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Abstract
Graph-based data structures have become pow-
erful and ubiquitous tools for scalable approxi-
mate nearest-neighbor (ANN) search over the past
decade. In spite of their apparent practical perfor-
mance, there has only recently been progress on
the worst-case performance of these data struc-
tures. Indeed, the influential work of Indyk & Xu
introduced the key concept of α-reachable graphs,
showing that graphs constructed by the DiskANN
algorithm (Subramanya et al., 2019) produce an(

α+1
α−1

)
-approximate solution with a simple best-

first search that runs in poly-logarithmic query
time. In our work, we improve and generalize this
analysis as follows:

• We introduce sorted α-reachable graphs, and
use this notion to obtain a stronger approxi-
mation factor of α

α−1 for the DiskANN algo-
rithm on Euclidean metrics.

• We present the first worst-case theoretical
analysis for the popular beam-search algo-
rithm, which is used in practice to search
these graphs for k > 1 candidate nearest
neighbors.

We also present empirical results validating the
significance of sorted α-reachable graphs, which
aligns with our theoretical findings.

1. Introduction
In the nearest-neighbor search (NNS) problem, there is an
underlying metric space (X,D), where X is a set of points
and D : X × X → R≥0 is a distance function between
points in X . Given a dataset P ⊆ X of n points, the goal
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is to design an efficient data structure which, for any query
point q ∈ X , and target k, efficiently identifies the k nearest
neighbors of q from P . In real-world applications, these
points can be thought of as mathematical representations of
online data, such as documents, images, or user behaviors,
with their distances being an appropriately chosen metric,
such as Euclidean or cosine similarity for vector represen-
tations of objects, or Jaccard similarity when the dataset
P consists of sets of words. In these settings, the approxi-
mate version of the problem, abbreviated ANNS, is usually
considered instead. For this problem, the data structure
is allowed to return sub-optimal results, and its quality is
typically measured by the approximation ratio: the ratio
of the distances of the kth furthest point identified by the
algorithm to that of the true kth furthest point in the dataset.
In more applied papers, a notion of recall@k is instead used
to measure the quality of a solution, which is the fraction of
true k nearest neighbors of a query that are computed by the
algorithm in its k candidate near neighbors, averaged over
all queries.

The ANNS problem has been extensively researched in the
theoretical as well as applied communities (Beygelzimer
et al., 2006; Babenko & Lempitsky, 2014; Johnson et al.,
2017; Weber et al., 1998; Baranchuk et al., 2018; Malkov &
Yashunin, 2016; Jégou et al., 2011; Arya & Mount, 1993;
Indyk & Motwani, 1998a) and serves as the cornerstone
for numerous applications across diverse domains: com-
puter vision (Wang et al., 2012), data mining (Camerra
et al., 2010), information retrieval (Manning et al., 2008),
classification (Fix & Hodges, 1989), and recommendation
systems (Dahiya et al., 2021), to name a few. With the re-
cent explosion of semantic search powered by deep learning
models (Devlin et al., 2018) and large language models, the
problem is playing an even larger role in powering the AI
revolution.

Initial ANNS results have focused on smaller datasets (on
the order of millions of points represented as vectors in tens
of dimensions), developing a plethora of breakthrough tech-
niques centered around space partitioning (Johnson et al.,
2017), such as Locality Sensitive Hashing (Indyk & Mot-
wani, 1998b; Andoni & Indyk, 2008), KD-trees (Arya et al.,
1998), and cover trees (Beygelzimer et al., 2006), to name a
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few. A potential drawback of these approaches is that the
data structure typically needs to scan a very large (expo-
nential in the dimension) number of neighboring partitions
around a given query’s partition to retrieve candidate near-
est neighbors, and the problem of quickly identifying these
nearby cells to scan becomes challenging. To circumvent
these so-called “boundary effects,” there has been an evo-
lution of graph-based ANNS indexing algorithms (Malkov
& Yashunin, 2016; Fu et al., 2019; Iwasaki & Miyazaki,
2018; Sugawara et al., 2016; Iwasaki; Subramanya et al.,
2019), which construct a navigation graph over the dataset
P , allowing for a simple greedy walk search algorithm on
the graph, which keeps on traversing neighbors provided
they are closer to the query w.r.t the metric D. Many dif-
ferent comparative studies (Aumüller et al., 2020; Echihabi
et al., 2019; Li et al., 2020; Wang et al., 2021) of ANNS
algorithms have concluded that these graph-based methods
significantly outperform other techniques in terms of search
performance on a range of real-world static datasets, and
they enjoy usage in industry at scale (Simhadri et al., 2023).

Given the strong empirical performance of these graph-
based algorithms, it is crucial to understand how they
work and to establish provable guarantees on their behav-
ior. Recent studies have analyzed the properties of the
k-nearest neighbor graph for ANNS—where each data-
point connects to its k closest neighbors, and search pro-
ceeds via a greedy walk (Laarhoven, 2017)—as well as the
impact of adding long-range edges in k-nearest neighbor
graphs (Prokhorenkova & Shekhovtsov, 2020) for random
datasets, where points are uniformly sampled from the unit
sphere in d dimensions, and the query is placed near a data-
point.

More broadly, Indyk & Xu introduce a class of graphs
known as α-reachable graphs (the definition of which is
motivated by the DiskANN algorithm), achieving prov-
able worst-case space and time complexity bounds for any
dataset. The importance of this work comes from the fact
that it sets apart the structural properties inherent in the
DiskANN graph construction from the other methods such
as HNSW and NSG, which have α set implicitly to one
and thus come without provable worst-case guarantees. In-
tuitively, having α > 1 ensures that there are sufficient
long-range edges present when the graph is constructed.
While it takes an important step towards a theoretical un-
derstanding of graph-based ANNS algorithms, the work left
three important questions, which form the crux of this work:

1. Indyk & Xu proved that the DiskANN graph
construction algorithm achieves an approximation
factor of α+1

α−1 for any metric. Can we leverage the
fact that most modern applications use the Euclidean
ℓ2 metric to derive stronger guarantees?

2. The original DiskANN algorithm constructs
edges for each node by applying a pruning procedure
(with a parameter α > 1) to a sorted list of potential
candidate edges. However, Indyk and Xu (Indyk
& Xu, 2024)’s proof does not explicitly make use
of this sortedness of the list to obtain their guaran-
tees. Is this then needed in the original DiskANN
algorithm, or can we leverage it to improve our the-
oretical bounds?

3. The proof in (Indyk & Xu, 2024) provides guar-
antees only for the single best neighbor found via
greedy search, relative to the true nearest neighbor
of the query. However, in practice, we often retrieve
k > 1 candidates using a generalized greedy search
known as BeamSearch. Can we obtain any provable
guarantees for beam search to get k > 1 results?

Our Contributions In this paper, we address all three
of these questions. Most interestingly, we show that ques-
tions one and two alone cannot offer any improvements, but
when combined, can be used to obtain improved analysis
of the DiskANN algorithm! Intuitively, it establishes that
the sorting step before pruning candidates offers theoretical
benefits, and we validate this empirically. Next, we show
that our improved analysis techniques can also be used to
derive approximation guarantees when using beam search
to compute k candidate results. Crucially, to the best of
our knowledge, this is the first such result which obtains
provable worst-case guarantees for graph methods when
requiring to identify k > 1 candidate nearest neighbors,
which is one of the most common uses of this problem in
practice:

Theorem 1.1 (Final convergence bounds). Let G be
a DiskANN graph. For any query q, BeamSearch of
size L in at most O(L+logα

δ
(α−1)ϵ ) steps outputs a

set of points {b1, . . . , bL} such that each bj satisfies:

D(bj , q) ≤ ϵ+
α

α− 1
·D(aj , q) for ℓ2 metric D

D(bj , q) ≤ ϵ+
α+ 1

α− 1
·D(aj , q) for any metric D

where aj is the jth nearest neighbor to q.

Furthermore, the number of distance comparisons per step
in the BeamSearch algorithm is upper bounded by the max-
imum degree of the DiskANN graph, which Indyk & Xu
showed to be O

(
(4α)∆ log δ

)
, where δ and ∆ denote the

dataset’s maximum distance and doubling dimension, re-
spectively. See Section 2 for definitions and further details.

2



Improved Worst-Case Guarantees for DiskANN

2. Preliminaries
Notation. Consider a dataset P of n points in a metric
space (X,D). For any query point q ∈ X , a top-k nearest-
neighbor search (k-NNS) data structure returns the k closest
points to q in P based on the distance function D. Since ex-
act nearest-neighbor search suffers from the curse of dimen-
sionality (Clarkson, 1994), approximate methods are often
preferred. In particular, under the following approximation
model, if p ∈ P is the ith nearest neighbor of q (i ≤ k), a
point p′ ∈ P is considered a (1 + ϵ)-approximation to p if
D(p′, q) ≤ (1 + ϵ) ·D(p, q).

All graphs considered will be directed and represented as
G = (V,E), where V is the set of nodes and E is the set of
directed edges of the form (u, v) or u → v. For any node
u ∈ V , let Nout(u) denote its set of out-neighbors, i.e.,
{v | (u, v) ∈ E}. In graph-based ANNS index structures,
the graph nodes correspond one-to-one with the dataset
points in P . To simplify notation, we use P to refer to both
the dataset and the graph nodes. Thus, an edge (p, p′) in
the graph represents a directed link from p to p′, while
D(p, p′) denotes the metric distance between the corre-
sponding dataset points. Similarly, D(p, q) represents the
distance from p to the query point q.

2.1. DiskANN Algorithm Overview

Here we provide a brief overview of the key components
of the DiskANN data structure and refer the reader to the
original work (Subramanya et al., 2019) for further details.
At a high level, given a dataset P , DiskANN constructs
a graph with |P | nodes, designed so that a simple greedy
search algorithm efficiently returns good approximate near-
est neighbors for a query q. The greedy search starts from a
dedicated start node s and iteratively moves to the neighbor-
ing node that is closest to q based on the metric D, stopping
when all neighbors are farther than the current node.

A generalized version of this search, described in Algo-
rithm 1, maintains a priority queue of size L ≥ 1, continu-
ously refining the queue until a local optimum is reached.
This approach, known as BeamSearch, is the standard
search strategy for graph-based ANN algorithms (HNSW;
Subramanya et al., 2019).

The construction of a graph for the dataset P can be ap-
proached in two ways, as presented in (Subramanya et al.,
2019) and later formalized in (Indyk & Xu, 2024): a slow-
preprocessing variant that illustrates the fundamental graph
construction principles, and a fast-preprocessing variant that
provides an efficient, scalable heuristic approximation for
large datasets.

In both variants, each node p selects neighbors from a can-
didate set E using a Prune procedure Algorithm 2, which
ensures that an edge (p, p′) is retained only if D(p, p′) <

Algorithm 1 BeamSearch(s, q, k, L)

Require: Graph G with start node s, query q, result size k, search
list size L ≥ k

Ensure: Result set L containing k-approx nearest neighbors, and
a set V containing all the visited nodes

1: Initialize sets L ← {s}, E ← ∅, and V ← ∅ {L is the list of
best L nodes, E is the set of all nodes which have already been
expanded from the list, and V is the set of all nodes which
have been visited, i.e., inserted into the list}

2: while L \ E ̸= ∅ do
3: Let p∗ ← argminp∈L\E D(p, q)
4: Update L ← L ∪ (Nout(p

∗) \ V) and E ← E ∪ {p∗}
5: if |L| > L then
6: Update L to retain closest L points to q
7: end if
8: Update V ← V ∪Nout(p

∗)
9: end while

10: return closest k points from V; V

α · D(p∗, p′) for some p∗ already connected to p. This
prevents unnecessary edges while maintaining search effi-
ciency.

Algorithm 2 Prune(p, E , α,R)

Require: Graph G, point p ∈ P , candidate set E ⊆ P , distance
threshold α ≥ 1, degree bound R

Ensure: G is modified by setting at most R new out-neighbors
for p

1: Update E ← (E ∪Nout(p)) \ {p}
2: Initialize Nout(p)← ∅
3: while E ≠ ∅ do
4: Let p∗ ← argminp′∈E D(p, p′)
5: Update Nout(p)← Nout(p) ∪ {p∗}
6: if |Nout(p)| = R then
7: break
8: end if
9: for p′ ∈ E do

10: if α ·D(p∗, p′) ≤ D(p, p′) then
11: Update E ← E\{p′}
12: end if
13: end for
14: end while

The slow-preprocessing variant sets E = P \ {p} and al-
lows a maximum degree of R = n− 1, leading to a O(n3)
runtime, which is impractical for large datasets. However,
the resulting graph is sparse when the dataset has low intrin-
sic dimension (formalized in Section 2.2), and the greedy
search converges to a good approximate solution (Indyk &
Xu, 2024). The fast-preprocessing variant mitigates the high
computational cost by capping the degree at a predefined
parameter R and restricting E to nodes visited during the
greedy search in Algorithm 1 before finalizing p’s edges.
This significantly accelerates graph construction while pre-
serving search quality.
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2.2. Overview of Indyk-Xu (Indyk & Xu, 2024)

For convenience, we summarize the key results from Indyk
& Xu, as our work builds upon and significantly improves
them. We start with the definition of α-reachable graphs.

Definition 2.1. A directed graph G is said to be α-reachable
for α ≥ 1 if, for any two nodes v, a ∈ G, either the edge
(v, a) exists or there exists a node t ∈ G such that the edge
(v, t) exists and D(t, a) ≤ D(v, a)/α.

In the slow-preprocessing variant of DiskANN, every node p
considers all other nodes as candidate out-neighbors during
the pruning procedure, with Algorithm 2 selecting the final
subset to retain. Effectively, this means p’s out-neighbors
are given by Prune(p, P \ {p}, α, n− 1). For such a graph,
Indyk and Xu established the following results.

Lemma 2.2 (α-reachable lemma). For every node p ∈ P , if
p is connected to the output of Prune(p, P \ {p}, α, n− 1),
then G(P,E) is α-reachable.

This α-reachability property is crucial for ensuring that the
greedy search algorithm converges to high-quality solutions.
Before demonstrating this, we first establish that the Prune
algorithm produces sparse graphs, which in turn allows us
to bound the search complexity of the greedy algorithm.

The sparsity of these graphs is governed by the intrinsic
dimension of the data set, quantified by doubling dimension.
A dataset P has a doubling constant C if, for any point
p ∈ P and radius r > 0, the set P ∩ B(p, 2r) can be cov-
ered by at most C balls of radius r. The doubling dimension
∆ is then defined as logC. In this work, we assume that the
datasets have a bounded doubling dimension, a reasonable
assumption since many real-world datasets exhibit a sig-
nificantly lower intrinsic dimensionality than their ambient
space (Aumüller & Ceccarello, 2019; Cayton et al., 2008).

Lemma 2.3 (Degree bound lemma). For every node p ∈ P ,
if p is connected to the output of Prune(p, P\{p}, α, n− 1),
then the degree of p is at most O

(
(4α)∆ log δ

)
, where ∆

and δ denote the doubling dimension and the aspect ratio
of P .

Indyk and Xu rely on these results to establish their main
convergence theorem, stated next.

Theorem 2.4 (Convergence theorem). Let G(P,E) be a
DiskANN graph constructed with the “slow-preprocessing”
variant as in Lemma 2.2. Then, for any starting point
s ∈ P and beam-size L = 1, BeamSearch(s, q, 1, 1)

outputs an
(

α+1
α−1 + ϵ

)
-approximate nearest neighbor in

O
(
logα

δ
(α−1)ϵ

)
steps and O

(
(4α)∆ log δ

)
distance com-

parisons per step.

Note that Theorem 2.4 applies only when the beam size is 1.
In practice, a larger beam size is typically used, leading to

improved empirical performance and enabling the retrieval
of multiple (k > 1) nearest neighbors.

3. Overview of Proof
Here, we provide an overview of the proof for our main
result, which offers an improved analysis of the DiskANN
algorithm and extends it to the beam search setting. Our
contributions follow a natural sequence: we first identify a
stronger structural property of DiskANN graphs, use this
to derive tighter approximation bounds (especially in Eu-
clidean space), and ultimately provide the first provable
guarantees for beam search in graph-based data structures.
The key insight behind our analysis is that DiskANN’s graph
construction implicitly maintains a ”sorting” property that,
when properly leveraged, enables significantly stronger the-
oretical guarantees.

The starting point of our analysis is a subtle yet powerful ob-
servation about DiskANN’s behavior. Specifically, consider
how DiskANN determines the out-neighbors of a node p
from a set of candidates E using Algorithm 2. While the pre-
vious analysis in Lemma 2.2, which shows α-reachability,
would hold even without step (4) of Prune — meaning we
could select any node p∗ from E — DiskANN explicitly
chooses the closest remaining node to p. This seemingly
minor implementation detail has significant theoretical im-
plications for the quality of the computed solutions. We now
formalize this insight, with a stronger notion of reachability.
Definition 3.1 (Sorted α-reachable graphs). Given a dataset
P , a distance metric D and α > 1, we call a directed graph
G to be a sorted α-reachable graph if for any pair of points
v, a ∈ P , either the edge (v, a) exists in G or there exists a
point t ∈ P such that:

1. (v, t) is an edge in G

2. D(t, a) ≤ D(v, a)/α (α-reachability)

3. D(v, t) ≤ D(v, a) (sorting property)

The first two properties define standard α-reachability. The
third property, which we refer to as the sorting property,
ensures that each vertex connects to closer points before far-
ther ones. This property naturally emerges from DiskANN’s
graph construction and, as we will demonstrate, plays a cru-
cial role in enabling a tighter analysis in Euclidean space.
In this context, Lemma 2.2, combined with the sorting step
implicit in Algorithm 2, leads to the following result.
Lemma 3.2 (Sorted α-reachable lemma). Given a dataset
P , a distance metric D and an α > 1, the ”slow prepro-
cessing” variant of DiskANN algorithm constructs a sorted
α-reachable graph with respect to distance metric D.

We defer the formal proof of the above result to Ap-
pendix A.1. Given that DiskANN constructs this specialized
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Figure 1: Sorted α-reachablilty property. The intermediate
node t must satisfy both D(v, t) ≤ D(v, a) and D(t, a) ≤
D(v, a)/α.

Figure 2: Vanilla α-reachability property. The intermediate
node t only needs to satisfy D(t, a) ≤ D(v, a)/α.

class of sorted α-reachable graphs, we now analyze the qual-
ity of solutions returned by beam search on these graphs.
Indyk and Xu (Indyk & Xu, 2024) conducted a similar anal-
ysis for α-reachable graphs, deriving a recurrence relation
that shows how, at each step of the greedy search algorithm,
either the distance to the query decreases geometrically or
the search is already sufficiently close to the query. They
then use a case analysis to establish the overall approxima-
tion quality upon termination. For clarity, we first analyze
the local optimality of solutions returned by the beam search
algorithm on sorted α-reachable graphs before presenting
the convergence analysis.

3.1. Approximation Quality of Local Optimum using
Beam Search

We begin by analyzing the quality of a simple greedy search,
that is, where the beam size is 1. We take a different ap-
proach from (Indyk & Xu, 2024) in our analysis, to fully
exploit the structure of the problem. To this end, suppose
that we have a query q, for which the greedy search has
already terminated to a local optimum point v, and suppose
the true nearest neighbor of q is a data point a. What can the
worst possible termination be, for this algorithm? Indeed,
it cannot be an arbitrary arrangement of points q, v, and
a, since the algorithm has some structural properties. For
example, it must be the case that v does not have an edge to
a, as otherwise a greedy search would have walked along
the edge (v, a) to discover the global optimum a. But when
can this edge be pruned? This happens when there exists
another point t which is responsible for (v, a) being pruned,
which satisfies additional conditions as per Definition 3.1.
The crucial observation then is that the approximation ratio
achieved by any local optimum solution v can in fact be
upper bounded by the following optimization problem.

αopt = maxD(t, q) such that: (1)
D(q, v) ≤ D(q, t), D(a, t) ≤ D(v, a)/α

D(v, t) ≤ D(v, a), D(a, q) = 1

D(·, ·) is a metric, i.e., satisfies triangle inequalities

In the above optimization problem we seek to find the worst
possible arrangement of points which satisfies the struc-
tural requirements of our algorithm. The first constraint
D(q, v) ≤ D(q, t) captures the fact that our current solution
v is locally optimal, the constraint D(a, t) ≤ D(v, a)/α
follows from the α-reachability property of the graph, the
constraint D(v, t) ≤ D(v, a) follows from the sorting prop-
erty, and finally, D(a, q) = 1 is a standard normalization
step for analyzing ratios. Indeed, the approximation ratio
is actually D(v, q)/D(a, q) which we upper bound by max-
imizing D(t, q) (note that D(v, q) ≤ D(t, q) and so this
is a valid relaxation) while enforcing D(a, q) = 1. The
part where we replaced D(v, q) by D(t, q) in the objective
function will help in analyzing the beam search result as
well.

In our first result we upper bound the objective value of the
above optimization problem for the general metric.

Lemma 3.3 (Objective value for general metric). When
D is a general metric, the optimum value of optimization
problem 1 is upper bounded by α+1

α−1 .

The proof of this result follows from the triangle inequality
and the α-reachable property; see Appendix A.2 for a formal
proof. This result provides an alternative formulation of the
findings in (Indyk & Xu, 2024). Next, we strengthen this
guarantee for the important case of Euclidean metrics. The
proof can be found in Appendix A.3.

Lemma 3.4 (Objective value for Euclidean metric). When
D is the Euclidean ℓ2 metric, the optimum value of opti-
mization problem 1 is upper bounded by α

α−1 .

Intuitively, the strengthening comes because for general met-
rics, the optimization problem ends up being a linear pro-
gram over the sixteen variables of the form D(x, y) where
x, y ∈ {v, q, t, a}, which we can optimize. However, when
the metric is Euclidean, we can re-write the optimization
problem in terms of dot products (by considering squared
distances in the first four constraints as well as the objec-
tive function), and replace the metric constraint with the
much stronger constraint that enforces that the matrix of the
dot-product variables is positive-semidefinite. We can then
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solve the resulting SDP using a solver to get the desired
bounds for any given α. In this paper, we actually give a
formal geometric proof for any α without resorting to the
use of solvers, by using SDP duality. The above two re-
sults provide an immediate bound on the quality of the local
optimum solution, which we summarize below.

Corollary 3.5 (Guarantee of greedy search). For any
dataset P , and query q, the greedy search algorithm ter-
minates at a local optimum point v which is an α+1

α−1 -
approximation to the true nearest neighbor of q for arbitrary
metrics, which improves to α

α−1 for Euclidean metrics.

While the previous result establishes bounds for the near-
est neighbor candidate returned by the algorithm, we now
extend this analysis to beam search, where we maintain a
beam BL = {b1, . . . , bL} of L candidates.

To analyze beam search, our approach is the following: let
a denote the closest member in the optimal solution of L
nearest neighbors which is not present in the locally optimal
beam, and let v be the element in the locally optimum beam
which is closest to a. Clearly, v does not have an edge to
a, since otherwise, the beam would improve by including a
and evicting bL. Therefore, we can define t to be the node
responsible for blocking the edge (v, a), based on the sorted
α-reachable condition between v and a. Moreover, since
t is closer to a than v, it cannot be part of the beam! by
virtue of the choice of v. However, because the beam has
an outgoing edge to t, we get D(t, q) as an upper bound on
D(bi, q) for all the elements bi ∈ BL in the beam, in one
shot! We can thus reuse optimization problem 1 to derive
an upper bound on the quality of all points in the beam.

Lemma 3.6 (Guarantee of beam search). Let G be a sorted
α-reachable graph with respect to distance function D.
For any query point q ∈ Rd, let BL = {b1, . . . , bL} be
a local optimum solution of size L with respect to the
BeamSearch algorithm on G. For each j ∈ [L], define
Bj = {b1, . . . , bj} as the first j points in the beam. Then
each bj satisfies:

D(bj , q) ≤
α

α− 1
argmin

p∈G,p/∈Bj−1

D(q, p) for ℓ2 metric D

D(bj , q) ≤
α+ 1

α− 1
argmin

p∈G,p/∈Bj−1

D(q, p) for general metric D

This pointwise guarantee immediately demonstrates that
the beam search maintains quality approximations for each
position in the beam as summarized below.

Theorem 3.7 (Pointwise guarantee of beam search). Let G
be a sorted α-reachable graph with respect to distance func-
tion D. For any query point q ∈ Rd, let BL = {b1, . . . , bL}
be a local optimum solution of size L returned by the

BeamSearch algorithm on G. Then each bj satisfies:

D(bj , q) ≤
α

α− 1
·D(aj , q) for ℓ2 metric D

D(bj , q) ≤
α+ 1

α− 1
·D(aj , q) for general metric D

where aj is the jth nearest neighbor to q.

The improvement from α+1
α−1 to α

α−1 in the Euclidean met-
ric follows directly from the sorting property D(v, t) ≤
D(v, a) and is tight. In Appendix A.5, we provide beam
search examples that confirm the tightness of our bounds.

Additionally, we show that without the sorting constraint,
the α+1

α−1 bound remains tight even in Euclidean space. In
Appendix A.6, we construct an example illustrating this,
highlighting the critical role of the sorting property.

3.2. Convergence Rates of Beam Search

In the previous section, we analyzed the local optimum
solution returned by beam search for an arbitrary number of
candidates L. We now establish the convergence rate, i.e.,
the number of steps required for beam search to reach a good
approximate solution. To do this, we modify optimization
problem 1, which previously captured the guarantees of
a local optimum, to instead model the progress made in
each step when the current point is β distant from the local
optimum.

maxD(t, q) such that : (2)

D(a, t) ≤ D(v, a)

α
, D(v, t) ≤ D(v, a),

D(a, q) = 1, and D(q, v) ≤ β + αopt ,

D(·, ·) is a metric, i.e., satisfies triangle inequalities

In comparison to optimization problem 1, the key difference
is the addition of the constraint D(q, v) ≤ αopt + β, which
bounds the distance from the local optimal solution. Here, β
quantifies the deviation from local optimality, and it should
decrease with each step. To establish this, we bound the ob-
jective value of the new optimization problem and show that
the point t, identified via the sorted α-reachable property as
a neighbor of v, satisfies D(t, q) ≤ αopt + β/α. Thus, by
moving to t, we achieve progress by a multiplicative factor
of α.

Lemma 3.8 (Objective value bound for general metric). In
optimization problem 2, the maximal value of D(t, q) is at
most α+1

α−1 + β
α under general metric D.

Lemma 3.9 (Objective value bound for Euclidean metric).
In optimization problem 2, the maximal value of D(t, q) is
at most α

α−1 + β
α under Euclidean metric D.
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The proofs of the above results follow similar reasoning
as Lemma 3.3 and Lemma 3.4. Specifically, for the gen-
eral metric case, it relies on the triangle inequality and
the α-reachable property, while for the Euclidean case, it
involves formulating optimization problem 2 as an SDP
and constructing a feasible dual solution with the required
value. The full proofs are deferred to Appendix B.1 and
Appendix B.2, respectively.

It follows directly from optimization problem 2 and the up-
per bound on the objective value that we achieve a progress
factor of α in each step. Consequently, the beam search
with size 1 converges to a good approximate solution in
logα time steps. The proof for larger beam sizes follows a
similar approach as our analysis of local optima for higher
beam sizes. Applying the same reasoning, we derive the
following main convergence result.

It is immediate from optimization problem 2 and the upper
bound on its optimum value that we make a multiplicative
factor α progress in each time step. Thus it is immediate that
the beam search with size 1 converges to a good approximate
solution in logα time steps. The proof for larger beam sizes
follows a similar approach as our analysis of local optima
for higher beam sizes. Applying the same reasoning, we
derive the following main convergence result.

Theorem 1.1 (Final convergence bounds). Let G be a
DiskANN graph. For any query q, BeamSearch of size
L in at most O(L + logα

δ
(α−1)ϵ ) steps outputs a set of

points {b1, . . . , bL} such that each bj satisfies:

D(bj , q) ≤ ϵ+
α

α− 1
·D(aj , q) for ℓ2 metric D

D(bj , q) ≤ ϵ+
α+ 1

α− 1
·D(aj , q) for any metric D

where aj is the jth nearest neighbor to q.

The detailed proofs of the above convergence result is pro-
vided in the Appendix B.3. Together, these results establish
that sorted α-reachable graphs not only provide better ap-
proximation guarantees but also ensure rapid convergence
to these improved solutions. Our improved bounds have sig-
nificant practical implications, particularly for the common
case of Euclidean distance. The reduction from (α+1)/(α-1)
to α/(α-1) means that for typical values of α (e.g., α=2),
we reduce the worst-case approximation ratio from 3 to 2.
This tighter theoretical guarantee helps explain DiskANN’s
strong empirical performance and suggests that implementa-
tions should explicitly maintain the sorting property during
graph construction.

4. Experiments
To complement our theoretical analysis for the slow-
preprocessing variant of DiskANN, we empirically study

the impact of sorting for fast-preprocessing version of
DiskANN. Specifically, we compare two implementations
of DiskANN: one where we sort the candidate neighbors
provided to Algorithm 2, and one where we do not. We first
state the setup for our evaluations and describe our datasets,
and then we explain the DiskANN implementation. We
then present two figures comparing 100@100Recall to QPS
and the average number of distance comparisons performed
during search.

4.1. Setup

Hardware. We conduct all experiments on a bare-metal
high-performance workstation with dual Intel Xeon Gold
5218 CPUs (32 cores, 64 threads) and 256GB DDR4 RAM.

Datasets. We evaluate on the following datasets: the well-
known SIFT1M (Jegou et al., 2010), and three modern real-
world workloads comprising of OpenAI embeddings encod-
ing abstracts scraped from Arxiv, Cohere embeddings of pas-
sages from Wikipedia articles (Cohere, 2022), and a large-
scale dataset web search dataset generated using the Mi-
crosoft SPACEV model (Xu et al., 2023). We obtained these
datasets from the BigANN benchmark repository (Simhadri
et al., 2024) at the url https://big-ann-benchmarks.com/, and
the details regarding the datasets can be found in Table 2.

Dataset Dimension Document Query
OpenAI 1536 2,321,096 20,000
SIFT1M 128 1,000,000 10,000
Wikipedia 788 35,000,000 5,000
SPACEV 100 100,000,000 5,000

Table 1: Dataset information

DiskANN Configuration. We use the ParlayANN
DiskANN implementation to construct our instances and to
build and search indices for these datasets (Manohar et al.,
2024). We use the default DiskANN parameters for an in-
memory build: α is set to be 1.2 for all the index builds,
with max degree set to 64 and beam-width parameter Lbuild
set to 100. During search, we vary the beam-width param-
eter Lsearch. The average degree of the graph constructions
by DiskANN implementation with and without sorting are
summarized below.

Dataset Sorted Unsorted
OpenAI 53.899 56.924
SIFT1M 44.523 49.153
Wikipedia 24.660 30.730
SPACEV 46.155 51.020

Table 2: Average Degree per Constructed Graph
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Figure 3: The above plots illustrate the Queries per Second (QPS) versus 100@100 Recall for sorted α-reachable and
standard α-reachable graphs.
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Figure 4: The above plots illustrate the average number of distance comparisons versus 100@100 Recall for sorted α-
reachable and standard α-reachable graphs.
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Figure 5: The above plots illustrate the average maximum approximation ratio versus 100@100 Recall for sorted α-reachable
and standard α-reachable graphs.

Dataset Sorted (s) Unsorted (s)
OpenAI 910.7 1049
SIFT1M 20.91 24.35
SPACEV 1902 2352
Wikipedia 6068 7829

Table 3: Build Times for Sorted and Unsorted Graphs

4.2. Main Empirical Evaluation

100@100 Recall Evaluations. For this benchmark, we
evaluate the recall of our indices against a pre-computed
bruteforce “groundtruth.” We measure performance of these
indices on basis of two metrics:

• Queries per Second. As mentioned, we evaluate recall
along a curve by varying Lsearch from 10 to 400. As
Lsearch increases, the corresponding queries per second
(QPS) simply refers to the number of queries our index
is able to serve per second in a multi-threaded setting.

• Average Distance Comparisons. We also measure the

recall achieved at the cost of different average distance
comparisons per query, which is more indicative of the
qualitative impact of the sorting step, and avoids any
machine specific metrics.

• Approximation Ratio. We verify that the approxi-
mation ratio for the sorted setting is better than the
unsorted setting. We look at the average approxima-
tion ratio: the mean over all queries, of the maximum
over all items i in the final beam, of the distance of the
ith candidate computed by the algorithm upon the ith
closest NN.

4.3. Results

In Table 2 and Table 3, see that DiskANN consistently
produces denser graphs and takes longer to build them in the
unsorted setting. The unsorted index has an average degree
6%, 10%, 25%, and 11% higher than the sorted index
for OpenAI, SIFT1M, Wikipedia, SPACEV, respectively. In
addition, the unsorted index has a build time that is 13.18%,
14.12%, 22.48%, and 19.13% slower for the same datasets.
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Figure 6: Plot illustrating the Disk IOs used versus the
100@100 Recall for sorted and standard α-reachable graphs.

For QPS (Figure 3), the unsorted index is slower across the
board. The sorted index achieves 5%, 8%, and 7.5% higher
QPS for SIFT1M (at 99% recall), OpenAI (at 90% recall),
and SPACEV (at 95% recall), respectively.

For average distance comparisons (Figure 4), the sorted
index is again superior. It uses 10% fewer comparisons for
SIFT1M (99.9% recall), 6% fewer for OpenAI (90% recall),
and 18% fewer for SPACEV (95% recall).

For the mean max approximation ratio, we see a difference
to the results of the prior experiments: the sorted index
offers superior QPS across all datasets except OpenAI. This
is in spite of the numbers favoring the sorted indices for this
dataset in the rest of our evaluation. The sorted indices are
worse by 25% on OpenAI (at a 1.008 approx. ratio), but
better by 9% on SIFT (at a 1.001 approx. ratio) and 17%
on SPACEV (at a 1.020 approx. ratio).

As an additional sanity check on our claims on large-scale
indices, we build a disk-based index on the SPACEV dataset.
As shown in Figure 6, the recall of the unsorted index is
worse for every disk IO usage: at worst, at 400 disk IOs, the
sorted index has approximately a 0.5% improved recall.

For Wikipedia, the sorted index offers vastly superior perfor-
mance to the unsorted index, in comparison to the smaller
improvements shown for the other dataset. Along with the
peculiar approximation ratio issues with the OpenAI dataset,
we leave further study of these datasets in this setting for
future work.

In conclusion, higher density graphs is usually associated
with higher recall, and comes at the cost of latency. Despite
the unsorted index forming denser graphs, we note that
recall remains inferior to the sparser and faster sorted index,
emphasizing the importance of the sorting step during index
construction.

5. Conclusion
In this work, we present improved approximation guaran-
tees of the DiskANN family of graphs for Euclidean metrics,
by exploiting the sorting step the algorithm performs during
index construction. We also introduce techniques to analyze
the approximation quality of the widely used beam search
algorithm for retrieving L > 1 candidates. Finally we ex-
perimentally validated the importance of the sorting step in
index construction over diverse datasets. An interesting line
of research going forward is in understanding how we can
similarly exploit the structure for other real-world metrics to
obtain improved guarantees, like we did for ℓ2 in this work.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Approximation Quality of Local Optimum using Beam Search
Here we provide proof for the approximation guarantee achieved by local optimum solution of the beam search algorithm.

A.1. Proof for Lemma 3.2

Here we show that the slow-preprocessing variant of DiskANN constructs a sorted α-reachable graph.
Lemma 3.2 (Sorted α-reachable lemma). Given a dataset P , a distance metric D and an α > 1, the ”slow preprocessing”
variant of DiskANN algorithm constructs a sorted α-reachable graph with respect to distance metric D.

Proof. Proceed with contradiction. For an appropriate DiskANN graph G(V,E), suppose there exists a pair of points
v, a ∈ V such that there does not exist a t satisfying the conditions of Definition 3.1. We have two cases:

1. There exists an edge from v to a. This would satisfy the requirements of Definition 3.1, and trivially contradicts our
assumption.

2. There does not exist an edge from v to a. Then, by Algorithm 2, there must exist another node u ∈ V that was considered
before a that pruned a. This implies that D(u, v) ≤ D(a, v), and by the prune condition, D(u, a) ≤ D(v, a)/α. Thus,
we can set u to be t, again contradicting our assumption.

A.2. Proof for Lemma 3.3

Here we provide the proof for Lemma 3.3 that upper bounds the optimum value of optimization problem 1 for the case of
general metric.
Lemma 3.3 (Objective value for general metric). When D is a general metric, the optimum value of optimization problem 1
is upper bounded by α+1

α−1 .

Proof. The proof of this lemma follows from a repetitive use of triangle inequality and α-reachable property.

D(q, t) ≤ D(q, a) +D(a, t) ≤ D(q, a) +
D(a, v)

α

≤ D(q, a) +
D(a, q) +D(q, v)

α
≤ D(q, a) +

D(a, q) +D(q, t)

α

≤ 1

(1− 1
α )

·D(q, a)(1 +
1

α
) =

α+ 1

α− 1
·D(q, a) .

In the first and third inequality we used triangle inequality. The second inequality uses the α-reachability constraint. In the
fourth inequality we used local optimality of v. Finally, in the fifth and sixth inequality, we rearranged and simplified the
expression.

A.3. Proof for Lemma 3.4

Here we provide the proof for Lemma 3.4 that upper bounds the optimum value of optimization problem 1 for the case of
Euclidean metric.
Lemma 3.4 (Objective value for Euclidean metric). When D is the Euclidean ℓ2 metric, the optimum value of optimization
problem 1 is upper bounded by α

α−1 .

Proof. We first re-state the optimization problem we wish to upper bound.

maxD(t, q) such that: (3)
D(q, v) ≤ D(q, t), D(a, t) ≤ D(v, a)/α

D(v, t) ≤ D(v, a), D(a, q) = 1

D(·, ·) is a metric, i.e., satisfies triangle inequalities

13
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By squaring the terms, and relaxing the fourth equality as an inequality, we obtain the following vector program, which is
essentially a semi-definite program. The goal is to find the worst configuration of vectors in euclidean space which optimize
the objective.

max ||q − t||2 such that: (4)

||q − v||2 ≤ ||q − t||2, α2||a− t||2 ≤ ||v − a||2

||v − t||2 ≤ ||v − a||2, ||q − a||2 ≤ 1

The optimum objective value of optimization problem 3 we wish to bound, is then the square-root of the optimum value of
optimization problem 4.

See that we can leverage weak duality of semidefinite programs to upper-bound the objective function of optimization
problem 4, and thus achieve an upper-bound for optimization problem 3. In order to do so, we first introduce dual variables
for each of the constraints of optimization problem 4:

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, λ4 ≥ 0,

As is standard practice in deriving a dual program, we first write the Lagrangian by multiplying all constraints with their
dual variables (Lagrangian multipliers) and subtracting objective function of optimization problem 4 from it.

L(q, v, t, a) = ∥q − t∥2 + λ1

(
∥q − v∥2 − ∥q − t∥2

)
+ λ2

(
α2∥a− t∥2 − ∥v − a∥2

)
+λ3

(
∥v − t∥2 − ∥v − a∥2

)
+ λ4

(
∥q − a∥2

)
The resulting dual program is as follows,

minλ2 such that: (5)
L(t, q, v, a) ≥ 0

Now,let λ1 = 1
α−1 , λ2 = α

(2α−1)(α−1) , λ3 = α
(2α−1) and λ4 =

(
α

α−1

)2

. Note that substituting these values to dual
variables, we get that, L(t, q, v, a) simplifies to a perfect square, thus implying non-negativity for all the values t, q, v, and a,
and the feasibility of the dual constraints is satisfied. Therefore

(
α

α−1

)
is a lower bound of the dual optimization function,

giving an upper-bound on the optimal value for optimization problem 3 by weak duality.

A.4. Proof for Lemma 3.6

Here we provide proof relating the objective value of the optimization problem 1 and the approximation ratio achieved by
the beam search algorithm.

Lemma 3.6 (Guarantee of beam search). Let G be a sorted α-reachable graph with respect to distance function D. For
any query point q ∈ Rd, let BL = {b1, . . . , bL} be a local optimum solution of size L with respect to the BeamSearch
algorithm on G. For each j ∈ [L], define Bj = {b1, . . . , bj} as the first j points in the beam. Then each bj satisfies:

D(bj , q) ≤
α

α− 1
argmin

p∈G,p/∈Bj−1

D(q, p) for ℓ2 metric D

D(bj , q) ≤
α+ 1

α− 1
argmin

p∈G,p/∈Bj−1

D(q, p) for general metric D

Proof. Let a be the first true nearest neighbor that is not in BL−1. We define v := argminbj∈BL
D(bj , a). Now using

sorted-α reachability condition between v and a there exists a t such that

D(t, a) ≤ D(v, a)

α

14
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and D(v, t) ≤ D(v, a) Since current beam is locally optimal

D(v, q) ≤ D(t, q)

Since t is closer to a than v, it cannot be part of the beam. However, because the beam has an outgoing edge to t, we get
D(t, q) as an upper bound on D(bi, q) for all bi ∈ BL. Thus we try to maximize D(t, q). Now this maximization problem
can be formulated as following optimization program.

max
D(t, q)

D(a, q)
such that, (6)

D(q, v) ≤ D(q, t), D(a, t) ≤ D(v, a)

α
, D(v, t) ≤ D(v, a) .

We can always rescale this reported instance to make the distance between a and q a unit; hence we can reformulate
optimization problem 6 as optimization problem 1.

Thus, if the optimal value of optimization problem 1 under D is αopt then

D(bL, q)

D(a, q)
≤ D(t, q)

D(a, q)
≤ αopt

Thus after reshuffling we get
D(bL, q) ≤ αopt argmin

p∈G,p/∈BL−1

D(q, p)

Furthermore, using 3.6 and 3.4 we get the following result for the Euclidean metric,

D(bL, q) ≤
α

α− 1
argmin

p∈G,p/∈BL−1

d(q, p)

Using 3.6 we get the following result for the general metric,

D(bL, q) ≤
α+ 1

α− 1
argmin

p∈G,p/∈BL−1

D(q, p)

A.5. Tight examples for local optimum solutions

Lemma A.1. For any α > 1, there exists a point set P of 2L+ 1 points and a query point q in 2 dimensional plane under
euclidean distance function, such that there exists an locally optimal beam {b1, . . . , bL} such that:

d(bj , q) =

(
α

α− 1

)
· d(aj , q)

where aj is the jth nearest neighbor to q.

Proof. We begin by constructing the point set P . Let:

• L points {v1, v2, . . . , vL} be co-located at the coordinate
(
−α

2 , 0
)
,

• A point t be located at
(
α
2 , 0

)
,

• L points {a1, a2, . . . , aL} be co-located at
(

α
2 − 1

2α ,
√
1− 1

4α2

)
,

• The query point q be located at
(
0, α

2

√
2α+1
2α−1

)
.

15
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Now, consider the sorted α-shortcut graph over P . In this graph, there is no edge between any vi and aj , i.e., for all i, j,

d(t, ai) ≤
d(t, vi)

α
and d(t, vi) ≤ d(aj , vi).

Furthermore, we observe that:
d(t, q) = d(vi, q) for each i.

Thus, the set {v1, v2, . . . , vL} forms a locally optimal beam.

Next, we show that the ratio d(vi,q)
d(aj ,q)

equals α
α−1 .

Using the construction of the points and applying basic Euclidean distance calculations, we find:

d(vi, q)

d(aj , q)
=

α

α− 1
.

This completes the proof, showing that the set {v1, v2, . . . , vL} indeed forms a locally optimal beam, and the ratio of
distances satisfies the given relation.

Lemma A.2. For any α > 1, there exists a point set P of 2L+ 1 points and a query point q in 2 dimensional plane under
general metric function, such that there exists an locally optimal beam {b1, . . . , bL} such that:

d(bj , q) =

(
α+ 1

α− 1

)
· d(aj , q)

where aj is the jth nearest neighbor to q.

Proof. We begin by constructing the point set P . Let:

• L points {v1, v2, . . . , vL} be colocated, such that the distance between any two points vi and vj is zero, i.e., d(vi, vj) =
0 for all i, j,

• A point t be located such that the distance from t to any vi is d(t, vi) = 2,

• L points {a1, a2, . . . , aL} be colocated, such that the distance from aj to any vi is d(aj , vi) = 2α
α−1 for all i, j, and

distance from any aj to t is 2
α−1 ,

• The query point q be located such that the distance from q to any aj is d(q, aj) = 1, and the distance from q to any vi
is d(q, vi) = α+1

α−1 , and d(q, t) = α+1
α−1 .

The above distance function forms a metric space. Now, consider the sorted α-shortcut graph over P . In this graph, there is
no edge between any vi and aj , i.e., for all i, j,

d(t, ai) ≤
d(t, vi)

α
and d(t, vi) ≤ d(aj , vi).

Thus, the set {v1, v2, . . . , vL} forms a locally optimal beam. And from the distance we know the ratio d(vi,q)
d(aj ,q)

equals α+1
α−1 .

A.6. Tight example without sorting constraint

Here we provide an example showcasing the importance of the sorting constraint. The construction of the example is as
follows. Let t, a, q & v all lie on x-axis at abscissa −α+1

α−1 , −1, 0 and α+1
α−1 respectively. Now consider our point-set P to

contain only 3 points t, a and v. A complete directed graph with edge (v, a) removed is a valid α-shortcut graph on P . Now
for query point q if the search is at v it is at a locally optimal solution as v and t are equidistant from q, but approximation
ratio for this case would be D(v,q)

D(a,q) which is α+1
α−1 . Note that since all these points lie on x-axis this holds for any Lp norm.
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B. Convergence analysis of beam search
For convenience, we restate optimization problem 2 below.

maxD(t, q) such that:

D(a, t) ≤ D(v, a)

α
, D(v, t) ≤ D(v, a)

D(a, q) = 1, D(q, v) ≤ β + αopt

Recall that αopt is optimal value of optimization problem 1 under a metric D.

B.1. Proof for Lemma 3.8

Here we upper bound the objective value of optimization problem 2 for a general metric D. The formal statement and proof
are given below.

Lemma 3.8 (Objective value bound for general metric). In optimization problem 2, the maximal value of D(t, q) is at most
α+1
α−1 + β

α under general metric D.

Proof. By triangle inequality we have that,

D(t, q) ≤ D(t, a) +D(a, q)

using first constraint, that is the α-reachable constraint, we can rewrite the above equation as,

D(t, q) ≤ D(v, a)

α
+D(a, q)

Using triangle inequality on D(v, a) and substituting value of D(v, q) and D(a, q) from the third and fourth constraint to
get the desired bound as follows:

D(t, q) ≤ D(v, q) +D(a, q)

α
+D(a, q)

≤ β

α
+

α+ 1

(α− 1)α
+

(
1 +

1

α

)
×D(a, q) ≤ β

α
+

α+ 1

α− 1
.

B.2. Proof for Lemma 3.9

Here we upper bound the objective value of optimization problem 2 for the Euclidean metric case. The formal statement and
proof are given below.

Lemma 3.9 (Objective value bound for Euclidean metric). In optimization problem 2, the maximal value of D(t, q) is at
most α

α−1 + β
α under Euclidean metric D.

Proof. For convenience, let D be defined by || · ||22. In our optimization problem, we can accomplish this by squaring all
terms, giving the following modified version of optimization problem 2:

maxD(t, q) such that: (7)

D(a, t) ≤ D(v, a)

α2
, D(a, q) ≥ 1, D(a, q) ≤ 1,

D(v, t) ≤ D(v, a), D(q, v) ≤
(
β +

α

α− 1

)2

.
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Indeed, || · ||22 can be expressed as dot products of vectors, allowing us to expand optimization problem 7 into the following
semidefinite program:

max(tT t− 2tT q + qT q) such that: (8)

aTa− 2aT t+ tT t ≤ vT v − 2vTa+ aTa

α2

aTa− 2aT q + qT q ≥ 1

aTa− 2aT q + qT q ≤ 1

vT v − 2vT t+ tT t ≤ vT v − 2vTa+ aTa

qT q − 2qT v + vT v ≤
(
β +

α

α− 1

)2

We will again leverage weak duality of semidefinite programs to upper-bound the objective function of 7, and thus achieve
an upper-bound for 2. In order to do so, we first introduce dual variables for each of the constraints of 7:

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, λ4 ≥ 0, λ5 ≥ 0

As is standard practice in deriving a dual semidefinite program, we first construct the following constraint (for all values of
q, v, a, t):

L(t, q, v, a) = λ1

(
aTa− 2aT t+ tT t− vT v − 2vTa+ aTa

α2

)
− λ2

(
aTa− 2aT q + qT q

)
+ λ3

(
aTa− 2aT q + qT q

)
+ λ4

(
vT v − 2vT t+ tT t− vT v + 2vTa− aTa

)
+ λ5

(
qT q − 2qT v + vT v

)
− (tT t− 2tT q + qT q)

This gives the following dual program:

minλ2 − λ3 + λ5

(
β +

α

α− 1

)2

such that: (9)

L(t, q, v, a) ≥ 0

Now, consider the following values for each of the dual variables:

λ1 =
1

α2
+

(
1− 1

α

)2
β(α2 − 1) + α2

α(α− 1)2β2 + (α2 − 1)(2α− 1)β + (2α− 1)α2

λ2 − λ3 =

(
β

α
+

α

α− 1

)2

− 1

α2

(
β +

α

α− 1

)(
β +

α2

α− 1

)

λ4 =
β(α− 1)2 + α2(α− 1)

α(α− 1)2β2 + (α2 − 1)(2α− 1)β + (2α− 1)α2
, λ5 =

1

α2

β + α2

α−1

β + α
α−1

Under these dual variables, L(t, q, v, a) simplifies to a perfect square, thus implying non-negativity of the values t, q, v, and

a, and the feasibility of the dual constraints. Therefore
(

β
α + α

α−1

)2

is the value of the dual optimization function, giving
an upper-bound on the optimal value from equation 7 by weak duality.
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B.3. Proof for Theorem 1.1

With the above lemmas we are now ready to prove Theorem 1.1 and we begin by stating a few intermediate results.

Let v be the vertex whose out-neighborhood Nout(v) is explored in the ith step. A step is successful if the first point of
change in the beam is above (or before) the position of v in the beam: D(v, q) > minx∈(Nout(v)\B(i)) D(x, q)), where B(i)

denotes the state of the beam at step i. Otherwise, we call the step unsuccessful. Intuitively, an unsuccessful step makes no
progress towards convergence, as no expanded out-neighbor has been added that is closer than v to q.

First, we show that after i unsuccessful steps, the ith member of the beam, denoted by vi, is arbitrarily close to the ith

member of the locally optimal beam denoted by ai.

Lemma B.1. After i unsuccessful steps, the following holds for ith member vi of the beam:

D(vi, q) ≤ αopt ·D(ai, q)

Proof. We call a node v in the beam inactive if its neighborhood is explored and it results in an unsuccessful step. If a node
vp at position p in the beam is inactive, then the first p members of the beam constitute a locally optimal beam, and by
Lemma 3.6 we have:

D(vp, q) ≤ αopt ·D(ap, q). (10)

Note that a node can become freshly inactive only if all the nodes above it are inactive. After i unsuccessful steps, there
are i inactive nodes, and each of these nodes became inactive at a position less than or equal to index i. Therefore, by
Equation 10, each of these i inactive nodes has distance to q at most αopt ·D(ai, q).

Since the i-th element in the current beam, denoted by vi, is either one of these inactive nodes or has distance to q less than
or equal to that of at least one of these i inactive nodes, it follows that:

D(vi, q) ≤ αopt ·D(ai, q).

This completes the proof.

Next, we show that after a series of successful steps, the ith node in the beam upon completion of those steps gets close to
the query as summarized in the lemma below.

Lemma B.2. Consider a DiskANN graph G on n points with respect to a metric D, such that the maximal value of
optimization problem 1 under D is αopt and the optimal value of optimization problem 2 is less than β

α . Consider a query q
and let the ith member of the beam after S successful steps be v(i,S). The following then holds for v(i,S):

D(v(i,S), q) ≤
Γ

αS−i
+max

(
αopt,

α2 + 1

α2 − 1

)
·D(ai, q)

Proof. We proceed with proof by induction over the number of successful steps S.

Base case: For S < i steps, see that the following holds by the triangle inequality:

D(v(i,S), q) ≤ D(v(i,S), ai) +D(ai, q) ≤ Γ +D(ai, q)

Induction claim: For all S < j, we claim that the following holds :

D(v(i,S), q) ≤
Γ

αS−i
+max

(
αopt,

α2 + 1

α2 − 1

)
·D(ai, q)

Induction Step: Let LI(k) be the lowest index in the beam that changes in the kth successful step. Then, vLI(k) must be the
closest node to q introduced by kth successful step. Note that as a node’s index in the beam gets closer to 1, its proximity to
q also decreases.
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If LI(j) > i, then the beam given by
[
v(1,j−1), ...v(i,j−1)

]
is a locally optimal by the definition of a successful step and of

LI(j). Therefore, if LI(j) > i, Lemma 3.6 gives us:

D(v(i,j), q) ≤ αopt ·D(ai, q)

As a result, we need only show that for all steps k < j, the following holds: LI(k) ≤ i.
If LI(j) < i, then D(v(i,j), q) must be upper-bounded by D(v(i−1,j−1), q), as v(i−1,j−1) would be pushed back in the
beam by v(j,LI(j)). Therefore,

D(v(i,j), q) ≤ D(v(i−1,j−1), q)

≤ Γ

α(j−1)−(i−1)
+ αopt ·D(ai−1, q)

If LI(j) = i, we run into two cases. For the case where the neighborhood of some node below v(i,j−1) is explored,
[v(1,j−1), ...v(i,j−1)] must be a locally optimal beam. Therefore, we get:

D(v(i,j), q) ≤ αopt ·D(ai, q)

If v(i,j−1)’s neighborhood is explored we have two (sub-)cases. For the case where v(i,j) = ai, the approximation ratio
trivially holds. Next, consider the case where V(i,j) ̸= ai. Since the slow-preprocessing version of DiskANN is sorted
α-reachable, we can define the following function for any pair (p, q):

f(p, q) =

q, if (p,q) ∈ E
argmin

i∈Nout(p),D(p,i)≤D(p,q)

D(i, q) otherwise

Let ao be the closest vertex to q which is not in the beam. Consider a series of nodes S where

St =

{
v(i,j−1), if t = 1

f(St−1, ao), otherwise

See that Sinf = ao, and by the definition of sorted α-reachability, we have

D(St+1, ao) ≤
D(St, ao)

α

Now, let t be the smallest index such that St’s neighborhood has not been explored by the beam search. Note that such an
index always exists because S1 = v(i,j−1) ̸= ao and Sinf /∈ B, where B denotes the beam)

After j − 1 steps, see that

D(v(i,j−1), q) = β +max

(
αopt,

α2 + 1

α2 − 1

)
·D(a, q)

In addition, we can show after j steps

D(v(i,j), q) ≤
β

α
+max

(
αopt,

α2 + 1

α2 − 1

)
·D(a, q) (11)
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We can now examine If t ≥ 3,

D(St, q) ≤ D(St, ao) +D(ao, q) (triangle inequality)

≤
D(v(i,j−1), ao)

α2
+D(ao, q) (definition of St)

≤
D(v(i,j−1), q) +D(q, ao)

α2
+D(ao, q) (triangle inequality)

≤
D(v(i,j−1), q)

α2
+

α2 + 1

α2
D(ao, q) (definitions of St)

≤
β +max

(
αopt,

α2+1
α2−1

)
·D(ao, q)

α2
+

α2 + 1

α2
D(ao, q) (Equation (11))

≤ β

α2
+

α2 + 1 +max
(
αopt,

α2+1
α2−1

)
α2

D(ao, q) (definitions of St)

≤ β

α2
+max

(
αopt,

α2 + 1

α2 − 1

)
D(ao, q)

For t = 2, we know S2 is an out-neighbor of v. Therefore, we can write

D(a, t) ≤ D(v, a)

α

D(v(i,j−1), St) ≤ D(v, a)

We can also rescale all the distances to make D(a, q) to be unit length, giving us

D(a, q) = 1

D(q, v) ≤ β′ + αopt

where β′ is β after rescaling. In addition, by Equation (2), the distance between St and q is bounded by αopt +
β′

α .

Therefore, we get

D(v(i,j), q) ≤
β

α
+max

(
αopt,

α2 + 1

α2 − 1

)
D(a, q)

and by comparing with equation from induction step

D(v(i,j), q) ≤
Γ

αj−i
+max

(
αopt,

α2 + 1

α2 − 1

)
D(a, q)

Theorem 1.1 (Final convergence bounds). Let G be a DiskANN graph. For any query q, BeamSearch of size L in at most
O(L+ logα

δ
(α−1)ϵ ) steps outputs a set of points {b1, . . . , bL} such that each bj satisfies:

D(bj , q) ≤ ϵ+
α

α− 1
·D(aj , q) for ℓ2 metric D

D(bj , q) ≤ ϵ+
α+ 1

α− 1
·D(aj , q) for any metric D

where aj is the jth nearest neighbor to q.

Proof. Combining Lemma B.1 and Lemma B.2 we get that after i steps the following inequality holds,

D(v(l,i), q) ≤
Γ

αi−l
+max

(
αopt,

α2 + 1

α2 − 1

)
D(a, q)
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which can be seen as parallel from inequality (1) from Theorem 3.4 in (Indyk & Xu, 2024). Further substituting the value of
αopt from Lemma 3.8 for general metric and from Lemma 3.9 for Euclidean metric and following the proof similar to that
of (Indyk & Xu, 2024) we get our main result.
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