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Abstract

Self-supervised learning (SSL) has gained increas-
ing attention in the graph learning community, ow-
ing to its capability of enabling powerful models
pre-trained on large unlabeled graphs for general
purposes, facilitating quick adaptation to specific
domains. Though promising, existing graph SSL
frameworks often struggle to capture both high-
level abstract features and fine-grained features
simultaneously, leading to sub-optimal general-
ization abilities across different downstream tasks.
To bridge this gap, we present Multi-granularity
Graph Semantic Ensemble via Knowledge Dis-
tillation, namely MGSE, a plug-and-play graph
knowledge distillation framework that can be ap-
plied to any existing graph SSL framework to
enhance its performance by incorporating the con-
cept of multi-granularity. Specifically, MGSE
captures multi-granular knowledge by employing
multiple student models to learn from a single
teacher model, conditioned by probability distri-
butions with different granularities. We apply
it to six state-of-the-art graph SSL frameworks
and evaluate their performances over multiple
graph datasets across different domains, the exper-
imental results show that MGSE can consistently
boost the performance of these existing graph SSL
frameworks with up to 9.2% improvement.

1. Introdution
Graph neural networks (GNNs) garnered increasing atten-
tion due to its exceptional performance in learning powerful
representations over graphs (Kipf & Welling, 2017). How-
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ever, obtaining a sufficient number of annotated graphs can
be prohibitively expensive. As a result, self-supervised
learning (SSL) on graphs has emerged as a popular research
direction, offering the ability to learn task-agnostic repre-
sentations without relying on costly label annotations (Zhu
et al., 2020; You et al., 2020; Thakoor et al., 2022). The SSL
paradigm has proven particularly valuable in various real-
world applications, such as drug discovery (Gilmer et al.,
2017; Wu et al., 2018; Zhang et al., 2021b), protein anal-
ysis (Jiang et al., 2017), and social network analysis (Fan
et al., 2019; Wang et al., 2019a; Ying et al., 2018), where
the scarcity of labeled data poses a significant challenge.
Meanwhile, SSL frameworks are usually time-consuming
and computationally expensive, because they require either
contrasting the positive samples with a large number of neg-
atives (Chen et al., 2020a) or learning the same object from
different views by multiple trials (Chen & He, 2021), which
undermines the feasibility to train a model from scratch
on each application. To overcome the computational bar-
rier, transfer learning frameworks have been extensively
explored to quickly migrate models trained for general pur-
poses to task-specific domains. For example, models can be
adapted to new downstream tasks by appending only one or
few MLP layers (Chen et al., 2020a; Kenton & Toutanova,
2019) with little fine-tuning to achieve good performance.

Unfortunately, the knowledge from models trained for gen-
eral purposes may not always suffice for various down-
stream tasks requiring semantics (underlying patterns) with
different granularities. For instance, in the computer vi-
sion field, object detection requires fine-grained knowledge
to recognize minute objects; whereas image segmentation
needs a high-level overview of the contours (Sun et al.,
2019). Similarly, in the natural language processing field,
named entity recognition requires fine-grained token-level
representations but document classification needs high-level
understanding over the whole input text (Liu et al., 2022).
Consider the illustration in Figure 1, where amino acids
share common amino and carboxyl groups, which make up
the majority of amino acids. However, their hydrophobic
properties are determined by the side chains, with glycine
and alanine being hydrophobic and serine and threonine
being non-hydrophobic. The defining sub-structures for
amino acids operate at a coarse granularity, while those for
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Figure 1. Multi-granularity existing in graphs. With different gran-
ularities, the activated sub-structures diverge significantly. Coarse
granularity captures the high-level semantics; whereas fine granu-
larity captures minute sub-structures. Bold sub-graphs indicate the
activated sub-graphs in the current granularity. The dashed line
indicates the granularity split.

hydrophobicity operate at a fine-grained granularity. Hence,
we posit the assumption that "Could multi-granularity graph
semantic features further improve the generalization ability
of learned representations in different downstream appli-
cations?" However, it is not a trivial task to achieve such
an optimization goal. Existing SSL methods design dif-
ferent tasks and objectives to enhance downstream task
performance, but few of those leverage the concept of multi-
granularity when applied to different tasks. For instance,
graph contrastive learning methods (You et al., 2020; 2021;
Suresh et al., 2021) learn from instance discrimination tasks
(Tschannen et al., 2019), which maximize the similarities
between the positive pairs while minimizing those between
different instances, including instances falling under simi-
lar granularities. Consequently, the graph representations
learned through contrastive objectives (e.g., InfoNCE (Oord
et al., 2018)) might be optimized into sub-optimal situa-
tions, where high-level abstraction features are neglected
and only those fine-grained features are kept. On the other
hand, graph SSL methods based on generative objectives
(Hou et al., 2022; Hu et al., 2020b) struggle to extract high-
level semantics since the generative objectives require the
model to recover the original masked attributes, enforcing
the encoder to learn representations at fine-grained levels,
which falls short on tasks whose objective naturally con-
forms the high-level abstraction features (Liu et al., 2021).
GraphLoG (Xu et al., 2021) explores the prototypical graph
contrastive learning, which indeed considers the concept
of representation granularity. However, it suffers from the
same issue because the cluster granularity is pre-defined
before the model training, which is not flexible enough to
handle all downstream tasks.

In light of this, we propose to combine different models in
an ensemble manner, where each candidate model learns
at a specific granularity. To learn graph representations at
multiple granularities, one straightforward design could be
training multiple GraphLoG models and combining them

during the inference phase. However, such an implementa-
tion might entail sub-optimal performance because the hier-
archical granularities of different GraphLoG models might
overlap due to the independent training of each model. In-
stead, we explore knowledge distillation (KD), by which
student models with different granularities learn from the
same pre-trained teacher model, such that the knowledge
learned by student models will be non-overlapping. KD
is initially proposed for model compression (Hinton et al.,
2014; Zhang et al., 2022), however, recently KD has also
been proven to enhance the model performance: distilling
knowledge of one model to its randomly initialized clone
without extra supervision signal (i.e., self-distillation) re-
sults in performance improvement (Zhang et al., 2019b;
Furlanello et al., 2018; Chen et al., 2020b). Previous Study
(Allen-Zhu & Li, 2023) explains this phenomenon from the
point of ensemble learning and theoretically proves that the
student model leans to learn a perspective different from
that of the teacher model due to the various random initial-
izations for model parameters. The student model learns
the representations through training data while leveraging
the knowledge learned by the teacher model initialized dif-
ferently, which improves the performance (e.g., instances
misclassified by the model of one perspective could be cor-
rectly predicted by the model of the other perspective, and
vice versa). To learn the multi-granular knowledge in graphs,
leveraging the philosophies and the performance improve-
ment brought by KD, we propose Multi-granularity Graph
Semantic Ensemble via Knowledge Distillation, namely
MGSE, a plug-and-play knowledge distillation framework
aimed at enhancing the transfer learning performance for ex-
isting graph SSL models. Unlike existing graph KD frame-
works that require specific configurations, MGSE makes
no such assumption and is directly applicable to any graph
SSL method to improve its performance. Specifically, we
extract the multi-granular knowledge by training multiple
student models that align their outputs with the teacher
model in the hidden space with different granularities. Fi-
nally, we combine the knowledge learned by students with
different granularities in an ensemble manner to fulfill the
downstream tasks. Our contributions are three-fold: (i)
We propose the MGSE, a novel plug-and-play knowledge
distillation framework aimed at enhancing the task general-
ization ability of any graph SSL model by the incorporation
of multi-granularity; (ii) We provide theoretical illustration
to demonstrate the superiority of our proposed framework;
(iii) Comprehensive experiments are conducted across dif-
ferent settings and datasets to evaluate the effectiveness
of MGSE. Though extra computation costs could be in-
troduced, the experimental results show that our proposed
MGSE can be seamlessly adapted to diverse downstream
graph-related applications with more competitive perfor-
mances. The source code of our proposed MGSE is publicly
available at https://github.com/HoytWen/MGSE
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2. Related Work
Graph Neural Network. Graph neural networks (GNNs)
map the non-Euclidean graph-structured data into lower-
dimensional hidden spaces for further utilization of the
graph learning task. The key mechanism behind GNNs
is message passing, where GNNs learn node representations
by transforming and aggregating the information along the
edges of graphs (Scarselli et al., 2008; Kipf & Welling,
2017) and information from multi-hop neighbors can be
captured by stacked layers. Therefore, the learned node
representations are generally optimized to preserve the prox-
imity features, i.e., the node representations reflect their
neighborhood distributions (Ma et al., 2022). GNN variants
mainly focus on improving the transformation or aggre-
gation functions (Veličković et al., 2018; Xu et al., 2018;
Gasteiger et al., 2019; Hamilton et al., 2017; Zhang et al.,
2019a; Wang et al., 2019b), achieving better effectiveness
or scalability. Due to the remarkable performance of GNNs
on graph data, they have been broadly used in many appli-
cations, such as drug discovery (Gilmer et al., 2017; Wu
et al., 2018; Zhang et al., 2021b; Wen et al., 2023), protein
analysis (Jiang et al., 2017), and social network analysis
(Fan et al., 2019; Wang et al., 2019a; Ying et al., 2018; Wen
et al., 2022).

Self-Supervised Learning on Graph. According to the
pre-training task, existing graph SSL methods can be mainly
categorized into contrast-based and generation-based meth-
ods (Liu et al., 2021). Contrastive graph SSL methods
learn graph representations following the InfoMax princi-
ple (Tschannen et al., 2019), where the mutual information
between positive pairs is maximized while that between
negative pairs is minimized (Velickovic et al., 2019; Zhu
et al., 2020; Hassani & Khasahmadi, 2020; You et al., 2020;
2021; Zhao et al., 2021b). To reduce the computational
cost entailed by extensive negative pairs, some recent works
also propose to achieve the same effects by either specific
architecture designs such as dual-encoder architecture with
stop-gradient (Thakoor et al., 2022; Yang et al., 2021b),
or feature regularization terms (Zhang et al., 2021a). On
the other hand, generative graph SSL models learn graph
representations by recovering features of the masked nodes
or the masked edges (Liu et al., 2021; You et al., 2018; Hu
et al., 2020b; Kipf & Welling, 2016; Hou et al., 2022). More
recent work (Ju et al., 2023) proposes to incorporate differ-
ent pre-training tasks to improve the task generalization
ability across different tasks. Despite their promising per-
formance on many downstream tasks, those SSL methods
are mainly evaluated under the in-distribution setting. They
do not explicitly leverage the granularities accompanied by
the downstream domains, therefore leaving certain spaces
in performance improvement under some scenarios (e.g.,
GNNs are trained over general molecular graphs but tested
on graphs from other domains).

Knowledge Distillation. Knowledge distillation (Hinton
et al., 2014) is introduced as a strategy for model compres-
sion, accomplished by having a compact student model
approximate the performance of a large over-parameterized
teacher model, supervised by both the annotated labels and
the teacher model output. However, recently KD has also
been proven to enhance the model performance: distilling
knowledge of one model to its randomly initialized clone
without extra supervision signal (i.e., self-distillation) leads
to performance improvement(Zhang et al., 2019b; Chen
et al., 2020b; Fang et al., 2020). Some (Allen-Zhu & Li,
2023) credit this to ensemble learning (Hansen & Salamon,
1990), by theoretically proving that random initialization
allows the teacher and student models to learn features from
different views. Assisted by the knowledge distillation strat-
egy, the student model is able to integrate the information
from its own view with the "dark knowledge" (Furlanello
et al., 2018; Tian et al., 2019; Allen-Zhu & Li, 2023) learned
by the teacher model from another view, therefore improv-
ing the performance While most of the existing works fo-
cus on model compression by incorporating a lighter stu-
dent model (Yang et al., 2021a; Zhang et al., 2022), few
of them exploit the advantage of feature ensemble brought
by knowledge distillation for further model performance
generalizability. In this work, we aim to exploit the merits
of ensemble learning along with KD to provide the trained
model with the availability and flexibility to combine multi-
granularity underlying knowledge for downstream tasks and
obtain better generalizability.

3. Preliminaries
Notations. We use G = (V,E) to represent the input
graph, where V and E stand for the node set and edge
set, respectively. Besides, we use xv ∈ RDv and xe ∈
RDe to denote the attribute vector of each node v ∈ V
and edge e ∈ E. In this work, we focus on the graph-
level tasks, whose datasets include multiple graphs, i.e.,
G = {Gi = (Vi, Ei)}Ni=1 and c is the number of classes.
Each graph Gi is associated with an C-dimensional one-hot
prediction target vector, denoted as yi ∈ RC .

Graph Neural Networks. As we mentioned in Section
2, most GNNs follow the message-passing schema to itera-
tively update the node embedding through the message from
its neighborhood Nv. Considering a L-layer GNN model,
the forward process of the l-th layer can be formulated as:

h(l+1)
v = COM

(
h(l)
v ,AGG

({
h(l)
u ,∀u ∈ Nv

}))
, (1)

where h
(l)
v is the embedding of node v at the l-th layer

and h
(0)
v = xv, Nv is the set of the nodes adjacent to v,

AGG and COM are aggregation function and transforma-
tion function of the GNN layer, respectively. For the graph
classification task, there is a READOUT function (e.g.,
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mean, sum, or max) to summarize all the node embeddings
into one graph embedding after L-th layer before it is used
for downstream tasks. This process can be formulated as:

hG = READOUT({hv : v ∈ V }) . (2)

4. Methodology
In this section, we will introduce the technical details of our
proposed Multi-granular Graph Ensemble via Knowledge
Distillation (MGSE), whose overall framework is shown in
Figure 2. MGSE enhances the representations learned from
student models by the self-supervised knowledge distilla-
tion, such that the resulting representations achieve better
generalization ability. Given the input graph G and a pre-
trained teacher model f t (including a GNN encoder fg and
a projection layer fh), we transfer the knowledge from f t

to the student model fs by aligning their hidden represen-
tations. Multi-granular semantic knowledge is extracted by
training multiple student models with different granularities.
At last, we unify the distilled student models through model
ensemble to conduct downstream inference.

4.1. Self-supervised Prototypical Distillation

Similar to the previous self-supervised distillation work
(Fang et al., 2020), we keep the pre-trained teacher model
frozen while training the randomly initialized student mod-
els to approximate its output. However, the semantic gran-
ularity is challenging to extract in the SSL setting due to
the absence of supervision. Inspired by prototypical con-
trastive learning frameworks that encode features at one
granular level (Li et al., 2021; Guo et al., 2022; Xu et al.,
2021), we align the outputs of the teacher model and the
student model in various probability spaces to extract fea-
tures in multiple granularities. Given a graph Gi ∈ G and
its augmented view a(Gi), where a(·) is randomly sampled
from a graph augmentation family A (i.e., node dropping,
edge perturbation, and subgraph sampling), we firstly get
the representations of these two graphs from the pre-trained
teacher model, i.e., zti = f t(Gi) ∈ RD. Next, we randomly
initialize K sets of corresponding trainable prototypes to
map zti into K probability spaces. The prototype matrix for
k-th set is denoted as qk ∈ RD×Dk , where each column
indicates the centroid of a prototype and Dk is the number
of prototypes in k-th set. In order to extract multi-granular
semantics from a single teacher model f t, we thereby train
multiple student models specific to different granularities.
Given K sets of prototypes corresponding to different gran-
ular semantics, we train K student models with identical

architecture, i.e.,
{
zsi,k

}K

k=1
= {fs

k(Gi)}Kk=1, to obtain the
approximated probability distributions of the teacher model
in different granularities. The soft prototypical assignment
for zti and zsi,k in k-th prototype set are denoted as pt

i,k and

ps
i,k, with d-th dimension calculated as:

[
pt
i,k

]
d
=

exp (z̄ti · [q̄k]d /τt)∑Dk

d′=1 exp (z̄
t
i · [q̄k]d′ /τt)

,

[
ps
i,k

]
d
=

exp
(
z̄si,k · [q̄k]d /τs

)
∑Dk

d′=1 exp
(
z̄si,k · [q̄k]d′ /τs

) , (3)

where τt, τs ∈ (0, 1) is the temperature parameter for the
teacher and students, z̄ti, z̄

s
i,k and q̄k is the L2 normalized

representations and prototypes and [·]d is the d-th element
in a variable. To guarantee different prototype sets capture
different semantic granularities, we assign the number of
prototypes in each set in ascending order, i.e., 1 < D1 <
D2 < · · · < DK . In short, we get K sets of “soft label” by
measuring the cosine similarity between zti and centroids of
different prototype sets, then the soft labels are utilized as
supervision to align the output of teacher and students. We
set {2, 21, 50} as the default setting of granularity unless
further illustration. It is noteworthy that we use a larger
temperature parameter τs than τt to implicitly encourage
the student models to produce confident low entropy anchor
predictions (Fang et al., 2020; Caron et al., 2021). In our
implementation, we use a sharpen operation (i.e., τt =

τ
1/P
s with P ∈ R+ and P < 1) on the target probability

distribution produced by the teacher model to achieve the
same effect. With the multi-granular distributions from
the student models and their corresponding distributions
from the teacher model, MGSE is optimized by minimizing
the divergence between the probability distributions of the
teacher and the students. We use the negative cross entropy
to measure the divergence for each granularity k:

D
(
pt
k,p

s
k

)
= −H

(
pt
k,p

s
k

)
=

1

NDk

N∑
i=1

Dk∑
d=1

−
[
pt
i,k

]
d
· log

[
ps
i,k

]
d
.

(4)

Note that the distillation objective in Equation 4 can max-
imize the mutual information between the output of the
teacher model and student model, which is similar to the
InfoMax principle in contrastive SSL frameworks. Partic-
ularly, our optimization objective can be an analogy to the
ProtoNCE loss to maximize the mutual information at the
cluster level. We conduct a more detailed discussion in
Appendix A. Therefore, by aligning the representation prob-
ability distributions of the teacher and the students, we can
transfer the knowledge from the teacher to the students.

4.2. Training Objective

To train the student models, we use the cross entropy mea-
surement H

(
pt
i,k,p

s
i,k

)
to match the probability distribu-

tions of the teacher model and student models in different
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Figure 2. The illustration of our proposed MGSE. The teacher model f t can be any existing graph SSL method with its parameters frozen.
K randomly initialized student models are constructed with identical architecture, each with a set of prototypes initialized to transfer the
semantic information from the teacher in a specific granularity. During distillation, the outputs of the teacher and the student are aligned at
different granularities. After that, all students are independently fine-tuned and their averaged predictions are taken as the final result.

granularities. Besides, a mean entropy maximization (ME-
MAX) (Assran et al., 2021) regularization term is explored
to maximize the entropy of outputs of student models so
that all prototypes are enforced to be utilized, thereby the
learned representations can be more semantically discrim-
inative. Similar to Equation 4, the regularization term is
formulated as:

H(p̄s
k) =

[
1

N

N∑
i=1

ps
i,k

]
· log

[
1

N

N∑
i=1

ps
i,k

]
. (5)

Therefore, we can get the overall optimization objective of
our proposed MGSE below:

L =
1

KN

K∑
k=1

N∑
i=1

[
D
(
pt
i,k,p

s
i,k

)
− λH(p̄s

k)
]
, (6)

where λ > 0 is the weight of the ME-MAX regularizer.
During the training process, the K sets of prototypes and
student models will be jointly optimized using the objective
function in Equation 6 via the same optimizer. By combin-
ing the distribution sharpening operation and the ME-MAX
regularization, the Dk prototypes within each set are opti-
mized to be distinctive, capturing distinct semantic features
at specific granularities. Consequently, the extraction of
semantic features at various granularities is facilitated by
aggregating prototype sets with different Dk values. We
make a further theoretical discussion to explain the reason
in Proposition 4.1, and the proof is provided in Appendix C.

Proposition 4.1. Given the target probability distribu-
tion pt

k produced by the teacher model and the anchor

probability distribution pt
k produced by the student model,

∥∇D (pt
k,p

s
k)∥+ ∥∇H(p̄s

k)∥ > 0 if there exist representa-
tion collapse, i.e., pt

i,k = ps
j,k = 1

K1K for ∀Gi, Gj ∈ G.

4.3. Multi-granular Model Ensemble

To incorporate the knowledge from multiple granularities,
we thus combine multiple distilled student models in an en-
semble manner to fully utilize the multi-granular knowledge.
During the finetuning process, we update K student models
from the multi-granular self-distillation process to adapt to
the downstream tasks. It is noteworthy that the K student
models use the same training set as the teacher model does.
We produce the final prediction by averaging the predictions
of K student models as:

f̂s(G) =
K∑

k=1

fs
k (G) /K. (7)

We derive Theorem 4.2 to justify the ensemble of the multi-
granular student models can improve the prediction accuracy
and robustness compared with the single model, shown as
the following:

Theorem 4.2. For a graph dataset G and multiple student
models {fs

k}
K
k=1 with the different initialized knowledge,

the ensemble of their predictions can reduce the error rate
compared with the prediction of any single model, i.e,

E
G

[
1
(
f̂s(G) = y

)]
≥ E

G
[1 (fs

k(G) = y)] ∀k ∈ [K] ,

where y is the ground truth. More detailed derivation for
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this theorem is provided in Appendix D. Besides, the com-
putation cost of our proposed MGSE only grows linearly
w.r.t. the number of student models. Given the computation
cost of existing graph SSL methods as O(M), where M is
the number of edges, the computation cost of our proposed
MGSE will be O(K ·M). We provide more empirical anal-
ysis of the model depth and student numbers to demonstrate
the scalability of our method in the experiment section. A
more detailed and comprehensive discussion about the space
and time complexity of our proposed MGSE is provided
in Appendix H. Additionally, we provide more discussions
on the previous work about increasing deep graph model
capacity in Appendix B.

5. Experiments
In this section, we demonstrate the performance improve-
ment brought by our proposed MGSE after being applied
to state-of-the-art graph SSL frameworks. Extensive exper-
iments are conducted on public graph benchmark datasets
in different domains to test the effectiveness of the learned
representation. Besides, we provide more experiments to
analyze the designs of our proposed framework. Due to the
page limitation, we only demonstrate the empirical study
on part of the datasets in the experiments section. Other
contents, including implementation details, experimental
results on node-level tasks, and more empirical analysis are
provided in Appendix F and I.

5.1. Experiment Setup

Datasets. For the graph-level tasks, we follow the setting
in previous works (You et al., 2020) to do evaluation with
the data from the chemistry domain and biology domain
under the transfer learning setting. For the chemistry do-
main datasets, the teacher model and student models are
pre-trained on the ZINC15 dataset (Sterling & Irwin, 2015)
which contains 2 million unlabeled molecule graphs. Then
we evaluate the distilled student models on eight down-
stream datasets with binary or multi-class classification
tasks. Both the pre-train dataset and the fine-tuning datasets
are extracted from MoleculeNet (Wu et al., 2018) and are
split by the scaffold to simulate the real-world scenario
where the concept of multi-granularity improves the perfor-
mance significantly. The pre-train dataset of the biology
domain is PPI-306K (Hu et al., 2019) and the downstream
application is to predict biological functions of 88K protein
ego-networks, where the downstream dataset is split accord-
ing to the species. For the node-level tasks, we follow the
SSL evaluation setting of the BGRL and GraphMAE to eval-
uate our proposed model in Cora, Citeseer, Pubmed (Yang
et al., 2016) and ogbn-arxiv (Hu et al., 2020a). Detailed
dataset statistics are illustrated in Appendix E.

Baselines. To fully demonstrate the capability of our pro-

posed MGSE in improving the performance of existing
graph SSL paradigms under the transfer learning setting, we
implement multiple state-of-the-art contrastive and gener-
ative graph SSL models as the teacher models, including
GraphCL (You et al., 2020), JOAO (You et al., 2021), AD-
GCL (Suresh et al., 2021), GraphLoG (Xu et al., 2021),
RGCL (Li et al., 2022), GRACE (Zhu et al., 2020), Graph-
MAE (Hou et al., 2022) and CCA-SSG (Zhang et al., 2021a).
We explore the same setting as recommended by the authors.

Evaluation Protocol. We follow the settings in previous
works (You et al., 2020; 2021) and adopt ROC-AUC as the
evaluation metrics of graph-level tasks. Each experiment
is repeated 10 times with a different random initialization.
Meanwhile, we follow the previous works to (Hou et al.,
2022; Thakoor et al., 2022) to use the accuracy score as the
evaluation metrics of the node-level tasks and repeat each
experiment 5 times. We report both the mean metric score
and its standard deviations as the final evaluation results.

5.2. Results Analysis

Overall Performance Comparison in Graph-level Tasks.
In Table 1, we report the performance of the six teacher
models and their corresponding multi-granular graph se-
mantic ensemble trained by our proposed MGSE framework
on the eight chemistry domain datasets. Specifically, we
also add the experimental results without SSL (denoted as
“No pre-train”), where a randomly initialized 5-layer-GIN
model is trained from scratch to conduct inference on the
eight datasets. From the table, we can reach three observa-
tions: (1) Our proposed MGSE can consistently boost the
performance of existing graph SSL models by an obvious
margin. The dataset shift between the pre-train phase and
fine-tuning phase causes a divergence between the knowl-
edge learned from pre-train tasks and the knowledge useful
for downstream tasks. This issue can be further deteriorated
by the split strategy (i.e., splitting according to the scaffold)
which mimics an out-of-distribution setting. In this case,
low-level fine-grained features are not general enough to
adapt to various tasks and consistently achieve good perfor-
mances. On the contrary, the multi-granular representations
learned by our MGSE can abstract the data distribution in
multiple hierarchies and granularities, thereby being less
affected by the out-of-distribution setting. This conclusion
is also supported by the superior performance of GraphLoG
over most of the other baselines, which is based on the pro-
totypical contrastive learning method. (2) The performance
improvement brought by our proposed MGSE is more sig-
nificant on the multi-label classification problem, including
Tox21, ToxCast, SIDER, ClinTox, and MUV. The relative
performance improvements on these five datasets are 1.6%
∼ 3.9% and 0.9% ∼ 1.8% on the other three datasets with
single-label. This observation can be used to support our
claim that it is necessary to utilize multi-granular semantic
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Table 1. Performance (i.e., AUC) of state-of-the-art SSL-based GNN frameworks in the transfer learning setting, and improvements after
MGSE is applied. "-" means baseline results are not reported in the original papers. The percentage in the parentheses refers to the
percentage of performance improvement brought by MGSE.

Model BBBP Tox 21 ToxCast SIDER ClinTox HIV BACE MUV PPI

No Pre-train 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 75.3±1.9 70.1±5.4 71.8±2.5 64.8±1.0

GraphCL 69.68±0.67 73.87±0.66 62.40±0.57 60.53±0.88 75.99±2.65 78.47±1.22 75.38±1.44 69.80±2.66 67.88±0.85

+MGSE 72.26±0.65 75.89±0.33 64.57±0.34 61.44±0.68 78.67±2.89 79.07±0.72 79.22±0.93 71.46±1.45 69.11±0.70

Perf. (↑) +2.58 (3.7%) +2.02 (2.7%) +2.17 (3.5%) +0.91 (1.5%) +2.68 (3.5%) +0.60 (0.8%) +3.84 (5.1%) +1.66 (2.4%) +1.23 (1.8%)

RGCL 71.42±0.66 75.20±0.34 63.33±0.17 61.38±0.61 83.38±0.90 77.90±0.80 76.03±0.77 76.66±0.99 -
+MGSE 71.65±0.78 76.82±0.62 64.85±0.20 63.72±0.63 84.88±2.01 78.33±0.85 77.40±1.27 77.18±0.81 -

Perf. (↑) +0.23 (0.3%) +1.62 (2.2%) +1.52 (2.4%) +2.34 (3.8%) +1.50 (1.8%) +0.43 (0.6%) +1.37 (1.8%) +0.52 (0.7%) -

AD-GCL 70.00±1.07 76.54±0.82 63.07±0.72 63.28±0.79 79.78±3.52 78.28±0.97 78.51±0.80 72.30±1.61 68.83±1.26

+MGSE 70.44±0.70 76.80±0.80 64.60±0.59 63.50±0.92 83.05±2.64 78.91±0.57 79.65±1.07 74.32±0.85 68.95±0.83

Perf. (↑) +0.44 (0.6%) +0.26 (0.3%) +1.53 (2.4%) +0.22 (0.3%) +3.27 (4.1%) +0.63 (0.8%) +1.14 (1.5%) +2.02 (2.8%) +0.12 (0.2%)

JOAO 70.22±0.98 74.98±0.29 62.94±0.48 59.97±0.79 81.32±2.49 76.73±1.23 77.34±0.48 71.66±1.43 64.43±1.38

+MGSE 71.93±0.50 76.20±0.33 64.26±0.27 61.02±0.86 83.30±2.44 77.50±0.67 79.82±0.71 73.52±0.62 65.37±0.96

Perf. (↑) +1.71 (2.4%) 1.22 (1.6%) +1.32 (2.1%) +1.05 (1.8%) +1.98 (2.4%) +0.77 (1.0%) +2.48 (3.2%) +1.86 (2.6%) +0.96 (1.5%)

GraphMAE 72.0±0.6 75.5±0.6 64.1±0.3 60.3±1.1 82.3±1.2 77.20±1.0 83.1±0.9 76.3±2.4 -
+MGSE 71.62±0.51 76.52±0.48 65.31±0.38 62.46±0.52 84.41±2.20 78.03±0.70 82.92±0.75 77.15±0.75 -

Perf. (↑) -0.38 (-0.5%) +1.02 (1.4%) +1.21 (1.9%) +2.16 (3.6%) +2.11 (2.6%) +0.83 (1.1%) -0.18 (-0.2%) +0.85 (1.1%) -

GraphLoG 72.5±0.8 75.7±0.5 63.5±0.7 61.2±1.1 76.7±3.3 77.8±0.8 83.5±1.2 76.0±1.1 66.95±1.32

+MGSE 72.57±1.13 76.84±0.58 64.88±0.39 63.08±0.86 83.72±2.02 78.64±0.80 83.18±1.24 77.22±0.94 68.26±1.06

Perf. (↑) +0.07 (0.1%) +1.14 (1.5%) +1.38 (2.2%) +1.88 (3.1%) +7.02 (9.2%) +0.84 (1.1%) -0.32 (-0.4%) +1.22 (1.6%) +1.31 (2.0%)

Avg. Perf. (↑) +0.78 (1.1%) +1.21 (1.6%) +1.52 (2.4%) +1.43 (2.3%) +3.09 (3.9%) +0.68 (0.9%) +1.39 (1.8%) +1.36 (1.9%) +0.91 (1.1%)

Table 2. Impacts of the multi-granularity design.
Dataset BBBP Tox21 ToxCast SIDER

Teacher 69.68±0.67 73.87±0.66 62.40±0.57 60.53±0.88

Multi-teacher 70.45±1.04 73.85±0.74 63.10±0.37 60.68±0.70

Granularity #1 (DK = 2) 70.80±0.70 74.64±0.70 61.75±0.71 59.26±0.52

Granularity #2 (DK = 21) 71.68±0.77 75.48±0.50 63.10±0.33 60.88±0.65

Granularity #3 (DK = 50) 71.20±0.92 75.33±0.70 63.85±0.35 60.83±0.65

MGSE (Multi-granularity) 72.26±0.65 75.89±0.33 64.57±0.34 61.44±0.68

information to analyze and explain the properties of a graph.
A graph might own multiple properties and they could be
determined by either coarse features or fine-grained fea-
tures. Therefore it is more comprehensive to explain a graph
by multiple granularities from coarse to fine. (3) The per-
formance improvements over the baselines with trainable
augmentation operation on the graph structure, including
AD-GCL and RGCL, are relatively limited compared to the
others. Those baselines implement strong regularization
on the graph topology information by deleting nodes or
edges to push the optimized representations focusing on the
most salient and coarse features. Such a strategy could im-
prove the performance robustness to some extent, especially
when the data distribution shift is not obvious. However, it
may not suit the multi-label classification scenario where
we need the features in different aspects and granularities.
Besides, we demonstrate the experimental results on the
biology domain dataset (PPI), from which we can find sim-
ilar observations as we analyzed above. Our knowledge
distillation framework can still consistently boost the perfor-
mance of the adopted teacher model, and the performance
improvements are more obvious for the teacher model with-
out strong augmentation. More experimental results of the
node-level tasks can are provided in Appendix I.
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Figure 3. Impacts of different prototypes initialization strategies
(left), and model ensemble strategies (right).

Importance of Multi-granularity Prototypes Setting. To
demonstrate the improvement of our methods gained from
multi-granularity features (different student models are
trained with prototypes in different granularities), we add
two variants for comparison: (1) Multi-teacher with dif-
ferent dropout ratios (0.2, 0.5, 0.8) during the fine-tuning
procedure and average their output for the final prediction;
(2) Single-granularity with only single granularity but the
same student number, where we try all the granularities
(2, 21, 50) in our original setting and multiply the student
number by 3. In this experiment, we take GraphCL as the
teacher model, the experimental results of the two variants
and our proposed MGSE (Multi-granularity) are shown in
the right subplot of Table 2. Though the two variants based
on the model ensemble can also boost the teacher model’s
performance to some extent, the improvement over MGSE is
consistently larger, indicating the effectiveness of consid-
ering multiple granularities other than the model ensem-
ble. Meanwhile, it is fair to say that the multi-granularity
semantics cannot be obtained by directly setting different
dropout ratios for the teacher model.
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Table 3. Ablation study of the proposed MGSE

Dataset BBBP Tox21 ToxCast SIDER

w/o. sharpen 70.91±0.89 74.26±0.65 63.49±0.45 60.21±0.70

w/o. ME-MAX 70.45±1.04 73.85±0.74 63.10±0.37 60.08±0.82

GraphCL+MGSE 72.26±0.65 75.89±0.33 64.57±0.34 61.44±0.68

w/o. sharpen 69.37±0.87 74.17±0.52 64.00±0.41 59.53±1.01

w/o. ME-MAX 68.88±0.59 73.68±0.60 63.62±0.38 59.48±0.90

JOAO+MGSE 71.93±0.50 76.20±0.33 64.26±0.27 61.02±0.86

w/o. sharpen 70.58±0.86 74.85±0.79 64.10±0.54 61.16±1.28

w/o. ME-MAX 71.05±0.64 74.24±0.66 63.76±0.60 60.51±1.44

GraphLoG+MGSE 72.57±1.13 76.84±0.58 64.88±0.39 63.08±0.86

Impact of Prototype Initialization Strategy. In our pro-
posed MGSE, we randomly initialize the prototypes and
train them for multi-granular representation clustering. Be-
sides the random initialization strategy, we also run the K-
means algorithm based on the output of the teacher model
to compute the cluster centroids and initialize them as pro-
totypes, denoted as K-Means Proto. For the prototypical
graph self-supervised teacher model, i.e., GraphLoG, we
also reuse the pre-trained prototypes for distillation, denoted
as Old Proto, where the parameter of pre-trained prototypes
will be frozen together with the teacher model. We demon-
strate the empirical result of the two prototype strategies and
MGSE (New Proto) in the left subplot of Figure 3, from
which we find that the performance is much better when we
use the new prototypes for the teacher model. A possible
explanation is that the pre-trained prototypes could prohibit
the student models from learning features in different gran-
ularities, and thus the distilled student models cannot even
perform on par with the teacher model.

Impact of Model Ensemble Strategy. Besides averaging
the prediction of multiple student models for evaluation,
we also conduct experiments to test the effectiveness of
stacking and attentive ensemble strategy. In the stacking
ensemble, we concatenate the outputs of all the student mod-
els and append a trainable linear transformation layer. In
the attentive ensemble, we add a set of trainable parameters
to attentively add the output of all student models as the
final results. The comparison results based on GraphCL
are shown in the right subplot of Figure 3. We can observe
that the averaging ensemble can generally outperform the
stacking and attentive ensemble strategy on the four datasets.
Both stacking and attentive ensemble methodologies involve
combining the outputs of diverse student models using train-
able attention mechanisms. We posit that, for certain tasks
and datasets, the crucial features for training graphs may
differ from those important to testing graphs. Consequently,
predictions derived from multiple independently optimized
models are inclined to yield more robust performance. Con-
versely, ensemble methods employing trainable attention
mechanisms may prove more effective for tasks (see Ap-
pendix I) where no discernible distribution divergence exists
between the training and testing sets.

How Prototype Regularization Enable Multi-granularity
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Figure 4. Impacts of different student model depth Ls (left) and
student model number (right).

Semantics Extraction? In the proposed MGSE, we add
the ME-MAX regularization and apply the sharpening op-
eration on the target probability distribution to avoid trivial
collapsing of the trainable prototype sets. To evaluate the
effectiveness of our design, we perform ablation studies
by creating two model variants: (1) w/o. sharpen, the
target probability distribution is not sharpen; (2) w/o. ME-
MAX, the regularization weight λ is set as 0.0. We show
the experimental results in Table 3, from which we can find
omitting either one of the components could fail to boost
the performance of the teacher model. During distillation,
the trainable prototypes are responsible for mapping the
instances with various semantics into different probability
distributions (clustering). Without the sharpen operation, it
is usually the case the student model tends to map graph
instances into probability distributions with low confidence.
Consequently, many instances with different semantics fall
into indiscriminative representations. Meanwhile, by en-
forcing the full set of prototypes utilized with ME-MAX
regularization, the target prototypes will be optimized to
learn more discriminative features to push instances with
different semantics away from each other in hidden space,
thereby avoiding trivial collapsing.

Potential of Reducing Computation Cost. We conduct ex-
periments to explore the potential of MGSE to reduce com-
putation costs by using lighter student model architectures
and smaller student numbers. Though not the research focus
of this work, model compression is a byproduct of MGSE
based on knowledge distillation. We vary the layer number
of each student model from 1 to 5 and report the results on
Tox21 dataset in the right part of Figure 4, similar obser-
vations can be found in other datasets. We can see larger
model architecture always has a positive effect on the final
performance, and our framework can approximate or even
surpass the performance of the over-parameterized teacher
model with multiple lighter student models. Thus, the re-
sults demonstrate that the extra computation cost brought
by incorporating multiple student models can be alleviated
by the comparable results with a lighter student model. We
also vary the student number K to evaluate its effects on
different datasets and the experimental results are shown
in the right subplot Figure 4. We can see that multi-label
datasets (ClinTox) tend to gain more benefits from more
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student models (more semantic granularities), while such
diversified semantics could be unnecessary for single-label
datasets (BACE), which shows our proposed method incurs
a lower computational cost when applied to datasets charac-
terized by simpler semantics. In addition, we can generally
get a good performance when K is set as 3. The flexibility
of MGSE allows for the tailored combination of outputs
from various student models to suit specific downstream
tasks, mitigating the computational burden of identifying
optimal settings for each task. We believe this adaptability
is a significant advantage of MGSE, potentially enhancing
its applicability in practical deployment.

6. Conclusion
In this paper, we study the problem of learning multi-
granular representations for graphs. Inspired by the ca-
pabilities of knowledge distillation on extracting well-
encoded and structural graph semantics, we propose Multi-
granularity Graph Semantic Ensemble via Knowledge Dis-
tillation, namely MGSE, a plug-and-play graph knowledge
distillation framework that can be applied to any existing
graph SSL framework to by incorporating the concept of
multi-granularity. We theoretically analyze the reason why
our framework design can effectively transfer knowledge
from the teacher model and further enhance its task general-
ization ability. Besides, we conduct extensive experiments
on graph datasets across different domains, where we ap-
ply MGSE to different state-of-the-art graph SSL methods.
Experimental results prove that MGSE can consistently im-
prove the performance of all SSL methods by incorporating
the concept of multi-granularity by large improvement mar-
gins up to 9.2%. To further illustrate the learned knowledge
and the advantages of our design, we add a case study to
show the visualization of the learned representations in
Appendix G.

Impact Statement
As a plug-in framework to further increase the generaliza-
tion ability of the current graph SSL methods across differ-
ent downstream applications, we believe MGSE will not
cause any societal negative impacts. On the other hand,
MGSE can be helpful in the research on the explainability
of the graph learning community. With the multi-granularity
semantic features extracted by MGSE, we can provide a
more precise and understandable depiction for each graph
instance. Another promising direction could be the devel-
opment of the fundamental model across different domains
with the concept of multi-granularity features, where the
1-vs-K knowledge distillation framework can be extended
into the N-vs-K form to further increase the capacity of the
trained model.
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A. Discussion on the Relationship with Contrastive Learning
In the case when τt → 0, the target probability distribution pt

k will approach to one-hot vector, and the objective in Equation
(3) can be regarded as the ProtoNCE loss to maximize the mutual information between the output of teacher model and
student model in cluster-level. Both ProtoNCE and our objective can be divided into aligning term and uniformity terms.
For ProtoNCE loss, we have:

LProtoNCE =

N∑
i=1

− log
exp (zi · qi/τ)∑

qj∼q exp (zi · qj/τ)
=

N∑
i

[−zi · qi/τ︸ ︷︷ ︸
alignment

+ log
∑
qj∼q

exp (zi · qj/τ)︸ ︷︷ ︸
uniformity

].
(8)

Our objective function achieves a similar effect:

D
(
pt,ps

)
=

1

N

N∑
i

softmax

(
zti · q
τt

)
· softmax

(
zsi · q
τs

)

=
1

N

N∑
i

wt
i · [−zi · qi/τs︸ ︷︷ ︸

alignment

+ log
∑
qj∼q

exp (zi · qj/τs)︸ ︷︷ ︸
uniformity

],
(9)

where wt
i is the soft label produced by the teacher model, we can regard it as the weight of the loss term since the teacher

model is frozen.

B. Discussion on the Deep Graph Model Capacity
The limited model capacity of GNNs has been extensively discussed in previous works (Loukas, 2020; Wang et al., 2024),
and is recognized as a significant barrier to developing graph foundation models and handling more diverse graph data.
To address this issue and enhance the capacities of current deep graph models, various advanced graph architectures with
increased parameter counts have been proposed. Inspired by the concept of residual blocks, some studies (Gasteiger et al.,
2019; Li et al., 2019; 2020) have attempted to directly increase the depth of GNNs without succumbing to overfitting.
Additionally, many transformer-based graph models (Ying et al., 2021; Wu et al., 2022; Chen et al., 2023; Zhao et al., 2021a)
have been developed to leverage the transformer architecture’s success and scale up model sizes effectively. Beyond these
approaches, the limited capacity of GNNs can also be expanded by integrating them with mixture-of-experts (MoE)(Jacobs
et al., 1991). Several works(Hu et al., 2022; Wang et al., 2024; Zeng et al., 2024) have explored this research direction by
incorporating multiple experts to adapt to different node populations within a graph. However, to the best of our knowledge,
the study of extracting diverse underlying graph patterns remains limited. Existing approaches in this area often introduce
significant computational costs and pose challenges for model convergence. This underscores the need for continued
research to develop efficient and scalable solutions for enhancing GNN capacity while maintaining computational feasibility
and model robustness. More importantly, it remains skeptical whether the gating mechanism of those MoE-based graph
learning methods can handle the load balancing issue and out-of-distribution data.

C. Proof of Proposition 1
PROPOSITION 1. Given the sharpened target probability distribution pt

k produced by the teacher model and the anchor
probability distribution pt

k produced by the student model, ∥∇D (pt
k,p

s
k)∥+ ∥∇H(p̄s

k)∥ > 0 if there exist representation
collaps, i.e., pt

i,k = ps
j,k for ∀Gi, Gj ∈ G.

Proof. As we introduced, the normalized probability distribution pt
i,k ∈ RDk of teacher model in the k-th granularity can be

computed by: [
pt
i,k

]
d
=

exp
(
z̄ti,k · [q̄k]d /τt

)
∑Dk

d′=1 exp
(
z̄ti,k · [q̄k]d′ /τt

) , (10)

where d ∈ [Dk], k ∈ [K] and i ∈ [N ]. Since the parameter of the pre-trained teacher model is frozen, it is safe to assume
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that it will not produce the same representations for different instances Gi, Gj ∈ G. So, we have:

∀Gi, Gj ∈ G, if zti,k ̸= ztj,k =⇒ zti,k · qk ̸= ztj,k · qk

=⇒ pt
i,k ̸= pt

j,k =⇒ pt
i,k,p

t
j,k ̸= 1

Dk
1Dk

.
(11)

In this case, the sharpen operation will make the target probability distribution far more away from the uniform distribution.
Then we have pt

i,k ̸= ps
j,k and ∥∇D (pt

k,p
s
k)∥ > 0 when ps

i,k = ps
j,k = 1

Dk
1Dk

. Similarly, in the case of the ps
i,k =

ps
j,k ̸= 1

Dk
1Dk

for Gi, Gj ∈ G, we have:

p̄s
k =

1

N

N∑
i=1

ps
i,k ̸= 1

Dk
1Dk

. (12)

Therefore we can get ∥∇H(p̄s
k)∥ > 0 to force all the prototypes are utilized so that the instance with different semantics

will not collapse into the same cluster (prototype).

D. Proof of Theorem 1
THEOREM 1. For a graph dataset G and multiple student model {fs

k}
K
k=1 with the different initialized knowledge, the

ensemble of their predictions can reduce the error rate compared with the prediction of any single model, i.e,

E
G

[
1
(
f̂s(G) = y

)]
≥ E

G
[1 (fs

k(G) = y)] ∀k ∈ [K] ,

where y is the ground truth label of instance G.

Proof. In the work, we train K student models to extract features in different granularities, so each student model will
utilize information from different views or levels to make predictions. Here, we denote the feature sets utilized by the K
student models as {Mk}Kk=1. For classification problems, the final prediction of the bagging ensemble can be obtained
through majority voting:

f̂s(G) = argmax (Σ (1 [fs
k(G) = y] /K)) . (13)

To get the conclusion in Theorem 1, we start with the definition of expected prediction error:

EPE(G) = E
[
(y − f̂(G))2

]
= E

[
y2 − 2yf̂(G)− f̂(G)2

]
= E

[
y2
]
− E

[
2yf̂(G)

]
− E

[
f̂(G)2

]
.

(14)

Given the equation above, we can decompose the expected prediction error into three parts. First of all, since we model
y = f + ϵ, then we have:

E
[
y2
]
= E

[
(f+ϵ)2

]
= E

[
f2

]
+ 2E[f ϵ] + E

[
ϵ2
]

= f2 + 2fE [ϵ] + E
[
ϵ2
]
,

(15)

where ϵ has zero mean and variance σ2, so we can reach to E
[
y2
]
= f+σ2. Then, the second term in Equation 14 can be

derived into:
E[yf̂ ] = E[(f + ϵ)f̂ ] = E[ff̂ ] + E[ϵf̂ ]

= E[ff̂ ] + E[ϵ]E[f̂ ] = fE[f̂ ].
(16)

Thirdly, based on the definition of the variable variance, we show that:

E
[
f̂2

]
= Var(f̂) + E[f̂ ]2. (17)

Therefore, by combining Equation 15, 16 and 17 together, we can get prediction error of of classifier f̂ as:

EPE(G) = E
[
(y − f̂(G))2

]
= f2 + σ2 − 2fE[f̂ ] + Var[f̂ ] + E[f̂ ]2

= (f − E[f̂ ])2︸ ︷︷ ︸
Bias

+Var[f̂ ]︸ ︷︷ ︸
Variance

+ σ2︸︷︷︸
Noise

.
(18)
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Our goal is to reduce the variance term, given the relation between of and expectation and variance, we can get the variance
of the ensemble predictions based on Equation 13:

Var(f̂s(G)) = E
[
(f̂s(G)− E[f̂s(G)])2

]
= E

[(
argmax (Σ (1 [fs

k(G) = y] /K))− E [argmax (Σ (1 [fs
k(G) = y] /K))]

2
)]

= Var(fs
k(G))/K.

(19)

Given the assumption that each prediction task is a binary classification problem, we can set the p as the probability that the
ground truth label for graph instance G and the 1− p as the probability that the ground truth label is 1. Then we can reach
the variance of the ensemble model by combining Equation 19 and Taylor series expansion:

Var(fs
k(G)) = p× (1− p)/K. (20)

Therefore, the variance between the observation f̂s and the optimal model f∗ based on the training set will be reduced when
the number of classifiers increases. Due to the reason that each student model fs

k is trained on the same training set, we have

the E
[
f̂s

]
= E [fs

k ] for any k ∈ [K]. Therefore, the bias term of the expected prediction error generated by each classifier

is equal. In that case, the ensemble model f̂s with a lower variance will produce a lower prediction error:

E
[
(y − f̂s(G))2

]
≤ E

[
(y − fs

k(G))2
]

∀k ∈ [K] . (21)

Thus, the conclusion in Theorem 1 is proved.

E. Dataset Statistics

Table 4. Statistics of MoleculeNet datasets and protein-protein interaction network datasets.

Dataset #Graphs Avg #Nodes Avg Degree #Tasks (Class) Metric Category

ZINC15 2,000,000 26.62 57.72 - - biochemical
PPI-306K 306925 39.82 729.62 - - Protein-Protein Intersection Networks

BBBP 2,039 24.06 51.90 1 ROC-AUC biochemical
Tox21 7,813 18.57 38.58 12 ROC-AUC biochemical

ToxCast 8,576 18.78 38.62 617 ROC-AUC biochemical
SIDER 1,427 33.64 70.71 27 ROC-AUC biochemical
ClinTox 1,477 26.15 55.76 2 ROC-AUC biochemical
MUV 93,087 24.23 52.55 17 ROC-AUC biochemical
HIV 41,127 25.51 54.93 1 ROC-AUC biochemical

BACE 1,513 34.08 73.71 1 ROC-AUC biochemical
PPI 88000 49.35 890.77 40 ROC-AUC Protein-Protein Intersection Networks

Cora 1 2,708 5,429 7 Accuracy Citation Networks
Citeseer 1 3,327 4,732 6 Accuracy Citation Networks
Pubmed 1 19,717 44,338 3 Accuracy Citation Networks

ogbn-arxiv 1 169,343 1,166,243 40 Accuracy Citation Networks

In the work, we use the data from the chemistry domain, biology domain, and academia domain for evaluation. For the
graph-level tasks, we will do the pre-training and distillation on a large unlabeled dataset, correspondingly. Then, the model
will be finetuned on eight chemistry datasets and one biology dataset for evaluation. The chemistry datasets are sampled
from MoleculeNet (Wu et al., 2018) and the biology dataset comes from protein ego-networks. For the node-level tasks,
we follow the SSL evaluation setting adopted in previous work (Hou et al., 2022; Thakoor et al., 2022) and evaluate our
proposed method in three citation network datasets. The statistics of these datasets are shown in Table 4.

F. Implementation Details
Architectures. In the work, we follow the previous works to choose the model architectures in different tasks. For the
graph-level tasks, we follow (You et al., 2020; Xu et al., 2021; Suresh et al., 2021) on this setting to use a 5-layer-GIN
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encoder (Xu et al., 2018) followed by a 2-layer MLP as the architecture of the teacher model and student model. Specifically,
we set ReLU as the activation function and BathNorm as the normalization function. In the node-level tasks, we follow
(Hou et al., 2022; Thakoor et al., 2022) to select a 2-layer GCN encoder as the student as the model architecture of student
models and teacher models.

Training Details. All the teacher models are pre-trained based on the provided settings of the original authors. During
the distillation process, the parameters of the teacher model are frozen and we randomly initialize K student models
with the same architecture as the teacher model. Meanwhile, K sets of the prototypes are also randomly initialized for
the self-supervised prototypical contrastive distillation. We set K = 3 and the prototype number (i.e., {Dk}Kk=1) to
{2, 21, 50}. The student temperature hyper-parameter and the sharpening parameter are as τs = 0.1 and P = 0.25 and we
train the student models for 100 epochs. During the fine-tuning phase, we still follow the previous works to append a 1-layer
MLP at the end of the GNN encoders for all student models and train them to adapt to the downstream tasks for 100 epochs.
We use the Adma optimizer for the gradient descent of both knowledge distillation and fine-tuning, and the cosine decay
learning rate scheduler is used in the knowledge distillation process. To guarantee the generalization of the framework,
some commonly used graph augmentation techniques are used in this work, including edge perturbation, node dropping, and
subgraph sampling.

Key Hyper-parameters. As we introduced, the experimental results in the overall performance table are conducted with (
student models (3 semantic levels), and their corresponding granularities are {2, 21, 50} respectively. Meanwhile, more
experiments about the performance sensitivity on student model (semantic level) numbers are also conducted and introduced
in the experiment section. Another hyper-parameter λ (ME-MAX regularization weight) introduced by our method is 1.0.
For other important hyper-parameters in this work, we set the learning rate is fixed as 0.001, the weight decay is set as
0.0005, the dropout ratio as 0 during knowledge distillation and 0.5 in fin-tuning, the warmup epoch as 10, the student
temperature hyper-parameter as τs = 0.1 and the sharpening parameter as P = 0.25.

G. Case Study

Dexamfetamine Acetaminophen Pemoline Gabapentin O-acetyl-L-serin Tizanidine Sotalol Furfural

Figure 5. Embedding visualization results generated by student models with different granularities (K = 21 and K = 50) on BBBP (left)
and Tox21 (right) datasets and the example molecules in the two datasets, the common substructures of molecules from the same dataset
are highlighted in red. The four demonstrated example molecules of each dataset are all positive samples (labeled as 1) and all molecules
sharing the same label as them in the dataset are represented in purple (otherwise in yellow) in the embedding visualization results.

In this section, we investigate the impact of knowledge in different granularities on diverse downstream tasks. In this
paper, granularity refers to the abstract features of data. In predictive modeling, models are typically trained to categorize
data samples based on shared characteristics. The granularity of these features, influenced by the predefined label space,
is crucial for accurate predictions. For instance, distinguishing between dogs and cats requires different features than
differentiating animals from cars. To elucidate, consider the example of molecular graphs as depicted in Figure 1. A
molecule’s planarity and rigidity are often associated with the presence of an aromatic ring, which usually represents a
substantial substructure of a molecule. Conversely, a molecule’s hydrophilicity might be related to a smaller functional
group, such as the hydroxyl group (-OH). In this context, a coarser-grained feature (the presence of an aromatic ring)

15



From Coarse to Fine: Enable Comprehensive Graph Self-supervised Learning with Multi-granular Semantic Ensemble

might be pivotal for predicting molecular interactions with biological targets, while finer-grained features could be essential
for assessing hydrophilicity. The integration of both coarse-grained and fine-grained features can help us consistently
achieve good performance across various tasks. To this end, we employ the t-SNE algorithm to visualize the embeddings
generated by student models trained with varying granularities (K = 21 and K = 50). We use the BBBP dataset for a
single-label task and the Tox21 dataset for a multi-label task as case studies to illustrate the differences. In Figure 5, the
results show that the cluster-wise distance of visualization results from models trained with coarse-granularity (K = 21) is
larger than those from fine-granularity (K = 50) on the BBBP dataset, which suggests that coarse-granularity information
is more informative for classifying the BBBP dataset. Meanwhile, in the case of the Tox21 dataset, models trained with
fine-granularity (K = 50) exhibit larger cluster-wise distances than those trained with coarse-granularity (K = 21),
indicating fine-granularity information is more beneficial for the classification of the Tox21 dataset. To provide further
insights into the represented information, we highlight four positive-labeled samples (purple) from each dataset (BBBP
and Tox21) and identify their common substructures with red coloring. Despite lacking biological background, we can
observe that the common substructure size of positive samples from the BBBP dataset is larger than that from the Tox21
dataset. This implies that the classification of BBBP relies on high-level abstract features, whereas fine-grained substructure
information is more helpful to the classification of the Tox21 dataset.

H. Discussion on Complexity of MGSE
Thanks for raising this question. We briefly discuss the computation complexity of our proposed method in our paper. Here,
we make a more detailed discussion on the model complexity from the view of space and time. Considering the time cost
of feature extraction, the time complexity of the message passing along edges could be O(N · F +M · L · F ), where N
is the number of node in a graph, M is the number of edges in a graph, L is the GNN layer number and F is the node
feature dimension. Besides, the space complexity of graph SSL methods can be denoted as O(N · F +N · d + L · d2),
where d is the dimension of node embeddings. Specifically, L · d2 is the space to store the model parameters. During
our implementation, the training set is fed into the model by mini-batch instead of the whole graph, thereby the space
complexity can be represented as O(N · F +B · d+ L · d2), where B is the batch size and B ≪ N . Given the analysis
above and the K student models incorporated in our proposed MGSE, the time complexity of our method is upper bounded
by O(N · F +K ·M · L · F ), assuming models are trained sequentially. However, the K models are trained in a parallel
manner in our implementation, which decreases the time complexity to a lower level, depending on the number of processors
and the efficiency of parallelization. In the meantime, we do need to extract raw node features K times because the input of
all student models are the same. Taking GraphCL [1] for comparison, the practical inference time of GraphCL for 1000
samples on RTX 3090 GPU is 4.5±1.3ms, while our proposed MGSE (K = 3) is 7.7±2.0ms. Similarly, the space complexity
of our method is O(N · F + K · B · d + K · L · d2). To illustrate, the K student models need extra space to store the
model parameters and they will generate node embedding correspondingly in each iteration, thereby the space to store node
embedding and model parameters will be multiplied K. However, all the student models are trained to extract diversified
semantics from the same original features, so MGSE does not take extra memory space for the node feature storage. Since
N is much larger than L and B, we can get that the extra space complexity brought by MGSE is moderate.

I. Extra Experimental Results and Analysis
In this section, we present the experimental results on additional datasets that were not included in the paper due to page
limitations. Besides that, more empirical analysis will be demonstrated to further prove the clarifications in the paper.

Table 5. Performance (i.e., Accuracy) of state-of-the-art SSL-based GNN frameworks on node classification datasets under the unsuper-
vised learning setting, and improvements after MGSE is applied.

Model Cora Citeseer Pubmed ogbn-arxiv

GRACE 81.90±0.40 71.20±0.50 80.60±0.40 70.94±0.22

GRACE+MGSE 82.85±0.53 73.40±0.42 81.26±0.67 72.02±0.22

GraphMAE 82.42±0.64 73.10±0.38 80.78±0.68 70.55±0.16

GraphMAE+MGSE 83.12±0.47 73.82±0.50 81.58±0.35 71.68±0.22

CCA-SSG 84.20±0.40 73.10±0.30 81.60±0.40 71.24±0.20

CCA-SSG+MGSE 84.30±0.40 73.65±0.28 81.68±0.35 72.17±0.22
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Overall Performance Comparison in Node-level Task. We conduct experiments on three node-level datasets, including
Cora, PubMed, and Ogbn-Arxiv. We take GRACE, GraphMAE, and CCA-SSG as the teacher model and still use the same
architecture as the teacher model (a two-layer GCN) for the distilled student models. The results are shown in Table 5, from
the results above we can find our proposed MGSE can consistently boost the performance of the teacher model. Specifically,
the improvements on the larger datasets are more obvious, which is aligned with our expectations since large datasets usually
include more complex semantic patterns.

Table 6. Ablation study of the proposed MGSE with three teacher models on other four chemistry domain datasets and the biology domain
dataset.

Model ClinTox HIV BACE MUV PPI

w/o. sharpen 76.59±3.05 78.05±0.97 78.50±1.25 70.32±0.91 67.46±1.02

w/o. ME-MAX 75.75±2.70 78.40±0.99 77.75±1.10 70.10±1.22 67.20±0.86

GraphCL+MGSE 78.67±2.89 79.07±0.72 79.22±0.93 71.46±1.45 69.11±0.70

w/o. sharpen 82.10±3.15 76.14±1.02 78.74±1.34 72.10±0.84 64.51±1.14

w/o. ME-MAX 81.45±3.44 76.35±1.25 78.15±0.95 72.43±1.15 64.02±1.20

JOAO+MGSE 83.30±2.44 77.50±0.67 79.82±0.71 73.52±0.62 65.37±0.96

w/o. sharpen 82.15±2.33 77.10±1.34 81.74±1.30 75.90±0.87 67.11±1.12

w/o. ME-MAX 81.78±2.86 76.77±0.96 82.02±1.75 75.36±1.20 66.42±1.56

GraphLoG+MGSE 83.72±2.02 78.64±0.80 83.18±1.24 77.22±0.94 68.26±1.06

Ablation Study on Prototype Optimization. First, we show the ablation study results on the other five datasets (including
the other four chemistry domain datasets and the biology domain dataset) in Table 6, from which we can generally get
similar observations with the results on other four datasets, i.e., MGSE can consistently outperform the two variants, and
both of the components are significant in boosting the performance of teacher model. Therefore, it is fair to say our design
can help the whole framework to extract multi-granularity semantic features and produce discriminative representations for
each graph instance.

Table 7. Impacts of the multi-granularity design.

Model ClinTox HIV BACE MUV PPI Cora Citeseer PubMed ogbn-arxiv

Teacher 75.99±2.65 78.47±1.22 75.38±1.44 69.80±2.66 67.88±0.85 81.90±0.40 71.20±0.50 80.60±0.40 70.94±0.22

Multi-teacher 77.31±1.20 78.62±0.60 77.90±0.40 70.28±0.75 68.25±0.64 82.00±0.30 71.42±0.25 80.05±0.30 71.28±0.23

Granularity #1 (DK = 2) 77.25±0.70 78.14±0.65 77.82±0.64 70.20±1.12 67.60±0.74 83.60±0.39 73.11±0.20 81.02±0.36 70.80±0.44

Granularity #2 (DK = 21) 77.90±2.04 78.88±0.50 78.68±0.83 70.75±0.85 68.61±0.70 83.28±0.53 73.22±0.17 81.34±0.65 71.79±0.28

Granularity #3 (DK = 50) 78.08±1.74 78.03±0.65 78.55±0.46 71.02±0.55 68.84±1.10 83.77±0.20 73.30±0.16 80.98±0.33 71.86±0.30

MGSE (Multi-granularity) 78.67±2.89 79.07±0.72 79.22±0.93 71.46±1.45 69.11±0.70 84.30±0.40 73.65±0.28 81.68±0.35 72.17±0.22

Performance Analysis on Multi-granularity Semantic Features. Table 7 presents the additional experimental results
about single-granularity versus multi-granularity, which can further prove the conclusion we draw in the paper. Models
with diversified semantics granularities can represent the graph in a more comprehensive manner, thereby resulting in a
larger performance boost compared with the single-granularity variant. Moreover, the ensemble of teacher model outputs
with different dropout ratios also yields sub-optimal performance compared with MGSE. We think the reason behind the
phenomenon could be two-fold: (1) High dropout ratio may change the sample identity of each graph so that the generated
representations contain insufficient information to make the correct prediction. On the other hand, a low dropout ratio could
make the fine-tuned model overfitting on the trivial details and thereby have low generalization ability on the testing datasets,
especially on the out-of-distribution setting (split by scaffold). Consequently, neither of them will produce positive effects
on the final predictions; (2) The trained student models can benefit from the knowledge distillation.

Performance Analysis on Prototype Initialization Strategy. The left subplot of Figure 6 is experimental results with
different prototype initialization strategies on another four datasets, including ClinTox, BACE, HIV, and MUV. Still, the
experimental results are quite similar to what is observed in the other four datasets. Thus, we believe that the newly
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Figure 6. The impacts of different prototype initialization strategies (left), single-granularity versus multi-granularity (middle left), model
ensemble strategies (middle right), and with versus without graph augmentation (right).

initialized prototypes could improve the model generalization ability based on the teacher model and train the student models
with higher potentials.

Performance Analysis on Model Ensemble Strategy. The experimental results shown in the middle two subplots of Figure
6 are the additional results of the model ensemble strategy on another four datasets. Specifically, we use GRACE to test
the effectiveness of different ensemble strategies on node classification datasets. As we can find in the results of the other
four graph classification datasets, the experimental results are almost consistent with that of the other four datasets we
demonstrate in the paper except for the ClinTox dataset. One possible explanation is that the classification task of ClinTox
might need to consider the information across different granularity levels simultaneously. For example, some properties of a
molecule are determined by a few functional groups (subgraph) but those functional groups belong to different granularities.
In this case, a graph representation that contains information from different semantic levels could make better predictions.
As for the results of the node classification datasets, we can see the ensemble methods based on trainable attention can
outperform the averaging ensemble method on the three smaller datasets, however, they are beaten by the averaging ensemble
again on the ogbn-arxiv dataset. It is noteworthy that the train/validation/test sets of ogbn-arixv are split by time, causing
the obvious performance gap during training and testing. Therefore, the phenomenon additionally shows the advantage of
averaging ensemble when there exists an obvious distribution difference between training and testing.

Performance Analysis on Graph Augmentation. In the proposed MGSE, we incorporate graph augmentations in
the framework because we believe augmentation is helpful and necessary to improve the model’s generalization ability.
Though equipped with a multi-granular knowledge distillation module, MGSE essentially is a self-supervised framework
without external supervision signals. Hence, augmentation helps the model (either the student or teacher models) to learn
representations invariant to perturbations, which aligns with the philosophy of all self-supervised-based frameworks. To
empirically support our claim, we conduct additional experiments w.r.t. whether using graph augmentations or not over four
datasets, the results are demonstrated in the right subplot of Figure 6, from which we observe that moderate augmentation
will enhance the model performance.

J. Limitation
Limitation. In this work, we focus on incorporating the multi-granularity semantic features to improve the model
generalization ability on tasks like molecular and protein property predictions. Besides that, we can explore the effectiveness
of the proposed MGSE in more domains, including but not limited to the analysis of social networks and brain networks.
Moreover, the study about further decreasing the model architecture size with more advanced knowledge distillation
techniques is also worthwhile for further exploration.
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