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Abstract

Many annotation tasks in natural language pro-
cessing are highly subjective in that there can
be different valid and justified perspectives on
what is a proper label for a given example. This
also applies to the judgment of argument qual-
ity, where the assignment of a single ground
truth is often questionable. At the same time,
there are generally accepted concepts behind
argumentation that form a common ground. To
best represent the interplay of individual and
shared perspectives, we consider a continuum
of approaches ranging from models that fully
aggregate perspectives into a majority label to
“share nothing”-architectures in which each an-
notator is considered in isolation from all other
annotators. In between these extremes, inspired
by models used in the field of recommender
systems, we investigate the extent to which
architectures that include layers to model the
relations between different annotators are ben-
eficial for predicting single-annotator labels.
By means of two tasks of argument quality
classification (argument concreteness and va-
lidity/novelty of conclusions), we show that
recommender architectures increase the aver-
aged annotator-individual F1-scores up to 43%
over a majority-label model. Our findings indi-
cate that approaches to subjectivity can benefit
from relating individual perspectives.

1 Introduction

There is inherent subjectivity in many annotation
tasks in natural language processing (Shahid et al.,
2020; Kumar et al., 2021; Thorn Jakobsen et al.,
2022). Recent work has criticized the widely
adopted approach of viewing variation in human
labeling behavior as “noise” (Plank, 2022), advocat-
ing against approaches that disregard the richness
of human annotations and perspectives by aggre-
gating them into a single label. In fact, it has been
argued that disagreement should not be regarded
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as a problem, but rather as a chance to end up with
more user-adaptable classifiers, giving voice to mi-
norities as well (Prabhakaran et al., 2021; Gordon
et al., 2022).

In this paper, we hypothesize that machine learn-
ing can best address variation in human labeling
by both accounting for subjective perspectives of
individuals and for more objective concepts that
build a common ground between annotators. A
prime example of the interplay of individual and
shared perspectives is the understanding and as-
sessment of argumentation and, in particular, of
argument quality (Romberg, 2022). Given the sub-
jectivity that many concepts of argument quality
face, it has been generally shown that its annota-
tion often results in only fair to moderate inter-
annotator agreements (Aharoni et al., 2014; Rinott
et al., 2015; Habernal and Gurevych, 2017; Shnarch
et al., 2018).

For example, Gretz et al. (2020) determined a
global value of argument quality by asking annota-
tors “if they would recommend a friend to use that
argument as is in a speech supporting/contesting
the topic”. Even in more well-defined aspects of
argument quality, such as the sufficiency of an ar-
gumentative conclusion, Stab and Gurevych (2017)
observed “hard cases” in which labeling depends
on subjective interpretations of keywords without
being able to agree on a single ground truth. How-
ever, alongside “hard cases” of irreconcilable in-
dividual perspectives, in assessing argument qual-
ity we regularly also observe uncontroversial cases
such as in human annotation of the validity and nov-
elty of conclusions (Heinisch et al., 2022) or the
concreteness of arguments (Romberg et al., 2022).

In order to verify our hypothesis, we investi-
gate the impact of different architectural design
choices on the ability of models to predict the la-
bels of single annotators. To this end, we look at
a continuum of model architectures between such
that fully suppress annotation variation by learning



Figure 1: Overview of our different approaches model-
ing annotator-(a)gnostic behaviors.

from an aggregated label and such that are specifi-
cally tailored to each annotator. Along this contin-
uum, we focus in particular on models that include
components that involve the perspectives of sin-
gle annotators (Davani et al., 2022), or are able to
find and relate similar annotation behavior shared
among different annotators using a recommender
approach (Gordon et al., 2022). Figure 1 gives a
first overview of the continuum of concepts and
models, which we explain in detail in Section 3.

Drawing on two tasks of argument quality,
namely argument concreteness and validity/novelty
of conclusions, we show that architectures inspired
by recommender systems perform best in learning
from disagreement. We attribute this to the identi-
fication of patterns in annotation behavior across
individual annotators while being faithful to single
choices.

Our main contributions are:

• We present a novel framework1 for comparing
different architectural design choices in or-

1https://github.com/phhei/
RelatePerspectives-sweetspots

der to model individual label decisions along
the continuum from predicting a single label
for all annotators to “share nothing” architec-
tures that model the label decisions of single
individuals independently from each another.
This framework is not limited to our use case
of argument quality, but can be applied to any
classification task whose annotation combines
subjective and objective aspects, in order to
find architectural sweet spots for modeling
label variation.

• We perform an extensive automatic evalu-
ation tuning different model types and hy-
perparameters on two datasets correspond-
ing to three tasks, involving vanilla large
language models (LLM) as well as LLMs
with annotator-specific classification heads
and recommender models adapted to the clas-
sification tasks in argument quality. Using a
recommender-based architecture, we increase
the averaged annotator-individual F1-scores
by up to 4 points in the classification of argu-
ment concreteness, 18 points in the classifi-
cation of conclusion validity and 19 points in
the classification of conclusion novelty.

• We conduct a qualitative case study of the be-
havior of our models on controversial exam-
ples in order to shed light on the differences re-
garding the effect of annotator-(dis)agreement,
differing amounts of annotated samples be-
tween annotators, and annotation behavior.

Extending previous work that proposed to take
subjectivity into account by predicting the degree
of expected label variation by Romberg (2022), our
study presents the first approach in the field of ar-
gument mining to learn directly from the individual
human labels. Beyond the specific contributions
mentioned above, our work might encourage fu-
ture research in argument mining and other fields
to step away from systems that suppress valid per-
spectives by relying on a single aggregated label,
and instead moving on towards systems that cover
the multi-faceted spectrum of opinions.

2 Related Work

2.1 Subjectivity & Modeling Individual
Annotators

There is a growing body of work researching sub-
jectivity (Ovesdotter Alm, 2011; Rottger et al.,
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2022), learning with disagreement (Uma et al.,
2021a; Leonardelli et al., 2023; Sandri et al.,
2023), diversity of perspectives (Abercrombie et al.,
2022; Cabitza et al., 2023) and human label varia-
tion (Plank, 2022). Despite the varying terminol-
ogy, these works overlap in concerns that aggregat-
ing labels into a single “truth” is not appropriate
for many tasks (Aroyo and Welty, 2015; Uma et al.,
2021b; Basile et al., 2021) and might not repre-
sent perspectives equally (Prabhakaran et al., 2021;
Abercrombie et al., 2022). This line of research has
produced various approaches to learning models
based on individual annotations (Plank et al., 2014;
Jamison and Gurevych, 2015; Akhtar et al., 2020;
Fornaciari et al., 2021; Cercas Curry et al., 2021;
Plepi et al., 2022).

A particular way of learning from annotator-
specific labels are models which learn to predict in-
dividual annotators’ decisions. Conceptually, these
models can be seen as feature-based models of an-
notation (see for an overview Paun et al. 2022b)
in that they model how each annotator labels indi-
vidual examples. However, in contrast to standard
models of annotation (e.g., Hovy et al. 2013; Pas-
sonneau and Carpenter 2014; Paun et al. 2018),
their goal is not to aggregate decisions to a sin-
gle label before training but to learn classifiers
directly from non-aggregated annotations (Paun
et al., 2022a). Most work in this area (Raykar et al.,
2010; Albarqouni et al., 2016; Guan et al., 2018;
Rodrigues and Pereira, 2018) argues for training on
non-aggregated labels as a way to deal with vary-
ing annotator reliability to better derive the correct
labels. Among these, Chu et al. (2021) explore an
idea similar to our emphasis of common ground in
addition to individual variation, modeling annota-
tion noise in terms of both individual and common
noise. Closely related to our work, more recent
studies (Davani et al., 2022; Gordon et al., 2022)
focus on subjective tasks for which a single ground
truth can not always be determined.

Davani et al. (2022) introduce a multi-annotator
model (further explored in Orlikowski et al. 2023;
Vitsakis et al. 2023), in particular a variant using a
multi-task architecture: For each annotator, there
is a separate classification head trained on anno-
tations from that annotator. All these annotator
layers share a pre-trained language model used to
encode the input. We evaluate this architecture in
our experiments. Gordon et al. (2022) present a
model that also predicts individual annotations and

allows a user to interactively aggregate them based
on “a jury” inspired by the US judicial system.
Their approach is based on a recommender archi-
tecture using “Deep & Cross Networks” (Wang
et al., 2021) which we also use in our work.

2.2 Subjectivity in Argument Mining

Argumentation and, in particular, the human un-
derstanding of its quality, is often subjective, con-
ditioned by a variety of phenomena (e.g., van der
Weide et al., 2010; Esau, 2018). Only recently
has the argument mining community joined other
disciplines, such as social sciences and formal argu-
mentation, in addressing the backing mechanisms
for differing perspectives in argumentation.

Ajjour et al. (2019) first examined the framing of
arguments in order to appeal to specific audiences
based on their interests, cultural backgrounds, and
socialization. Putting a special focus on moral
frames, Kobbe et al. (2020) and Alshomary et al.
(2022) studied different moral belief systems that
arguments are subject to, drawing on the moral
foundations theory (Haidt and Joseph, 2004).

Going into more detail on individuals’ diverse
beliefs and emphasises, Kiesel et al. (2022) utilized
computational methods to identify a comprehen-
sive taxonomy of 54 human values (Searle, 2003)
embedded in arguments. In addition, the effect of
storytelling on individual perceptions of argumen-
tation was addressed by Falk and Lapesa (2022).

Besides the motives behind subjective reasoning,
research also considered systems that include mul-
tiple perspectives in the output, such as a diversity
of stances about some claim (Chen et al., 2019).

A direct modeling of different perspectives as
part of the machine learning process itself, on the
other hand, has hardly been considered so far. The
only contribution in this direction was made by
Romberg (2022), who presented a methodology
for integrating subjectivity information into con-
ventional text classification workflows of argument
mining. While that approach involves training a
separate classifier to predict a subjectivity value, in
this work we implement models that directly learn
from the non-aggregated labels.

3 Methodology

We aim at the comparison of different paradigms
that can be applied in order to model a classifier
for predicting individual labeling decisions in sub-
jective annotation tasks. To this end, we define a



model spectrum ranging from a purely annotator-
specific model design (denying that there is any-
thing learnable which is shared among the anno-
tators, i.e., the objective grounding) to a purely
annotator-agnostic model design which only con-
siders the majority vote (denying that there is any-
thing learnable which is individual for an annotator,
i.e., the subjective grounding).

We also include models that exploit the charac-
teristics of both sides of the coin. These hybrid
models combine model components that are shared
for all annotators as well as model components
that are specific for each annotator. In this way we
can explore different architectural design choices
along the above mentioned continuum, varying the
degree to which the shared labeling behavior of cer-
tain groups of users is modeled in the architecture.

The proposed model spectrum complements ex-
isting taxonomies of learning from disagreement.
Uma et al. (2021b) distinguish four categories of
approaches, one of them being “learning directly
from crowd annotations”. Within this category, our
proposed spectrum allows to further differentiate
how models process individual annotations.

Figure 1 shows our broad bandwidth of ap-
proaches, which covers five different approaches to
classification: a majority vote model, per-annotator
models, and three hybrid approaches, namely a
model with annotator-specific classification heads,
a recommender system with a shared text en-
coder, and a recommender system with annotator-
separated text encoders. These will be described in
more detail in the following subsections.

3.1 Two poles: annotator-specific and
annotator-agnostic approaches

For the pure annotator-specific and annotator-
agnostic approaches, we consider a pre-trained
LLM with a standard classification head. The only
difference between the two paradigms is the way
the dataset is preprocessed. In the case of the “share
nothing” annotator-specific paradigm, the dataset
is split annotator-wise, i.e., one split consists of
all annotated instances paired with the individual
annotation of exactly one annotator. Hence, hav-
ing n different annotators, we fine-tune n language
models, assuming training data for each annota-
tor. We call this variant PerAnnotator. The op-
posite annotator-agnostic paradigm considers the
full dataset with majority-aggregated annotations,
resulting in a single annotator-agnostic model that

captures the majority perspective (Majority).

3.2 Approaches between annotator-specific
and annotator-agnostic approaches

For modeling both objective and subjective compo-
nents, we compare two different architectures.

Annotator-specific classification head The first
architecture replaces the single classification head
of the LLM with a set of annotator-specific clas-
sification heads. This architecture is equivalent
to (multi-task) multi-annotator models introduced
by Davani et al. (2022). Because of its separated
classification heads, we refer to this architecture
as SepHeads in the following to distinguish it from
the other approaches modeling multiple annotators.

Recommender-system inspired models The
second approach, motivated by Gordon et al.
(2022), explores recommender systems that incor-
porate LLMs. Such systems rely on two encoder
blocks, one for the text (using a LLM) and one for
the annotator. This results in two internal vector
representations of the input pair of text and annota-
tor ID. To combine these two representations, we
use a neural combiner component that performs
the final classification. Such recommender style
architectures, by encoding annotators by their IDs,
can induce representations that generalize across
single annotators, thus learning commonalities in
the behavior of annotators that have a similar label-
ing pattern. It is in this sense that the recommender
architectures can relate perspectives of different
annotators.

In the standard recommender approach, the
model contains exactly one pre-trained LLM
shared among all annotators. Hence, we call
this architecture ShareREC. To explore hybrid ap-
proaches emphasizing the more annotator-specific
component, we model an option in which each an-
notator has their own seperate text encoder. This
type of model is referred to as SepREC hereafter.

We additionally experimented with further archi-
tectures that fit in between ShareREC and SepREC.
The methodology and results of these models can
be seen in Appendix C.2.

4 Experiment Design

4.1 Datasets

Due to the fact that work on modeling labeling
choices of single annotators is quite recent, so far



there are not many datasets available that have re-
leased the data in a way that explicitly contains the
labels of individual annotators. We base our exper-
iments on two such datasets that examine different
aspects of argument quality.

CIMT Argument Concreteness Dataset (abbr.
Concreteness, Romberg et al., 2022) The
German-language dataset consists of argumenta-
tive text units (ATUs) extracted from public partici-
pation processes related to traffic planning. These
ATUs were categorized into three levels of content-
related concreteness: low, intermediate, and high.
While ATUs of low concreteness were defined as
being vague and lacking specificity, ATUs of high
concreteness should provide detailed information.

Each ATU was labeled by five different annota-
tors. Released to account for individual annotation
behavior, the authors applied a rigorous annotation
process to ensure that discrepancies were due to
subjective perceptions and not due to annotation
errors.

In our experiments, we use a split of the dataset
that was introduced by Romberg (2022). However,
in contrast to the original work, we opted not to
use repeated k-fold cross-validation to minimize
the use of computational resources and energy con-
sumption. This decision was based on the reported
small deviations in results between different splits.

Argument Validity and Novelty Prediction
Shared Task (abbr. ValNov, Heinisch et al., 2022)
The shared task of the 2022 edition of the Argu-
ment Mining Workshop focused on two tasks – pre-
dicting once the validity and once the novelty of
argumentative conclusions. In the corresponding
dataset, consisting of English-language arguments
from debatepedia.org, validity captures the ex-
tent to which a conclusion is justified given its
premise. Novelty captures to what extent a con-
clusion contains content that is not merely a para-
phrase of the premise. In both tasks, annotators
had a binary choice but could abstain if they were
unsure. A total of five annotators contributed to the
annotation process, with each premise-conclusion
pair labeled by exactly three annotators.

While the original version of the dataset contains
aggregated labels, we disaggregated these labels
for the purpose of modeling human label variation.
Although not originally designed as a dataset allow-
ing for the study of the labels of single annotators,
Heinisch et al. (2022) already emphasized the de-

gree of subjectivity in the annotation of validity and
novelty. While about two-thirds of the annotation
samples for validity and half of the annotation sam-
ples for novelty are non-controversial, i.e., there
is complete agreement among the annotators, the
labels vary more in the remaining cases, which is a
manifestation of their subjectivity. In light of the
careful selection of annotators and due to the com-
prehensive guidelines, we argue it is reasonable to
assume that the variations in labels are thus due to
individual perspectives.

Given our interest in learning from human label
variation, we required samples to be present in
the training data for each of the five annotators.
As this was not the case for the original split by
Heinisch et al. (2022), where two annotators were
only introduced in the test split, we re-partitioned
the dataset. In doing so, we adhered to the original
course of action by avoiding topic overlap between
training and the other data, sharing eight of the
total 37 topics between development and test data,
and introducing seven novel topics in the test data.
We also kept the proportions of the original split
in terms of the premise-conclusion pairs included.
As a result of the non-aggregated approach, the
premise-conclusion pairs in the resulting dataset
may contain fewer than three labels, as we exclude
individual decisions of abstain2.

Table 1 provides a general overview of the two
datasets’ distribution amongst training (train), de-
velopment (dev), and test set, as well as the number
of classes.

Going more into detail regarding annotator-
individual labels, the proportion within the splits
in ValNov - unlike in the Concreteness dataset - de-
pends on the respective annotator. For this reason,
Table 2 breaks down how strongly each annotator
is represented in ValNov. It shows that the distribu-
tion varies greatly, with the predominant annotator
covering nearly the entire dataset, while the least
represented annotator has assigned labels to only
12% of the examples.

4.2 Experimental Setup

We use the transformers-library by Wolf
et al. (2020) to implement the text processing
units (pre-trained LLMs) in all models. We

2The annotator-individual split of ValNov is in-
cluded in the GitHub repository: https://github.com/
phhei/RelatePerspectives-sweetspots/tree/main/
Datasets/ValNov-new_split

debatepedia.org
https://github.com/phhei/RelatePerspectives-sweetspots/tree/main/Datasets/ValNov-new_split
https://github.com/phhei/RelatePerspectives-sweetspots/tree/main/Datasets/ValNov-new_split
https://github.com/phhei/RelatePerspectives-sweetspots/tree/main/Datasets/ValNov-new_split


Dataset Classes Train Dev Test
Concreteness 3 788 113 226
ValNov 2 746 203 525

Table 1: Overview of the datasets.

Annotator
Sub-task Split #1 #2 #3 #4 #5

Train 739 635 489 204 85
Validity Dev 203 180 106 75 22

Test 524 443 238 266 68

Train 740 642 495 204 87
Novelty Dev 203 180 118 75 19

Test 523 446 240 266 69

Table 2: Annotator distribution among the train/dev/test
split for the ValNov dataset.

use the same LLM architecture (RoBERTa,
Liu et al., 2019) for all models and settings.
RoBERTa has proven to be effective in the
prediction of different aspects related to argument
quality (Gurcke et al., 2021; Heinisch et al.,
2022). We use RoBERTa base variants, namely
roberta-base for the English ValNov dataset and
roberta-base-wechsel-german (Minixhofer
et al., 2022) for the German Concreteness dataset.
Thus, for all models evaluated on the same dataset,
the majority of initial weights are equal. During
training, we use a class-weighted cross-entropy
loss. These class weights are calculated and
applied for each annotator separately based on the
train split (except for the Majority-model where
we use the majority label for calculating the class
weights). Further choices for model components,
in particular for different implementation options
for the recommender architectures, were deter-
mined during preliminary experiments (Appendix
C). For further details on the selection of hyper-
parameters, the training, and used computational
resources, see Appendix A.

As described in Section 4.1, we use fixed data
splits for both datasets (Concreteness and ValNov),
having the concreteness task in a setting in which
all annotators are equally represented and the two
tasks in the ValNov dataset in a setting in which
the annotated set of instances differs among the
annotators (cf. Table 2). We perform ten runs of
training and evaluation for each architecture type,
using the same random seeds in the same order (see
Appendix A). We report scores based on averages
over individual runs.

4.3 Evaluation Metrics

How to best evaluate models that do not learn from
aggregated labels is an open problem (Basile et al.,
2021; Uma et al., 2021b), and various approaches
to move beyond majority labels in evaluation ex-
ist (Plank, 2022; Leonardelli et al., 2023).

We follow studies on annotator-level models
in evaluating against individual annotator’s deci-
sions (Davani et al., 2022; Gordon et al., 2022;
Orlikowski et al., 2023). However, instead of cal-
culating scores over all individual annotations, we
derive scores in two steps: We first calculate the
macro-averaged F1 for each annotator separately
(i.e., annotator-level scores). As a second step, we
take the average of annotator scores as a model’s
score. This is done for each run of our models, so
that the final score is the average of the single-run
model scores (i.e., annotator-average scores).

This two-step calculation has several advantages
in our setting. By first calculating per-annotator
scores, the final score more appropriately reflects
how well our models represent each annotator. Ad-
ditionally, this method allows us to analyze model
performance annotator-wise. Based on the range
of these scores, we can investigate how much per-
formance diverges between annotators.

5 Results & Evaluation

We provide results for the five models considered
along the spectrum of architectures as outlined in
Figure 1. We evaluate these architectures on two
levels using the previously described two-step cal-
culation of model scores. In Section 5.1, we use the
annotator-average scores in order to evaluate mod-
els across individual predictions (suitable for use
cases in which a global indicator of performance is
desired). To have a more fine-grained examination
(suitable for use cases aiming to maximize argu-
ment quality for an individual user) we evaluate
against the non-averaged annotator-level scores in
Section 5.2. See Appendix B and C for full results
and additional recommender configurations.

5.1 Annotator-average Results

The annotator-average results are provided in Table
3. All models outperform a naive baseline consist-
ing of always predicting the most frequent label in
the training set: “high” for argument concreteness,
“valid” for validity prediction, and “not novel” for
novelty prediction, which are the same for all an-
notators. There are major improvements between



+24.7 and +31.69 F1-points in the concreteness
task deciding between three classes and some im-
provements between +7.31 and +29.22 F1-points
and between +1.17 and +21.38 F1-points for bi-
nary validity and novelty classification, respec-
tively. These diminishing gains over the naive base-
line reflect the increasing task difficulty from con-
creteness to novelty classification (Romberg et al.,
2022; Heinisch et al., 2022).

Looking at the different architectures along our
architectural continuum, the variation regarding the
F1-scores is larger with respect to validity and nov-
elty prediction than with respect to the correctness
prediction task.

We find that all three tasks show similar patterns:
the models at both ends of our architectural con-
tinuum (PerAnnotator and Majority) underperform
in general compared to the hybrid models. The
PerAnnotator-Models result in 54.57, 44.04, and
41.83 F1-points for predicting concreteness, valid-
ity, and novelty on average, respectively. Especially
for the latter two tasks where the available training
data for some models is reduced to minor amounts
(Table 2), which are typically not sufficient to fine-
tune a model, this approach falls apart. However,
using the Majority model does not increase the
performance much in validity and novelty (+3.59
and +1.64, respectively) or even reduce the perfor-
mance in the concreteness task (−0.75).

Using a hybrid approach increases the perfor-
mance always with only one exception (SepHeads
with 50.83 in the case of concreteness classifica-
tion). In all other cases, we successfully relate the
different perspectives by capturing the common
ground of the tasks by also incorporating (and relat-
ing) the individual perspectives of the annotators.
Having a medium ratio of annotator-specific param-
eters (Figure 1) yields superior performance. In all
three tasks, ShareREC yields the best-averaged F1-
scores with 57.83, 65.95, and 62.04 in predicting
concreteness, validity, and novelty, respectively,
closely followed by the SepREC with annotator-
individual text encoders (57.77, 62.08 and 57.03,
respectively). The model using separated heads
yields F1-scores of 50.83 (concreteness), 53.82 (va-
lidity), and 47.04 (novelty).

5.2 Minimum and Maximum
Annotator-individual Results

Beyond considering only aggregated results in
terms of average F1, we also investigate the ex-

tent to which the models considered can represent
the perspectives not only of annotators on average,
but all of them. For this, we consider the vari-
ability in F1 between the user whose perspective
(subjective labeling behavior) is captured best and
the user whose perspective is captured the worst
(i.e., the range). A large range shows that there are
large differences in how well we can represent the
subjectivity across users.

Table 4 shows the results per model in terms of
F1 for the annotators whose behavior can be mod-
elled best (max) and worst (min), respectively. The
highest scores across annotators in terms of min and
max are yielded by ShareREC (having F1-scores of
between 54.01 and 62.71 for concreteness, 56.12
to 71.16 and 56.80 to 68.85 for novelty), while
the other models at both ends of our architectural
spectrum (PerAnnotator and Majority) show poor
performance, both on the best and worst annotators.

In the concreteness task, where each annotator
labeled each sample, we observe that models that
include annotator-specific encoders (PerAnnotator
and SepREC) can successfully model the subjec-
tive text reading behavior of specific annotators.
Hence, the PerAnnotator-models have a maximum
F1 score of 62.88, which is only outperformed by
the separated recommenders yielding the overall
best single-annotator F1-score of 67.54, success-
fully combining the individual view on text for this
annotator3 with the common ground. However,
the individual annotator engagement of those mod-
els (including the SepHeads model) involves the
risk of overfitting individual trends – showing a
comparable high standard deviation between the
prediction performances (≈ 6). Therefore, the best
result regarding the minimum annotator F1-score
is obtained by the more conservative ShareREC,
yielding a score of 54.01.

For validity and novelty, where each annotator
labeled a different amount of samples, architectures
featuring text encoders that are specific for single
annotators fail to reliably predict the behavior of
annotators having provided few samples. For ex-
ample, the PerAnnotator-models have an F1-score
of 34.09 and 39.15 for validity and novelty, respec-
tively, taking the most underrepresented annotator
into account. This performance is worse than the
majority baseline (34.62 validity and 45.24 nov-
elty). Especially for annotators with sparse labels,

3This annotator has the strongest correlation between label
decisions and text length. Only SepREC maximizes the F1-
score for this annotator.



Concreteness Validity Novelty
Baseline 26.14± 0.00 36.73± 0.00 40.66± 0.00
PerAnnotator 54.57± 1.01 44.04± 4.71 41.83± 2.88
SepREC 57.77± 1.18 62.08± 2.25 57.03± 2.09
ShareREC 57.83± 1.44 65.95± 1.66 62.04± 0.88
SepHeads 50.83± 2.31 53.82± 5.79 47.04± 4.22
Majority 53.82± 1.00 47.63± 7.76 43.47± 2.73

Table 3: Annotator-average F1-scores and standard de-
viation of them for 10 runs.

Concreteness Validity Novelty
Min Max Min Max Min Max

PerAnnotator 49.66 62.88 34.09 56.06 39.15 44.48
SepREC 52.14 67.54 52.59 68.91 50.37 65.73
ShareREC 54.01 62.71 56.12 71.16 56.80 68.85
SepHeads 44.24 61.09 43.69 61.67 45.36 49.88
Majority 47.70 58.86 36.96 54.57 38.16 47.89

Table 4: Highest and lowest annotator-level F1-scores
for 10 runs.

it seems thus crucial to share the text encoding
components of the architecture. Among the archi-
tectures that share components, the recommender
systems inspired architectures perform best with
respect to predicting the labeling behavior of both
under- and overrepresented annotators, yielding the
highest min- and max-F1 scores. Recommenders
with a shared text encoder perform between 56.12
and 71.12 for validity and between 56.80 and 68.85
for novelty, yielding the best scores for these two
tasks.

When looking at the goal of catching contrastive
views and opinions, for example, to detect “hard
cases”, further insights considering the predicted
agreement reveal a weakness of the ShareREC
models. ShareREC models stress the common text
understanding and learn to predict better-matching
majorities that are appropriate for more annotators,
resulting in almost no divergent predicted labels per
sample. Recommenders with annotator-separate
text encoders (SepRECs) model different perspec-
tives much better, having a predicted Fleiss’ kappa
inter-annotator agreement between κ = 0.73 (nov-
elty) and κ = 0.79 (concreteness). However, mod-
eling the individual traits of annotators is challeng-
ing, especially for complex tasks such as validity
and novelty, explaining the overall worse perfor-
mance of SepRECs in comparison to ShareRECs
in these two tasks.

6 Qualitative Analysis: Case Study

The evaluated models show different behaviors that
result from how they incorporate individual anno-
tators. These differences can best be illustrated by

discussing controversial examples. We consider
in particular an example from the Concreteness
dataset in which the full range of possible labels
is provided by annotators. Table 5 shows such
an example of an argumentative text unit about
a “bike lane blocked by cars” where two annota-
tors assigned the label “high concreteness”, two
said it was of “intermediate concreteness”, and one
labeled the example with “low concreteness”. Pre-
dictions are taken from models trained with the first
random seed (see Section 4.2).

The Majority model, by definition, predicts the
same label for each annotator. The predicted value,
intermediate concreteness, is plausible in this case
at face value: Examining further examples from
the dataset shows a tendency for short texts to be
annotated as less concrete. However, for two an-
notators this is an example of high concreteness,
despite its brevity. Thus, there is no clear majority
label in this controversial case, so this prediction
misses three out of five annotators.

ShareREC shows the same prediction pattern as
the Majority model. This is in line with the model’s
discussed tendency to predict uniform labels per
example. The model stresses the common ground
based on its shared text representation and picks a
plausible label.

The PerAnnnotator and SepHeads models show
more diversity in their predictions. This makes
sense, as their architectures contain components
for more variation isolated from other annotators
via separate classification heads or models. This
example underlines, however, that variation does
not necessarily lead to more accurate representation
of annotators overall. Both models, again, only
manage to predict two out of five labels correctly.
Thus, they are not more accurate than the uniform
predictions.

SepREC, in contrast to all other models, is very
close to predicting the actual distribution of labels.
For the one annotator it misses, the tendency of
the label (less concrete) is correct. SepREC is thus
the only model to predict the class “high concrete-
ness” correctly for two annotators. In this example,
the model picks up a peculiarity of argument con-
creteness in public participation related to traffic
planning: while generally short argumentative units
tend to be less concrete, they might be very con-
crete to some annotators. For example, annotators
might have specific knowledge about local contexts,
such as that there are certain bike lanes in a city



controversial example: “Bike lane blocked by cars”

Human Annotations 0, 2, 1, 1, 2
PerAnnotator 0, 1, 0, 1, 1
SepREC 1, 2, 1, 1, 2
ShareREC 1, 1, 1, 1, 1
SepHeads 0, 1, 0, 1, 1
Majority 1, 1, 1, 1, 1

Table 5: Example from the Concreteness dataset with
each model’s predictions. Translated from German:
“Zugeparkter Radweg”. 0 stands for “low concreteness”,
1 for “intermediate concreteness”, and 2 for “high con-
creteness”.

that are frequently blocked. This observation is in
line with SepREC achieving the highest annotator-
individual scores on the Concreteness dataset (cf.
Table 4).

7 Conclusion & Future Work

In this work, we have proposed a general frame-
work to investigate the performance of different ar-
chitectures on subjective annotation tasks and sim-
ilar cases where different legitimate perspectives
exist on the appropriate labeling decision across an-
notators. We have, in particular, highlighted archi-
tectures predicting labels for individual annotators
along a continuum from fully annotator-specific
architectures to architectures that rely only on ag-
gregated annotations that completely disregarded
individual annotators. Our main focus has been on
hybrid architectures along these extreme ends of
the continuum that model commonalities in anno-
tation behavior across individual annotators.

Regarding different aspects of argument quality
(concreteness, conclusion validity, and conclusion
novelty), we have shown that such hybrid architec-
tures are best suited to classify the range of opin-
ions. Our results show that recommender architec-
tures that use an annotator-shared LLM for encod-
ing the text excel in this setting in terms of max-
imizing the F1-score averaged over all individual
annotators up to 43% over a majority-label model.
Nevertheless, further analysis going beyond this
averaged score has emphasized the importance of
having an annotator-tailored text encoding to cap-
ture the different reading nuances in “hard cases”,
resulting in a variance of predicted classes.

Our work provides a starting point for including
human label variation into subjective tasks in the
field of argument mining, such as the assessment

of argument quality, without denying generally ac-
cepted objective concepts of argumentation. Still,
further work is needed to fully understand the rea-
sons for disagreement.

Limitations

We have explored different architectures for model-
ing human label variation in the subjective assess-
ment of argument quality. Although we can iden-
tify clear patterns across languages and tasks, our
experimental findings are limited to two datasets
that address three different aspects of argument
quality. This is due to the fact that only very few
argument-mining datasets have been released in a
way that explicitly contains the labels of individual
annotators. While we believe that we have con-
sidered the available sources regarding argument
quality, we hope to expand the data basis in the
future to generalize findings.

Furthermore, the studied datasets each contain
annotations from five individual annotators – al-
lowing us to explore our SepREC models where
each annotator requires its own LLM. Settings
with higher numbers of annotators will quickly hit
boundaries of computational resources, as we need
to instantiate a separate pre-trained LLM per an-
notator which has to be stored on a GPU in order
to train the entire model in a suitable time span
(cf. limitations of ensemble method in Davani
et al., 2022). Future work could explore trade-offs
between performance and minimizing the loaded
LLM size for each annotator.

Our work assumes that the different labeling de-
cisions of annotators reflect legitimate and valid
perspectives. However, it is possible that some dis-
agreements are due to unreliabilities in the annota-
tion process or lack of good guidelines, potentially
leading to misunderstandings of the task (Uma
et al., 2021b; Paun and Simpson, 2021; Plank,
2022). Issues related to unreliability of annota-
tion processes have been studied exhaustively in
the context of crowd-sourcing annotations, and
countermeasures have been proposed (see for an
overview Paun et al. 2018, 2022c). However, the
potential trade-offs between ensuring reliability
and preserving diverse annotation behaviors remain
less clear. Nevertheless, plausible policies to in-
crease soundness include pilot studies, cautiously
selecting annotators and attention checks. Specifi-
cally to identify genuine disagreement due to sub-
jectivity, Abercrombie et al. (2023) suggest consid-



ering the intra-annotator agreement, i.e., checking
to which extent annotators are consistent with them-
selves. While the first three policies can only avoid
noise a-priori, the latter one can be also used to
filter already existing datasets in cases where anno-
tators labeled instances multiple times or multiple
similar instances.

Lastly, the train/dev/test splits in our datasets
are constructed so that we have annotations from
each annotator in each subset. Thus, our results
do not apply to settings where a) (some) annota-
tors contained in training are not contained in test,
or, vice versa, b) (some) annotators in the test set
are not included in training. However, as can been
from ValNov results, annotators can be effectively
learned from a few annotations using recommender
systems. Hence, an application following these
findings could ask a new user to annotate a few
examples in order to provide predictions that are
tailored to this user with minimal effort due to the
common ground supporting the decision. Further-
more, the user-tailored predictions can be further
refined by asking for more annotations. In addi-
tion, models providing multiple predictions per in-
stance can be used for a more fine-grained auto-
matic instance-labeling by providing a range and
distribution of labels instead of one single majority
label.
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A Training Details, Hyperparameters and
Computational Resources

In addition to the text-processing units (Section
4.2), also the training loop was implemented
using the transformers-library by Wolf et al.
(2020). For all hyperparameters not explicitly
mentioned we used default settings. Maximum
sequence length is 512 tokens, with truncation
and padding to the maximum length. We train
with an initial learning rate of 1e − 5 for all
models. Most experiments use a batch size of
8. The only exception is SepREC where we
use a batch size of 2 so that the model fits on
a single GPU (see below for details on used
resources). Each run uses a fixed random seed,
most importantly used in weight initialization
of the non-pretrained layers: 2923262358,
1842330218, 827634346, 171049425,
991167630, 1070299506, 762227973,
555596930, 1010185121, 419984946

Most experiments ran on a single Nvidia
GeForce GTX 1080 Ti (12GB GPU RAM). Only
the SepREC experiments ran on an Nvidia A40
(48GB GPU RAM) because of higher RAM re-
quirements due to several LLM instances that need
to be loaded simultaneously. Per run, training and
evaluation together take on average about 6 minutes
for Majority and a single model from PerAnnotator,
about 7 minutes for SepHeads, about 10 minutes
for ShareREC, and about 50 minutes for SepREC.

As described in Section 4.2, all mod-
els use RoBERTa (Liu et al., 2019) to
encode text, using roberta-base or
roberta-base-wechsel-german (Minixhofer
et al., 2022) initial weights depending on the
dataset language.

ShareREC and SepREC are both based on a par-
allel DeepCrossNetwork (Wang et al., 2021) (see
Appendix C for more context) with 3 layers, ReLU
activation and 30 appended feed-forwarded fea-
tures. To encode the user, both ShareREC and
SepREC use a feed-forward network with 3 layers
(embedding size of 50, ReLU activation) trained
with a dropout of 20%.

Based on the development set performance in
preliminary experiments, we select a different num-
ber of training epochs per setting. The Majority
model is trained for 10 epochs. For the PerAn-
notator approach, each individual model is also
trained for 10 epochs. SepHeads is trained for 7
epochs. SepREC is trained for 12 epochs. We

train ShareREC for 20 epochs on concreteness and
for 14 epochs on ValNov. Despite these particular
choices, we note that the *REC models’ develop-
ment set performance only changes minimally after
epoch 12-14.

The majority of parameters in our models be-
long to the pre-trained language model. Specif-
ically, RoBERTa-base has 125 million parame-
ters. For ShareREC these parameters are multi-
plied by the number of annotators (five for our
setting, so 625 million parameters). We keep the
pre-trained model’s default output dimensionality
of 768. Thus, each classification head (in Major-
ity, PerAnnotator, and SepHeads) adds 768 · 768 +
768 = 590, 592 parameters for a fully-connected
layer and 768 ∗ 2 + 2 = 1, 538 (two classes in
ValNov) or 768 · 3 + 3 = 2, 307 (three classes
in concreteness) for a projection layer. Accord-
ingly, the added parameter counts for ShareREC
and SepREC are higher based on 3 fully-connected
layers in the user representation’s dimensionality
(50) and 3 fully-connected layers in the combined
dimensionality of user and text.

B Full Results for All Individual
Annotators

Table 6 contains all annotator-individual results
from all tested architectures and configurations.

C Recommender Architectures

As already depicted in Section 3.2, our approaches
relying on recommender systems contain three core
components: one or more blocks processing the
text standalone (text encoder), one block for pro-
cessing the user-id (user encoder) and one block for
combining these two encodings and returning the
final classification prediction (combiner). For the
sake of comparability to our other approaches, we
fix the text encoder to a RoBERTa model, having
only two degrees of freedom: i) whether there is
exactly one text encoder shared among all annota-
tors (ShareREC) and/ or a text encoder separately
for each annotator (SepREC) and ii) whether/ how
the separated text encoders are connected to each
other. We study these hyperparameter settings in
Appendix C.2. For our other two components, we
implement several single pieces, which can be seen
as additional hyperparameters. To encode the user-
ids, we can opt between i) a one-hot encoder or ii) a
simple neural feed-forward encoder. As options for
combiner, we offer a simple feed-forward neural



Concreteness
#1 #2 #3 #4 #5

Baseline 26.06± 0.00 26.49± 0.00 25.95± 0.00 26.06± 0.00 26.16± 0.00
PerAnnotator 59.98± 2.55 49.66± 2.59 62.88± 2.10 49.70± 2.10 50.60± 1.01
SepREC 67.54± 3.26 52.47± 1.81 60.54± 1.93 52.14± 2.34 56.17± 3.24
ShareREC 60.23± 2.05 54.01± 1.77 62.71± 3.08 57.85± 1.89 54.37± 2.39
SepHeads 61.09± 3.30 46.09± 3.79 52.92± 6.06 49.81± 3.59 44.24± 6.73
Majority 58.86± 1.23 47.70± 1.75 58.61± 1.42 53.08± 1.48 50.88± 3.25

Validity
#1 #2 #3 #4 #5

Baseline 37.40± 0.00 38.30± 0.00 36.53± 0.00 36.82± 0.00 34.62± 0.00
PerAnnotator 47.59± 8.21 56.06± 13.32 44.16± 10.34 38.29± 3.75 34.09± 1.10
SepREC 66.71± 1.33 68.91± 1.74 60.43± 1.64 61.74± 3.87 52.59± 7.70
ShareREC 67.93± 1.33 69.85± 0.89 71.16± 1.61 56.12± 1.78 64.68± 5.81
SepHeads 59.48± 10.01 61.67± 5.42 58.78± 6.07 43.69± 5.79 45.49± 9.29
Majority 50.47± 9.17 53.24± 10.26 54.57± 10.54 42.91± 6.19 36.96± 5.06

Novelty
#1 #2 #3 #4 #5

Baseline 40.90± 0.00 34.89± 0.00 43.40± 0.00 38.85± 0.00 45.24± 0.00
PerAnnotator 44.05± 2.54 41.26± 3.98 44.48± 2.45 40.19± 4.36 39.15± 12.83
SepREC 55.93± 2.65 65.73± 2.46 60.88± 1.72 52.22± 3.22 50.37± 7.11
ShareREC 56.80± 1.44 63.26± 1.77 59.03± 1.18 62.26± 2.12 68.85± 2.44
SepHeads 49.88± 6.73 48.57± 8.40 45.90± 9.28 45.36± 5.05 45.50± 9.63
Majority 43.35± 1.82 38.16± 2.63 45.96± 2.19 42.02± 4.77 47.89± 4.52

Table 6: Annotator-level macro F1 averaged from 10 runs of training and evaluation on the same train/test sets with
different seeds. Separate table for concreteness, validity and novelty, respectively.

net processing the concatenation of text-encoding
and user-encoding or all variations of DeepCross-
Networks as proposed by Wang et al. (2021). We
explore various settings with a shared text encoder
in Appendix C.1.

C.1 Hyperparameter Study for ShareREC

In order to explore suitable compositions of our
implemented single components, we apply a grid
search using the following selected anchors after
an experimental consolidation phase:

1. For User-Encoding:

(a) Simple: Feedforward-Neural-Net with 1
layer (embedding size of 25, no activa-
tion function) and a dropout of 20%

(b) Complex: Feedforward-Neural-Net with
3 layers (embedding size of 50, ReLU-

activation-function) and a dropout of
20%

2. For Combiner:

• Simple: Feedforward-Neural-Net with
1 layer (no activation function) and a
dropout of 20%

• Medium: Feedforward-Neural-Net with
3 layers (ReLU-activation-function) and
a dropout of 20%

• Complex: Feedforward-Neural-Net with
5 layers (TanH-activation-function) and
a dropout of 20%

• DeepCross: parallel DeepCrossNet-
work with 3 layers (ReLU-activation-
function), 30 appended feed-forwarded
features

Table 7 presents the results showing that the



User Combiner Concreteness Validity Novelty
Simple Simple 57.41± 1.05 66.28± 0.68 61.85± 1.35
Simple Medium 55.72± 4.60 56.55± 13.54 49.43± 8.48

Complex Simple 57.30± 1.36 65.48± 1.39 61.69± 1.22
Complex Medium 57.90± 1.32 57.90± 15.27 54.35± 7.84
Complex Complex 58.44± 0.98 65.99± 1.68 60.70± 1.98
Complex DeepCross 57.83± 1.44 65.95± 1.66 62.04± 0.88

Table 7: Average and standard deviation of per- anno-
tator macro F1 from 10 runs for different ShareREC-
hyperparmerters

majority of hyperparameter settings yield compara-
ble strong performance (concreteness with an F1-
score of ≈ 57, validity with an F1-score of ≈ 66
and novelty with an F1-score of ≈ 62), showing
the general success of the recommender architec-
ture and the importance of the text encoder. How-
ever, there are some outliers: the combination of a
simple user representation and a non-simple com-
biner do not complement one another well. As
observable in Table 7, the simple-user-medium-
combiner-setting has the lowest and most unstable
scores across tasks, especially for the most complex
task of novelty prediction (49.34 points). However,
the shallow combination of simple user encoding
and simple combiner shows good results and is
superior in validity (66.28 points), emphasizing
the differences among annotators in the strongest
straightforward fashion compared to all other hy-
perparameter settings in ShareREC. However, this
combination is outperformed by the more complex
setting (complex user encoder and complex com-
biner) by +1.03 points in concreteness (58.44) and
by the final selected setting (complex user encoder
and DeepCross-Network) by +0.19 points in nov-
elty. Despite have only the third best results w.r.t
concreteness (0.61 F1-points worse than the best
setting), underestimating the conflicting views in
that task, this model results in stable and overall
superior scores for our tasks in argument quality
assessment.

C.2 Between SepREC and ShareREC

We additionally explore architectures fitting in be-
tween ShareREC and SepREC. To this end, we
introduce the option to loosely connect each text
encoder to each other by adding a further loss term
as in Equation 1, penalizing the models if the text
encoders diverge (too much).

L+ = λ

∑
∀i,j|i<j(Wi −Wj)

2∑
∀i,j|i<j 1

(1)

Hereby Wi represents the set of all text encoder

λ +shared Concreteness Validity Novelty
−0.5 no 56.93± 0.93 61.26± 2.05 55.34± 3.10
0.0 no 57.77± 1.18 62.08± 2.25 57.03± 2.09
0.0 yes 56.30± 1.19 65.67± 0.94 60.42± 2.38
0.1 no 56.77± 0.97 62.99± 2.08 56.86± 2.41
1.0 no 57.01± 0.76 61.83± 2.09 56.77± 1.81
2.0 no 57.40± 1.00 61.40± 2.27 56.29± 2.04

Table 8: Average and standard deviation of per- annota-
tor macro F1 from 10 runs for the continuum SepREC
to ShareREC. λ is the value mentioned in Equation 1.
λ = 0.0 equals the SepREC-setting.

weights for the ith annotator and λ is a hyperpa-
rameter regulating the strength of this added loss.
While a high positive value of λ leads to a tight
text encoder connection, only allowing minimal
annotator-specific variations, a value next to 0 re-
sults in a very loose connection. A negative value
would encourage variations between the annotator-
specific text encoders. This “smooth” parame-
ter sharing is motivated by Heinisch and Cimiano
(2021).

In addition, we explore the private-shared ap-
proach by Liu et al. (2017) for our text processing
unit.

Following the equation 1, we experiment with
following values: λ = [−0.5, 0.1, 1.0, 2.0]. We
note that λ = −0.5 is even more annotator-specific
than SepREC since it penalizes similarities between
trainable weights of the separated text encoders,
emphasizing the differences between annotators.
While a value of λ = 0.1 corresponds approxi-
mately to SepREC, λ = 2.0 emphasizes the com-
mon ground regarding the text representation and
is thus closer to ShareREC.

In addition, we experimented with introducing
an additional shared text encoder alongside the
annotator-specific text encoders (called +shared).

Table 8 shows the results using a complex user
encoding and the DeepCross-combiner. While the
most simple scenario in this continuum (the pure
SepREC-setting) has the best F1-score of 57.77
in the concreteness task, where all models be-
have similarly (having minimal F1-scores of 56.93
with λ = −0.5), modifying the interaction of text
encoders has a higher impact in the more text-
complex tasks of validity and novelty. While the
impact of λ is still minor, having a sweet spot at
λ = 0.1 with F1-score between 61.26 (λ = −0.5)
and 62.99 (λ = 0.1) in validity and F1-scores be-
tween 55.34 (λ = −0.5) and 58.86 (λ = 0.1),
underlining the “common ground”-aspect in text
understanding, the combination of a shared text



encoder and an annotator-specific text encoder per-
forms best in validity and novelty prediction (yield-
ing an F1-score of 65.97 and 60.42, respectively).
However, we observed in the validity task the ten-
dency that this model (including a shared text en-
coder) relies too much on this shared encoding
and propagates more the majority opinion than
the other models in the SepREC-series. Hence,
in terms of capturing different views on validity,
we recommend using the model without a shared
text encoder and λ = 0.1, having a better minimal
annotator-F1-score of 54.31 than the counterpart
including the shred text encoder (52.59).

We finally remark that we observe that the im-
pact of λ vanishes primarily at the start of the train-
ing process since the core of each text encoder is a
large language model which is pre-trained and thus
initialized with these pre-trained weights. Hence,
future work is to define a dynamic λ starting with
a high value that is slowly decreasing.


