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Abstract
Despite achieving promising fairness-error trade-
offs, in-processing mitigation techniques for
group fairness cannot be employed in numerous
practical applications with limited computation
resources or no access to the training pipeline of
the prediction model. In these situations, post-
processing is a viable alternative. However, cur-
rent methods are tailored to specific problem set-
tings and fairness definitions and hence, are not as
broadly applicable as in-processing. In this work,
we propose a framework that turns any regular-
ized in-processing method into a post-processing
approach. This procedure prescribes a way to
obtain post-processing techniques for a much
broader range of problem settings than the prior
post-processing literature. We show theoretically
and through extensive experiments that our frame-
work preserves the good fairness-error trade-offs
achieved with in-processing and can improve over
the effectiveness of prior post-processing meth-
ods. Finally, we demonstrate several advantages
of a modular mitigation strategy that disentangles
the training of the prediction model from the fair-
ness mitigation, including better performance on
tasks with partial group labels.1

1. Introduction
As machine learning (ML) algorithms are deployed in ap-
plications with a profound social impact, it becomes crucial
that the biases they exhibit (Bickel et al., 1975; Dastin, 2018;
Mehrabi et al., 2021) are properly mitigated. Of particular
importance is being equitable with respect to the different
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Figure 1: Inference with FRAPPÉ and in-processing.
FRAPPÉ methods add the output of post-hoc module TPP to
the unfair scores output by pre-trained model fbase. Unlike
prior post-processing methods, FRAPPÉ does not require
sensitive attributes for inference. While in-processing trains
the entire prediction model fIP to induce fairness, FRAPPÉ
only trains the post-hoc module. Note that, for classification,
thresholding the predicted scores yields outputs Ŷ , while
for regression Ŷ coincides with the score.

subgroups in the data (i.e. group fairness) where groups are
determined by sensitive demographic attributes such as race,
sex, age, etc (Barocas et al., 2023). To operationalize fair-
ness, one can choose between the several dozen alternative
definitions of fairness (Narayanan, 2018; Hort et al., 2023)
capturing different notions of equity.

One of the most studied mitigation paradigms for group
fairness is in-processing (Hort et al., 2023), which changes
the training procedure, for instance, by adding a fairness
regularizer or constraint to the training loss. In addition
to their good performance, in-processing methods are ap-
pealing thanks to their broad applicability: to induce a new
notion of fairness, one simply needs to quantify fairness
violations and use that as a regularizer or constraint to train
a new prediction model.

In practice, however, retraining the prediction model to in-
duce fairness is often infeasible. For example, complex pre-
diction models are challenging to retrain when only limited
computational resources are available (Cruz & Hardt, 2023).
To make matters worse, there is often no access to the param-
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eters of the prediction model, which can only be queried to
produce outputs (e.g. logits) for the provided inputs. For in-
stance, when using one of the increasingly popular AutoML
platforms (He et al., 2021), one often has little to no control
over the training objective, making it impossible to induce
the desired fairness notion via in-processing. Additionally,
in-processing might not be effective in a multi-component
system, as prior research on compositional fairness (Dwork
& Ilvento, 2018; Atwood et al., 2023) shows that debias-
ing each component individually might not lead to a fair
outcome.

In these situations, post-processing techniques offer the
most compelling way to ensure fair predictions via a post-
hoc module that transforms the outputs of a pre-trained base
model (Figure 1). However, current post-processing tech-
niques are not nearly as broadly applicable as in-processing.
The recent survey of Hort et al. (2023) found that over
200 methods (out of 341 surveyed approaches) used in-
processing, covering a broad class of fairness definitions
and problem settings. In contrast, the survey identifies only
56 post-processing methods which are tailored to specific
problem settings (e.g. problems with binary sensitive at-
tributes (Pleiss et al., 2017; Kim et al., 2020)) and specific
fairness definitions (e.g. Hardt et al. (2016) focuses on equal
opportunity/odds; Xian et al. (2023) considers statistical
parity). The recent method of Alghamdi et al. (2022) sig-
nificantly extends the applicability of post-processing but is
still confined to problems with discrete sensitive attributes
and notions of fairness based on a conditional mean score.

Furthermore, existing post-processing methods require that
sensitive attributes are known at inference time, despite it
being often untenable in practice (Veale & Binns, 2017).
This complex landscape leads to the question:

Can we design a post-processing module to induce group
fairness which satisfies the following desiderata?

D1. Works for any pre-trained models that output scores
(e.g. logits, continuous labels).

D2. Can trade off fairness and prediction error effectively
for any quantifiable notion of fairness.

D3. Does not require sensitive attributes at inference time.

To answer this question, in this work we propose a Fair-
ness Framework for Post-Processing Everything (FRAPPÉ)
that turns any regularized in-processing method into a post-
processing approach. As highlighted in Figure 2, the re-
sulting method is modular, namely it decouples training
the (unfair) base model from learning the post-hoc module
TPP(X). Importantly, FRAPPÉ methods are designed to
allow training the post-hoc module using any arbitrary fair-
ness regularizer. Finally, the post-hoc module of FRAPPÉ
methods models a function of covariates X , thus not requir-
ing explicit knowledge of the sensitive attributes at inference
time, as shown in Figure 1.

Figure 2: FRAPPÉ and in-processing training objectives.
Unlike existing post-processing techniques, FRAPPÉ meth-
ods can be trained with any in-processing fairness regu-
larizer Lfair (orange box). In contrast to in-processing,
FRAPPÉ only trains the post-hoc module TPP(X) instead of
the entire prediction model f . Loss terms are computed on
data that is labeled, unlabeled or annotated with sensitive at-
tributes, as indicated. dpred measures the difference between
the outputs of the base and the fair models (see Section 3).

Our contributions are as follows:
1. Motivated by our theoretical result that establishes a

connection between the in- and post-processing training
objectives, we propose a novel framework to train a mod-
ular post-processing method using an in-processing fair-
ness regularizer (Section 3). The procedure is designed
to solve the limitations of prior in- and post-processing
approaches captured by desiderata D1 – D3.

2. We complement the theoretical findings with extensive
experiments (Section 5) which show that FRAPPÉ meth-
ods do not degrade the fairness-error trade-off of their
in-processing counterparts for several in-processing reg-
ularizers targeting different fairness definitions (Min-
Diff (Prost et al., 2019) for equal opportunity, Cho et al.
(2020) for statistical parity, Mary et al. (2019) for equal
odds) and various commonly used datasets (Adult, COM-
PAS, HSLS, ENEM, Communities & Crime).

3. We demonstrate empirically the advantages of our frame-
work’s modular design. Unlike prior post-processing
techniques, FRAPPÉ can induce any notion of group fair-
ness. Moreover, even when prior approaches are appli-
cable, our experiments reveal that FRAPPÉ methods are
on par or better compared to competitive post-processing
techniques such as Alghamdi et al. (2022). Finally, we
provide evidence that modular FRAPPÉmethods can per-
form significantly better than their in-processing coun-
terparts on data with partial group labels, when sensitive
annotations are scarce (Section 5.3).

2. Problem setting
We consider prediction tasks where the goal is to predict
labels y ∈ Y (discrete in classification, or continuous for
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regression) from covariates x ∈ X with low prediction error.
A simple learning algorithm, Empirical Risk Minimization
or ERM (Vapnik, 1991), that minimizes the prediction loss
on an i.i.d. dataset is known to achieve great average-case
error. However, this simple strategy does not guarantee good
fairness (Menon & Williamson, 2018; Chen et al., 2018;
Zhao & Gordon, 2019; Sagawa et al., 2020; Bardenhagen
et al., 2021; Sanyal et al., 2022). In applications where
fairness is important, it is necessary to adjust the learning
algorithm to promote greater equity.

Group fairness. A common fairness consideration is the
model impact on sensitive groups. In the framework of
group fairness, there exists a sensitive attributeA (discrete or
continuous) with respect to which we expect an algorithm to
be equitable. Different flavors of group fairness are captured
formally by different definitions, e.g. statistical parity (SP)
(Calders et al., 2009; Dwork et al., 2012), equal opportu-
nity (EqOpp), equalized odds (EqOdds) (Hardt et al., 2016).
We refer to Barocas et al. (2023) and the respective prior
works for details on these fairness definitions. Since fair-
ness and predictive performance are often at odds (Menon
& Williamson, 2018; Chen et al., 2018; Zhao & Gordon,
2019), the literature focuses on achieving a good trade-off.
Two remarkably effective paradigms at reaching a good
fairness-error trade-off in practice are in-processing and
post-processing (Caton & Haas, 2023; Hort et al., 2023).2

In-processing for group fairness. Methods in this cate-
gory seek to optimize a prediction loss (e.g. cross-entropy,
mean squared error) while at the same time encouraging
the prediction model to be fair. Regularized in-processing
methods (Beutel et al., 2019; Prost et al., 2019; Mary et al.,
2019; Cho et al., 2020; Lowy et al., 2022) consider an opti-
mization objective with a fairness violation penalty added
to the prediction loss as a regularization term (Figure 2).

Post-processing for group fairness. To induce fairness,
post-processing techniques (Hardt et al., 2016; Kamiran
et al., 2018; Nandy et al., 2022; Alghamdi et al., 2022;
Cruz & Hardt, 2023) adjust the scores output by a pre-
trained prediction model fbase. The current literature on post-
processing methods for classification or regression focuses
exclusively on group-dependent transformations ffair(x) =
TA(fbase(x)), where fbase and ffair are the pre-trained and
the fair models, respectively. The post-hoc transformation
(or post-hoc module) TA is selected based on the value of
the sensitive attribute A, from a set containing one learned
transformation for each possible value of A.

2There also exist pre-processing approaches (Zemel et al., 2013;
Madras et al., 2018; Lahoti et al., 2019) that try to debias the data
distribution. However, their performance in practice is usually
significantly worse compared to in- and post-processing methods
(Zehlike et al., 2021; Caton & Haas, 2023; Hort et al., 2023).

3. Proposed framework
In this section we introduce the FRAPPÉ framework that
transforms a regularized in-processing method for group
fairness into a post-processing one.3 Unlike prior post-
processing approaches, instead of a group-dependent trans-
formation that depends explicitly on the sensitive attribute,
FRAPPÉ methods employ an additive term that is a function
of all covariates x (the choice of the additive transformation
is explained in Section 3.2):

ffair(x) = fbase(x) + TPP(x). (1)

In what follows, we argue that FRAPPÉ methods are specif-
ically designed to overcome the shortcomings of prior post-
processing approaches captured in desiderata D1 – D3 (and
discussed in more detail in Section 6), while also enjoying
the advantages of a modular design (e.g. reduced computa-
tion time, no need to access training pipeline and data).

3.1. Theoretical motivation: An equivalence between
in- and post-processing for GLMs

We begin by motivating the proposed method by establish-
ing a connection between a regularized in-processing ob-
jective and a bi-level optimization problem akin to post-
processing. To illustrate this intuition, we consider predic-
tors that are generalized linear models (GLM) (Nelder &
Wedderburn, 1972) and take the form fθ(x) = ψ(θ>x)
for parameters θ ∈ RD and a link function ψ : R → R
(e.g. identity or sigmoid, for linear or logistic regression,
respectively). Given datasets Dpred = {(xi, yi)}ni=1 and
Dsensitive = {(xj , yj , aj)}mi=1 drawn i.i.d. from the same
distribution4, we analyze generic regularized optimization
problems of the form

OPTIP(θ;λ) =
1

n

∑
(x,y)∈Dpred

Lpred(x, y;θ)

+ λLfair(θ;Dsensitive), (2)

where Lpred is the prediction loss and Lfair is an arbitrary
regularizer capturing a fairness violation penalty. We con-
sider loss functions that can be written as

Lpred(x, y;θ) = F (θ)− θ>G(x, y), (3)

with F : RD → R strictly convex. The function G is a
sufficient statistic with respect to θ and F can be viewed as
a partition function (Wainwright & Jordan, 2008). Standard

3While we focus on regularized in-processing objectives, our
framework can easily be extended to constrained methods as well
(Cotter et al., 2019; Chierichetti et al., 2019; Celis et al., 2019), as
exemplified in Figure 3c for the method of Agarwal et al. (2018).

4Often, in practice, Dpred and Dsensitive may even coincide. We
leave a discussion of the implications of a potential distribution
shift between Dpred and Dsensitive as future work.
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loss functions for linear regression (e.g. mean squared error)
or classification (e.g. logistic loss) follow this pattern.

For every optimization problem that takes the form in Equa-
tion (2), consider the following corresponding bi-level opti-
mization problem:

OPTPP(θ;λ) = DF (θ,θbase) + λLfair(θ;Dsensitive),

with θbase := argmin
θ

1

n

∑
(x,y)∈Dpred

Lpred(x, y;θ), (4)

where we denote by DF (θ,φ) := F (θ) − F (φ) −
∇F (φ)>(θ−φ) the Bregman divergence (Bregman, 1967)
of the partition function F (θ). Intuitively, the first term en-
courages that the outputs produced by the GLMs determined
by θ and θbase are similar.

Example for linear regression. For instance, for linear
regression and the mean squared error (MSE), the link
function is the identity ψ(z) = z, and the loss func-
tion can be written as `MSE(x, y;θ) = ‖θ>x − y‖2 =
θ>xx>θ − 2yθ>x + c, for a constant c ≥ 0. It follows
that the Bregman divergence of F (θ) = θ>xx>θ is given
by DF (θ,φ) = (θ−φ)>xx>(θ−φ) = ‖θ>x−φ>x‖2,
namely the MSE between the outputs of the models param-
eterized by θ and φ, for arbitrary θ,φ ∈ RD.

Equivalence between OPTIP and OPTPP. The follow-
ing result establishes a connection between the optimization
objectives OPTIP (Equation (2)) and OPTPP (Equation (4))
introduced above (the proof is provided in Appendix A).

Proposition 3.1. Consider the optimization objectives in-
troduced in Equations (2) and (4). There exists a constant
C ∈ R such that for any θ ∈ RD and λ ≥ 0 we have

OPTPP(θ;λ) = OPTIP(θ;λ) + C. (5)

It follows from Proposition 3.1 that minimizing OPTIP and
OPTPP leads to the same solution, for any choice of the
regularizer Lfair and the regularization strength λ. In the
context of fairness, this result implies that sweeping over the
hyperparameter λ gives rise to identical fairness-error Pareto
frontiers between any regularized in-processing and the
corresponding post-processing method trained with OPTPP.
Moreover, since the two optimization problems are identical
up to a universal constant, properties established for an in-
processing objective (e.g. smoothness (Cho et al., 2020),
convergence rate of gradient descent (Lowy et al., 2022),
etc) carry over intrinsically to the OPTPP counterpart.

3.2. Proposed post-processing framework

We now describe how to turn the insights revealed by Propo-
sition 3.1 into a practical framework for training a post-
processing method for group fairness with an in-processing

objective. Moreover, we extend the intuition developed for
GLMs to more generic function classes.

First, as mentioned before, numerous in-processing fair-
ness mitigations (Prost et al., 2019; Mary et al., 2019; Cho
et al., 2020; Lowy et al., 2022) consider optimization objec-
tives that can be written like OPTIP, where the regularizer
Lfair captures a fairness violation penalty. On the other
hand, the bi-level problem OPTPP can be used to train a
post-processing method, where the inner optimization corre-
sponds to obtaining the pre-trained model parameters θbase.
While Proposition 3.1 only holds for GLMs, both the OPTIP
objective and OPTPP can be considered in the context of
training more generic model classes (e.g. neural networks).

Furthermore, recall that post-processing methods only mod-
ify the outputs of a pre-trained model, instead of training a
model from scratch. The GLM scenario introduced above
suggests to choose this post-hoc transformation to have the
following additive form: ffair(x) = ψ((θbase + θT)

>x). In
particular, depending on the link function ψ, the post-hoc
transformation can be additive in output space (e.g. for linear
regression) or logit space (e.g. for logistic regression). More
generally, we can use the intuition developed for GLMs to
propose the following post-processing transformation of a
pre-trained model for regression and classification:

ffair(x) = fbase(x) + TPP(x), (6)

where, for classification, fbase(x) and ffair(x) produce vec-
tors of unnormalized logits. Importantly, FRAPPÉ methods
only train the fairness correction TPP(x) which is often sig-
nificantly less complex than the prediction model fbase(x),
thus decreasing training time compared to in-processing.

In conclusion, for an arbitrary in-processing method that
solves a regularized objective like Equation (2), our frame-
work constructs the following optimization problem:

TPP := argmin
T

1

|Dpp|
∑
x∈Dpp

dpred((fbase + T )(x); fbase(x))

+ λLfair(fbase + T ;Dsensitive), (7)

where the two terms are computed on datasets Dsensitive =
{(xi, yi, ai)}mi=1 and Dpp = {xi}ui=1 drawn i.i.d. from the
same distribution. Here Lfair is the in-processing fairness
regularizer, and dpred is the Bregman divergence in OPTPP or
some other notion of discrepancy between the outputs of the
ffair and fbase models (e.g. KL divergence for classification).

Unlike in-processing, FRAPPÉ is modular and can find a
different fairness-error trade-off or mitigate fairness with
respect to a different definition (e.g. SP, EqOdds, EqOpp)
by just retraining the simple additive term TPP, instead of
always retraining a new model ffair from scratch (i.e. only
modules in the green boxes in Figure 1 need to be retrained).
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(a) OPTIP = MinDiff.
Dataset: HSLS.
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(b) OPTIP = Cho et al. (2020).
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(c) OPTIP = Reductions.
Dataset: HSLS.
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(d) OPTIP = Mary et al. (2019).
Dataset: Communities & Crime.

Figure 3: Inducing three different definition of fairness (EqOpp, SP, and EqOdds) using in-processing methods and their
FRAPPÉ post-processing variant leads to similar Pareto frontiers. Thanks to their modular design, FRAPPÉ methods only
need to retrain the post-hoc transformation TPP(x), instead of the entire prediction model. Appendix D.1 shows similar
results on the Adult, COMPAS and ENEM datasets. Notably, FRAPPÉ Mary et al. (2019) is the first post-processing method
that can operate on data with continuous sensitive attributes, such as Communities & Crime.

Finally, minimizing the dpred term does not require labeled
training data, which makes this procedure suitable when
either the labels Y or the sensitive attributes A are difficult
to collect (Awasthi et al., 2021; Prost et al., 2021). This
observation is particularly important for mitigating the lim-
itations of in-processing on data with partial group labels,
when |Dsensitive| is small, as discussed in Section 5.3.

3.3. Connection to related prior works

The objective in Equation (7) can be seen as a two-step
boosting algorithm (Schapire, 1990), where the second step
corrects the unfairness of the model fbase obtained after
the first step, similar to Liu et al. (2021); Bardenhagen
et al. (2021). This formulation of post-processing is also re-
lated to post-hoc methods for uncertainty calibration (Pleiss
et al., 2017; Kumar et al., 2019), as well as techniques for
model reprogramming, such as Zhang et al. (2023) (see Ap-
pendix D.3 for more details). The additive post-hoc transfor-
mation that we employ has been considered in the past by
works that focus exclusively on disparate performance and
use a group-dependent logit adjustment to improve worst-
group error (Khan et al., 2018; Cao et al., 2019; Menon et al.,
2021a). Furthermore, the idea of reusing the in-processing
optimization objective to train a post-processing method is
reminiscent of recent works on group distributionally robust
optimization (Sagawa et al., 2020), which show that last
layer retraining is equivalent to training the entire neural net-
work (Menon et al., 2021b; Shi et al., 2023; LaBonte et al.,
2023). Finally, similar to our approach, unlabeled data has
also been used to improve the trade-off between standard
and robust error in the context of adversarial robustness
(Carmon et al., 2019; Raghunathan et al., 2020).

4. Experimental setup
We compare different fairness mitigation techniques by in-
specting their fairness-error Pareto frontiers, obtained after
varying the λ hyperparameter in Equations (2) and (7). We

quantify fairness violations with metrics tailored to each
specific fairness definition: the FPR gap for EqOpp, the
difference in SP for SP, and the mean equalized odds vi-
olation for EqOdds. For EqOdds, we also employ the
same evaluation metric as Mary et al. (2019), namely
HGR∞(f(X), A|Y ) ∈ [0, 1], which takes small values
when predictions f(X) and sensitive attributes A are condi-
tionally independent given true labels Y (see Appendix C.1
for details). For all metrics we report the mean and standard
error computed over 10 runs with different random seeds.

In-processing baselines. To induce these notions of fair-
ness, we use the FRAPPÉ framework to obtain a post-
processing counterpart for several in-processing methods.
We aim to cover a diverse set of regularized in-processing
methods that have been demonstrated to perform well in
recent thorough experimental studies (Cho et al., 2020; Jung
et al., 2022; Lowy et al., 2022; Alghamdi et al., 2022).
We identify the following as particularly competitive in-
processing methods: i) for EqOpp, we consider MinDiff
(Beutel et al., 2019; Prost et al., 2019); ii) for SP, the method
of Cho et al. (2020); and iii) for EqOdds, Reductions (Agar-
wal et al., 2018) and the method of Mary et al. (2019). We
consider the KL divergence and the MSE as dpred in Equa-
tion (7), for classification and regression, respectively.

Datasets. We conduct experiments on standard datasets
for assessing fairness mitigation techniques, namely Adult
(Becker & Kohavi, 1996) and COMPAS (Angwin et al.,
2016), as well as two recently proposed datasets: the high-
school longitudinal study (HSLS) dataset (Jeong et al.,
2022), and ENEM (Alghamdi et al., 2022). We also eval-
uate FRAPPÉ on data with continuous sensitive attributes
(i.e. the Communities & Crime dataset (Redmond, 2009)), a
setting where prior post-processing works cannot be applied.
Appendix C.2 provides more details about the datasets.

Prediction models. We consider a broad set of model
classes, varying from multi-layer perceptrons (MLPs) or
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Figure 4: Comparison between FRAPPÉ MinDiff for EqOdds and the best-performing post-processing method (Alghamdi
et al., 2022), for random forest pre-trained models. See Figure 10 for a comparison with more post-processing baselines.
While in-processing MinDiff cannot be used with non-gradient based models, FRAPPÉ MinDiff performs on-par or better
than competitive post-processing approaches such as Alghamdi et al. (2022), even when the post-hoc transformation is as
simple as linear regression or a 1-MLP.

gradient-boosted machines (GBMs), to non-gradient based
models such as random forests (RFs). Both the in-
processing and the pre-trained model are selected from these
model classes. For FRAPPÉ, the post-hoc module TPP(X)
is a much less complex model, e.g. linear regression.

Finally, the inherent fairness-error trade-off can pose serious
challenges for hyperparameter tuning (Cruz et al., 2021).
We adopt the standard practice in the literature, and select
essential hyperparameters such as the learning rate so as
to minimize prediction error on a holdout validation set,
for all the baselines in our experiments. We defer further
experimental details to Appendix C.4.

Inducing fairness with partial group labels. Often, in
practice, it is challenging to collect data with sensitive at-
tributes, e.g. users of an online service may not be willing to
disclose their gender, ethnicity etc (Hashimoto et al., 2018;
Coston et al., 2019; Lahoti et al., 2020; Liu et al., 2021;
Bardenhagen et al., 2021; Awasthi et al., 2021; Prost et al.,
2021). Therefore, the size of Dsensitive used to train fairness
mitigations is significantly reduced, while Dpred may still
be fairly large. In Section 5.3 we present experiments on
data with partial group labels, in which Dpred and Dpp from
Equations (2) and (7) consist of all the available training
data, while Dsensitive contains only a fraction of this data,
annotated with sensitive attributes.

5. Experimental results
In this section, we show empirically that FRAPPÉ methods
satisfy the desiderata from Section 1. More specifically, we
show in extensive experiments that FRAPPÉ methods pre-
serve the competitive fairness-error trade-offs achieved with
in-processing techniques, for various notions of fairness
(D2), while enjoying the advantages of a post-processing
method and being entirely agnostic to the prediction model
class (D1). Moreover, FRAPPÉ methods perform on par

or better than existing post-processing approaches, without
requiring that sensitive attributes be known at inference time
(D3). Finally, the FRAPPÉ framework helps to make post-
processing fairness mitigations more broadly applicable,
providing, for instance, the first post-processing method for
data with continuous sensitive attributes.

5.1. Can FRAPPÉ perform as well as in-processing?

The data processing inequality (Cover & Thomas, 1991)
suggests that it may be challenging for post-processing ap-
proaches to match the performance of in-processing meth-
ods. In this section, we demonstrate experimentally that
FRAPPÉ methods preserve the good fairness-error trade-
offs achieved by their in-processing counterparts, for several
different notions of fairness and in-processing techniques.

As suggested by the intuition in Section 3.1, Figure 3 con-
firms that for several fairness definitions it is indeed possible
to match the Pareto frontiers of in-processing methods using
a modular FRAPPÉ variant. We observe the same equiva-
lence on all datasets we considered (Appendix D.1). While
the theoretical result assumes the same function class for the
pre-trained model fbase and the post-hoc module TPP, these
experiments suggest that, in practice, the complexity of TPP
(i.e. linear model) can be significantly smaller than fbase (i.e.
3-layer MLP). Importantly, the FRAPPÉ variant of Mary
et al. (2019) constitutes the first post-processing approach
that can be utilized when the sensitive attributes are continu-
ous. We note that the large error bars in Figure 3d are due to
the challenges of optimizing the loss of Mary et al. (2019),
discussed at length in Lowy et al. (2022).

Computation cost. Since FRAPPÉ methods only train
the post-hoc module instead of the entire prediction model,
they require only a fraction of the computational resources
necessary for in-processing methods. Indeed, it takes 85.4
and 113.4 minutes to obtain the Pareto frontiers of MinDiff
and Cho et al. (2020), respectively, on the Adult dataset.
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Figure 5: In-processing MinDiff and FRAPPÉ MinDiff with partial group labels on the Adult dataset with optimal early-
stopping (ES) regularization. Our post-processing algorithm continues to perform well even in the extreme case where
in-processing cannot outperform the trivial baseline described in Section 5.3.

In contrast, their FRAPPÉ variants only require 11.7 and
14.8 minutes, respectively (including the cost of training the
base model), which is in line with the computation times
we obtain on the same hardware with prior post-processing
approaches (e.g. Alghamdi et al. (2022)). Moreover, the
modular nature of FRAPPÉ significantly reduces the cost
of changing the desired notion of fairness, set of sensitive
attributes, or fairness-error trade-off. For instance, a total of
two base models (one per dataset) has been used for all the
FRAPPÉ runs presented in Figure 3, while in-processing
methods require retraining the entire prediction model from
scratch repeatedly for each point shown in the figures.

5.2. FRAPPÉ compared to other post-processing

Post-processing techniques such as FRAPPÉ methods only
train the post-hoc module instead of the entire prediction
model, and hence, can mitigate group fairness for any class
of prediction models. However, unlike FRAPPÉ, which
can induce any quantifiable notion of fairness, prior post-
processing algorithms are only applicable for specific fair-
ness definitions and problem settings. In this section we
only focus on settings that are compatible with competi-
tive prior post-processing approaches such as FairProjection
(Alghamdi et al., 2022), and show that FRAPPÉ methods
perform on-par or better. To illustrate the versatility of
FRAPPÉ, we consider non-gradient based models (e.g. ran-
dom forests (RF)), for which in-processing techniques such
as MinDiff cannot be applied directly.

In Figure 4 we compare the Pareto frontiers obtained
with FRAPPÉ MinDiff to the recent method of Alghamdi
et al. (2022), which significantly outperforms prior post-
processing approaches. FRAPPÉ MinDiff can sometimes
surpass FairProjection considerably. More specifically, com-
pared to FairProjection, our approach can reduce the MEO
by 53%, 37%, 32% and 50% on Adult, COMPAS, HSLS
and ENEM, respectively, without sacrificing more than

2% of the prediction error. In Appendix D.2 we compare
FRAPPÉ MinDiff with more baselines that perform worse
than FairProjection, and present results with several other
pre-trained model classes, i.e. logistic regression and GBMs.

5.3. Modular methods on data with partial group labels

In this section we demonstrate how FRAPPÉ methods can
alleviate the challenges faced by in-processing, when only
training data with partial group labels is available. We
argue that the good performance of FRAPPÉ in this regime
is due to its modular design and present proof-of-concept
experiments on the Adult dataset. Experiment details are
deferred to Appendix C.4.

Limitations of in-processing with partial group labels.
It has been observed recently that in-processing methods
tend to perform poorly when only partial group labels are
available for training (Jung et al., 2022; Lokhande et al.,
2022; Nam et al., 2022; Sohoni et al., 2022; Zhang et al.,
2023). Our experiments corroborate these findings. In par-
ticular, we observe that minimizing the objective in Equa-
tion (2) can lead to overfitting the fairness regularizer term
Lfair, as shown in Figure 14 in Appendix D.4. Strong
regularization (e.g. early-stopping (Caruana et al., 2000))
can prevent overfitting, but it may induce unnecessary un-
derfitting of the prediction loss Lpred in Equation (2), thus
hurting the fairness-error trade-off. Indeed, Figure 5 reveals
that the performance of in-processing MinDiff deteriorates
significantly on data with partial group labels.

To show how challenging this setting is, we also present,
for reference, the performance of a naive post-processing
baseline that simply outputs the same prediction as the pre-
trained model with probability p, and outputs the more
favorable outcome with probability 1 − p. Varying the
probability p interpolates between prioritizing prediction
error (for p = 1) or fairness (for p = 0). Even though
this baseline is clearly inferior to in-processing when data
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label capital
loss

race age edu-
cation

relation-
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capital
gain

hours
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status

label

TPP(X) | Female

TPP(X) | Male

1 0.13 0.096 0.26 0.32 0.34 0.28 0.27 0.4

0.098 0.026 0.13 0.66 0.056 0.2 0.024 0.37 0.73

0.11 0.19 0.026 0.17 0.29 0.38 0.12 0.058 0.31
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Figure 6: The post-hoc transformation TPP(X) is highly
correlated with features that are predictive of the label (e.g.
marital status, relationship), conditioned on gender.

is plentiful (Figure 5 Left), when only partial group labels
are available (Figure 5 Right), in-processing struggles to
surpass this naive approach.

FRAPPÉ methods with partial group labels. In-
processing approaches train a single model to simultane-
ously minimize both the prediction loss and the fairness
regularizer, and hence, finding the right balance between
under- and overfitting can be challenging. In contrast, the
modular FRAPPÉ methods disentangle the training of the
prediction model from the fairness mitigation, and hence,
allow for finer-grained control of under- and overfitting.

Indeed, Figure 5 shows a significant gap in performance
between MinDiff and its FRAPPÉ variant when sensitive
annotations are scarce, despite their similar performance
whenDsensitive consists of all training data. More specifically,
both in- and post-processing achieve similar low values
of the FPR gap, but only FRAPPÉ can maintain a good
prediction error in addition to good fairness. Futhermore,
we show in Appendix D.5 that FRAPPÉ does not require
early-stopping to outperform (early-stopped) MinDiff, thus
eliminating an important hyperparameter.

5.4. Analysis: What does the post-hoc module capture?

We now provide insights about the information captured in
the learned post-hoc module TPP(X). To this end, we use
the absolute value of the Spearman’s coefficient to measure
the statistical correlation between the values of TPP(X) and
each of the input features, conditioned on the sensitive at-
tribute (i.e. gender). For visualization purposes, we focus
on datasets with a small number of covariates, i.e. Adult and
COMPAS (we defer results on COMPAS to Appendix D.6).

On the one hand, TPP(X) is expected to be correlated with
the sensitive attribute (as illustrated in Appendix D.6), since
it is trained specifically to improve fairness with respect to
that sensitive attribute. On the other hand, the FRAPPÉ post-
hoc module is allowed to depend on all the covariates, not
only the sensitive attribute. Therefore, alongside informa-
tion about gender, TPP(X) can also embed features that help
to achieve a better fairness-error trade-off. Indeed, Figure 6
suggests that TPP(X) tends to be conditionally correlated

with features that are predictive of the class label (e.g. mari-
tal status, relationship). In contrast, a group-dependent trans-
formation (like the ones considered by prior post-processing
methods) would be conditionally independent of all fea-
tures. The explicit dependence of TPP(X) on the entire
X (instead of only A), helps FRAPPÉ methods to achieve
better fairness-error trade-offs than group-dependent post-
processing techniques, as indicated in Section 5.2.

6. Related work
We now highlight the advantages and shortcomings of prior
in- and post-processing methods (summarized in Table 1).

In-processing methods can easily induce virtually any quan-
tifiable notion of group fairness into a prediction model
(Beutel et al., 2019; Prost et al., 2019; Mary et al., 2019;
Cho et al., 2020; Lowy et al., 2022; Baharlouei et al., 2024).
Moreover, different mathematical tools can be used to en-
force a fairness definition, e.g. EqOdds can be induced using
HSIC (Pérez-Suay et al., 2017), Wasserstein distance (Jiang
et al., 2020), exponential Rényi mutual information (Mary
et al., 2019; Lowy et al., 2022), and Rényi correlation (Ba-
harlouei et al., 2019). In particular, the MinDiff method of
Beutel et al. (2019); Prost et al. (2019) uses MMD (Gretton
et al., 2012) to great effect, can be easily scaled to multiple
groups and tasks (Atwood et al., 2023), and is the standard
approach for inducing EqOpp in Tensorflow5 thanks to its
good performance.

On the other hand, in-processing methods require access to
the training pipeline and data as they retrain a new prediction
model. They can incur large computational costs (Alghamdi
et al., 2022; Cruz & Hardt, 2023), and are often tailored to
a specific model family (e.g. gradient-based methods (Prost
et al., 2019; Lowy et al., 2022), GBMs (Cruz et al., 2023)).
Moreover, any change in the fairness definition, the set of
sensitive attributes or the desired fairness-error trade-off
require retraining the entire prediction model from scratch.
These challenges are often cited as important obstacles for
the broad adoption of fairness mitigations in practice (Veale
& Binns, 2017; Holstein et al., 2019).

Post-processing is often more appealing for real-world appli-
cations, since it alleviates the aforementioned shortcomings
of in-processing (i.e. it makes no assumptions on the na-
ture of the pre-trained model and is less computationally
expensive (Alghamdi et al., 2022; Cruz & Hardt, 2023)).
However, current post-processing methods suffer from sev-
eral limitations that hamper their applicability more broadly
in practice. First, existing post-processing approaches are
heavily tailored to specific problem settings (e.g. binary la-
bels (Hardt et al., 2016)) and specific fairness definitions

5https://www.tensorflow.org/responsible_
ai/model_remediation
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(e.g. statistical parity (Xian et al., 2023), or fairness defini-
tions based on conditional mean scores (Wei et al., 2020;
Alghamdi et al., 2022), which do not include, for instance,
fairness notions such as calibration (Pleiss et al., 2017)).

Furthermore, to the best of our knowledge, all prior post-
processing mitigations consist in a group-dependent transfor-
mation applied to a pre-trained model’s outputs. This pattern
has two undesired consequences. First, group-dependent
transformations require that sensitive attributes are known at
inference time. However, in practice, it is often infeasible to
collect sensitive attributes at inference time (e.g. asking for
the ethnicity of a person before predicting their credit score).
Furthermore, attempting to infer the sensitive attribute for
test-time samples is also undesirable, due to ethical con-
cerns (Veale & Binns, 2017; Holstein et al., 2019), and
harms caused by data biases (Chen et al., 2019; Kallus et al.,
2020). Second, prior post-processing approaches only work
with discrete (oftentimes even binary) sensitive attributes
and cannot be applied to problems with continuous A (e.g.
age, income), even though certain in-processing methods
are well-suited for this setting (Mary et al., 2019).

7. Conclusion
In this paper we propose a generic framework for train-
ing a post-processing method for group fairness using a
regularized in-processing objective. We show theoretically
and experimentally that FRAPPÉ methods enjoy the ad-
vantages of post-processing while not degrading the good
fairness-error Pareto frontiers achieved with in-processing.
Unlike prior approaches, our method does not require known
sensitive attributes at inference time, and can induce any
quantifiable notion of fairness on a broad set of problem
settings, including when sensitive attributes are continuous
(e.g. age, income). Finally, we demonstrate how FRAPPÉ
methods can alleviate the drop in performance that affects
in-processing when only partial group labels are available.

Impact statement
The framework proposed in this work significantly expands
the range of problem settings where post-processing mitiga-
tion techniques can be applied. In particular, FRAPPÉ meth-
ods can be employed to induce fairness in applications with
limited computational resources or with no access to the
training pipeline and training data of the prediction model.
In addition, FRAPPÉ post-processing methods can help to
overcome challenges faced by in-processing methods such
as compositional fairness problems (Dwork & Ilvento, 2018;
Atwood et al., 2023).

In contrast to FRAPPÉmethods, which are trained on triples
(Ŷ , A, Y ), prior post-processing methods require access to
(X,A, Y ) for training. However, even for prior methods,

access to the features X is still necessary in order to obtain
the predictions Ŷ . Regarding the computation time required
to train FRAPPÉ methods, we note that it is similar to other
competitive post-processing methods (e.g. Alghamdi et al.
(2022)). Both FRAPPÉ methods and prior post-processing
techniques perform certain computations to find an appropri-
ate post-hoc transformation. In the case of our approach, it
suffices to optimize the parameters of a simple linear regres-
sion model to obtain the results shown in our experiments.

When it comes to evaluating algorithmic fairness, popular
datasets such as Adult and COMPAS suffer from several
limitations which have been pointed out a number of recent
works (Bao et al., 2021; Ding et al., 2021; Alghamdi et al.,
2022). For this reason, we also report our main experimental
results of Sections 5.1 and 5.2 on two recently proposed
datasets, HSLS (Jeong et al., 2022) and ENEM (Alghamdi
et al., 2022), which specifically address concerns raised
about Adult and COMPAS.

Finally, our work does not attempt to provide new argu-
ments in favor of algorithmic fairness. As frequently noted
in the ML fairness literature (Corbett-Davies et al., 2017;
Kasy & Abebe, 2021; Bao et al., 2021; Barocas et al., 2023),
algorithmic interventions to induce fairness are not always
aligned with the intended societal impact. Therefore, it re-
mains the object of active research whether notions such as
SP, EqOdds and EqOpp are suitable for evaluating the in-
equity of decision systems (Buyl & De Bie, 2022; Ruggieri
et al., 2023; Majumder et al., 2023). Furthermore, we note
that our work focuses specifically on mitigating group fair-
ness. Investigating whether our findings also apply to other
notions of equity, such as individual fairness (Dwork et al.,
2012), remains an important direction for future work.
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A. Proof of Proposition 3.1
Proposition A.1. Consider the optimization objectives introduced in Equations (2) and (4). There exists a constant C ∈ R
such that for any θ ∈ RD and λ ≥ 0 we have

OPTPP(θ;λ) = OPTIP(θ;λ) + C. (5)

Proof. By the definition of θbase and from the first order optimality condition it holds that:

∇F (θbase) =
1

n

∑
i∈[n]

G(xi, yi).

Plugging this identity into the Bregman divergence of the strongly convex function F (θ) allows us to write it as follows:

DF (θ,θbase) = F (θ)− θ> 1

n

∑
i∈[n]

G(xi, yi)

+ θ>base
1

n

∑
i∈[n]

G(xi, yi)− F (θbase)

=
1

n

∑
i∈[n]

Lpred(xi, yi;θ) + C,

where we use the notation C = θ>base
1
n

∑
i∈[n]G(xi, yi)− F (θbase) for the terms that are independent of θ.

Rearranging the terms yields that OPTPP(θ;λ) = OPTIP(θ;λ) + C which concludes the proof.

B. More related work
First, in order to help position our work in the existing in- and post-processing literature, we present in Table 1 the specific
shortcomings that we target with the desiderata D1 – D3 introduced in Section 1.

Method
Require changing
prediction model

Require access to
training pipeline / data

Computa-
tion cost

Sensitive
attribute A

Requires A
for inference Fairness definition

In-processing methods
e.g. Agarwal et al. (2018); Prost et al. (2019),
Mary et al. (2019); Cho et al. (2020)

Yes Yes High Any No Any fairness penalty

Existing post-processing methods
e.g. Hardt et al. (2016); Kamiran et al. (2018),
Alghamdi et al. (2022); Xian et al. (2023)

No No Low Discrete Yes
Tailored to specific
fairness definitions

FRAPPÉ methods No No Low Any No Any fairness penalty

Table 1: In-processing requires retraining the entire prediction model to induce fairness, but can be applied to a broad range
of problem settings and to virtually any quantifiable notion of fairness. On the other hand, current post-processing methods
are tailored to specific settings and fairness definitions. In contrast, FRAPPÉ methods are as broadly applicable as penalized
in-processing methods, while not being confined to applications with access to the training pipeline of the prediction model.

In the remainder of this section we elaborate on some of the limitations of in-processing that have been previously
documented in the literature and have not been discussed extensively in Section 6.

In-processing and compositional fairness. It is often the case, in practical applications that multiple prediction models
are employed, and their outputs are then all aggregated into a single decision. For instance, a candidate may apply for
several jobs, each with their own selection criteria, but the outcome that is of interest to the candidate is whether at least one
of the applications is successful. Similarly, complex decision problems may be broken down into finer grained tasks for
the purpose of better interpretability. These situations are prone to compositional fairness issues (Dwork & Ilvento, 2018):
even if all individual components are fair, it is not guaranteed that the aggregated decision will also be fair. In-processing

14



A Group Fairness Framework for Post-Processing Everything

techniques are inherently susceptible to limitations due to compositional fairness (Atwood et al., 2023). Indeed, in order
to mitigate these issues, in-processing method could train all individual models simultaneously while enforcing that the
aggregated decision is fair. However, this procedure raises huge logistical challenges which are often insurmountable in
practice. In contrast, post-processing bypasses compositional fairness issues altogether. Applying a post-processing method
to the final decision of a complex system with multiple prediction components that are aggregated into a single decision
can treat the entire decision system as a black-box and overcome limitations due to compositional fairness. A thorough
investigation of this intuition is left as future work.

In-processing when data has partial group labels. In addition to the works mentioned in Section 5.3, there have been
a few empirical observations that attempt to study this problem. In particular, Veldanda et al. (2023) investigate the
performance of MinDiff (Prost et al., 2019) in the overparameterized regime, where the complexity of the model fit to
the training data increases while the sample size stays fixed. The authors show in experiments on image data that explicit
regularization (e.g. early stopping) can improve the performance of MinDiff with overparameterized models. However, the
impact of overparameterization on the fairness-error Pareto frontiers is not studied in detail.

Furthermore, Lowy et al. (2022) present experiments where the amount of data with sensitive annotations is reduced to
10%. In this case, the authors aim to compare their proposed method to other in-processing strategies, but no catastrophic
loss in performance is noticeable. We hypothesize that this is due to the amount of data with sensitive attributes being still
large enough to allow for good performance. In particular, our experiments (Figure 5) reveal that when the sensitive data is
reduced to 0.1% of the training set size, on Adult in-processing performs no better than the naive strategy of predicting the
favorable outcome with probability p and the output of the pre-trained model with probability 1− p.

C. Experiment details
C.1. Details on fairness definitions

In this section, we provide more details about the notions of group fairness used throughout this paper. We note that this
is not an exhaustive list of fairness definitions, and other notions are possible and considered in the literature too (e.g.
worst-group error). We refer to surveys such as Caton & Haas (2023) books like Barocas et al. (2023) for more details.

Statistical parity (SP). Also known as demographic parity, SP measures the difference between the frequency of favorable
outcomes in the subpopulations determined by the values of the sensitive attribute A (Dwork et al., 2012). To quantify the
violation of the SP condition, several works (Donini et al., 2018; Jiang et al., 2020; Cho et al., 2020) consider the difference
with respect to statistical parity. Assuming that the favorable outcome is y = 1, this quantity is defined as follows:

DSP(f) =
∑
a

|P(f(X) = 1|A = a)− P(f(X) = 1)|, (8)

where the sum is over all the possible values of the sensitive attribute. Note that the sum can also be replaced with a “max”
operator in the formulation above.

Equal opportunity (EqOpp). This fairness definition is tailored for settings with discrete labels y and sensitive attributes
a. Intuitively, EqOpp asks that a classifier is not more likely to assign the favorable outcome to one of the groups determined
by the (discrete) sensitive attribute a. Assuming the negative class y = 0 is more desirable, one can quantify the fairness of
a binary predictor using the following:

FPRgap(f) = |P(f(X) 6= Y |Y = 0, A = 0)− P(f(X) 6= Y |Y = 0, A = 1)|. (9)

This metric can also be generalized to multiclass classification.

Equalized odds (EqOdds). This notion of fairness is satisfied if A ⊥ Ŷ |Y . Intuitively, EqOdds penalizes the predictor if
it relies on potential spurious correlations between A and Y. One can quantify the violation of this definition of fairness using
ρ(A, Ŷ |Y ), where ρ is a measure of conditional statistical independence (e.g. HSIC (Gretton et al., 2005), CKA (Cristianini
et al., 2001; Cortes et al., 2012), HGR (Gebelein, 1941) etc). One can either use one of these quantities to evaluate the
fairness of a model (e.g. HGR∞(f(X), A|Y ) like in Mary et al. (2019)) or a metric such as mean equalized odds, which,
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for binary classification, can be defined as:

MEO =
TPRgap(f) + FPRgap(f)

2
, (10)

where TPRgap(f) is the gap in the true positive rate between groups and is defined similarly to FPRgap(f).

C.2. Datasets

We briefly describe the datasets used throughout the experiments presented in the paper.

The Adult dataset (Becker & Kohavi, 1996) is perhaps the most popular dataset in the algorithmic fairness literature.
The task it proposes is to predict whether the income of a person is over the 50, 000$ threshold, having access to various
demographic features. In our experiments, we consider gender as the sensitive attribute. We follow the procedure described
in Alghamdi et al. (2022) to pre-process the data.

Alongside Adult, COMPAS (Angwin et al., 2016) is also a well-established dataset for evaluating fairness mitigations. It
contains information about defendents detained in US prisons. The task is to predict the individual risk of recidivism, while
being fair with respect to race. We adopt the pre-processing methodology of Alghamdi et al. (2022) for this dataset.

The Crimes & Communities dataset (Redmond, 2009) is also part of the UCI repository (Dheeru & Karra Taniskidou,
2017), like Adult, and contains information about US cities. The task is a regression problem where the goal is to predict
the amount of violent crimes and the sensitive attribute is the proportion of an ethnic group in the population. Hence, the
sensitive attribute takes continuous values. For this dataset, we use the same pre-processing as Mary et al. (2019).

The HSLS dataset (Jeong et al., 2022) contains information about over 23, 000 students from high schools in the USA.
The features consist in information about the students’ demographic and academic performance, as well as data about the
schools. The data is pre-processed using the same procedure as Alghamdi et al. (2022). The task is to predict exam scores
while being fair with respect to race.

ENEM (Alghamdi et al., 2022) is a dataset of exam scores collected in Brazilian high schools. The dataset contains
demographic and socio-economic information about the students. Once again, we use the same pre-processing methodology
as Alghamdi et al. (2022). Similar to HSLS, the goal is to predict the Humanities exam score, while the sensitive attribute is
race.

C.3. Baselines

We compare the performance of FRAPPÉ methods obtained with our framework with several competitive in- and post-
processing approaches.

In-processing baselines. We consider three different regularized in-processing methods and one constrained in-processing
approach for which we construct FRAPPÉ post-processing counterparts. First, MinDiff (Beutel et al., 2019; Prost et al.,
2019) is an approach that uses MMD (Gretton et al., 2012) to induce the statistical independence required for various
fairness definitions to hold (i.e. EqOpp, EqOdds). The remarkable performance of this method led to it being included in
standard fairness toolkits such as tensorflow-model-remediation.6 Furthermore, the method of Cho et al. (2020)
employs kernel density estimation to construct a regularizer for certain fairness definition violations. In addition to EqOdds,
this method can also be applied to induce SP. Finally, Mary et al. (2019) propose to use the Hirschfeld-Gebelein-Rényi
(HGR) Maximum Correlation Coefficient to quantify statistical independence and propose an unfairness regularizer based
on this metric. Besides these regularized in-processing methods, we also consider the Reductions approach (Agarwal et al.,
2018) in our comparison, which proposes solving a constrained optimization problem. For all the baselines, we use the
hyperparameters recommended in the respective papers.

Post-processing baselines. The FairProjection method of Alghamdi et al. (2022) is, to the best of our knowledge, one of
the best performing post-processing mitigations. FairProjection adjusts the scores output by a classification method, using a
different transformation for each sensitive group in the population. Alternatively, the methods of Hardt et al. (2016); Chzhen
et al. (2020) change the decision threshold in a group-dependent manner. These two approaches do not prescribe a way

6https://www.tensorflow.org/responsible_ai/model_remediation
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to obtain an entire Pareto frontier, but rather a single point on the fairness-error trade-off. Finally, the Rejection-option
classification method of Kamiran et al. (2018) exploits uncertainty in the decision of a classifier to decide what labels to
output. For all of these methods, we use the results from the public code repository of Alghamdi et al. (2022).

C.4. Experiment details for training FRAPPÉ methods

For the comparison with in-processing methods, we use the pre-trained models recommended in the respective papers (i.e.
3-MLP with 128 hidden units on each layer for MinDiff and Cho et al. (2020), and logistic regression for Agarwal et al.
(2018) and Mary et al. (2019). For the FRAPPÉ post-hoc transformation, we use linear regression to model TPP(x). We
select the optimal learning rate by minimizing the prediction error on a held-out validation set. To obtain the Pareto frontiers,
we vary the λ coefficient that balances the prediction error and the fairness regularizer terms in the loss.

For the comparison with prior post-processing works in Section 5.2 we use FRAPPÉ MinDiff. For these experiments, we
employ a variant of MinDiff tailored to EqOdds which encourages not only the FPR gap to be small between sensitive
groups, but also the FNR. Once again, we select the optimal learning rate using a validation set, and train linear regression
and 1-MLP models with 64 hidden units as the TPP(x) post-hoc transformation. The pre-trained models are obtained
following the instructions in Alghamdi et al. (2022).

For the analysis of the post-hoc transformation (Section 5.4), we use a 3-MLP as the pre-trained model and assume TPP(X)
to be a 1-MLP trained using FRAPPÉ MinDiff, like in Section 5.1. We only consider Adult and COMPAS since they have
fewer covariates, which makes them suitable for visualization.

For the experiments with partial group labels in Section 5.3 we consider FRAPPÉ MinDiff for EqOpp, with a 3-MLP
pre-trained model with 128 hidden units on each layer. We use a 1-MLP with 64 hidden units to model the post-processing
transformation. The optimal learning rate and early-stopping epoch are selected so as to minimize prediction error on a
held-out validation set.

C.5. Measuring computation cost

To compare the computation time of FRAPPÉ methods and compare it to the correspoding in-processing methods we
generate Pareto frontiers for each of the settings in Figure 3, where we always select 8 different values for the coefficient
that controls the fairness-error trade-off and repeat each experiment 10 times with different random seeds. In total, for each
of the three settings in Figure 3 we perform 80 experiments sequentially. For the post-processing methods, we include the
time required to train a base model in the reported computation times. The machine we used for these measurements has 32
1.5 GHz CPUs.

D. More experiments
D.1. Equivalence between in- and post-processing on more datasets

Figure 3 demonstrates on the HSLS dataset that FRAPPÉ methods preserve the good fairness-error trade-off achieved by
several regularized in-processing approaches, while also enjoying the advantages of post-processing methods. Figures 7 to 9
complement Figure 3 and present similar results on three more datasets: Adult, COMPAS and ENEM.
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(a) OPTIP = MinDiff on Adult data.
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(b) OPTIP = MinDiff on COMPAS data.
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(c) OPTIP = MinDiff on ENEM data.

Figure 7: Inducing EqOpp using in-processing MinDiff and its FRAPPÉ post-processing variant leads to similar Pareto
frontiers on several different datasets.
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(a) OPTIP = Cho et al. (2020) on Adult.
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(b) OPTIP = Cho et al. (2020) on COMPAS.

0 0.05 0.1 0.15 0.2 0.25

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5 Cho et al (in-proc)

FRAPPÉ Cho et al (post-proc)

ERM

Violation of SP (DSP)

P
r
e
d
ic

t
io

n
 e

r
r
o
r

(c) OPTIP = Cho et al. (2020) on ENEM.

Figure 8: Inducing SP using the in-processing method of Cho et al. (2020) and its FRAPPÉ post-processing variant leads to
similar Pareto frontiers on several different datasets.
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(b) OPTIP = Reductions on COMPAS.
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(c) OPTIP = Reductions on ENEM.

Figure 9: Inducing EqOdds using in-processing Reductions (Agarwal et al., 2018) and its FRAPPÉ post-processing variant
leads to similar Pareto frontiers on several different datasets.

D.2. More comparisons with prior mitigations

In this section we extend Figure 4 with the results obtained with more in- and post-processing baselines. We consider
the same methods as Alghamdi et al. (2022), described in more detail in Appendix C.3. Unless otherwise specified, the
techniques presented in Figure 10 are post-processing approaches. Like in Figure 4, we train FRAPPÉ MinDiff for EqOdds,
where the post-hoc transformation is modeled by either linear regression or a simple 1-MLP with 64 hidden units. The
numbers for all the baselines are collected from the public code of Alghamdi et al. (2022).

In addition to using random forests (RF) as the base model, we also present results for logistic regression and GBMs as the
pre-trained model for all three datasets in Figure 12 and Figure 11, respectively. The figures reveal that the same trends
observed for RF pre-trained models also occur for other classes of pre-trained models.
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(c) HSLS
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(d) ENEM

Figure 10: Comparison between FRAPPÉ MinDiff for EqOdds and several other in- and post-processing methods for
inducing group fairness. The pretrained model is random forest (RF).
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Figure 11: Comparison between FRAPPÉ MinDiff for EqOdds and several other in- and post-processing methods for
inducing group fairness. In contrast to Figure 10, here the pre-trained model is gradient-boosted machine (GBM).
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Figure 12: Comparison between FRAPPÉ MinDiff for EqOdds and several other in- and post-processing methods for
inducing group fairness. In contrast to Figure 10, here the pre-trained model is logistic regression.

D.3. Comparison with model reprogramming

Model reprogramming aims to reuse a pretrained model and adjust the inputs in order to elicit outputs with a desired
property. In particular, for group fairness, Zhang et al. (2022) consider a somewhat similar optimization objective to
FRAPPÉ. However, unlike FRAPPÉ, the method of Zhang et al. (2022) (i.e. Fairness Reprogramming) learns the parameters
of a post-hoc transformation of the inputs of a pre-trained prediction model. On the one hand, on image data, choosing this
transformation to be a border or a patch (see Figure 1 in Zhang et al. (2022)) leads to remarkable results. To illustrate how
FRAPPÉ methods perform on CelebA data, we consider the same experimental setting as in Zhang et al. (2022) and provide
in Figure 13 the Pareto frontier obtained with the FRAPPÉ version of FERMI (Lowy et al., 2022).

Figure 13: FRAPPÉ FERMI leads to similar Pareto frontiers as Fairness Reprogramming (Zhang et al., 2022).

Our experiments reveal that FRAPPÉ FERMI performs similarly to Fairness Reprogramming on this dataset. We note,
however, that unlike Fairness Reprogramming, FRAPPÉ methods do not need to carefully select the family of post-hoc
transformations. For Fairness Reprogramming, this choice has great influence on performance, as indicated, for instance,
by Figures 3 and 4 in Zhang et al. (2022). Moreover, for Fairness Reprogramming the post-hoc transformation is specific
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to a data modality, and different problems may require a human expert to design a set of reasonable candidate post-hoc
transformations.

In fact, for tabular data, results in Zhang et al. (2022) suggest that Fairness Reprogramming performs worse than standard
techniques such as Zhang et al. (2018), which in turn is outperformed by more recent approaches like Cho et al. (2020). We
hypothesize that constructing an appropriate parametric transformation of the inputs (the so-called trigger) for the Fairness
Reprogramming method is more challenging for structured tabular data than it is for image or text modalities. In contrast,
the FRAPPÉ variant of Cho et al. (2020) matches the Pareto frontiers of the in-processing counterpart on several datasets
(including Adult), as indicated in Figures 3b and 8, and thus outperforms both Zhang et al. (2018) and Zhang et al. (2022).

D.4. In-processing MinDiff overfits the fairness regularizer

In this section we provide evidence that suggests that regularized in-processing objectives can overfit the fairness regularizer
when trained on data with partial group labels. In particular, we consider MinDiff run on the Adult dataset. We subsample
the dataset with sensitive attributes to be only 0.1% of the original training data. As described in Section 5.3, we use the
entire training data for the predictive term in the loss.

Figure 14 shows the median EqOpp violation (i.e. the FPR gap) as a function of the number of training epochs of in-
processing MinDiff. The learning curves in the figure indicate that when the data with sensitive attributes is sufficiently large,
the fairness violation is low on both training and test data. However, for partial group labels, in-processing MinDiff quickly
achieves a vanishing fairness regularizer on the training data, while the test FPR gap continues to increase during training.

(a) |Dsensitive| = 100% · |Dpred| (b) |Dsensitive| = 0.1% · |Dpred|

Figure 14: In-processing MinDiff achieves a low FPR both on training and test data if data with sensitive attributes is
plentiful. When only partial group labels are available, the training FPR gap vanishes, while on the test set the unfairness of
the model increases during training. Experiments run on the Adult dataset.

D.5. FRAPPÉ MinDiff without early-stopping for data with partial group labels

Figure 5 shows that with optimal early-stopping regularization, FRAPPÉ MinDiff significantly outperforms its in-processing
counterpart when only partial group labels are available for training. In this section, we present evidence that suggests
that even without early-stopping, FRAPPÉ post-processing can perform well in this setting. In Figure 15 we compare
in-processing MinDiff regularized with early-stopping (like in Figure 5) to FRAPPÉ MinDiff with no regularization. The
Pareto frontier for FRAPPÉ is once again better than for the in-processing method. Moreover, without the need to regularize
the FRAPPÉ method, training does away with careful hyperparameter tuning of the important early stopping iteration.

D.6. More results on what is captured by the learned post-hoc transformation

In this section we complement Figure 6 with additional evidence that the post-hoc transformation learned by FRAPPÉ
methods is correlated not only with the sensitive attribute A, but also with features that are predictive of the target class
label. Figure 17 shows that the same trends observed on COMPAS, also occur for the Adult dataset.

In addition, Figures 18 and 19 show the (absolute value of the) conditional correlation between TPP(X) and each of the
features, given the sensitive attribute A. For reference, a group-dependent transformation, such as the prior post-processing
techniques (Hardt et al., 2016; Alghamdi et al., 2022; Xian et al., 2023) would be constant given A, and hence, statistically
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Figure 15: In-processing MinDiff with early-stopping regularization and FRAPPÉ MinDiff without early-stopping (ES).
On data with partial group labels, the FRAPPÉ method continues to outperform the in-processing variant even without
early-stopping regularization. Experiments run on the Adult dataset.

independent of all the other features. In contrast, the post-hoc transformation learned with FRAPPÉ is highly correlated
with features that are predictive of the class label (e.g. priors count for COMPAS; age, education or marital status for Adult).

race TPP(X) label gender charge
degree

length
of stay

age priors
count

race

TPP(X)

label

1 0.79 0.13 0.064 0.11 0.075 0.19 0.19

0.79 1 0.19 0.27 0.12 0.14 0.1 0.51

0.13 0.19 1 0.13 0.11 0.19 0.19 0.3

Absolute Spearman correlation on COMPAS

0.0

0.2

0.4

0.6

0.8

1.0

Figure 16: The value of the learned post-hoc transformation TPP(X) is highly correlated with both the sensitive attribute (i.e.
race), as well as with features that are predictive of the class label (e.g. priors count).

sex TPP(X) label edu-
cation

marital
status

capital
loss

relation-
ship

capital
gain

age hours
per week

race

sex

TPP(X)

label

1 0.81 0.21 0.0032 0.45 0.043 0.6 0.061 0.099 0.27 0.11

0.81 1 0.12 0.13 0.55 0.052 0.63 0.01 0.081 0.2 0.079

0.21 0.12 1 0.32 0.4 0.13 0.34 0.28 0.26 0.27 0.096

Absolute Spearman correlation on Adult

0.0

0.2

0.4

0.6

0.8

1.0

Figure 17: Counterpart of Figure 16, but for the Adult dataset. The value of the learned post-hoc transformation TPP(X) is
highly correlated with the sensitive attribute (i.e. gender), as well as with features that are themselves correlated with A.
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label gender charge
degree

length
of stay

age priors
count

label

TPP(X) | African-American

TPP(X) | Caucasian

1 0.13 0.11 0.19 0.19 0.3

0.22 0.41 0.21 0.19 0.37 0.81

0.028 0.29 0.61 0.0077 0.55 0.25

Absolute Spearman correlation on COMPAS

0.0

0.2

0.4

0.6

0.8

1.0

Figure 18: Conditional correlation between TPP(X) and each of the features, on the COMPAS dataset. The correlation is
higher for features that are predictive of the label. In contrast, a group-dependent transformation would be conditionally
independent of all features given A.

label capital
loss

race age edu-
cation

relation-
ship

capital
gain

hours
per week

marital
status

label

TPP(X) | Female

TPP(X) | Male

1 0.13 0.096 0.26 0.32 0.34 0.28 0.27 0.4

0.098 0.026 0.13 0.66 0.056 0.2 0.024 0.37 0.73

0.11 0.19 0.026 0.17 0.29 0.38 0.12 0.058 0.31

Absolute Spearman correlation on Adult
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Figure 19: Conditional correlation between TPP(X) and each of the features, on the Adult dataset. The correlation is
higher for features that are predictive of the label. In contrast, a group-dependent transformation would be conditionally
independent of all features given A

D.7. Varying function complexity for fbase and TPP

In this section, we discuss how changing the function class of the prediction model fbase or the post-hoc module TPP impacts
the performance of FRAPPÉ methods.

Figures 10, 11, and 12 show how FRAPPÉ MinDiff compares to several prior approaches when the base model is a random
forest, a gradient-boosted machine or logistic regression, respectively. Notably, the computation cost for training FRAPPÉ
MinDiff is roughly unchanged for all three base model classes.

Furthermore, in each of these figures, we consider two different function classes for the post-processing transformation TPP:
a linear model and a 1-hidden layer multi-layer perceptron. These experiments confirm the intuition that a more expressive
post-hoc transformation for FRAPPÉ can lead to better Pareto frontiers.

Finally, in Figure 20 we highlight how the complexity of the prediction model produced by an in-processing technique
affects the Pareto frontier relative to its FRAPPÉ counterpart. We assume the same prediction tasks for Adult and COMPAS
as in the rest of the paper. More specifically, the left and right panels use the same pre-processing steps as Figures 4b and 8b,
respectively. For this experiment, we consider two different fairness definitions (EqOpp and EqOdds) and two different
classes of base models for FRAPPÉ (3-layer multi-layer perceptron, i.e. 3-MLP, and a gradient-boosted machine, i.e. GBM).
We compare FRAPPÉ MinDiff to two different in-processing methods, MinDiff (Beutel et al., 2019; Prost et al., 2019) and
Reductions (Agarwal et al., 2018). We choose the optimal hyperparameters (e.g. learning rate) using a held-out validation
set and the same methodology as in the rest of the experiments. These experiments reveal that FRAPPÉ methods match the
performance of in-processing with a complex function class F , which in turn outperforms in-processing with a simpler
function class F = linear models.

22



A Group Fairness Framework for Post-Processing Everything

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22
FRAPPÉ (post-proc)

MinDiff w/ 3-MLP (in-proc)

MinDiff w/ linear (in-proc)

Violation of EqOpp (FPRgap)

P
r
e
d
ic

t
io

n
 e

r
r
o
r

(a) Inducing EqOpp on Adult.
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(b) Inducing EqOdds on COMPAS.

Figure 20: FRAPPÉ (in blue) matches the performance of in-processing with the same base model complexity (i.e. in
orange) and outperforms in-processing that uses less complex linear models (in green). For FRAPPÉ, the post-hoc module
is always linear, while the base model is a 3-layer MLP (left) or a GBM (right).
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