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Abstract

Quantum Implicit Neural Representations (QINRs) have emerged as a promising
paradigm that leverages parametrised quantum circuits to encode and process
classical information. However, significant challenges remain in areas such as
ansatz architecture design, the effective utility of quantum-mechanical properties,
training efficiency, and the integration with classical modules. This paper advances
the field by introducing a novel QINR architecture for 2D image and 3D geometric
field learning, which we collectively refer to as Quantum Visual Field (QVF).
QVF encodes classical data into quantum statevectors using neural amplitude
encoding grounded in a learnable energy manifold, ensuring meaningful Hilbert
space embeddings. Our ansatz follows a fully entangled design of learnable
parametrised quantum circuits, with quantum (unitary) operations performed in the
real Hilbert space, resulting in numerically stable training with fast convergence.
QVF does not rely on classical post-processing—in contrast to the previous QINR
learning approach—and directly employs measurements to extract learned signals
encoded in the ansatz. Experiments on a quantum hardware simulator demonstrate
that QVF outperforms existing quantum approach and competes widely used
classical foundational baselines in terms of visual representation accuracy across
various metrics and model characteristics. We also show applications of QVF in
2D and 3D field completion and 3D shape interpolation, highlighting its practical
potential. Project page: https://4dqv.mpi-inf.mpg.de/QVF/|

1 Introduction

Implicit neural representations (INRs) have emerged as a powerful framework for continuously mod-
elling signals via neural networks. They are widely used in image and 3D shape synthesis, as well as
3D reconstruction, among other fields of visual computing [54]. INRs map spatial (and also tempo-
ral) coordinates to corresponding signal values, enabling resolution-independent, memory-efficient,
and differentiable representations; the signal encoding network fy with parameters 6 is trained to
minimise the reconstruction loss £(6) over sampled coordinates x: £(0) = > » || fo(x) — S(x)]?,
where X denotes the sampled domain and S(x) is the signal value to be represented by fy. As a
remedy to the growing computational, memory and energy demand required by INR, recent work
has explored the integration of quantum circuits into INR as a promising alternative to classical
methods, with potential advantages in model compactness and learning efficiency [57]. Quantum
algorithms operate within Hilbert spaces, enabling superposition and entanglement of states that
facilitate parallel processing beyond classical systems with comparable resource scales. Specifically,
quantum machine learning (QML) models involving parameterised quantum circuits (PQCs) or
ansatz parameterise the evolution of quantum states through unitary transformations (implemented as
quantum gate sequences), requiring a number of parameters that scale logarithmically with the Hilbert
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space dimensionality. Recent studies further reveal an intrinsic link between PQCs and Fourier-based
learning mechanisms [43]], a critical feature for relieving biased learning or mitigating spectral bias
common in classical neural networks for INRs [35]. Together, these insights suggest a pathway
towards highly efficient and expressive QML models for visual computing.

Despite their theoretical promise, quantum implicit neural representations (QINRs) remain heav-
ily underexplored. The recently introduced QIREN approach [57] is, to our knowledge, among
the first in the field that is closest to our work, designed for image representation, upsam-
pling and generation. In detail, QIREN projects query coordinates into learnable Fourier fea-
tures paired with a classical network decoder, explicitly linking it to Fourier neural architectures
while, at the same time, overshadow the quantum behaviour due to classical post-processing.
In response to these limitations, we
propose Quantum Visual Field (QVF),
a novel coordinate-based QML model
that leverages high-dimensional
Hilbert spaces for lightweight and
spectrally unbiased implicit visual
field representations; see the scheme
in Fig. [[F(a). Rather than using :
heuristic classical-to-quantum data Source Terget
encoding methods [52 39, I8}, 136]—
which (unreasonably) assume that
handcrafted embeddings align with
the inductive biases of quantum

Figure 1: Our learnable coordinate-based QVF model can
represent various visual fields: (a) Schematic diagram of
the architecture; (b) Latent space interpolation of 3D signed
distance fields [10]]. (c) 2D image representation of a moder-

circuits—we introduce a novel . . .
learnable energy module that encodes ate resolution (400350 pixels) [11;

non-linear data priors to align classical Euclidean and quantum Hilbert feature representations. Our
carefully designed quantum circuit leverages quantum state evolution and entanglement between
qubits to effectively explore the optimal pre-measurement quantum state representations. Specifically,
the reachable Hilbert space is constrained in QVF for stable gradient flow and relief of issues such as
barren plateaus, i.e., vanishing gradients arising due to Haar randomnessﬂ, without compromising
expressiveness. The quantum circuit is measured to generate multi-dimensional signals, such as
images or 3D geometries, or their collections (Fig. [TH(b)) through conditioning on latent variables. In
summary, the technical contributions of this paper include:

e QVF, a coordinate-based QML model for visual representation learning (2D images and 3D
signed distance fields). The QVF approach is designed for execution on quantum machine
simulators or fault-tolerant gate-based quantum computers.

e A non-linear neural scheme for encoding classical data into quantum statevectors. Our
neural amplitude encoding is grounded in a learnable energy manifold ensuring meaningful
Hilbert space embeddings.

e An efficient PQC that processes entangled information within the real Hilbert subspace,
explicitly designed for stable gradient feedback by bounding Haar randomness.

Unlike existing approaches [S7], QVF is a lightweight architecture with the exact structural con-
figuration dynamically depending on the input data. We evaluate QVF and compare it to the main
competitor, i.e., prior QINR method QIREN (on 2D image representation learning), and, additionally,
several foundational classical INR baselines (for 2D image and 3D shape representation learning);
experiments are performed on a high-end simulator of gate-based quantum hardware [6]. We show
that QVF consistently competes and outperforms QIREN and other compared techniques. Moreover,
QVF supports problem scales and applications beyond the reach of prior QINR frameworks, such as
image inpainting, shape completion and latent space interpolation (Fig. [T}(c)), taking a step towards
unlocking quantum models in real scenarios.

*Haar randomness refers to the property of sampling quantum states uniformly at random from the Hilbert
space according to the Haar measure. [19]]
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Figure 2: Overview of the proposed QVF model, a QML framework for visual representation
learning. Query coordinates ® encoded using ~y (positional encoding) concatenated with the con-
ditioning latent code z are used to infer the energy spectrum E of a quantum system, associated
with Boltzmann-regulated statistical uncertainty P. The inferred statistical property is leveraged
in encoding the classical data into quantum statevectors, which are subsequently processed by the
parametrised quantum circuit S(@). Field properties are decoded probabilistically from projective
circuit measurements.

2 Related Work

Classical Neural 2D/3D Scene Representation. Neural networks serve as a basis for modern
implicit scene representations, employing continuous function approximations to circumvent the
constraints of discrete grid-based methodologies [33} 11,150, 12} 25]]. Initial breakthroughs utilised
multi-layer perceptrons (MLPs) to establish coordinate-to-attribute mappings, as demonstrated in
Chen et al’s [12]] continuous implicit model for arbitrary-scale super-resolution. The paradigm
has since been extended to 3D representations, supplanting conventional voxel- and mesh-based
approaches: DeepSDF [34] achieves geometrically coherent surface reconstruction via learned
signed distance fields (SDFs), while neural radiance fields (NeRF) [31] introduce a volumetric scene
representation parameterized by coordinate-based neural mappings of spatial coordinates and viewing
directions to radiance and density, enabling photorealistic novel view synthesis. Gate-based quantum
computing offers great potential for fundamentally enhancing INRs.

Quantum-enhanced Computer Vision. Growing interest in quantum computing for computer vision
has established quantum-enhanced computer vision (QeCV) as an emerging research frontier. Current
literature predominantly explores quantum annealers for combinatorial optimisation [[16} 7} 155 |14}
5, 129]], while tunable quantum circuits remain underexplored. Early works introduced foundational
concepts such as quantum image denoising via localized convolutional operations [44] and quantum
convolutional neural networks (QCNNSs) with mid-circuit measurements to emulate translational
equivariance [13]]. Subsequent advances include hybrid quantum-classical architectures for 3D point
cloud classification through voxelization and quantum feature processing [2]], as well as quantum
autoencoders for classical data compression via hand-crafted amplitude embeddings [36].

Our work is inspired by 3D-QAE [36], who developed hand-crafted quantum amplitude embeddings
for encoding 3D point clouds. How-

ever, their method, as acknowledged Characteristic | Ours QIREN [57] 3D-QAE [36]

by their authors, suffers from lim- No heavy post-processing X

ited Scalability and underperforms Data encoding Neural AE  Neural Angular  AE (hand-crafted)
. Qubit budget logarithmic linear logarithmic

classical models. Another related Supported dimensions 2D/3D D 3D

work is QIREN by Zhao et al. [S7], Quantum hardware Simulator Simulator Simulator

which employs the sandwich struc-
ture, i.e., a quantum circuit layer
placed between classical pre- and post-
processing. They leverage circuit’s Fourier connections to project queries in the Fourier basis, fol-
lowed by a classical dense layer for inference. This draws parallels to classical positional or Fourier
encodings, with the Fourier spectrum size growing exponentially. While theoretically motivated,
its practical utility is debated as heavy classical postprocessing reduces the quantum component
to a feature generator. In contrast, our framework avoids such post-processing and more heavily
relies on the ansatz; see an algorithmic comparison in Table [T} We use a learnable, energy-based
Boltzmann-regulated amplitude encoding, which is a critical step towards unlocking the potential of
quantum computing as demonstrated empirically in Sec.[5] At the same time, our carefully designed
ansatz evolves the encoded data and ensures robust gradient feedback.

Table 1: Comparative algorithmic analysis of related work.
“AE” denotes amplitude encoding.



3 Review: QML, its Unitary Nature and Fourier Structure

This paper assumes familiarity with quantum computing and its notations. For convenience, we
provide a refresher in App. [A] QML leverages parametrized unitary quantum operations on en-
coded data [¢)(x)) = > ;4;(z)[j) to learn functions typically expressed as expectation values

f(@) = (1(x)|O(x)), where O is a Hermitian observable (O = Of). The unitary nature of
quantum evolution (UTU = UU' = I preserves inner products and norms, ensuring that the spectral
components of the encoded data are transformed by quantum circuits. The spectral decomposition of
O = 3", Milex) (x| reveals a Fourier-like structure in f(z) = 3, Ag|(ex|t(x))|?, where the pro-
jections (eg|1(x)) act as Fourier coefficients and the eigenvalues Aj, relate to accessible frequencies.
This fundamental property is a consequence of quantum mechanics: unitary transformations preserve
spectral components, ensuring that even complex quantum circuits inherently operate in a frequency
domain. As a result, the expressivity of QML models is directly linked to their accessible frequency
components, influencing their ability to generalize and learn structured data representations.

4 Our QVF Approach

This section introduces the proposed QVF model, i.e., a QINR for learning visual representations and
their collections; see Fig. [2|for its architecture. QVF takes query coordinates ® and an optional latent
variable z (in the case more than one visual field needs to be represented) as inputs and produces
2D or 3D field properties s. We introduce encoding classical data into quantum states using neural
amplitude encoding in Sec.[d.1] while the quantum circuit design and measurement are detailed in
Sec.[.2] Sec.[.3|provides training details and applications supported by QVF.

4.1 Amplitude Encoding with Neural Embeddings

Our parametrised energy-based embedding of classical data « into quantum states |1, (z)) gener-
alises widely used hand-crafted amplitude encoding (AE) [36, 40]. AE enables an exponentially
compact encoding of N = 2" classical values into probability amplitudes of n qubits by leveraging
quantum superposition. Notably, this implies that AE induces exponentially-many random Fourier
features due to the inherent periodicity of quantum state phases. The fundamental limitation of
hand-crafted AE stems from its a priori, possibly biased prepared quantum states, which poses a risk
of misalignment with subsequent quantum evolution or suboptimal utilisation of task-specific data
Fourier priors. Hence, we propose a data-driven approach for AE that learns the optimal quantum
state density popi (), directly from data, i.e., for QINR in our case. We restrict the process on pure
quantum states satisfying Tr(p(x)?) = 1. Drawing upon the fundamental energy-probability duality
inherent in physical systems (e.g., in statistical and quantum mechanics), we infer the conditional
energy spectrum F of a given visual representation and transform it into a probability distribution P
subsequently encoded as qubit state amplitudes «; € C residing in the complex Hilbert space H. Our
encoding introduces non-linearity into the quantum evolution while reserving the full repertoire of
quantum processing and measurementsﬂ For energy inference, we employ a minimal dense MLP
f(x ={0,z}) : v(®) x z — FE activated by ReLU; we use positional encoding to accelerate
learning [35, [31]]:

¥(@®) = (--- ,sin(2E717@), cos (2L 1 w@), - - -). (1
©® denotes the field query coordinate while z represents the latent code in the case of learning visual
field collections. The inferred E = f(v(®),z) is leveraged to derive the Boltzmann-regulated P
of the quantum system; Gibbs-Boltzmann framework ¢ serves as an inductive embedding bias for
encapsulating thermodynamic uncertainty, enabling the realisation of Gibbs quantum states [13]]. We
next formulate P = [P;], ¢ € {1,..., N} through the construction of a discretised energy landscape
E, derived from the Gibbs canonical ensemble:

exp (—BE(©,z))
Z

N
z = /exp(—ﬁE(@,Z) 10 ~ 3" exp (—BE;(©.2)), 3)

J=1

P= , where 2)

3transformations in quantum circuits before measurement are linear, which is often seen as a key limitation
in ansatz expressivity



with 3 = (kgT)~! representing the inverse temperature. The quantum state amplitudes o; € C
residing in the complex Hilbert space H are characterised by their complex phases ¢; = arg(a;)
which are arbitrary within the interval [0, 27); it is subjected to the normalisation condition ||;||3 =
P; with Zfil P, = 1. Finally, the quantum states |¢;,,(®, z)) encoding the query coordinates for
our input fields are prepared as follows:

‘wm @ Z ZO&Z ‘¢z , Q= \/Fiei-arg(a,,),
“
( ) W}l”(@ Z)> <1;[}m @ z |7 Z ;0 |1/)1 < ‘

7,7=1

[4h;) is the computational basis, p(®, z) is the density distribution of |1;,, (0, z)) and “(-)*” denotes
the adjoint. We then theoretically analyse data encoding effects on the model expressiveness.

Lemma 1 Energy inference exhibits functional equivalence to determining optimal non-linear input-
dependent frequency spectrum embedded within variational quantum circuits, defining model’s
inherent expressiveness.

As demonstrated by Schuld et al. [43]], variational circuits of the form U(z) = W2g(z)W1! admit a
truncated Fourier-type expansion when measuring circuit expectation values (M ):

(V1) = (0 W g(a) Mg(x)W[0) = Y ene’™ ®)

weN

where W and W? are arbitrary unitary matrices. The effective measurement operator is defined

as: M = W21 W2, while g(z) serves as data encoding modules applied to the physical system.
Notably, unlike Schuld et al. [43]], where encoding gate analysis are restricted to Pauli gates, g(z)
compass more general quantum operations. Prepared input quantum state [¢;,, (z)) can be equivalently

expressed as

establishing a direct correspondence between inferred energy landscape and the multi-dimensional
frequency spectrum €2, with dependencies encoded in the learnable energy inference framework.

The optimal effective measurement basis, given by M(,pt = w2 w2

opt opt> along with the heuristic

learnable circuit design S (@), which approximates W2, will be introduced in the next sections.

opt>
4.2 Our Parametrised Quantum Circuit

Once the classical data is encoded into |1, (©,z)), it is processed by our

learnable PQC or ansatz S (6) within a high-dimensional Hilbert space. Our
goal is a compact and expressive PQC for QINR learning. As unrestricted
traversal of the Hilbert space can induce training instabilities, we therefore
constrain the ansatz S(8) to the manifold of real-valued unitaries, constructed
from Pauli-Y rotations and entangling gates to ensure efficient training of QVF.
This design choice avoids the imaginary components introduced by Pauli-X
and -Z rotations, which would otherwise permit unconstrained exploration of
the full, complex Hilbert space and hinder training. Our PQC architecture is
analogous to classical densely-connected neural networks in the sense that it
contains alternating layers of parametrised single-qubit Pauli-Y rotations and
entangling operations, supporting highly correlated, non-local quantum states
that cannot be decomposed into a tensor product of individual qubits which
enables parallel information processing. This design provides critical benefits for QINR learning: (1)
it confines state evolution to the manifold of real-valued unitaries, eliminating redundant parameter
dimensions that facilitate scrambled quantum states and barren plateaus; (2) it naturally discards
complex phase information while preserving all measurement-relevant quantities, i.e., universality,
for certain basis observations such as Pauli-Z observable as the complex phase factors cancel out
and become irrelevant when computing Z-basis probabilities; and (3) it maintains full expressivity
while significantly simplifying the optimisation landscape. Additionally, our design necessitates

Figure 3: Repre-
sentative pure qubit
state transitions on
the Bloch sphere.



the enforcement of a zero complex phase in our encoded quantum data, formally expressed as
arg(a;) = 0, with schematic Bloch sphere dynamics depicted in Fig.|3| Once |1;,,(©,z)) has been
transformed by S (), we extract the visual field attributes encoded in our QINR using projective
measurements of the final quantum states.

Multi-dimensional Measurement. To extract an m-dimensional representation (m<n) from S(6),
we implement local Pauli projective measurements on the first m qubits, effectively tracing out the
remaining n—m qubits. The corresponding family of local measurement operators {O; } is formally
defined over the n-qubit Hilbert space as:

0; = (1) ® 0 @ (@11 1i), i€{l,...,m}, (7)
where [, denotes the identity operator acting on the k-th qubit, preserving its quantum state within
the tensor product. The operator o7 = |0)(0|, — |1)(1], represents the Pauli-Z observable applied to
the ¢-th qubit. Local measurements help guarantee robust gradient feedback [9, 48] for the circuit.
The output of S (0) is defined as the expectation value of finite-shot circuit measurements (App. @
analyses the influence of circuit measurements on the extracted image quality). This expectation
value can be expressed as Vi,¢, which is defined as the number of shots approaches infinity in the
asymptotic limit:

Vit (©) = Tr(p(©)M(8)), M(8) = 5(6)'05(6). ®
M (9) represents a parametrised measurement basis employed to approximate the optlmal measure-
ment basis Mopl via unitary quantum evolutions of our fully-entangled circuit S (@). Similar to
classical universal approximation theory, quantum circuits with sufficient depth can approximate
arbitrary unitary transformations. The Solovay—Kitaev Theorem provides a rigorous theoretical upper
bound on the number of quantum gates required to approximate an arbitrary unitary operation to a
given precision €, given by O(4" log*(1/€)). Circuit depth 7—analogous to the number of layers in
classical neural networks—and the corresponding total number of constituent unitary quantum gates
are hyperparameters of our 5(8). The local measurement V (@), corresponding to the i-th qubit is
injectively mapped to the corresponding dimension of the target field, requiring the qubit number
n>m. We next detail the end-to-end training protocol of our model under the Bayesian framework.

4.3 Training Details and Applications

Initialisation of S (). We incorporate established PQC initialisation strategies, i.e., identity [18]]
and Gaussian [56]; see Fig. [ for the architectural implications. For identity initialisation,

each circuit layer S’(B)j at depth 7 ¢ A
{1,-+-,J} can be expressed as a sub-circuit |
Sk followed by its Hermitian adjoint Fg.  rencom |- "'“

y 3 Ry (6,

Then, 5(6) ; is constructed by assigning 6, ~
U[0,27) to Sg, which also initialised as F'r per il
definition. This ensures that the composite op-  Gaussian
eration $(0); = SrFR is equivalent to a zero
circuit depth (identity circuit) before training.
Note that while the initial configuration enforces
SrFr = I, this constraint is not maintained dur- .
ing optimisation [18]. For the Gaussian initialisation, trainable parameters for S(0); = Sg, are,
instead, sampled from a zero-mean Gaussian distribution with the variance coupled to the circuit
depth, i.e., 6 ~ N'(0,0%(7)) [56]l. The overall circuit architecture 5(8) is obtained by concatenat-
ing J blocks 5(8); such that the overall unitary transformation is given by S(8) = Hle 5(6);.
Note that architectural homogeneity across blocks is maintained, preserving systematic exploration
of the unitary space U(2").

Figure 4: QVF Initialisation: Schematic circuit
module initialised with identity (top) and Gaussian
(bottom) schemes.

QVF Training. Consider dataset X composed of W distinct visual fields denoted by X, for
i € {1,...,WW}. Each data field X; encapsulates physical field properties s/, such as pixel values

in images or SDF for geometric representations, sampled at specific spatial coordinates GZ ; here,
index j denotes the sample index per field. The relationship between spatial coordinates and physical
properties is defined by a function f such that sampled points within each field are given by:

{( i 7,)|S = f(@Z)vj € {Oa 17"'7M}}a 9



where M is the number of samples per field. Crucially, each data field X is associated with a unique
latent code z;. The training objective is to maximise conditional probability distribution pg(s|®); 0
represents trainable parameters of a QVF:

Po(s|®) = > po(s]10], zi)p(z). (10)

i
Under a sufﬁciently large number of i.i.d. quantum circuit measurement shots, the conditional
likelihood pg (s |©7, z;) can be approximated by a Gaussian distribution. This statement is supported
by the Central Limit Theorem (CLT), which establishes the asymptotic normality of the sum (or

average) of numerous i.i.d. random variables with finite variance. Consequently, pg(sf |®g', z;) can
be approximated as

pg(sg|6{, Z;) R exp <—£2 (V(zi, @g; 0), sf)) , (11

where L(-) represents the loss function that quantifies the discrepancy between the output of the
circuit V' (z;,©7;60) and the observed physical property s]. Model training can, therefore, be
formulated as maximising this conditional likelihood under a Bayesian framework. To ensure a
smooth representation transition in the latent space, the prior distribution over z; is softly penalised to
follow a smooth distribution; an isotropic zero-mean multivariate Gaussian distribution is a reasonable
choice as adopted by Park et al. [34]. The loss function Lg ., minimised via training over all learned
W fields {s;|i = 1,..., W} with M samples per s;, is formulated as:

Lo2(©,5) = "M (L(V(2:,00:0), 5]) + 7] 2i]2). (12)

QVF undergoes end-to-end training: classical parameters are updated via gradient descent, while
quantum parameters are optimised using the parameter-shift rule [32].

Usage and Applications. Once trained, we can query QVF for the encoded 2D or 3D representations
in a coordinate-based manner. We can also infer with partial samples, enabling applications such as
image inpainting and partial shape completion through latent space optimisation. Using Maximum-a-
Posteriori (MAP) estimation, we identify a latent code 2z that maximises agreement with the input
partial observation X, while keeping the pre-trained model fixed:

% = argmin Z L(V(2:,0;0),5;) + || 2]|2. (13)
Algorithmic Summary. We summarise the QVF training protocol in Algorithm [I]in the Appendix.

5 Experimental Evaluation

We experimentally evaluate our QVF for learning visual field representations, encompassing both 2D
images and 3D geometries, while systematically analysing its generalisation in the sense of signal
interpolation and the ability to handle missing and occluded regions. We use 1) images from the
CIFAR-10 dataset [24] and high-resolution images with rich spectral details [[LS]], and 2) 3D shapes
from the ShapeNet [10] dataset. We report widely used metrics averaged over three repetitions.

Implementation Details. We empirically evaluate the model on a noiseless high-end simulator:
default.qubit.torch, provided by PennyLane [[6] with an A100 GPU. We employ Adam optimisation
[23] with an initial learning rate of 7 = 10~2, subject to a learning rate scheduler that triggers upon
plateauing with a window size of 50 epochs (scaling 77 by 0.9). The number of epochs is set to 5k,
and v = 1073 in Eq. (T2).

Hardware and Efficiency. Absence of large-scale, fault-tolerant quantum hardware forces contem-
porary QML models to rely on exponentially expensive simulators run on classical hardware; see
Table[I] For a circuit with n qubits of depth 7, the computational complexity on a classical noiseless
simulator, without acceleration, is given by O(2°™J) where ¢ is a constant that depends on the
specific simulation method employed.



5.1 Circuit Trainability

We experimentally show that constraining quan- .+ o 0 19
tum transformations in S(6) to real-valued uni- T feeeine| i A
tary operations (resulting in bounded Haar ran-
domness) helps with gradient flow. As quantum

circuit parameters are inherently periodic within iy !
[0,27), we evaluate the gradient flow by uni- "= i a0 7 TR S
formly sampling parameters within this range
and quantifying its expectation value. Due to
the zero-mean nature of the expected loss gradi-
ent (see App.[A.3), the vanishing gradient phe-
nomenon is governed by the variance decay rate. We, therefore, quantify its variance Varg,q as

Var ({égkmﬁ};ﬂ , (14)

where “Var(-)” denotes the variance operator and 7" = 500 is the number of samples to evaluate the

expectation. (M), is the expectation value of S(6), and k iterates over ansatz parameters. Fi
reports Vargrg for the increasing number of qubits for two ansatze, i.e., of our QVF and QIREN [57
with a strongly-entangled quantum circuit which allows scrambled (i.e., non-restricted) quantum
states in the Hilbert space. We observe that our ansatz with bounded Haar randomness maintains a
stronger gradient flow, which is crucial for its trainability and efficient representation learning.

Figure 5: (Left:) comparison of the gradient vari-
ance (y-axis has a log scale); (right:) visualisation
of reachable quantum states.

Vargna = Egu([0,27))

5.2 2D (Image) Representation Learning

We evaluate image representation , g e 8
learning with QVF and start with sin-
gle images. We first compare QVF to
a classical model that takes the archi-
tecture consistent with QVF’s classi-
cal energy inference module; QVF has
an overhead of 170 parameters due to

its ansatz. This implies that the dif- gjoyre 6: (a) Reconstructed images during training: (top) our

ferences in the learning behaviour and  yvE (pottom) classical model; (b) PSNR curves.
the final representation accuracy are

predominantly due to the inductive bias of the quantum ansatz, isolating influences from external
factors. Fig. [B}(a) visualises reconstructed images during training of QVF; Fig. [6}(b) plots the
learning curves (PSNR) for the first thousand training epochs and, thus, highlights the differences in
the training progression. Similar observations are made for other trials during the evaluation; QVF
significantly accelerates learning high-frequency signals while performing on par with the classical
method in the low-frequency regions. - |

Epochs

We also experiment with the hand-crafted encoding strat-
egy of Rathi et al. [36], which does not result in a recog-
nisable representation upon convergence—an observation
consistent with their results. This validates our design and,
especially, the necessity of a learnable energy embedding.
We then benchmark QVF against QIREN [57]], the most
closely related QINR approach. While QIREN employs a
quantum ansatz sandwiched between classical layers, QVF
uses a classical component for data encoding only. We
evaluate QVF and QIREN consistently with n = 5 qubits,
and evaluate the performance on 50 different images with
metrics reported in Table[2] Results demonstrate that QVF
with Siren outperforms QIREN by 30% on MSE.

Figure 7: Visualization of the recon-
structed images.
(a)

Figure 8: (a): Geometry represen-
Next, we perform representation learning on image col- tation using QVF with latent-space-

lections via latent variable conditioning, i.e., we configure conditioned SDF inference; (b): Shape
QVF to learn the 50 images simultaneously. Note that completion from partial inputs.



QIREN does not support this experimental setting and, hence, we compare QVF with widely-used
classical foundational INR methods, i.e., MLPs with ReLUs, and Siren. The comparisons follow the
same evaluation protocol, where the only difference between the baselines and QVF is the presence
of the ansatz; the results are summarised in TableE} Reconstructed images conditioned on different
latent codes are visualized in Fig.[7]

We next consider deployment of QVF on future quantum hardware that could reduce the representation
fidelity, such as measurement uncertainty. The visual field extracted from the ansatz can differ in
its fidelity (accuracy and quality) due to stochastic effects induced by finite sampling on quantum
hardware. In App.[D} we visualise in Fig. [[2] extracted image representations encoded within our
pre-trained QVF across a varying number of shots Ny, showing the characteristics of the resulting
fields with increasing sampling precision.

Ansatz Configuration. We next evaluate architectural variations in QVE. We investi-
gate the impact of the key hyperparameters: 1) ansatz width, i.e., number of qubits
n; 2) circuit depth J; and 3) latent space dimension p of our classical module
for encoding data into

quantum states; See 1o-
Fig. O] for the results.
Scaling up the QVF

S

Loss

N
— p=80 ~

ansatz, i.e., increasing . p=96 RN

. . — p=112 N
J and width n (while || e g
mamtalnlng other pa- 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600

Epochs Epochs Epochs

rameters), leads to per-
formance gains in both
cases. QVF scales ro-
bustly and is not af-
fected by substantial
trainability problems, at least in our evaluated scenario. The expressivity of the classical module for
integrating non-linear data priors and preparing encoded quantum states serves as the architectural
cornerstone. With increasing p, we observe consistent performance surges.

Figure 9: Ablation study with modules influencing the model performance.
From left to right: 1) circuit depth 7; 2) number of qubits n; 3) hidden
neuron dimension per layer p.

Parameter Scaling Analysis. Per design, QVF consists of: 1) the classical module for neural
amplitude encoding; and 2) the ansatz. As we leverage a tiny MLP in QVF, its parametrisation scales
quadratically, i.e., O(p?) w.r.t. the latent space dimension p. Meanwhile, our quantum ansatz has
parameter scaling of O(nJ) w.r.t. its depth. While the ansatz contributes negligibly to the total
parameter count, it improves the overall performance by a large margin (see Fig. [6).

5.3 3D (Shape) Representation Learning

We next evaluate geometric representation learn-
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lar to images, we perform representation learning
on 3D shape collections. We select three shapes
from ShapeNet [10] and non-uniformly sample
signed distances at 100k spatial points per shape,
with higher near-surface sampling density for bet-

Table 2: Numerical results for 2D representa-
tion learning between the previous QINR method
QIREN [57] and our QVF.
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performance) and provides valuable insights for

future advancements. We inherit the experimental Table 3: Numerical results for 2D/3D representa-
setting from the experiments with 2D images and tion learning for our QVF and classical baselines.
report the representational accuracy upon convergence in Table[3] The baseline setups are, likewise,



MLPs with different activation functions, including the ReLU, which corresponds to the DeepSDF
approach [34]. The final meshes can be extracted from the queried signed distances of QVF using
Marching Cubes [27], as visualised in Fig. [8}(a).

5.4 Applications Supported by QVF

QVF supports applications such as visual field interpolation in the latent space, image inpainting and
shape completion. Fig.[T}(c) visualises linear latent-space interpolation of 3D shapes encoded in the
converged QVF, i.e., a frequent experimental setting in the classical INR literature [34]]. QVF also
supports image and shape completion by first sampling Z and optimising its value using MAP; see
details in Sec.[d.3] In the second step, the completion can be performed by leveraging the optimised
latent code and inferring missing regions; see Fig.[8}(b) and App.[E]for the qualitative results.

6 Discussion, Future Work and Conclusion

Our QVF is a novel QML framework for implicit representation learning of visual fields. In our
experiments on a quantum hardware simulator, we observe that QVF—even with minimal classical
components—can achieve high representation fidelity across data modalities such as images and 3D
shapes. Furthermore, QVF outperforms the previous QINR approach QIREN (of a similar model
scale) and, additionally, is competitive against foundational classical baselines. The ansatz configura-
tion and ablation studies highlight the influence of each QVF module. Our ablative study confirms
the sufficient circuit depth resulting in a balance between the ansatz depth and high representational
accuracy. Upon our expectations and the theoretical predictions, our QVF is efficient in learning
high-frequency signal details (Fig.[6). As the first among QINR methods, QVF supports joint repre-
sentation learning of image and 3D shape collections, and applications such as image inpainting and
3D shape completion. Finally, we emphasise that this work focuses on the challenges of advancing
QINR through fundamental methodological innovations. Hence, we do not aim to challenge classical
well-engineered models in the absolute terms. Our implementation can be found on the project page.

Limitations. While QVF demonstrates substantial improvements over prior QINR methods in terms
of both performance and supported size of visual fields, the current experimental scale, nevertheless,
remains constrained due to the quantum hardware simulation overheads. Those, however, affect all
existing applied QML works before the advent of fault-tolerant gate-based quantum computers.

Future Work. We see various promising avenues for follow-ups and QVF improvements. One
direction is to explore the preparation of learnable quantum states following Gibbs distribution with
reduced computational complexity (e.g., tensor train decomposition [30]). We also foresee that other
problems with open challenges, such as 3D reconstruction and neural rendering from 2D images,
could adopt QVF as a representation. We also believe that many tricks and further ideas from the
INR literature could be adopted in the QINR context in future (e.g., space partitioning structures and
non-rigid generalisations) [38, 149, 46| 47].
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* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.
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Supplementary Material

This appendix supplements the main paper, starting in Sec.[A] with a detailed background on gate-based quantum
computing. It covers both quantum physics foundations and applications of quantum computing in machine
learning and INR. It also connects quantum circuit measurements and Bayesian inference. Next, we outline
the full algorithmic (training) protocol; visualise the quantum ansatz architecture used in the experiments; and
provide more implementation details in Sec.[B] On the experimental side, we further analyse QVF performance
with noisy circuits in Sec. [C] followed by the image representation quality in dependence on the number of
measurement repetitions (shots) in Sec. [D| Applications supported by QVF, such as image inpainting and shape
completion, are discussed in Secs. [E|and[[} while additional visualisations of 3D shapes are shown in Sec.
Sec.[Hlthen discusses the development status of currently available real quantum hardware.

A Background

A.1 Preliminaries on Gate-based Quantum Computing

Qubits. The fundamental information blocks of a quantum processing g “ig
unit (QPU) are qubits, i.e., the analogues of bits in classical computing. Unlike o\ S \
classical bits deterministically representing one possible state (0 or 1), qubits / ) a5 :
can statistically represent two distinct information states at the same time, e e o Al
denoted in the bra—ket notation as |0) and |1). o -

Superposition is a fundamental property distinguishing qubits from bits: It Figure 10: Bloch sphere vi-
grants qubits the capacity to exist in a combinatorial state 1) of |0) and [1)  gyalisation of qubit states.

such that: Qubit 0: |¢) = %(|O> +
1)), qubit 1: [¢) = [1).
) = al0) + B[1), (a3 ) = 1

with a, 8 € C and |a|? + |8]*> = 1. Qubit states |1)) can be visualised on Bloch spheres (see Fig. or
expressed in a vector form:

1 0 o
o= o] 1w =[3] 10 =alo+ 51 = 5] (16)
Measurement in quantum mechanics inherently adopts a statistical approach to extract numerical information.
For a qubit state |¢)) = 2 + B |1) measured with operator O (that must be Hermitian, i.e., Of = O)

this implies probabilities |a|
measurement operator O) stored in states |0) and |1):

and |3|?, respectively, for measuring the information (i.e., eigenvalue of the

00y =k|0) and O[1) = §11), (17

where k and § are eigenvalues of the measurement operator |O). The key aspect of measurement is the
phenomenon known as wave function collapse, i.e., the projective measurement causes |1) to collapse to the
operator’s eigenstate, |0) or |1), conditioned on the measurement, i.e.,  or d.

Entanglement further distinguishes quantum from classical computing. In the classical case, information stored
in bits is independent, i.e., measuring one bit does not affect others. In the quantum realm, qubits can be highly
correlated, exhibiting entanglement such that the information of one qubit can be interrelated with another,
despite possible physical distance between them. For instance, a general information state of a 2-qubit system
|1), can be expressed as:

[), = a]00) +b|01) + ¢ |10) + d|11), (18)

with a, b, ¢,d € C such that |a|® + |b|> + |c|® + |d|> = 1. The 2-qubit system is considered entangled if |¢/),
cannot be expressed as a tensor product of two qubits |¢) , and |1)) ,, indicating that their information cannot
be independently measured without disturbing each other, i.e.,

[)s # 1) a1 @ [¥) 42 - (19)

Rotation Operators. The operators responsible for rotating quantum states |1)) of qubits along x, y, z axes on a
Bloch sphere are referred to as rotation operators. Any single qubit operator 12 can be expressed as a combination
of such rotation operators Ry, Ry, R, i.e., R(0,7,v) = Rz(0)Ry(7)R. () with angles 6, T and ~y:

R.(0) = Cos(g% ﬂ.smegg)} , Ry(r)= [cps(? 7Sin(1)] , R.(v) = [e_i% e?%} eI

—isin(z)  cos(3)



The Pauli operators X , )7, Z represent specific instances of above rotation operators, i.e. rotations by 7 radians
along the z, y, z-axes, respectively. These operators can also be expressed as matrices in the computational basis

|0),|1) as follows:
o 0 1| ¢ 0 —i|l 5 1 0
X:|:1 0:|,Y:|:Z. 0:|’Z:|:0 71]. 21)

The Schrodinger Equation. Quantum computing involves the manipulation of information according to the
principles of quantum mechanics, with its foundation rooted in the time-dependent Schrodinger equation:

L d -
ih [W(t)) = H(t) [$(1)) (22)

where % is Planck’s constant, and |¢(¢)) and [¢)(0)) are the quantum states after and before evolution, respec-

tively; H is the Hamiltonian operator of the quantum system. Therefore, the evolution of quantum states can be
described by the following relationship:

() = Te™h B HOU jy(0)), 23)

with 7T denoting the time ordering operator. This simplifies to e~ wH |4(0)) for time-independent H. Using a
more compact notation, the Schrodinger equation can also be equivalently written as:

[(t)) = U(H,t)[4(0)), with (24)
U, t)=e 71, (25)

To perform rotation operations on qubits, the system Hamiltonian H can be set to Eé, withé6 € {X , Y, Z }. By
substituting n = 2Et/h, we arrive at:

U, t)=e "7 =57 = B, (n). (26)

A.2 Review: Quantum Machine Learning

The potential of quantum computing to enhance machine learning algorithms leads to the emergence of quantum
machine learning (QML) [42], a discipline employing quantum mechanical phenomena to tackle classically
intractable learning problems through enhanced computational paradigms [42]. Central to QML are: 1) a
feature map, which encodes classical input data into quantum states and 2) a variational ansatz, which performs
quantum transformation on the quantum states. PQC have been shown to be asymptotic universal function
approximators [4} 43]]. Several standardized QML algorithms have been explored, including quantum principal
component analysis [26], quantum support vector machines [37], quantum Boltzmann machines [1]], and quantum
k-means clustering [22].

Feature Map. Integrating classical Euclidean data x into quantum computational frameworks necessitates a
non-trivial mapping to quantum states |¢)(x)) in a Hilbert space H. Several established encoding techniques
exist, including basis encoding, amplitude encoding, Hamiltonian evolution encoding, with each presenting
distinct trade-offs in qubit efficiency and circuit depth complexity. However, the determination of optimal
encoding schemes remains an open research challenge, as the relationship between encoding fidelity F(x) =
| (¥ideal (X)|Wencoded (X)) |, Tesource requirements, and task-specific performance metrics (e.g., classification
accuracy or function approximation error €) remains poorly characterized across different problem domains.

Variational Ansatz. Quantum evolution of classical information embedded in states |¢)(z)) requires parameter-
ized unitary ansatz U (0) € c2xt acting on n-qubit systems. Physically, the ansatz is constructed through
sequential composition of such unitary transformations, formally expressed as [/ (6) = T (HZ:1 Ui(éi)),
where 7 denotes the time-ordering operator governing gate sequence implementation. This induces a Hilbert
space transformation U (0) : H — H that maps input states to processed output states through the operation
|¢(z,0)) = U(0) |¢(x)).

Measurement. Quantum computation culminates in statistical data extraction from evolved quantum states
|¢(z)) through projective measurements using Hermitian observables O, where the computational output is
formally defined as the expectation value: V() = (¢(z)| O|$(x)). Measurements collapse quantum states
according to the Born rule, thereby restricting access to the embedded classical information to statistical
estimators derived from repeated measurements. The choice of observable o} fundamentally governs both the
information-theoretic capacity of the measurement protocol and its computational complexity.

Training a Variational Ansatz. Instead of constructing a computational graph and performing backpropagation,
training quantum circuits involves only forward evaluations [S3]. To minimize a measurement-dependent cost



function £(0), the exact gradients VL(@) can be evaluated through quantum circuit evaluations at shifted
parameters 0 + gei for basis vectors e;, expressed as:

e=3e(r3)-c(o-3)]

This technique, i.e. parameter-shift rule, exploits the trigonometric structure of unitary gate generators Gi

(where Uz(ez) = e~ "i%) to enable hardware-compatible gradient estimation without numerical approximation
or persistent circuit memory - a critical advantage over classical backpropagation that requires differentiable
computational graphs.

A.3 Review: Barren Plateaus

Training a variational ansatz S (0) is fundamentally constrained by the barren plateau phenomenon, where
random parameter initialisation induces exponential vanishing of cost function gradients across Hilbert space.
As formally demonstrated by McClean et al. [28]] through concentration of measure analysis:

“...for a wide class of reasonable parametrised quantum circuits, the probability that the gradient along any
reasonable direction is non-zero to some fixed precision is exponentially small as a function of the number of
qubits.”

This phenomenon is also known as barren plateau, which can be expressed mathematically for a system with n
qubits as follows:

Eu[0wL(w)] =0, Varey|dwL(w)] € O(Vin), v>1, 28)
where v characterises the circuit’s entangling capacity. The variance bound’s scaling establishes that gradient
estimators require O(v™) measurement samples to maintain constant precision, resulting in an exponential
resource overhead that renders practical optimisation infeasible for n > 1. This poses challenges, particularly
for gradient-based learning. Identified factors contributing to barren plateaus include observable locality [9, 48],
specific noise models [S1]], and an ansatz close to a 2-design, i.e., matching Haar random unitaries up to
the second moment 28, [20]. Those highlight the importance of selecting appropriate initialisation protocols,
quantum ansatz designs and observables.

A.4 Connection of PQCs to Bayesian Inference

As quantum circuits are inherently probabilistic models, they share conceptual parallels with Bayesian infer-
ence. In Bayesian neural networks (BNNs), probabilistic outputs emerge from parameters governed by prior
distributions, with training focused on maximising the conditional likelihood of observed data labels while
implicitly updating a posterior distribution over the parameters. For PQC, while they leverage deterministic
parameters, they exhibit probabilistic outputs due to the stochastic nature of quantum measurements, which—
under sufficiently large shot counts—approximate Gaussian distributions in accordance with the CLT. While the
probabilistic outputs of PQC permit an interpretative lens rooted in Bayesian principles, their training does not
inherently involve posterior inference over parameters unless explicitly cast within a Bayesian formalism [21]].
This distinction underscores that the Bayesian interpretation of PQCs arises from their measurement statistics
rather than an intrinsic probabilistic parameter space.

B Algorithmic Protocol and Ansatz

We provide the complete training protocol of QVF in Alg.[I]

B.1 Detailed Variational Ansatz Visualisation

We also visualise our QVF ansatz with bounded Haar randomness. Fig. [IT] compares the reachable Hilbert
states between ours and the ansatz in QIREN that does not restrict the set of possible operations to real-valued
unitaries [411157]]. We highlight the circuit structures via their parametrised single-qubit rotations and inter-qubit
entanglement patterns. Traversable quantum states are visualised on the Bloch sphere by sampling the ansatz.

B.2 Additional Implementation Details

We next provide additional implementation details on our experimental setup.

Parameterisation of QVF vs. QIREN. QVF is designed to be a compact QINR model. Compared to QIREN,
QVF does not need classical post-processing while maintaining high representational accuracy. The number of
parameters in our experiments is 0.52 - 10° (corresponding to p = 128). vs. 0.74 - 10° for QVF and QIREN,
respectively. The ansatz of QVF is configured with [J=5 and n=>5, and for QIREN, we use the default depth.



Algorithm 1 QVF Training Protocol

1: Input: Training dataset X = {(0;, s;)}!¥,; number of qubits n; epochs Nepoch; measurement
shots Nghor; parameters 6 = {6, 0. }; inverse temperature (3.
2: for epoch = 1 to Nepocn do
3:  Classical Inference (Sec.[d.1):
4: Compute energy spectrum E(0;;6..).
5 Evaluate Gibbs distribution:
—BE;
P, = e? where Z = e PFi

)

Quantum State Preparation:
Initialise po = Y, P |i) (i.
Quantum Evolution (Sec.d.2): A
Apply ansatz 5(8,) = [T,_, e *®+¢¢ to obtain:

0 e

10:  Measurement and Observables:

11: Estimate (My) = Tr[p(0,) M| fork =1,..., K.

12:  Gradient Computation of the Loss £ (Sec.[d.3):

13: Quantum: d(My,)/d8, via parameter-shift rule.

14: Classical: Vg, £ via automatic differentiation
through E(O;; 6.).

15:  Parameter Update:

16: Adam optimiser step with learning rate 7:

00— n (Vgcﬁ, ngﬁ) .

17: end for
18: Output: Optimised parameters 6, 6.

.6: { U(theta_0,phi_o, lanbda_0)

a_0: 1 Ry(8_ry[e])

a_1: { Ry(8_ry[1]) H Ry(8_cry[e])

H Ry(e_crylol)
—

,phi_2,lambda_2) ———ri Ry(8_cry[1]) Ry(6_cry[4])

q.2: 1 Ry(8_ry[2]) Ry(8_cry[1]) Ry(8_cry[4])
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L

q
a_4: 1 Ry(8_ry[4]) Ry(8_cry([3])
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a0 T

@3 Ry(0_cry[7]) 1
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Figure 11: Visualisation of ansatz designs and their exemplary induced traversable quantum states
within Hilbert space: strongly entangled ansatz (left) and QVF (right). Traversable states of different
circuit ansatze are visualised on the bottom right for both ansatze.

Simulation Stability in Preparing Quantum States following Gibbs distribution. When simulating the
preparation of such quantum states, the partition function evaluation involves exponentiations of large and
small Hamiltonian eigenvalues; see Eqs. (2) and (3), which could cause numerical instabilities. We leverage the
log-sum-exp trick, a well-established numerical stabilisation technique for this problem.

C Image Representation with Noisy Circuits

Evaluation with quantum circuit noise can Mothod o noise ool o005 p——

provide valuable insights for the practical
Ours (Gaussian) + ReLU | 30.06 £0.1 30.1 £0.1 2842401 2578402

deployment of QVF on near-term quan- 4, (jdenity) + ReLU | 3002502 20601 2798+02 2596+ 0.2
tum hardware. Hence, we investigate the  Ours (Gaussian) + Sin 3259+ 02 324402 30.66+0.1 27.94+02
influence of quantum gate infidelities on ~ Ours (dentity) + Sin 32.67+03 328+02 3034402 2812402
the performance of QVF, i.e., a dominant . . . .
source of errors and noise in the quantum Table 4: QVF performance with noisy circuits. o is the

operations. Gate operation infidelity arises ~perturbation ratio modelling quantum circuit infidelities.




from intrinsic control imperfections in quantum hardware, resulting in stochastic deviations of the performed
gate operations from their expected behaviour. These imperfections constrain gate fidelity to finite precision,
which can be effectively modelled as zero-mean perturbations to the gate parameters within a bounded range.
To simulate the impact of such noise, we introduce zero-mean Gaussian perturbations with varying standard
deviations: Higher values correspond to the noise levels typical for current near-term quantum devices, while
lower values reflect anticipated improvements in future hardware. The experiments are performed on selected
2D images using the same quantum hardware simulator of PennyLane [6] as in the main matter (Sec.[3.2). We
report the results with different levels of quantum gate perturbation ratio o in Tableﬂto quantify the degradation
in performance under various noise regimes. As expected, increasing o leads to a decrease in 2D image PSNR.
Even with o = 0.1, we achieve a PSNR of ~25dB or higher (cf. Fig.@).

D Image Representation with a Different Number of Samples (Shots)

QINR of images under finite sampling is fundamentally
governed by the statistical uncertainty inherent to quantum
measurement. The image quality depends on the number
of shots, i.e., QINR query repetitions. We visualise the
influence of the number of shots N (in total per image)
in our ansatz in Fig. [T2]through the progressive reduction
of shot noise artefacts for an increasing number of shots
from 100 to 10*. With low measurement shots, zero-mean
sampling noise dominates the representation. As number of
shots Nghot increase and approaches 103, noise suppression
becomes significant as expected according to CLT as noise . . T .
variance follows 6% o< 1/Nyos , allowing the representa- Figure 12. Qualitative images retrieved from
tion to better approximate the ground truth. The observed & prf:-trz.uned QVF under the (.11fferent number
noise patterns across the different shot numbers are char- ©f circuit shots. From left to right, shot counts
acteristic of the proposed ansatz of QVF and will serve as  are 100, 500, 10% and 10%, respectively. The
a reference for future research. rightmost images represent the ground truth.

E Application: Image Inpainting

QIREN [I-i_zﬂ and 3D_QAE m are constrained by Ground Truth Corrupted Images Reconstructed
their reliance on fixed latent representations or rigid
interpolation mechanisms, thereby being incapable
of reconstructing complete, coherent outputs from
partial or corrupted inputs. QVF addresses such lim-
itations by conditioning the quantum circuit topol-
ogy on both the query point and a dynamic latent
space, enabling applications such as image inpaint-
ing. Given images with occluded or corrupted pix-
els, the circuit identifies a vector in the latent space
that minimises the discrepancy between the predicted
multi-dimensional properties learned by the quantum  Fjgure 13: Image inpainting results with QVF.
circuit and the observed noisy values. The optimised

latent vector conditioning the quantum circuit enables recovery of missing field properties. Empirically, we
masked out half of the image pixels and reconstructed the complete images via the protocol. Representative
results of image inpainting with QVF pre-trained on 50 images are visualised in Fig. [T3] demonstrating that QVF
can deliver promising performance and accurately recover images even under such extreme sparsity, positioning
QVF as a promising quantum circuit architecture for these tasks.

F Application: Shape Completion from Partial and Noisy Depth Maps

Similarly to image inpainting, QVF can be used for tasks such as 3D geometry completion given noisy depth
maps. We adopt a similar setting as for images by cropping half of the samples along the depth dimension.
‘We then study the effects of zero-mean Gaussian noise applied to the depth maps across different perturbation
ratios «; see Fig. [8}(b). Shape completion performance is quantified across incremental perturbation ratios,
parameterised as o € {0,0.005,0.01,0.02,0.03}, where o = 0 corresponds to an idealised noise-free scenario.
This qualitative analysis reveals a monotonic decline in reconstruction fidelity with increasing noise, as evidenced
by progressive geometric distortions and surface irregularities in Fig.



(a) No noise (b) @ = 0.005 (c) a =0.01 (d) @ =0.02 (e) a =0.03

Figure 12: Shape completion from partial and noisy input depth maps using QVF; « is the noise ratio.

G Additional 3D Geometry Visualizations

In conjunction with the quantitative results summarized in Tab. 3] Fig. [[3}(a) provides a qualitative comparison
of the reconstructed 3D geometries, contrasting the baseline—the classical architectural component in our
model—with QVF. The baseline’s numerically elevated loss values correlate with visual structural discontinuities,
exemplified by the fragmented sofa leg, underscoring its propensity for topological inconsistencies during
reconstruction. QVF, instead, demonstrates enhanced structural coherence, generating topologically intact
geometries devoid of visible artifacts, as evidenced by its preservation of fine-grained features. Further geometric
analysis, illustrated via color-encoded per-surface Hausdorff distance distributions in Fig. [T3}(b), reveals
systematic geometric deviations for the baseline (top) and ours (bottom), corroborating its geometric fidelity. An
interesting observation is that the color distributions between models align well, meaning that QVF inherits the
representative expressiveness of the classical component but enhances it due to inherent spectral connections to

)
)

(@)

Baseline

(b)

Ours

Ground Low

Truth

Figure 13: (a) Comparison of geometric representations using QVF and the classical model; ground
truth is presented at the bottom; (b) representation fidelity visualized via color-encoded Hausdorff
distance map: colors represent the distance to the ground truth. The rendered image employs a color
gradient (blue>green>yellow>red) to indicate descending Hausdorff distance levels.

H Existing Gate-based Quantum Hardware

Same as the prior work [57]], we evaluate the proposed QVF on a simulator [6] due to the immaturity of real
quantum hardware for high-level and practical visual computing tasks. Existing gate-based quantum platforms—
including superconducting circuits, trapped ions, neutral atoms, photonic systems, and quantum dots—are in
varying stages of development, with none yet achieving the maturity required for large-scale, fault-tolerant
computation. Limiting factors include noise susceptibility, restricted execution time due to quantum decoherence,
and the necessity for error correction. Nevertheless, as classical machine learning systems continue to expand in
scale, driving unprecedented computational and energy demands, rapid advancements in quantum computing
techniques and hardware are anticipated to address these barriers in the foreseeable future, underscoring the
need to proactively explore applications executable on emerging quantum computers such as QVFE.



	Introduction
	Related Work
	Review: QML, its Unitary Nature and Fourier Structure
	Our QVF Approach
	Amplitude Encoding with Neural Embeddings
	Our Parametrised Quantum Circuit
	Training Details and Applications

	Experimental Evaluation
	Circuit Trainability
	2D (Image) Representation Learning
	3D (Shape) Representation Learning
	Applications Supported by QVF

	Discussion, Future Work and Conclusion
	Background
	Preliminaries on Gate-based Quantum Computing
	Review: Quantum Machine Learning
	Review: Barren Plateaus
	Connection of PQCs to Bayesian Inference

	Algorithmic Protocol and Ansatz
	Detailed Variational Ansatz Visualisation
	Additional Implementation Details

	Image Representation with Noisy Circuits
	Image Representation with a Different Number of Samples (Shots)
	Application: Image Inpainting
	Application: Shape Completion from Partial and Noisy Depth Maps 
	Additional 3D Geometry Visualizations
	Existing Gate-based Quantum Hardware

