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Abstract

Zero-shot forecasting predicts variables at locations or conditions without direct
historical data, a challenge for traditional methods due to limited location-specific
information. We introduce a retrieval-augmented model that leverages spatial cor-
relations and temporal frequencies to enhance predictive accuracy in unmonitored
areas. By decomposing signals into different frequencies, the model incorporates
external knowledge for improved forecasts. Unlike large foundational time series
models, our approach explicitly captures spatial-temporal relationships, enabling
more accurate, localized predictions. Applied to microclimate forecasting, our
model outperforms traditional and foundational models, offering a more robust
solution for zero-shot scenarios.

1 Introduction

Zero-shot forecasting aims to predict outcomes for previously unseen locations or conditions without
direct historical data. This is crucial in scenarios where acquiring location-specific data is costly
or infeasible. Our approach leverages spatial correlations and temporal frequency characteristics,
enabling effective zero-shot forecasting by incorporating knowledge from similar contexts.

In domains like agriculture and urban planning, precision and local accuracy are essential. Traditional
forecasting models often rely on data from distant stations, leading to inaccuracies. For example, a
farmer using data from a weather station 50 miles away may miss localized conditions like unexpected
frost, resulting in crop damage [14]. This underscores the need for reliable localized prediction
mechanisms.

We introduce a retrieval-augmented zero-shot forecasting model that enhances accuracy by utilizing
the correlation between spatial proximity and temporal frequency. By decomposing environmental
signals into different frequencies, our model identifies patterns in both space and time, improving the
forecasting of microclimate variables. This approach is particularly valuable in fields like agriculture,
ecological conservation, and urban design, where microclimates can vary significantly over short
distances.

While large foundation time-series models [1, 15, 6, 8, 18] exhibit strong generalization capabilities,
they struggle to adapt to new, unseen locations due to the lack of specific contextual data. Existing
deep learning models for spatio-temporal weather modeling [9, 3, 19] are often computationally
expensive and limited to lower spatial resolutions or global scales. Additionally, these models typically
assume data points are on a grid with equal spacing, which does not hold in many microclimate
scenarios. We address these issues using Graph Neural Networks (GNNs) [21, 4] to handle arbitrary
distances between points. Numerical Weather Prediction (NWP) models [5, 11, 16] and adaptive
learning methods [20, 17, 22] face similar limitations, lacking the capability for resolution-aware
retrieval. Our model extends recent retrieval-augmented forecasting methods [10, 7] by incorporating
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Figure 1: Model structure, we decompose the target station’s preceeding past values and then use our
RAG forecasting model for each frequency using more points for slower frequency signals.

resolution-aware retrieval and GNN-based adaptive learning, offering a novel approach to zero-shot
forecasting.

This paper develops and evaluates the retrieval-augmented model, demonstrating its superior perfor-
mance in zero-shot forecasting scenarios by effectively using both spatial and temporal information.

2 Methodology
We aim to forecast climate parameters over a time horizon Ly starting from the current time t,
predicting values Yt = {yt+1, yt+2, ..., yt+Ly

|yi ∈ R}. We use as input a limited preceding window
of climate parameters, Xt = {xt−Lx , xt−Lx+1, ..., xt}, with each xt ∈ Rn representing n available
climate parameters at time t. Our predictions focus on a specific location, the target station (sttar),
characterized by its geographic data ℓ(sttar), including latitude and longitude. The historical dataset
H = {(Xt′ ,Yt′)|t′ < t} contains past climate values from multiple stations but lacks data from
sttar in the zero-shot scenario ((Xt(sttar),Yt(sttar)) /∈ H ∀t). Consequently, we rely on data
from other stations and the immediate preceding window at sttar to forecast at the target station.
Our method addresses this zero-shot forecasting problem by developing models capable of accurate
climate forecasting at sttar without historical data specific to that location.

2.1 Model structure
The overall architecture of our model is illustrated in Figure 1. The core of our approach is a
retrieval-augmented (RAG) forecasting model, designed to efficiently leverage both historical data
and spatial information of reference points to predict values for a target point. To enhance this
forecasting capability, we decompose the input signals into multiple frequency components. For
each frequency, we apply a separate instance of the RAG forecasting model, utilizing a distinct set
of retrieved reference points tailored to that frequency’s characteristics. The outputs from these
individual models are then fused to generate the final forecast.

In the following sections, we first detail the RAG forecasting model, outlining its structure and
functionality. We then explain the concept of resolution-aware retrieval, providing the rationale
behind selecting reference points for each frequency. Finally, the training procedure used to optimize
the model is given in Appendix Section C.1.

2.2 Retrieval-Augmented Forecasting model
In the zero-shot forecasting setting, the past values (or context) available for the target point are
limited. Therefore, to improve forecasting accuracy, it is crucial to leverage information from
other reference points. Our model addresses this by learning the following probability distribution:
P (Yt(sttar)|Xt(sttar),Xt(st

Rtar
1 ),Xt(st

Rtar
2 ),Xt(st

Rtar
3 ), ...) where {stRtar

1 , stRtar
2 , stRtar

3 , ...} ∈
ψ(sttar) represents the set of reference points for the target point. The function ψ(sti) retrieves these
reference points based on a distance function d(sti, stj): ψ(sti) = argmintopk

stj d(sti, stj)

For simplification, we denote the past values of the retrieved reference points as XR
t . The final

forecast for the target point is then given by: Ŷt(sttar) = ϕ(Xt,XR
t )
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Figure 2: Correlation between historical temperature data and distance for different frequencies. The
color indicates the Satclip embedding distances. In lower frequencies (left), distant points maintain
high correlation, while in higher frequencies (right), correlation drops more quickly with distance.

To achieve this, our model employs a transformation module that maps the information from the
neighboring reference points to the target point. After experimenting with several architectures, we
found that Graph Neural Networks (GNNs) performed best. In this setup, nodes represent embeddings
of the retrieved reference points, allowing for efficient information transfer and improved forecasting
accuracy.

2.2.1 GNN Transform Module
Our model refines the embedding of the target location by leveraging embeddings from similar
locations. We construct a graph with the retrieved reference points, where edge weights are
inversely proportional to the distance between location embeddings derived from Satclip [13]:
Wi,j = e−||L(sti)−L(stj)|| where L(sti) is the location embedding of station i. Using this graph,
we employ a Graph Convolutional Neural Network (GCNN) [12] to aggregate information from
neighboring locations, enhancing the target’s embedding for forecasting.

2.3 Resolution-Aware Retrieval

In many spatio-temporal time series such as climate, the patterns affect surrounding areas in a way
that closer locations have a greater influence on the fast-changing, higher-frequency components,
while more distant locations affect slower-changing, lower-frequency components. As illustrated in
Figure 2, this is evident in the correlation of points over varying distances for different frequencies.
Based on this observation, we developed a model that retrieves different sets of reference points
depending on the frequency of the component.

To implement this, we first decompose the context at the target location using wavelet decompo-
sition: W(Xt(sttar)) = {X f1

t (sttar),X f2
t (sttar),X f3

t (sttar), ...} where W represents the wavelet
decomposition. The final model, incorporating this resolution-aware retrieval, is defined as:
Ŷt(sttar) = W−1({ϕ(X f1

t (ψf1(sttar))), ϕ(X
f2
t (ψf2(sttar))), ...}) where ψfi(sttar) is the set of

points retrieved for the target point sttar at frequency fi, and W−1 is the inverse wavelet transform.

We enforce the constraint: |ψfi(sttar)| > |ψfj (sttar)|, if fi < fj

This ensures that for lower frequencies, where the signal varies more gradually, the model retrieves a
larger set of reference points. Additionally, because the wavelet decomposition captures increasingly
coarser features at lower frequencies, we also have: |X fi

t | < |X fj
t |, if fi < fj

This design allows the model to rely on a broader context for lower frequencies, improving prediction
accuracy where the available data is sparser.

3 Results

In this section, we evaluate the performance of our model using a real-world dataset. We compare
our results against the baselines described in Appendix B and perform an ablation study on various
model components.

We use the ERA5 dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF),
focusing on 320 points in the Northwestern United States, spanning from coordinates (44◦, −120◦)
to (49◦, −124◦). The data covers the period from 2019 to 2023. To simulate zero-shot forecasting,
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Model MSE↓ MAE↓
HRRR 11.37 2.48

Chronos base 8.33 2.11
Chronos large 8.21 2.10

TimesFM 9.21 2.21
Informer 6.69 1.91

Informer + Decomposition 6.51 1.91
Informer + Decomposition + GNN 6.36 1.89

Table 1: Results of the model on zero-shot test sta-
tions.
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Figure 3: MSE vs. hours ahead.

we randomly selected 10 points as zero-shot locations, excluding them from the training data. The
future data from these zero-shot points was used as test data.

For temporal splitting, we used the first 70% of the data from the training stations for training
the models, 10% for validation (from the same training stations), and the final 20% of the data
from the zero-shot points for testing. We predict 2 meter temperature as target (in degrees Kelvin).
A comprehensive list of the selected features and corresponding weather stations is provided in
Appendix A.

Using data from the past 96 hours (Lx = 96), we developed forecasts for the next 48 hours (Ly = 48)
for the 2 meters above ground temperature. We then calculated and reported the mean squared error
for each hour of the prediction.

For our current models we used Informer[23] as the encoder decoder forecaster and added our models
on top of this architecture.

Table 1 presents the mean squared error (MSE) results of our model averaged over the 10 zero
shot stations, along with comparisons to multiple baseline models. Notably, our model outperforms
numerical weather prediction model usually used in these scenarios High Resolution Rapid Refresh
(HRRR)[2], and large foundation time series models, Chronos[1], and TimesFM[6].

Additionally, we provide MSE results for different forecasting horizons in Figure 3, comparing
Chronos, Informer, and our full model. Although Informer and Chronos perform better for short-term
predictions (a few hours ahead), our model excels at longer forecasting horizons (10+ hours ahead).
This improvement is due to our retrieval and decomposition process, which enhances the prediction of
lower-frequency components, which is more critical for longer-term forecasts. In appendix section D
we also show 47-hour ahead forecast comparison between HRRR, Chronos, and our model.

We also conducted an ablation study to assess the impact of different model design choices, the results
of which are given in the Appendix D.1. We show how much each model component improves the
performance, and the model incorporating all components performs the best.

4 Conclusion and future work
In this article, we proposed a retrieval-augmented zero-shot forecasting model that leverages reference
points from well-monitored regions to enhance forecasting accuracy in unmonitored locations. Unlike
large foundation time-series models [1, 15, 6, 8, 18], which often struggle to adapt to new, unseen
locations due to the lack of specific contextual data, our approach incorporates a resolution-aware
retrieval strategy and a GNN-based module to address this limitation. The results show that by using
frequency-specific retrieval sets and advanced graph-based transformations, our model improves the
forecasting performance.

For future work, we plan to explore integrating our method with other state-of-the-art encoder-decoder
models like PatchTST [18] and MOMENT [8], examining if this hybrid approach can mitigate the
contextual data limitations faced by foundation models. We also intend to evaluate our model on
larger and more diverse datasets, including global data, to better understand its generalizability
across various climates and geographical regions. Furthermore, we will conduct a comprehensive
evaluation, including robustness checks and comparisons with fine-tuned large foundation models,
and spatio-temporal forecasting models to rigorously assess the efficacy of our method in adapting to
the unique challenges posed by zero-shot microclimate forecasting.
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Hyperparameter Value
batchsize 32

inner model embedding size 2048
embedding size 256

dropout 0.05
learning rate 0.0001

loss mse
number of heads 8

patience 10
encoder layers 2
decoder layers 1

Biggest Graph Size 15
Graph Size Reduction 5

GCNN conv layers 2
GCNN hidden dim 256

Wavelet decomposition levels 6
Table 2: Hyperparameters for our model

A ERA5 data

We downloaded these 5 features:

• u10: The eastward component of the wind at 10 meters above the ground. It represents the
wind speed in the east-west direction.

• v10: The northward component of the wind at 10 meters above the ground. It represents the
wind speed in the north-south direction.

• t2m: Temperature at 2 meters above the ground.

• d2m: Dew point temperature at 2 meters above the ground.

• sp: Surface pressure, which is the atmospheric pressure at the Earth’s surface.

hourly from January 1, 2019, to December 31, 2023 for gridded points between coordinates (44◦,
−120◦) and (49◦, −124◦) at 0.25◦ intervals.

B Contenders

We compare our models against these contending forecasting models:
Chronos[1]: We used the pre-trained base with 200m parameters and large with 710m parameters to
generate forecasts for our data. We also tried to fine-tune the Chronos base model on our data but
could not improve the results.
TimesFM[6]: We tried the shared pre-trained model with 200m parameters also as suggested by
authors we tried giving different date and time based parameters as covariates as well as forecasting
other features using the same model and feeding them as dynamic numerical covariates, however, the
best performing model in our case was without using any covariates and the single variate original
model.
HRRR[2]: The High-Resolution Rapid Refresh (HRRR) model is a numerical weather prediction
model that provides high-resolution, frequently updated forecasts for the contiguous United States,
using real-time weather data to deliver detailed predictions on an hourly basis. We downloaded the
forecasts for all the locations from National Oceanic & Atmospheric Administration (NOAA) website.

C Model hyperparameters

The hyperparameters used for ERA5 dataset for Informer and our model are given in Table 2, we
select these hyperparameters using 10% of data that come after the training set and before the test set.
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Figure 4: Predictions of our best zero-shot model compared with HRRR predictions and ground truth
on the last two weeks of December 2023.

C.1 Training procedure

Our training methodology consists of two distinct phases. In the first phase, we train the encoder-
decoder model to forecast the data using all available training stations. During this phase, the model
learns to capture the global patterns and relationships across the entire dataset, and the parameters are
updated accordingly.

In the second phase, we refine the weights of the GCNN module to enhance the performance of
the RAG forecasting model. We designate each training station as the target station, freezing all
previously learned model parameters except for those in the GNN module. By training only the GNN
weights, the model learns to efficiently transfer information from neighboring stations, enabling more
accurate forecasting for the target station.

D Other Results

In Figure 4 we show the 48 hours ahead forecasts of HRRR, Chronos and our model vs the ground
truth for the last two weeks of December 2023.

D.1 Ablation study

In Table 3 we provide the forecasting performance of our model with different parts removed on
the validation data of a random zero-shot station. We show results with averaging the forecasts of 5
closest stations (Informer + Average of 5 forecasts), using a Transformer for RAG forecast model
instead of a GNN (Informer + Transformer), using GNN model (Informer + GNN), using Informer
with wavelet decomposition (Informer + Decomposition), using decomposition and GNN with the
same size (Informer + Decomposition + GNN with same graph sizes) and finally our full model
which uses decomposition and GNN with different graph sizes for different frequencies. You can see
that our full model achieves the best performance with all the parts included.
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Model MSE↓ MAE↓
Informer 8.03 2.22

Informer + Average of 5 forecasts 7.66 2.12
Informer + Transformer 7.26 2.07

Informer + GNN 7.19 2.06
Informer + Decomposition 7.17 2.10

Informer + Decomposition + GNN with same graph sizes(5) 7.44 2.09
Informer + Decomposition + GNN with same graph sizes(15) 7.18 2.08

Full model (Informer + Decomposition + GNN with different graph sizes) 6.89 2.04

Table 3: Ablation study on data of one random location
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