
agents. The sensors placed at intersection 1 have the limited capacity to detect the traffic level within a
certain range. The aim of the traffic light agent is to minimize the number of vehicles transiting through
this local part of the system. Figure 2(a) shows in red two local factors sn↓, sw← corresponding respectively
to the incoming and outgoing traffic flows from the north and west ends of the local model, delimited by the
red box. The north end inflow (blue) is an influence source for the local state variables. In Figure 2(b), the
two-stage dynamic Bayesian networks (2DBNs) (Boutilier et al., 1999) compactly represent the dependencies
between those state variables. The 2DBN on the left side shows that the only external dependency to be
modeled to construct well-defined transitions for the local state st+1

local ∼ Tlocal(· | st
local, st

src, at), is the one
on the influence sources (blue arrow). Such dependency encompasses all the non-Markovian effects of local
factors on the influence sources: the car’s outflow measured by sw← has an indirect effect on the future car’s
inflow measured by ssrc throughout its impact on the external state. To compensate for the Markovianity
breakdown, the local state is expanded with an history dependent variable which accounts for all the local
factors sufficient to infer the influence sources. Formally, this is the set of variables which d-separate the local
factors from the external space denoted as dt

set ⊂ {s0
local, a0, . . . , at−1, st

local}. Figure 2(b) shows on the right
side, the influence-augmented local model (IALM) (Oliehoek et al., 2021), the local abstraction resulting
from coupling the observation and reward models with an influence model I(st

src | dt
set) = P(st

src | dt
set) (red

arrow).

(a) (b)

Figure 2: Local model for intersection 1 of the traffic network example. (a) graphical representation of the
local state variables and dependencies on external factors; (b) 2DBN representations of the local and external
state variables (left) and the abstract IALM (right).

When an exact influence model I is used, the IALM is proven to provide a lossless abstraction: the optimal
solutions of the sequential decision making problems represented by the IALM and the original global model
coincide Oliehoek et al. (2021). However, computing the influence requires inferring the distribution of the
influence sources for each possible instantiation of d-set, whose number grows exponentially with the time.
Therefore, inference of the exact influence is typically a computationally intractable problem. One idea to
address this issue consists of using a limited number of samples from the global simulator to train learning
models that generalize the influence over d-sets. Then, the approximate influence Î is used to build the
transitions for the local simulator T̂local. The advantage stems from the possibility to retrieve much more
samples of experience from the lightweight local simulator to speed-up the solution search. The effectiveness

4

Under review as submission to TMLR

of this approach heavily relies on the assumption that learning sufficiently good influence approximations is
generally an easier task than solving the RL or planning problem. This means that the number of samples
required to learn the influence in a first pre-training phase is much smaller than the one needed to learn good
policies. This work serves also to provide sufficient empirical evidence that this assumption is in practice
well-founded.

3 Empirical investigation of influence learning

The first question related to approximating the influence concerns the type of learning task induced. The
influence encodes the series of latent Markovian dependencies between local and external variables. Once the
external part is abstracted away, such intertwined relations are captured by the non-Markovian dependence
of the influence sources on the local state. Therefore, the objective is learning the temporal sequence of
distributions of influence sources given the local history. Those are derived by marginalizing over external
variable histories whose relations are ruled by an underlying 2DBN structure. As such, the dependencies
that the influence learning problem target differ substantially from the benchmark domains typically used
to test sequence modeling methods (e.g. speech-recognition, machine translation, audio classification, music
generation, image-video caption generation) (Bai et al., 2018; Keneshloo et al., 2019).

Our experimental setup includes a range of realistic scenarios which cover diverse situations in terms of
number of influence sources to predict, level of ‘uncertainty’ of their distributions, strength of the dependency
between local variables and influence sources, dependency over past time steps and problem horizon. This
leads to different characteristics of the learning tasks. Our intention is to determine if this has an impact on
the performance of the learning techniques.

Several learning models can be employed as influence approximators. State-of-the-art methods for sequence
modeling are mainly based on neural network with recurrent and temporal convolutions components (Karim
et al., 2017; Bai et al., 2018; Ismail Fawaz et al., 2019). The idea of this work is to investigate the variety of
influence learning problems along with the most promising learning methods.

3.1 Formal framework

Learning influence representations essentially corresponds to predicting the conditional distribution of the
influence sources st

src given the local factors included in the d-set dt
set for any t = 1, . . . , h. This is a supervised

sequence modeling task: n trajectories of d-sets and influence sources D = {(d0,i
set, s0,i

src), . . . , (dh,i
set, sh,i

src)}i=1,...,n

are sampled from the global simulator to train a function approximator Î for the influence I(st
src | dt

set) to
minimize the average empirical cross entropy. An approximate influence-augmented local model, Î-IALM,
can be defined as (Slocal, A, T̂local, R, Ω, O, b0, h) over the local space Slocal. The Î-IALM inherits the reward
and observation functions from the global model. The local transitions T̂local are defined by means of the
approximate influence Î by marginalizing over the influence sources.

The idea to leverage the Î-IALM is supported by the intuition that the simulation inaccuracy caused by
approximating the local transitions is overcome by the advantages to perform significantly faster local sim-
ulations. This is particularly beneficial for RL or planning problems in realistic scenarios. The theoretical
insights presented in Congeduti et al. (2021) back up this argument by showing how the value loss for solving
the sequential decision making problem in the Î-IALM model is bounded as

V∗(ht) − V π̂∗
(ht) ≤ C max

t
max
dt

set

√
DKL(It(· | dt

set)||Ît(· | dt
set)), (1)

for any history ht. In other words, the difference between the true optimal value V∗ and the value
V π̂∗ achieved by the Î-IALM optimal policy π̂∗, is upperbounded by the worst KL-divergence error of
the influence predictions over all the possible d-sets, multiplied by a constant C depending only on do-
main features. This guarantees that any influence approximator, optimizing the mean cross entropy loss
Edt

set

[
DKL(It(· | dt

set)||Ît(· | dt
set))

]
is aligned with the objective of minimizing the value loss V∗ − V π̂∗ . In

fact, even though it does not minimize the maximum itself, it is intuitively clear that in many problems a

5

Under review as submission to TMLR

low mean implies a low max error. Moreover, this bound suggests that the cross entropy test error provides
a priori insight on the value loss. Therefore, it is crucial to show that it is possible to train influence models
ensuring good approximations in terms of test error using a small number of training instances.

3.2 Experimental domains

In this work different realistic domains have been employed for the empirical investigation. They have been
chosen in the attempt to account for the variety of fields of applications and aspects of the influence learning
problem arisen from different domain features. Microgrid (MG) represents a realistic application domain
for power system management and engineering. We consider a hundred of autonomous units in a power
grid interacting by exchanging power with the goal of meeting the energy needs of the different units and
minimizing the energy costs. The resulting sequential decision making problem then has a large number
of agents. The second domain reproduces the interactions in a Traffic grid (TG) as described in Section
1 and 2. This scenario presents many external factors which exert a direct influence on the local model.
Consequently, the influence learning problem imposes high dimensional predictions. System admin (SA)
is a simplified version of scenarios in information technology where a team of system administrators needs
to cooperate to secure maintenance and operation of computer systems. Given the importance to balance
response to short-term or urgent issues and strategies for long-term planning, we set a long horizon for this
domain which turns the influence problem into a long-horizon prediction task. Finally, we model a simplified
version of the SA as a game called Grab a chair (GC). Given its simplicity, it serves as a controlled scenario
for proof-of-concept experiments and preliminary investigations presented in Section 5. This allows us to
tune domain parameters such as the stochasticity of the influence sources and the strength of the dependency
on the local state, and to test whether these features have an effect on the models performance. Also it
serves to assess exactly the performance of the learning models in ad-hoc cases where we know explicitly the
analytic expression for the influence. A description of these domains and the resulting influence problems
follows below.

Microgrid (MG). In this scenario, we model the complex realistic interactions in a power microgrid as a
multiagent system (Li et al., 2012; Vlachogiannis & Hatziargyriou, 2004). A hundred of autonomous agents
need to manage the energy resources of a microgrid, a small-scale power plant that can operate independently
from the rest of the power network. Each agent is responsible for controlling of a single component of the
microgrid, a unit, which can be a cluster of buildings or a single household unit. They represent residential
or industrial consumers that can self-generate and sell power excesses to other units in the grid. In this
application, each unit includes a set of renewable sources whose power production per hour is represented
by the state variable PRES . The energy produced may be employed to meet the hourly power demand
Pd or stored in a battery whose state of the charge is represented in percentage by the factor SOC. The
local model of each agent can be expressed as slocal = (PRES , Pd, SOC). At any time step, corresponding
to one hour, the agents may decide also to discharge power from the battery to meet the demand or try
to buy/sell energy to neighboring units. When buy and sell orders match, the power from the batteries is
exchanged at a small cost/revenue for the buying and selling agents respectively. After these operations,
to satisfy the power balance of single units, every agent is forced to buy the residual power demand per
hour from an external supplier. Precisely, the agent incurs in a cost Cext per unit of ‘energy not supplied’
ENS = (Pd − Pdeployed) · h, where Pdeployed corresponds to the sum of the renewable power deployed and
the power discharged from the battery. The cost Cext for buying from the external grid is much higher
than the fixed operational costs of internal trade Cint. A schematic representation of a microgrid unit is
depicted in Figure 3(a). The individual reward for each agent is modeled as the sum of the cost/income for
the internal trade (if any) and the negative costs of buying the energy not supplied from the external grid
(if any) r = ±Cint1trade − CextENS. Thus, the team of agents share the common objective to manage local
resources to minimize the electricity costs constrained to satisfying the energy balance, generation limits
and storage capacity. The renewable sources at the agent disposal include solar panels and wind turbines.
The power output from photovoltaic cells is modeled using hourly solar radiation data provided open source
by https://openweathermap.org/api/solar-radiation, assuming ideal photovoltaic cells conditions and
using the photovoltaic power generation model introduced by Skoplaki & Palyvos (2009). The power output
from the wind generator is calculated by transforming the kinetic energy of the wind to electric energy, under

6

https://openweathermap.org/api/solar-radiation

Under review as submission to TMLR

(a) Unit controlled by a single
agent in the microgrid. The lo-
cal variables observed by the agent
include the state of the charge,
the power produced by renewable
sources and the power demand.

(b) Multiagent grid. For each unit in the lattice, the state of charge (in
percentage) is represented by the gray scale. Directed edges represent a
power exchange from a seller to a buyer agent.

Figure 3: Microgrid.

the assumption that the wind speed follows a Markov chain (Shamshad et al., 2005) and assuming linear
relationships with the power produced as explained in details in Kuznetsova et al. (2013). To simulate the
dynamics of the demand, we adopt the standard assumption that consumer load follows a normal random
distribution Hong & Fan (2016). We take the perspective of a single unit in a lattice network highlighted in
red in Figure 3(b). The initial distribution of the battery is uniformly sampled at random and we consider
h = 40 hours as the horizon of the problem. We assume that all the other agents act by storing or trying to
buy power when the storage is scarce and discharging or trying to sell when power is abundant. Note that
besides the problem size can be arbitrarily large, the influence experienced by the local agent only directly
depends on the neighboring nodes in the network. Precisely, the only relevant information on the external
portion of the system that an agent needs is whether the neighboring north, west, south and east agents
will decide to sell or buy power. Besides the distributions of influence sources ssrc = (aN, aW, aS, aE) are
affected (indirectly) by all the agents in the microgrid, the history of local actions a provides a sufficient
statistics to predict the influence sources. The resulting problem consists of finding a function approximator
for I(at

N, at
W, at

S, at
E | a0, . . . , at−1).

Traffic grid (TG) In this implementation of a traffic network as described in Section 1 and Section 2,
we simulate the vehicle traffic in a 9 intersections grid, schematically represented in Figure 4. The sensors
of each traffic light capture the vehicles in the 5 × 5 local grid at each intersection. The local model is
represented as a red square for the selected protagonist agent. The other traffic lights employ hand-coded
policies prioritizing lanes with higher car volumes. At time t = 0 the grid is initially empty, i.e. the initial
state encodes no cars in the network. At any time step, a vehicle will enter the network with a certain
probability. The horizon is set to h = 100. The state of the environment is represented by binary state

7

Under review as submission to TMLR

variables detecting the presence/absence of a car in a point of the traffic grid. The goal of the agent is to
minimize the total number of vehicles waiting at the local intersection. That is, the reward corresponds to
the negative number of cars in the local model. To act optimally, the local agent needs to predict if there
will be incoming cars from the north end sn↓ and the east end se←. Moreover, the local dynamics is affected
by traffic congestion at intersection 2 and 4. In fact, traffic jams can prevent vehicles to move out of the
local model from the west and south ends. For this reason, the state variables for the outgoing ends and
the actions of agents 2 and 4 are included in the set of influence sources. Thus, in addition to the factors
encoding cars inflows, the influence sources encompass 4 variables for the west outflow sw←, 4 variables for
the south outflow ss↓, the action a2 and a4, that is ssrc = (sn↓, se←, sw←, ss↓, a2, a4). The local information
necessary to predict the influence sources includes the entire collection of local variables and actions. The
influence that the agent needs to predict is therefore I(st

n↓, st
e←, st

w←, st
s↓, at

2, at
4 | s0

local, a0
1, . . . , at−1

1 , st
local).

Figure 4: Traffic grid. The local model is delimited by the red square. The blue triangles represent the
vehicles and the green bars the traffic lights.

System admin (SA) We use a multiagent version of the System administrator domain from Poupart &
Boutilier (2004). A team of system administrators are responsible for the upkeep of a network of machines.
Each node has a probability of failing at any time step which increases when a neighboring machine in the
network is down. Each agent only observes the status of the machines in its proximity. Consequently it may
decide to intervene by trying to reboot the system of one of these nodes. With a certain probability the
process will succeed resulting in a working node at the next time step. When more than one agent decides to
reboot one machine, the process has full rate of success. The goal of the admins team is to secure the highest
number of working machines. Precisely, any agent receives a penalty for each faulty machine which lies under
its control. We consider a network of N = 20 machines organized in a ring configuration as depicted in Figure
5. Each admin agent i is in charge of the maintenance of two neighboring nodes whose state, denoted by xi,
xi+1, can be fully observed. We take the perspective of a single admin, for instance agent 1 in Figure 5, whose
local model includes only the states (faulty or working) of the two neighboring machines slocal = (x1, x2) and
its action a1. The horizon of the problem is set to h = 500 time steps and initially a random state for each
machine is sampled. To act optimally, agent 1 needs to know if agents 2 and 20 will decide to reboot one of
the two machines over which they share the control. Also, it needs to reason over the neighboring machines
status x3, x20 as they may contribute to higher the chances to turn down the machines in its local model.
Then, according to the influence formalism introduced in Section 2, the sources of influence correspond to
ssrc = (x3, x20, a2, a20). The local information at the disposal of the agent 1 to predict the influence sources
consists of the entire collection of local variables, i.e. (x1, x2, a1). Thus, the influence problem consists of
finding an approximation for the distribution I(xt

3, xt
20, at

2, at
20 | x0

1, x0
2, a0

1, . . . , at−1
1 , xt

1, xt
2).

8

Under review as submission to TMLR

Figure 5: System admin. Figure 6: Grab a chair.

Grab a chair (GC) In this simplified version of the SA problem, introduced by He et al. (2020), N agents
disposed in a ring fashion decide at every time step to grab the chair on their left or right side, as shown in
Figure 6. They obtain the chair and thus get the reward only if the neighboring agent has not targeted that
chair too. After taking an action, each agent only observes whether it managed to grab the chair, ignoring
the action of the neighboring agents. The local agent, numbered by 1 and depicted in red in Figure 6, has
no access to other information rather than its own actions and rewards which form the local model. The
horizon is set to h = 200 and initially every agent chooses deterministically the chair on its right side. After
that, all the non-local agents act by copying the previous action of the following agent in counterclockwise
order. For the decision making problem of the local agent, the only information required to act optimally
consists of the decisions of its neighboring agent 2 and N as they directly influence the possibility to secure
a chair. Contrarily, the other agents only affect the local model indirectly. Therefore, the local agent needs
to predict the influence sources corresponding to the actions st

src = (at
2, at

N) given the local information of
the d-set dt

set = (a0
1, . . . , at−1

1). Therefore the influence to predict corresponds to I(at
2, at

N |a0
1, . . . , at−1

1).

4 A comparison of models for learning influence representations

Here we intend to understand how different machine learning models perform when used as influence ap-
proximators as explained in Section 3. We aim not only at supporting effective influence-based abstraction
methods for reinforcement learning and planning but exploring aspects of the influence learning problems
deriving from real-world scale scenarios. In particular, we test the hypothesis that even for large and complex
systems, the learning problem may turn into a manageable task that does not require extremely large or
overly complex neural networks to be solved. In fact, our results shows that small recurrent or temporal-
based networks provide robust, time efficient and accurate approximations of the influence in all the domains
used for the empirical validation.

4.1 Experimental setup

We consider different learning models ranging from linear models to recurrent and temporal convolutions
based models whose performance are evaluated in the System admin, Microgrid and Traffic grid domain.
For each of them, we first set the scenario features: number of interacting agents N , protagonist agent
i, policies of the external agents π−i, problem horizon h, initial distribution b0 and the other domain-
specific parameters defining the transition and reward functions. The collection of scenarios reflects the
diversity of situations that can be encountered in terms of problem size, time-length, influence dimension

9

Under review as submission to TMLR

and stochasticity. Specifically, the Microgrid represents a large scenario where 100 agents interact in a electric
power system domain; in the Traffic grid, a real-world traffic control application turns into a high dimensional
learning task; finally the influence learning problem resulting from the System admin implementation is a
long-horizon forecasting problem. See Section 3 and Table 5 in Appendix B for the details.

Subsequently, we set a random exploratory policy for the local agent πExp
i which only affects the data

distribution of the training set. Then n = 500 trajectories of influence sources and d-sets D =
{((d0

set, s0
src), . . . , (dh

set, sh
src))i}i=1,...,n are collected from the global simulator to form training and test sets

with a 90% and 10% ratio respectively.

We train different models as approximate influence point Î = {Ît(st
src|dt

set)}t=1,...,h using cross entropy
as training loss. We consider recurrent models such as Long Short Term Memory (LSTM) (Hochreiter
& Schmidhuber, 1997) and Gated Recurrent Unit (GRU)(Cho et al., 2014), temporal convolutions based
models such as Temporal Convolutional Network (TCN) (Lea et al., 2017) and Fully Convolutional Network
(FullyConv) (Long et al., 2015). Besides state-of-the-art models for sequence predictions, we are interested
in evaluating simpler linear models such as a one-layer fully connected linear network, that is, Logistic
Regression (LogReg). In order to preserve temporal causality, we employ h independent logistic regression
models each one representing the influence for a time step t ∈ {1, . . . , h}. We do not include more complex
and larger models such as Transformer (Vaswani et al., 2017; Wen et al., 2022) in our study since we assume
and demonstrate that small and simple models can provide good influence representations.

We adopt standard optimization criteria for the networks as ADAM optimization algorithm, linear decay
of the learning rate and perform grid search over the space of possible initial and final learning rates. For
each scenario a fixed number of epochs and the batch size are chosen. See Table 6 in Appendix B for the
hyperparameters configuration of the learning models in each scenario.

To assess the quality of the approximations, we consider the test error CE(I, Î) computed as the mean
over time and sum over influence sources of the cross entropy estimators. Precisely, for each component
st

src,j of the influence sources st
src = (st

src,1, . . . , st
src,J) at time t, an estimator of the cross entropy loss

ĈE(P (st
src,j | dt

set), P̂ (st
src,j | dt

set)) can be computed over the test sample as

ĈE(P (st
src,j | dt

set), P̂ (st
src,j | dt

set)) = − 1
n

n∑
i=1

ln(P̂ (st
src,j,i | dt

set,i)). (2)

The resulting approximate influence is given by the probability distributions Ît(st
src | dt

set) =
(P̂ (st

src,1 | dt
set), . . . , P̂ (st

src,J | dt
set)). Then the error ĈE(It, Ît) for each time step t is defined as the sum

over the errors over each component of the influence sources

ĈE(It, Ît) =
J∑

j=1
ĈE(P (st

src,j | dt
set), P̂ (st

src,j | dt
set)), (3)

and the test error is obtained by averaging the errors over time

CE(I, Î) = 1
h

h∑
t=1

ĈE(It, Ît). (4)

We also measure the wall-clock training times (WCTTs) to determine which model provides the best trade
off between error an time.

4.2 Results

The models have been trained over 15 epochs for the Microgrid and 20 epochs for Traffic grid and the System
admin. During each epoch, the training set is fed to the network in batches of 100 trajectories. Standard
optimization criteria are adopted as summarized in Table 6 in Appendix B. For each domain, we compare the
results of networks with different sizes. See Table 7, 8 and 9 in Appendix B for the details of the architectures
used for Microgrid, Traffic grid and System admin respectively.

10

Under review as submission to TMLR

number of parameters
models ≤ 100 1000 15000
LSTM 3.81 ± 0.03 3.78 ± 0.02 3.82 ± 0.03
GRU 3.77 ± 0.03 3.73 ± 0.03 3.78 ± 0.03
TCN 4.11 ± 0.03 3.98 ± 0.03 3.85 ± 0.04

FullyConv 3.85 ± 0.03 3.85 ± 0.03 3.76 ± 0.03
LogReg - 3.85 ± 0.04

(a) Cross Entropy test error.

number of parameters
≤ 100 1000 15000
0.98 1.18 2.26
0.95 1.13 2.15
0.47 0.59 1.31
0.46 0.65 1.55

- - 0.95
(b) Wall-clock training time (s).

Table 1: Microgrid, means and standard errors over 10 iterations of the experiment.

4.2.1 Microgrid

Table 1a lists the test errors computed according to equation 4 for different network sizes averaged over
10 runs of the experiment with the corresponding standard errors. Table 1b reports the respective average

0 2 4 6 8 10 12 14
Epochs

4.0

4.5

5.0

5.5

6.0

Cr
os

s E
nt

ro
py

<100
1000
15000

(a) LSTM

0 2 4 6 8 10 12 14
Epochs

4.0

4.5

5.0

5.5

6.0

Cr
os

s E
nt

ro
py

<100
1000
15000

(b) GRU

0 2 4 6 8 10 12 14
Epochs

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

Cr
os

s E
nt

ro
py

<100
1000
15000

(c) TCN

0 2 4 6 8 10 12 14
Epochs

4.0

4.5

5.0

5.5

6.0

6.5

Cr
os

s E
nt

ro
py

<100
1000
15000

(d) FullyConv

Figure 7: Microgrid. Cross entropy test errors over epochs.

11

Under review as submission to TMLR

WCTTs. We omit the standard errors because they are negligible in the training time scale. The tested
sizes range from very small networks (less than 100 parameters) scaling up to the number of parameters of
a one-layer linear neural network (LogReg). The test errors show no significant advantages from larger size
of the networks with the only exception of the temporal convolutional network. In particular, the recurrent
based models do not benefit from larger sizes, as shown in Figure 7(a) and 7(b). The FullyConv shows a
slight improvement on the performance at the cost of tripling the training time (see Table 1b and Figure
7(d)). A different situation is recorded for the simple temporal convolutional network: increasing the size
significantly improve the performance (see Figure 7(c)).

In general, temporal convolutional networks require more layers to have full receptive fields, i.e. to ensure
that the network processes the entire history-length of the input sequence to output the predictions. Also,
recurrent layers tend to have fewer parameters than temporal layers (Bai et al., 2018). Nevertheless, the
higher amount of memory required to store the network parameters is compensated by the lower training
times.

For each model, we consider the Pareto front (Miettinen, 1999) for the multi-objective optimization problem
with test error and training time as objective functions. As an example, Figure 8(a) shows the Pareto
frontiers for some models: the points represent test error and training time for one choice of the network
size; the Pareto fronts represented by the dashed lines include all the sizes which are not strictly dominated
by any other. Among the Pareto optimal solutions, we select and further analyze specific sizes which seem to
provide a good trade-off between the error and training time (red points in Figure 8(a)). The performance
measure of those models are highlighted in the gray cells in Table 1. In Figure 8(b), we collect the learning
curves of the selected models. Overall, the recurrent models, the fully convolutional network and the logistic
regression show similar performances: the small accuracy loss of the FullyConv compared to the recurrent
models is compensated by the lower training times. The logistic regression attains the same performance
levels of the non-linear models with a much larger number of parameters. One explanation for these results
is that the influence learning problem for the Microgrid domain is a relatively simple learning task. In fact,
the problem is low dimensional and presumably the sources of influence depend only loosely on the local
history of the agent. Remarkably, this is a representative situation for influence problems in many complex
scenarios: the local problems are generally sufficiently well-decoupled from the rest of the system, i.e. the
local variables affect only weakly the influence source distributions. As such, even simple or non sequence-
based learning models have the potential to learn good influence approximations. In this specific scenario,
even expanding the microgrid network to account for an arbitrarily large number of units, the influence
problem would result in the same small dimension learning task.

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
WCTT

3.75

3.80

3.85

3.90

3.95

4.00

4.05

4.10

Cr
os

s E
nt

ro
py

LSTM
GRU
TCN

(a) Pareto fronts. The sizes selected are represented in red
and correspond to the cells highlighted in Table 1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
WCTT

4.0

4.5

5.0

5.5

6.0

6.5

Cr
os

s E
nt

ro
py

LSTM (<100)
GRU (<100)
TCN (15000)
FullyConv (<100)
LogReg
Random

(b) Test error over wall-clock training time for the selected
sizes.

Figure 8: Microgrid.

12

Under review as submission to TMLR

number of parameters
models ≤ 200 1K 10K 50K 1M
LSTM 6.2 ± 0.4 3.4 ± 0.3 3.1 ± 0.3 3.2 ± 0.3 -
GRU 6.6 ± 0.6 3.3 ± 0.2 3.1 ± 0.3 3.2 ± 0.3 -
TCN 7.4 ± 0.2 6.6 ± 0.0 4.3 ± 0.4 5.5 ± 0.5 -

FullyConv 6.3 ± 0.2 4.4 ± 0.3 3.1 ± 0.3 3.1 ± 0.3 -
LogReg - - - - 5.6 ± 0.3

(a) Cross Entropy test error.

number of parameters
≤ 200 1K 10K 50K 1M
20.1 20.9 25.4 40.2 -
21.4 22.2 27.5 40.6 -
6.0 7.4 8.2 14.3 -
6.5 7.9 10.3 17.0 -
- - - - 35.3

(b) Wall-clock training time (s).

Table 2: Traffic grid, means and standard errors over 10 iterations of the experiment.

4.2.2 Traffic grid

The test errors and training times in Table 2 show that models with very small numbers of parameters are
unable to attain good performance. In fact, the higher dimensionality of the space of influence sources and

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

3

4

5

6

7

8

9

Cr
os

s E
nt

ro
py

<200
1000
10000
50000

(a) LSTM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

3

4

5

6

7

8

9
Cr

os
s E

nt
ro

py
<200
1000
10000
50000

(b) GRU

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

4

5

6

7

8

9

Cr
os

s E
nt

ro
py

<200
1000
10000
50000

(c) TCN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

3

4

5

6

7

8

9

Cr
os

s E
nt

ro
py

<200
1000
10000
50000

(d) FullyConv

Figure 9: Traffic grid. Cross entropy test errors over epochs.

13

Under review as submission to TMLR

5 10 15 20 25 30 35 40
WCTT

3

4

5

6

7

Cr
os

s E
nt

ro
py

LSTM
GRU
TCN

(a) Pareto fronts. The sizes selected are represented in red
and correspond to the cells highlighted in Table 2.

0 5 10 15 20 25 30 35
WCTT

3

4

5

6

7

8

Cr
os

s E
nt

ro
py

LSTM (10000)
GRU (10000)
TCN (10000)
FullyConv (10000)
LogReg
Random

(b) Test error over wall-clock training time for the selected
sizes.

Figure 10: Traffic grid.

d-sets increases the complexity of the learning problem. As in the previous domain, we select the Pareto
optimal sizes for which the models achieve a reasonable trade-off between test error and training time (see
Figure 10(a)). Notice that larger sizes do not result into lower test errors and raise the training times.
This suggests that even for higher dimensional problems, relatively small architectures are preferable and
learning the influence still remains a sufficiently simple task. In particular, Figure 9 shows that recurrent
models (LSTM, GRU) and FullyConv network display similar behavior: small networks do not have enough
capacity to accomplish the learning task while exceeding the number of 10000 parameters has the mere result
to deteriorate the performance and prolong the training times. Also the temporal convolution network does
not benefit from more than 10000 parameters. The learning curves in Figure 9(c) show that the TCN model
presumably needs more training steps to converge. We compare the test errors over training time for the
sizes selected for each model in Figure 10(b). In this case, the linear model fails to reach the accuracy levels
attained by recurrent models and FullyConv. Moreover, the TCN shows its limitations in more complex
problems: even if the model has not converged yet, the learning curve shows a significantly slower learning
speed compared to recurrent and fully convolutional models.

4.2.3 System admin

In this long horizon scenario (h = 500), all the models achieve good performance in terms of test error and
training time for relatively small network sizes as shown in Table 3. As in the previous scenarios, the models
based on temporal convolutions seem to benefit more from larger sizes than the recurrent models. For this

number of parameters
models ≤ 100 1K 10K 3M
LSTM 1.69 ± 0.04 1.06 ± 0.04 1.05 ± 0.04 -
GRU 1.68 ± 0.04 1.06 ± 0.04 1.05 ± 0.04 -
TCN 2.06 ± 0.05 1.98 ± 0.03 1.05 ± 0.04 -

FullyConv 2.01 ± 0.04 1.20 ± 0.05 1.05 ± 0.04 -
LogReg - - - 1.97 ± 0.08

(a) Cross Entropy test error.

number of parameters
≤ 100 1K 10K 3M
13.7 18.5 32.4 -
13.1 18.3 33.9 -
3.6 5.1 12.7 -
3.9 5.2 12.3 -
- - - 23.2

(b) Wall-clock training time (s).

Table 3: System admin, means and standard errors over 10 iterations of the experiment.

14

Under review as submission to TMLR

5 10 15 20 25 30 35
WCTT

1.0

1.2

1.4

1.6

1.8

2.0

Cr
os

s E
nt

ro
py

LSTM
GRU
TCN
FullyConv

(a) Pareto fronts. The sizes selected are represented in red
and correspond to the cells highlighted in Table 3.

0 5 10 15 20
WCTT

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Cr
os

s E
nt

ro
py

LSTM (1000)
GRU (1000)
TCN (10000)
FullyConv (10000)
LogReg
Random

(b) Test error over wall-clock training time for the selected
sizes.

0 50 100 150 200 250 300 350 400 450 500
Time step

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Cr
os

s E
nt

ro
py

LSTM (1000)
LogReg

(c) Test error per time steps.

Figure 11: System admin.

reason, we select larger Pareto optimal sizes for the convolutions based models than for recurrent models
(see Figure 11(a)). A comparison of learning curves of different network sizes is also shown in Figure 15
in Appendix A. Figure 11(b) shows that LSTM, GRU and FullyConv are the best suited models for this
problem with similar learning speed and final accuracy.

The logistic regression shows its limitation in representing long-term temporal dependencies. To better
understand this flaw we plot in Figure 11(c) the test error over each time step of the logistic regression
compared to the LSTM. The figure shows that the logistic regression error increases over time steps while
the LSTM error remains constant. The fact that the predictions become more inaccurate for later times
means that the capability of the logistic regression to represent the influence decreases with the problem
horizon. One explanation for this is that a linear model is not able to accurately represent long temporal
dependencies between the local variables and the influence sources as they become increasingly non-linear
with the growth of the problem horizon.

15

Under review as submission to TMLR

4.2.4 Observations

We can summarize the main conclusions of the empirical investigation of this section as follows:

• Complex realistic scenarios typically induce manageable influence learning task which relatively
small recurrent models can effectively handle.

• Learning models not designed to model temporal dependencies do not provide adequate solutions
to represent the influence.

• Recurrent models have been demonstrated to perform equally as well as state-of-the-art architectures
for modeling temporal sequences, such as fully convolutional neural networks, and proved to be the
most suitable models to represent the influence.

5 Approximate influence for long horizon tasks

In many real-world applications, our influence predictors would operate for very long time. Some examples
include sequential decision making problems that require long horizon samples or might substantially benefit
from them as in long horizon planning (Simeonov et al., 2020; Pertsch et al., 2020), episodic reinforcement
learning (Dann & Brunskill, 2015) and sparse reward tasks (Riedmiller et al., 2018). In the previous sec-
tions we discussed how approximate influence-based abstraction can speed up simulations in large realistic
scenarios: learning models can effectively approximate the influence at the negligible cost of running global
simulations to collect a manageable training sample. This may no longer be the case when dealing with long
planning horizons. In fact, collecting long trajectories from the global simulator might still be computational
demanding. One idea is to leverage learning models to generalize the influence representations beyond the
training horizon. With this respect, the question we want to answer is to what extent the representations
learned using trajectories with horizon htrain can approximate well the influence for a much longer deploying
horizon hdeploy ≫ htrain. The relevance of this question lies in the possibility to leverage these approximations
to collect much longer trajectories by using lightweight local simulators.

This intuition stems from the Ergodic Theory for MDPs (Puterman, 2014; Morton & Wecker, 1977; Kearns
& Singh, 2002). Under ergodic assumptions, the Markov chain induced by the joint policy π = (π1, . . . , πN)
converges to the stationary distribution regardless of the initial distribution, at a rate depending on the
mixing time of the system. This suggests the idea of a stationary influence point as the limit conditional
distribution function of the sequence {It}t. That is, when the system is sufficiently mixed the influence
resulting from π will approach a time-independent function of few factors in the dset, representing the
conditional distribution of the influence sources at equilibrium. We would like to emphasize that the concept
of a steady-state behavior of the influence relies merely on heuristic arguments based on ergodicity for Markov
systems, and is further endorsed by the empirical observations gathered in this section. These arguments
support the intuition that learning models can represent well the influence for decision making problems with
long horizon hdeploy. More precisely, assuming that the influence tends to a stationary distribution, global
simulator trajectories with horizon longer than the mixing time htrain > tmix, contain sufficient information
to learn the stationary influence point. Thus, approximators trained over relatively short trajectories, have
the potential to generalize well the influence over a (indefinitely) longer horizon hdeploy.

This raises a key question: which is a suitable training horizon htrain for such task? Clearly, we expect that
the influence predictions improve for training horizons tending to the deploying horizon htrain → hdeploy.
However, the intent is to limit the computational effort from running expensive global simulations for long
times. Thus, we seek a target training horizon h∗train as the minimal number of time steps which guarantees
accurate influence predictions for a long deploying horizon. Also, this target horizon needs to ensure negligible
performance loss when compared with models trained over longer sequences. In essence, the choice of a
training horizon h∗train is a trade-off between the quality of approximations and the length of the training
sequences. Clearly, a good candidate h∗train is domain specific: it essentially boils down to the sum of
the system mixing time and some additional time steps necessary for the learning model to generalize the
experience encountered after mixing and capture the steady state. Thus, in principle, h∗train depends also

16

Under review as submission to TMLR

on the learning model itself. However, we empirically show that this dependency is weak when comparing
models that have demonstrated to be effective for the influence learning task.

5.1 Experimental setup

We consider a set of K training horizons H = {h1, . . . , hK} with h1 ≤ · · · ≤ hK . The index k ∈ {1, . . . , K}
identifies the choice of a training horizon htrain in the set H. We collect n global simulator trajecto-
ries of d-sets and influence sources with horizon hK , assuming a random exploratory policy for the lo-
cal agent πExp. Then, we train K different learning models such that the k-th model learns the influ-
ence approximation Îk using as training set the truncations of the trajectories up to horizon htrain = hk,
Dk = {((d0

set, s0
src), . . . , (dhk

set, shk
src))i}i=1,...,n.

To assess the ability of each of the K models to capture the influence for long horizons, we test them
over longer trajectories. An independent test sample with horizon hdeploy ≫ hK is used for this purpose,
Ddeploy = {((d0

set, s0
src), . . . , (dhdeploy

set , s
hdeploy
src))i}i=1,...,m. We define the error function ek(h), representing the

generalization error of the k-th influence model over h deploying time steps. That is,

ek(h) = 1
h

h∑
t=1

ĈE(It, Ît
k), (5)

where ĈE(It, Ît
k) is the empirical estimate of the cross entropy between ground true It and predicted Ît

k

influence computed over the test set Ddeploy according to equation 3. Note that for h = hdeploy, ek(hdeploy)
corresponds to the average error of the influence model trained using hk horizon trajectories over the in-
dependent test sample for hdeploy time steps. As such, it measures how well (on average) the k-th model
generalizes the influence over the entire deploying horizon. While for h = hk, ek(hk) represents the error of
model k computed as the average error over the independent test trajectories with same length hk as the
training trajectories. Precisely, the test error and deploying error of the k-th model are defined as

ek
test := ek(hk) (6)

ek
deploy := ek(hdeploy) (7)

Our aim is not limited to investigate an advantage in terms of computational time but also to estimate the
deploying error by using the short horizon trajectories. Intuitively, the test error should be a good candidate
to fulfill this task. However, when the training horizon is short compared to the deploying horizon, the
cross entropy errors ĈE(It, Ît

k) before mixing t ≤ tmix affect substantially the test error. In general, those
error terms for initial time steps deviate significantly from those after stationarity is reached. Therefore,
the test error often fails in representing the deploying error whose main contribution is given by error terms
after mixing. One solution to mitigate this mismatch, is to neglect the non-informative errors in early time
steps: the losses before mixing do not add any information on the long term model performance. On the
other hand, after mixing we expect learning models to form an approximately steady representation of the
stationary influence point. As such, the errors ĈE(It, Ît

k) for t > tmix, may represent well the generalization
ability of the model. Thus, the idea is to use a window of l time steps of the global trajectories to define the
test-tail error as

ek
tail = 1

l

hk+l∑
t=hk+1

ĈE(It, Ît
k). (8)

This means that for training horizon hk, l time steps of experience in the test set
{((dhk+1

set , shk+1
src), . . . , (dhk+l

set , shk+l
src))i}i=1,...,m ⊂ Ddeploy are used to evaluate the model. We empiri-

cally demonstrate that for hk ≥ tmix, the error etail offers a better estimate of edeploy compared to etest.
Thus, the test-tail error can be used to assess a priori the quality of the model predictions for long deploying
horizons and search for an optimal training horizon h∗train.

An LSTM and a fully convolutional network are used for the experiments since they have proven to achieve
good performance in the influence learning task (see the results in Section 4.2). For each scenario, the
hyperparameter setting has been chosen ensuring that both models share the same size. See Table 12 in
Appendix B for the details of the network parameters.

17

Under review as submission to TMLR

We use for the experiments the domain Grab a chair as described in Section 3.2 which serves as controlled
environment where a known stationary influence point is reached after few time steps. Precisely, we assume
that all external agents 2, 3 . . . , N act by copying the action of the following agent in counterclockwise order
(see Figure 6). For instance, agent 3 at time t copies the last action of agent 2, which is, in turn, the action
of the local agent 1 at time t − 2. In general, for any agent i, at

i = at−i+1
1 . We assume that initially all the

agents pick deterministically the chair on their right side and then copy the neighbor’s previous action. Then,
after N − 1 time steps the system converges to a stationary distribution: any agent’s action is distributed
according to the local agent policy, that is at

i ∼ πExp
1 for t ≥ N − 1. As a result, the influence is a time

independent function of the last N local actions and deterministically determined by

I(at
2, at

N |a0
1, . . . , at−1

1) = P(at
2, at

N |at−1
1 , at−N+1

1) = δat−1
1

(at
2)δat−N+1

1
(at

N) for t ≥ N − 1. (9)

Such closed formula for the influence allows us to analyze the model learning for the different training
horizons. We consider a first scenario (GC4) with N = 4 interacting agents and a second with N = 11
agents (GC11). We also use the Traffic grid (TG) domain as described in Section 3.2 to validate our
assumptions in a more realistic environment where no prior knowledge on stationarity is available. See Table
10 in Appendix B for the details of the scenario settings.

5.2 Results

The models have been trained over 25 epochs for GC4, 30 epochs for GC11 and 20 epochs for TG. During
each epoch, the training set is fed to the network in batches of 100 trajectories. For each domain, we compare
the results over different training horizons. Specifically, for GC4 the learning models have been trained for
htrain ∈ H = {2, . . . , 14} and tested for hdeploy = 200. For GC11, htrain ∈ H = {5, . . . , 30} and hdeploy = 200.
In TG, htrain ∈ H = {5, . . . , 100} and hdeploy = 500. Table 11 in Appendix B specifies the optimization
choices for the learning models.

5.2.1 Generalization beyond training horizon

Table 4 lists the errors edeploy averaged over 10 iterations with the corresponding standard errors for a given
choice of the training horizon htrain in the three scenarios. The performance of the models are compared with
the error of a random classifier. The choice of a suitable training horizon is domain-dependent: in the Grab
a chair scenario with 4 agents, htrain = 6 training steps are sufficient to get deploying error close to 0 while
for 11 agents, the models require a longer training horizon htrain = 22. Such choices have been driven by
idea that the training horizons need to be longer than the mixing time tmix, which corresponds respectively
to tmix = 3 and tmix = 10. The results show that a training horizon slightly longer than the mixing time
ensures cross entropy errors close to zero for much longer times. In other words, few training time steps
of experience after mixing are sufficient for the models to generalize the deterministic stationary influence
over 200 deploying time steps. For the Traffic grid the results are less straightforward to interpret. In fact,
the cross entropy error depends on the entropy of the target influence distributions, which are unknown.
However, for htrain = 30 the average errors over 500 deploying time steps in Table 4 are significantly lower
than the random classifier error. Also, they are quite close to the errors computed over a much shorter test
horizon and reported in Table 2a. This leads to conclude that 30 training steps are sufficient to learn good
long term influence approximations. In summary, for every scenario there exist horizons htrain sufficient to
train influence models that can approximate well the influence for hdeploy time steps ensuring small deploying
error.

learning model
scenario LSTM FullyConv Random htrain hdeploy

GC4 0.002 ± 0.002 0.027 ± 0.026 1.38 6 200
GC11 0.002 ± 0.001 0.025 ± 0.01 1.38 22 200
TG 3.68 ± 0.06 3.98 ± 0.07 8.32 30 500

Table 4: Mean and standard error over 10 iterations of the deploying error.

18

Under review as submission to TMLR

5.2.2 Optimal training horizon

Figure 12 depicts the deploying errors ek
deploy over increasing training horizons hk ∈ H for the LSTM and

FullyConv.

For GC4, Figure 12(a) shows significant error drops for htrain = 3 which indeed corresponds to the mixing
time of the system tmix = 3. This means that both learning models gain accuracy as soon as some experience
of the steady state is recorded in the training trajectories. However, few more training time steps are needed
to reach very low loss when htrain ≥ 6. Remarkably, there are not evident differences between the two
learning models used. To better understand the mixing impact on the model learning, we compare the
deploying and test errors of the LSTM for different training horizons in Figure 13. Before the mixing time
for htrain = 2, no experience of the steady state is stored in the training set. Thus, all the predictions are
solely based on the influence experienced in the first 2 time steps. As a consequence, Figure 13(a) shows the
overfitting effect: the test error is improving over increasing training epochs and tending quickly to zero as the
approximations are very accurate for early time steps; on the other hand, the deploying error becomes larger
for increasing training epochs. After mixing, for htrain = 4 the deploying error has a significant decrease.

2 3 4 5 6 7 8 9 10 11 12 13 14
Training Horizon

0

2

4

6

8

Cr
os

s E
nt

ro
py

LSTM
FullyConv

(a) GC4

6 8 10 12 14 16 18 20 22 24 26 28 30
Training Horizon

0

5

10

15

20

25
Cr

os
s E

nt
ro

py
LSTM
FullyConv

(b) GC11

10 20 30 40 50 60 70 80 90 100
Training Horizon

5

10

15

20

25

30

35

Cr
os

s E
nt

ro
py

LSTM
FullyConv

(c) TG

Figure 12: Deploying error over training horizons.

19

Under review as submission to TMLR

Yet Figure 13(b) shows how more training samples worsen the long term predictions. The reason is that
the steady-state experience in the training sequences is still not sufficient to be generalized by the learning
model over long time steps. Instead, after 6 time steps, the generalization ability of the learning model over
the entire deploying horizon improves along with training epochs, as shown in Figure 13(c). Moreover, no
significant differences are detected for additional training time steps (see Figure 13(d) for htrain = 8). This
motivates the choice of training horizon as h∗train = 6.

Similarly for GC11, Figure 12(b) shows that the deploying errors of both learning models decrease consistently
when the length of the training sequences exceeds the mixing time tmix = 10. Then, the models need
approximately additional 10 time steps more to have a sufficient experience of the stationary influence and
converge to a deploying error close to zero when htrain ≥ 20. More training time steps do not improve
significantly the predictions. We select as training horizon h∗train = 22. See also the curves in Figure 16 in
Appendix A.

0 2 4 6 8 10 12 14 16 18 20 22 24
Epochs

0

1

2

3

4

5

Cr
os

s E
nt

ro
py

edeploy

etest

(a) htrain = 2

0 2 4 6 8 10 12 14 16 18 20 22 24
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cr
os

s E
nt

ro
py

edeploy

etest

(b) htrain = 4

0 2 4 6 8 10 12 14 16 18 20 22 24
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cr
os

s E
nt

ro
py

edeploy

etest

(c) htrain = 6

0 2 4 6 8 10 12 14 16 18 20 22 24
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cr
os

s E
nt

ro
py

edeploy

etest

(d) htrain = 8

Figure 13: Deploying and test errors for LSTM in GC4 scenario. The dashed line represent the baseline
accuracy of the random classifier.

In essence, the experiments in both Grab a chair scenarios demonstrate that regardless of the learning model,
the predictions over the entire deploying horizon improve substantially when the training horizon is longer

20

Under review as submission to TMLR

than the mixing time. Then, learning models require few additional training time steps to acquire the
sufficient experience of the steady state and generalize it over the deploying horizon. Much longer training
horizons do not bring significant improvements. Conversely, running unnecessarily long global simulations
may undermine the advantages of the entire abstraction method. It is therefore crucial to find a good
candidate training horizon h∗train.

In Figure 12(c) for the traffic domain, we see the deploying error of both learning models decreasing sub-
stantially between 10 and 20 time steps. The performance keeps improving for htrain between 20 and 30
time steps. Increasing further the training horizon does not seem to be beneficial, as also shown by the
test and deploying errors collected in Figure 17 in Appendix A. This might also intuitively suggest that the
system reaches stationarity between 10 and 30 time steps. Even in this case, the LSTM and FullyConv
perform essentially similarly: high errors before mixing time, a decreasing trend after mixing to stabilize
around the same training horizon. That leads us to conclude that the best suitable training horizon h∗train is
approximately independent on the learning model but strongly depends on the mixing time of the system.

5.2.3 Estimating the deploying error

The results in the last section show that we can find an optimal training horizon h∗train as the minimum
horizon in the set H which guarantees a small deploying error. Nonetheless, how to find such horizon by
using only relatively short training sequences still remains an open question. In fact, we based our choice
of h∗train on the deploying error computed over much longer trajectories. However, in practical situation, we
only dispose of the short global trajectories to learn the influence. Yet good estimators of the deploying error
can still lead the optimal training horizon search. Thus, we want to investigate error measures suitable to
estimate the deploying error using test trajectories with length at most as the training horizon.

Supported by the empirical evidence presented in Section 5.2.2, we assume that the system mixes fast in the
deploying horizon scale and the learning models require few additional training time steps after mixing to
get a quasi-steady representation of the stationary influence, i.e. tmix ≤ h∗train ≪ hdeploy. For any h ≥ h∗train
the error function can be decomposed as

ek(h) = 1
h

h∗
train−1∑
t=1

ĈE(It, Ît
k) +

h∑
t=h∗

train

ĈE(It, Ît
k)

 . (10)

In the formula, we distinguish between short and long time scales: when t < h∗train, before the system has
mixed and the model has learned a stable representation of the steady-state influence, and for t ≥ h∗train
when ĈE(It, Ît

k) are approximately constant terms representing the model’s error on the stationary influence.
Given that hdeploy ≫ h∗train, the deploying error is mainly affected by the errors in the long time scale,
while the contribution of the first term of equation 10 is negligible. On the other hand, the errors on the
short time scale have a relevant impact on the test error for a training horizon htrain ≪ hdeploy. Such terms
characterizing the test error give no insight on the model errors after an approximately steady representation
of the stationary influence is reached. For these reasons, we do not expect that the test error provides a good
estimate of the deploying error. Instead we introduce the test-tail error as defined in equation 8 which we
show to approximate better the deploying error when the test set includes some experience of the stationary
influence, i.e. for htrain ≥ tmix.

The results presented in Figure 14 confirm the theoretical intuition. In the Grab a chair scenarios, all agents
start by deterministically choosing the chair on their right side, to then copy the action of their neighbor
agent. Thus, agent N keeps picking that chair for the first tmix = N − 1 time steps, to then copy the action
of the local agent according to equation 9. Figure 14(a) and 14(b) show that the learning model succeeds
well in capturing the two deterministic distributions of the influence sources at

N before and after mixing, i.e.
test errors are close to zero. However, when htrain < tmix the training set only includes experience of agent N
picking the right side chair. Therefore, the influence model forecasts this behavior indefinitely, thus incurring
in a consistently high deploying error. After mixing, the deploying error rapidly tends to zero according to
the growing experience of the N agent copying the local actions in the training set. Unlike the test error,
for htrain ≥ tmix − 1, the test-tail error reflects the deploying error trend since it corresponds exactly to the
model error over the stationary influence.

21

Under review as submission to TMLR

2 3 4 5 6 7 8 9 10 11 12 13 14
Training Horizon

0

1

2

3

4

5

Cr
os

s E
nt

ro
py

edeploy

etest

etail

(a) GC4

6 8 10 12 14 16 18 20 22 24 26 28 30
Training Horizon

0

1

2

3

4

5

6

7

8

Cr
os

s E
nt

ro
py

edeploy

etest

etail

(b) GC11

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Training Horizon

0

10

20

30

40

Cr
os

s E
nt

ro
py

edeploy

etest

etail

(c) TG

Figure 14: Deploying, test and tail-test error for increasing training horizon. The vertical dashed line marks
the mixing time of the system, if known.

Figure 14(c) depicts a similar situation in the traffic domain. For short training horizons, the deploying error
is significantly high compared to the low values of the test error. Such large difference is explained by the
fact that the initial distribution of the system is far from representing the equilibrium: the vehicles enter
stochastically in an initially empty road network. Therefore, the model is learning well the distribution of
sparse vehicles but it has no experience, for instance, of car jams occurring at later busier time steps. Instead,
after approximately 15 initial time steps, the test-tail error closely follows the deploying error behavior. One
convincing explanation is that the system mixes before 15 time steps. After that, the short test trajectories
are already representative of the steady-state behavior of the influence sources, so is the test-tail error.
Moreover, observing the test error curve we notice that very low values for short training horizons, meaning
that the model effectively predicts the initial deterministic distributions of the influence sources. The test
error progressively increases together with the rise in the system’s stochasticity.

Supported by the theoretical intuition and the experimental results, we can derive the following conclusions.
In general, the model’s test error does not provide insight on the deploying error. We have distinguished

22

Under review as submission to TMLR

between different ranges of the training horizon. For htrain < tmix, the influence sources have not reached
a stationary distribution, the test-tail error is not meaningful and the learning models have typically high
deploying error. When tmix ≤ htrain ≤ h∗train, the model predictions of the steady behavior of the influence
are not accurate and stable, the deploying error starts decreasing along with the experience of stationarity
collected in the test sample. In this range, the test-tail error is particularly useful to estimate the deploying
error since gives an approximation of the model error over the stationary influence point. For htrain ≥ h∗train,
the model provides good and steady representations of the stationary influence. The test, test-tail and
deploying errors asymptotically converge to a limit cross entropy value which is lower bounded by the
entropy of the stationary influence point. Therefore, the test-tail error can be employed to determine the
training horizon h∗train, as the lowest horizon after mixing, which minimizes the test-tail error. This argument
together with the results presented in Figure 14, fully explain our choices of h∗train = 6 for GC4, h∗train = 22
for GC11 and h∗train = 30 for TG.

5.2.4 Observations

In summary, our experiments show that

• Learning models can generalize influence points beyond the training horizon.

• For each scenario, a minimal training horizon h∗train suitable to learn effectively the influence for
much longer horizons hdeploy can be found. This number depends on the dynamics of the system
but it is approximately independent of the learning model.

• Neglecting the contributions of early time steps cross entropy errors in the computation of the test
error allows to obtain a good estimate of the error over horizon hdeploy that can be used to determine
the optimal training horizon h∗train.

6 Conclusions

In this paper we investigate learning models and techniques for the influence learning task in realistic scenar-
ios. We run an extensive empirical investigation of the performance of different learning models in a variety
of domains. We conclude that complex scenarios may still induce manageable influence learning task. Rela-
tively small recurrent models can achieve the same performance levels as state-of-the art fully convolutional
neural networks. Moreover, we explore how to leverage learning models to build local simulators for long
horizons using short training trajectories. In particular, we show that there exists a training horizon which is
sufficient to learn good influence approximations for long horizon problems. This horizon strongly depends
on the mixing properties of the system. On the other hand, it is essentially independent of the learning
model. Finally we show how to leverage a suitable test error to determine this optimal training horizon.

References
Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and

recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Matthew Botvinick, Sam Ritter, Jane X Wang, Zeb Kurth-Nelson, Charles Blundell, and Demis Hassabis.
Reinforcement learning, fast and slow. Trends in cognitive sciences, 2019.

Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning: Structural assumptions and
computational leverage. Journal of Artificial Intelligence Research (JAIR), 1999.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for statis-
tical machine translation. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2014.

23

Under review as submission to TMLR

Elena Congeduti, Alexander Mey, and Frans A. Oliehoek. Loss bounds for approximate influence-based ab-
straction. In Proceedings of the International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), 2021.

George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems: concepts and design. Addison-
Wesley, 2001.

Christoph Dann and Emma Brunskill. In Advances in Neural Information Processing Systems (NeurIPS),
2015.

George Dimitrakopoulos and Panagiotis Demestichas. Intelligent transportation systems. IEEE Vehicular
Technology Magazine, 2010.

John Cristian Borges Gamboa. Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887,
2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Eric A. Hansen and Zhengzhu Feng. Dynamic programming for POMDPs using a factored state representa-
tion. In Proceedings of the International Conference on Artificial Intelligence Planning Systems (AIPS),
2000.

Jinke He, Miguel Suau de Castro, and Frans Oliehoek. Influence-augmented online planning for complex
environments. Advances in Neural Information Processing Systems (NIPS), 2020.

Jinke He, Miguel Suau, Hendrik Baier, Michael Kaisers, and Frans Oliehoek. Online planning in POMDPs
with self-improving simulators. In Proceedings of the International Joint Conference on Artificial Intelli-
gence, (IJCAI), 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 1997.

Tao Hong and Shu Fan. Probabilistic electric load forecasting: A tutorial review. International Journal of
Forecasting, 2016.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller.
Deep learning for time series classification: a review. Data mining and knowledge discovery, 2019.

Pertti Järventausta, Sami Repo, Antti Rautiainen, and Jarmo Partanen. Smart grid power system control
in distributed generation environment. Annual Reviews in Control, 2010.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 1998.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. PhD thesis, 2003.

Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun Chen. LSTM fully convolutional networks
for time series classification. IEEE access, 2017.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Machine
learning, 2002.

Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and Chandan K Reddy. Deep reinforcement learning for
sequence-to-sequence models. IEEE transactions on neural networks and learning systems, 2019.

Elizaveta Kuznetsova, Yan-Fu Li, Carlos Ruiz, Enrico Zio, Graham Ault, and Keith Bell. Reinforcement
learning for microgrid energy management. Energy, 2013.

Colin Lea, Michael D. Flynn, Rene Vidal, Austin Reiter, and Gregory D. Hager. Temporal convolutional
networks for action segmentation and detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

24

Under review as submission to TMLR

Fu-Dong Li, Min Wu, Yong He, and Xin Chen. Optimal control in microgrid using multi-agent reinforcement
learning. ISA transactions, 2012.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmenta-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2015.

Kaisa Miettinen. Nonlinear multiobjective optimization. Springer Science & Business Media, 1999.

Thomas E Morton and William E Wecker. Discounting, ergodicity and convergence for markov decision
processes. Management Science, 1977.

Frans Oliehoek, Stefan Witwicki, and Leslie Kaelbling. Influence-based abstraction for multiagent systems.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2012.

Frans Oliehoek, Stefan Witwicki, and Leslie Kaelbling. A sufficient statistic for influence in structured
multiagent environments. Journal of Artificial Intelligence Research (JAIR), 2021.

Karl Pertsch, Oleh Rybkin, Frederik Ebert, Shenghao Zhou, Dinesh Jayaraman, Chelsea Finn, and Sergey
Levine. Long-horizon visual planning with goal-conditioned hierarchical predictors. Advances in Neural
Information Processing Systems (NIPS), 2020.

Pascal Poupart and Craig Boutilier. VDCBPI: an approximate scalable algorithm for large POMDPs.
Advances in Neural Information Processing Systems (NIPS), 2004.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele, Vlad
Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse reward tasks from
scratch. In International conference on machine learning. PMLR, 2018.

Ahmad Shamshad, MA Bawadi, WMA Wan Hussin, Taksiah A Majid, and SAM Sanusi. First and second
order markov chain models for synthetic generation of wind speed time series. Energy, 2005.

Anthony Simeonov, Yilun Du, Beomjoon Kim, Francois R. Hogan, Joshua Tenenbaum, Pulkit Agrawal, and
Alberto Rodriguez. A long horizon planning framework for manipulating rigid pointcloud objects. arXiv
preprint arXiv:2011.08177, 2020.

Elisa Skoplaki and John A. Palyvos. On the temperature dependence of photovoltaic module electrical
performance: A review of efficiency/power correlations. Solar energy, 2009.

Miguel Suau, Jinke He, Elena Congeduti, Rolf Starre, Aleksander Czechowski, and Frans Oliehoek. Influence-
aware memory architectures for deep reinforcement learning in POMDPs. Neural Computing and Appli-
cations, 2022a.

Miguel Suau, Jinke He, Matthijs TJ Spaan, and Frans Oliehoek. Influence-augmented local simulators: A
scalable solution for fast deep RL in large networked systems. In International Conference on Machine
Learning. PMLR, 2022b.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems
(NIPS), 2017.

John G Vlachogiannis and Nikos D. Hatziargyriou. Reinforcement learning for reactive power control. IEEE
transactions on power systems, 2004.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun. Transformers
in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

25

Under review as submission to TMLR

A Additional results

In Figure 15 we provide the learning curves for the experiments presented in Section 4 for the System admin
domain.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Cr
os

s E
nt

ro
py

<100
1000
10000

(a) LSTM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Cr
os

s E
nt

ro
py

<100
1000
10000

(b) GRU

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

2.0

2.2

2.4

2.6

2.8

3.0

Cr
os

s E
nt

ro
py

<100
1000
10000

(c) TCN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Cr
os

s E
nt

ro
py

<100
1000
10000

(d) FullyConv

Figure 15: System admin. Cross entropy test errors over epochs.

26

Under review as submission to TMLR

Figure 16 shows the test and deploying errors of an LSTM learning model for the influence over the different
training horizons in GC11 domain for the experiments in Section 5.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Epochs

0

1

2

3

4

5

6

7

Cr
os

s E
nt

ro
py

edeploy

etest

(a) htrain = 6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Epochs

0

1

2

3

4

Cr
os

s E
nt

ro
py

edeploy

etest

(b) htrain = 12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cr
os

s E
nt

ro
py

edeploy

etest

(c) htrain = 22

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cr
os

s E
nt

ro
py

edeploy

etest

(d) htrain = 28

Figure 16: Deploying and test errors for LSTM in GC11 scenario. The dashed line represent the baseline
accuracy of the random classifier.

27

Under review as submission to TMLR

Figure 17 shows the test and deploying errors of an LSTM learning model for the influence over the different
training horizons in TG domain for the experiments in Section 5

0 2 4 6 8 10 12 14 16 18 20
Epochs

0

5

10

15

20

25

30

35

Cr
os

s E
nt

ro
py

edeploy

etest

(a) htrain = 10

0 2 4 6 8 10 12 14 16 18 20
Epochs

2

4

6

8

10

Cr
os

s E
nt

ro
py

edeploy

etest

(b) htrain = 20

0 2 4 6 8 10 12 14 16 18 20
Epochs

2

3

4

5

6

7

8

Cr
os

s E
nt

ro
py

edeploy

etest

(c) htrain = 30

0 2 4 6 8 10 12 14 16 18 20
Epochs

3

4

5

6

7

8

Cr
os

s E
nt

ro
py

edeploy

etest

(d) htrain = 40

Figure 17: Deploying and test errors for LSTM in TG scenario. The dashed line represent the baseline
accuracy of the random classifier.

28

Under review as submission to TMLR

B Experimental setup

Domain h #Agents Policies b0 #Influence Sources D-set dimension
Microgrid 40 100 ranges uniform 4 1

Traffic grid 100 9 priority zeros 12 9
System admin 500 20 mixed uniform 4 3

Table 5: Settings of the scenarios and features of the influence learning problem.

Optimization
Domain Sample size Batch size #Epochs Alg Loss LR Decay Valid
Microgrid 500 100 15 Adam Entropy Linear Split90%

Traffic grid 500 100 20 Adam Entropy Linear Split90%
System admin 500 100 20 Adam Entropy Linear Split90%

Table 6: Optimization hyperparameters for the deep learning models.

Architecture
Models #Layers #Units Kernel #Params Activate Regularize

(size ≤100)
LSTM 1 2 - 88 Tanh None
GRU 1 2 - 78 Tanh None
TCN 2 2,2 8 100 ReLU None

FullyConv 2 1 8 52 ReLU Dropout
(size 1000)

LSTM 1 13 - 1056 Tanh None
GRU 1 14 - 954 Tanh None
TCN 4 6,6,6,6 8 1048 ReLU None

FullyConv 4 6,6 8 1084 ReLU Dropout
(size 15000)

LSTM 1 56 - 14128 Tanh None
GRU 1 64 - 13904 Tanh None
TCN 5 20,20,20,20,20 8 13396 ReLU None

FullyConv 8 15,15,15,15 8 13246 ReLU Dropout
LogReg - - - 13104 None None

Table 7: MicroGrid. Architectures of the deep learning approaches for the comparison of learning models.

29

Under review as submission to TMLR

Architecture
Models #Layers #Units Kernel #Params Activate Regularize

(size ≤200)
LSTM 1 2 - 176 Tanh None
GRU 1 2 - 150 Tanh None
TCN 2 2,2 4 164 ReLU None

FullyConv 2 2 4 188 ReLU Dropout
(size 1000)

LSTM 1 9 - 960 Tanh None
GRU 1 11 - 1014 Tanh None
TCN 4 4,4,4,4 10 976 ReLU None

FullyConv 4 4,4 10 1032 ReLU Dropout
(size 10000)

LSTM 1 42 - 9936 Tanh None
GRU 1 49 - 10020 Tanh None -
TCN 4 16,16,16,16 10 9592 ReLU None

FullyConv 4 16,16 10 9816 ReLU Dropout
(size 50000)

LSTM 1 104 - 50360 Tanh None
GRU 1 120 - 50064 Tanh None -
TCN 6 [30]x6 10 48624 ReLU None

FullyConv 6 [30,30,30] 10 49104 ReLU Dropout
(size 1M)
LogReg - - - 1093200 None None

Table 8: TrafficGrid. Architectures of the deep learning approaches for the comparison of learning models.

Architecture
Models #Layers #Units Kernel #Params Activate Regularize

(size ≤100)
LSTM 1 2 - 80 Tanh None
GRU 1 2 - 66 Tanh None
TCN 2 2,2 4 68 ReLU None

FullyConv 2 2 4 80 ReLU Dropout
(size 1000)

LSTM 1 12 - 920 Tanh None
GRU 1 14 - 918 Tanh None
TCN 4 6,6,6,6 8 1088 ReLU None

FullyConv 4 6,6 8 1136 ReLU Dropout
(size 10000)

LSTM 1 48 - 10568 Tanh None
GRU 1 54 - 9998 Tanh None
TCN 6 [16] x6 8 10856 ReLU None

FullyConv 6 16,16,16 8 11016 ReLU Dropout
(size 3M)
LogReg - - - 2.9M None None

Table 9: System admin. Architectures of the deep learning approaches for the comparison of learning models.

30

Under review as submission to TMLR

Domain H hdeploy #Agents Policies b0

GC4 {2, . . . , 14} 200 4 copy Deterministic - right chair
GC11 {5, . . . , 30} 200 11 copy Deterministic - right chair
TG {10, . . . , 100} 500 9 priority Deterministic - zero vehicles

Table 10: Scenario settings for the influence in long horizon tasks.

Domain Batch size #Epochs LR Init LR Final LR Decay Train size n Test size m

GC4 10 25 10−2 10−5 linear 500 100
GC11 10 30 10−2 10−5 linear 500 100
TG 10 20 10−2 10−5 linear 500 100

Table 11: Optimization choices for the influence in long horizon tasks.

Architecture
Domain Model #Layers #Units Kernel #Params Activate Regularize

GC4 LSTM 1 10 - 564 Tanh None
FullyConv 4 [6,6] 4 544 ReLU Dropout

GC11 LSTM 1 32 - 4612 Tanh None
FullyConv 8 [10,10,10,10] 6 4484 ReLU Dropout

TG LSTM 1 32 - 2136 Tanh None
FullyConv 4 [8,8] 6 1944 ReLU Dropout

Table 12: Architectures of the deep learning approaches for the influence in long horizon tasks.

31

	Introduction
	Background
	Empirical investigation of influence learning
	Formal framework
	Experimental domains

	A comparison of models for learning influence representations
	Experimental setup
	Results
	Microgrid
	Traffic grid
	System admin
	Observations

	Approximate influence for long horizon tasks
	Experimental setup
	Results
	Generalization beyond training horizon
	Optimal training horizon
	Estimating the deploying error
	Observations

	Conclusions
	Additional results
	Experimental setup

