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ABSTRACT

We investigate the role of learning rate scheduling in the large-scale pre-training of
large language models, focusing on its influence on downstream performance af-
ter supervised fine-tuning (SFT). Decay-based learning rate schedulers are widely
used to minimize pre-training loss. However, despite their widespread use, how
these schedulers affect performance after SFT remains underexplored. In this pa-
per, we examine Warmup-Stable-Only (WSO), which maintains a constant learn-
ing rate after warmup without any decay. Through experiments with 1B and
8B parameter models, we show that WSO consistently outperforms decay-based
schedulers in terms of performance after SFT, even though decay-based sched-
ulers may exhibit better performance after pre-training. The result also holds
across different regimes with mid-training and over-training. Loss landscape anal-
ysis further reveals that decay-based schedulers lead models into sharper minima,
whereas WSO preserves flatter minima that support adaptability. These findings
indicate that applying LR decay to improve pre-training metrics may compromise
downstream adaptability. Our work also provides practical guidance for training
and model release strategies, highlighting that pre-training models with WSO en-
hances their adaptability for downstream tasks.

1 INTRODUCTION

Learning rate (LR) scheduling is arguably one of the most critical yet operationally challenging as-
pects of large language model (LLM) pre-training. Although Cosine decay has been conventionally
employed in numerous models (Brown et al., 2020; Le et al., 2022; Touvron et al., 2023a), it has
proven inflexible in recent training paradigms such as continual pre-training, as it requires heuristic
tuning of the LR from the decayed value (Hägele et al., 2024; Ibrahim et al., 2024). To address
this inflexibility, recent studies have introduced Warmup-Stable-Decay (WSD), which keeps the LR
constant through most of pre-training and decays it only briefly at the end (Hu et al., 2024; Liu et al.,
2024a; Wen et al., 2025b).

These previous studies, regardless of the details of the design choices, decayed the LRs to optimize
the performance of pre-trained models. However, the more critical factor for real applications is
the performance after post-training, such as supervised fine-tuning (SFT). Drawing on the findings
of Sun & Dredze (2025) and Springer et al. (2025), which show that a strong pre-training model
does not necessarily imply superior performance after SFT, it is questionable to schedule LRs to the
decayed value based on pre-training performance.

In this study, we empirically investigate appropriate LR schedulers during pre-training in terms of
performance after SFT. In particular, we examine an underestimated scheduling, Warmup-Stable-
Only (WSO), which removes the decay phase from WSD and maintains constant LR to the end.
We show that WSO consistently achieves superior performance after SFT compared to decay-based
schedulers, through experiments on 1B and 8B models (Figure 1). Furthermore, we demonstrate
that WSO is also effective under modern training paradigms, including mid-training (OLMo et al.,
2024; Meta, 2024c) and over-training (Sardana et al., 2024; Gadre et al., 2025).

To understand why WSO yields superior SFT performance, we draw on insights from the transfer
learning literature (Ju et al., 2022; Liu et al., 2023), which suggest that models in flatter regions of the
loss landscape tend to exhibit better adaptability. Through an analysis of sharpness values, we show
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Figure 1: Learning rate schedulers used in pre-training and their impact on performance after su-
pervised fine-tuning (SFT). Warmup-Stable-Only (WSO), which removes the decay phase, achieves
the highest performance after SFT.

that models trained with WSO reside in flatter regions than those trained with other decay-based LR
schedulers, and are therefore more adaptable to post-training tasks.

Our contributions are as follows: (1) We demonstrate that WSO consistently outperforms decay-
based schedulers on downstream tasks after SFT, providing comprehensive evidence across 1B and
8B models. (2) We show that WSO similarly benefits mid-training and over-training scenarios,
achieving superior SFT performance compared to conventional decay-based schedulers. (3) We
reveal through loss landscape analysis that WSO preserves flatter minima than decay-based sched-
ulers, explaining why models trained with WSO achieve better performance after SFT.

2 PRELIMINARIES

Recent LLMs are typically built with a staged training scheme. The most common and fundamental
training pipeline consists of two stages, namely pre-training and post-training. In this section, we de-
scribe these training stages and review the LR schedulers commonly employed during pre-training.

Pre-training. Pre-training forms the foundation of LLM development, where models learn general
language understanding from massive text corpora by minimizing the next-token prediction loss.
Recently, pre-training has sometimes consisted of multiple stages: standard pre-training and mid-
training (OLMo et al., 2024). We describe mid-training in detail later (Section 2.2), and conduct
experiments with both the standard pre-training and the multi-stage setup.

Post-training. Post-training adapts pre-trained models to target tasks, enabling them to follow
human instructions and avoid generating harmful outputs. Post-training includes techniques such as
supervised fine-tuning (SFT), preference tuning (e.g., DPO (Rafailov et al., 2023)), and RL-based
alignment (Ouyang et al., 2022). While post-training could be a multi-stage process with many
design choices still under active exploration, SFT is relatively standardized and serves a core stage.
In this paper, we focus on SFT as the canonical post-training stage and evaluate the performance
after SFT1.

2.1 TASK DEFINITION

Practically, LLM developers evaluate models at multiple stages, selecting the best-performing one
as the starting point for the subsequent stage. We define Tasks(M) as a function that, for a given
LLM M , returns the performance on a set of pre-defined tasks used to assess the target stage s, where
s ∈ {pre,post} denotes the training stage, with pre indicating pre-training and post indicating post-
training, respectively. We write M2[M1] to denote the model M2 trained with some configuration
and initialization with M1, where Mrand indicates a model whose weights are randomly initial-
ized. Moreover, we introduce Mpre and Mpost to represent the sets of models obtained through

1The computational cost of pre-training is typically much larger than that of other stages, so identifying
a better pre-training configuration has a substantial impact on the efficiency of LLM construction. In this
study, we focus on evaluating LR schedulers during large-scale pre-training and characterize the potential of
non-decay schedulers based on the performance after SFT. An exploration of complex combinations of LR
scheduling spanning multiple post-training stages is left to future work.
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pre-training and post-training, respectively, with various hyperparameter configurations. A typical
training pipeline for building LLMs can therefore be expressed as follows:

M̂pre = argmax
Mpre∈Mpre

{Taskpre(Mpre[Mrand])} ,

M̂post = argmax
Mpost∈Mpost

{
Taskpost(Mpost[M̂pre[Mrand]])

}
.

(1)

This formulation may lead to a suboptimal solution in terms of the performance of the final model,
namely, M̂post, since selecting the best-performing models at intermediate stages does not guarantee
achieving the best performance in the end. Therefore, conceptually, we would like to consider the
following search problem to obtain a better final model for this training pipeline:

M̂post = argmax
(Mpre,Mpost)∈(Mpre,Mpost)

{Taskpost(Mpost[Mpre[Mrand]])} . (2)

The primary objective of this paper is to empirically examine the search problem by evaluating
several LR schedulers during the large-scale training stages that precede post-training.

2.2 FURTHER CONSIDERATIONS

Mid-training. Mid-training has emerged as a critical intermediate stage in modern language
model development, occupying a computational middle ground between large-scale pre-training and
task-specific post-training (Meta, 2024c; OLMo et al., 2024). This stage serves multiple strategic
objectives, including domain expansion and long-context extension. For example, OLMo 2 (OLMo
et al., 2024) demonstrates performance gains through mid-training on curated high-quality data, es-
tablishing this stage as an essential component of the modern training pipeline. After introducing
mid-training, we can rewrite equation 2 as follows:

M̂post = argmax
(Mpre,Mmid,Mpost)∈(Mpre,Mmid,Mpost)

{Taskpost(Mpost[Mmid[Mpre[Mrand]]])} . (3)

Over-training. Modern LLMs are often trained on trillions of tokens, far beyond the Chinchilla
compute-optimal regime of roughly 20 tokens per parameter (Hoffmann et al., 2022). This practice
trades substantially more training compute for improved inference efficiency at deployment. Recent
production systems use hundreds to thousands of tokens per parameter (Sardana et al., 2024). While
full-scale experiments are costly, Section 5 presents results under such a configuration, showing the
generality of our main findings.

2.3 CURRENT LR SCHEDULING PRACTICES

In current LLM training practice, pre-training uses decay-based LR schedulers with Cosine, Lin-
ear, or WSD that reduce LR to 0–10% of maximum (Touvron et al., 2023a; Hu et al., 2024;
Bergsma et al., 2025). Additionally, in mid-training, it is common practice to further decay the
LR from the final value reached at the end of the preceding pre-training phase (Meta, 2024c; OLMo
et al., 2024). These schedulers are chosen to minimize loss at each respective stage, effectively
optimizing Taskpre(Mpre) independently. However, the primary objective should be to maximize
Taskpost(Mpost), the performance after the complete pipeline. Thus, optimizing for Taskpre(Mpre)
may be suboptimal. For instance, recent findings from Springer et al. (2025) and Sun & Dredze
(2025) reveal that the better performance after pre-training does not guarantee performance after
SFT. These raise a fundamental question: Is LR decay, which is chosen based on pre-training per-
formance, still the best choice when the model will undergo supervised fine-tuning? Our work in-
vestigates this question by systematically varying LR schedulers in Mpre and Mmid to understand
their impact on the final objective, i.e., Taskpost(Mpost).

2.4 FORMALIZATION OF LEARNING RATE SCHEDULERS

We denote the LR at training step t as ηScheduler(t, αpre), where Scheduler specifies the LR
scheduler and αpre controls the minimum LR factor in pre-training. For example, the WSD scheduler

3
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is defined as:

ηWSD(t, αpre) =


ηmax · t

Twarmup
t ≤ Twarmup

ηmax Twarmup < t ≤ Tstable

ηmax ·
(
(1− αpre) · T−t

T−Tstable
+ αpre

)
Tstable < t ≤ T

(4)

where ηmax is the maximum LR and T denotes the total number of pre-training steps.

To investigate the effectiveness of the LR scheduler without decay, we consider a simple variant of
WSD, which we call Warmup-Stable-Only (WSO). In this variant, the decay phase is omitted, which
corresponds to setting αpre = 1.0.

ηWSO(t, αpre) =

{
ηmax · t

Twarmup
t ≤ Twarmup

ηmax Twarmup < t ≤ T
(5)

In our experiments, we investigate four LR schedulers: Scheduler ∈
{WSO,WSD,Cosine,Linear}. The detailed formulations for Cosine ηCosine(t, αpre) and
Linear ηLinear(t, αpre) are provided in Appendix B.

TTraining Steps t
0

ηmax

Le
ar

ni
ng

 R
at

e
0.1 ×
ηmax

η* αpre αmid
WSO, 1.0, 1.0
WSD, 0.1, 0.0
Linear, 0.1, 0.0
Linear, 0.1, 1.0
Cosine, 0.1, 0.0
Cosine, 0.1, 1.0

Figure 2: Mid-training LR schedulers
with different αpre and αmid values.

LR Scheduling in Mid-training. We parameterize
mid-training schedulers with αmid (Figure 2), where
αmid = 0.0 applies Linear decay to zero while αmid =
1.0 maintains the LR constant throughout mid-training.
When combined with αpre = 1.0, the configuration of
αpre = 1.0 and αmid = 1.0 extends WSO across both
pre-training and mid-training stages. The detailed formu-
lation for mid-training LR schedulers is provided in Ap-
pendix B.

3 EXPERIMENT 1: TWO-STAGE (PRE- AND POST-TRAINING) SETTING

We investigate whether decaying LRs during pre-training truly benefit downstream SFT perfor-
mance.

3.1 EXPERIMENTAL SETUP

Model Architectures. We conduct experiments on two model scales following the Llama 3 archi-
tecture family: 1B and 8B parameter models (same architecture as Llama-3.2-1B (Meta, 2024b) and
Llama-3.1-8B (Meta, 2024a), respectively). Full details are provided in Appendix A.

Pre-training Configuration. Models are pre-trained on FineWeb-Edu (Penedo et al., 2024) with
a maximum LR ηmax = 3× 10−4. We investigate three LR schedulers as formalized in Section 2.4,
experimenting with WSO (Equation 2.4), WSD (Equation 2.4), Cosine, and Linear schedulers (de-
tailed in Appendix B). For each scheduler, we vary the minimum LR factor αpre ∈ {0.0, 0.1, 1.0},
following our notation ηScheduler(t, αpre). Setting αpre = 0.0 corresponds to decay to zero. Recent
work by Bergsma et al. (2025) shows that this achieves better pre-training performance. Setting
αpre = 0.1 corresponds to decay to 10% of maximum, a choice commonly used in practice by Chin-
chilla (Hoffmann et al., 2022), Llama 3 (Meta, 2024c) and OLMo 2 (OLMo et al., 2024). Finally,
setting αpre = 1.0 corresponds to WSO. Further hyperparameter details are provided in Appendix C.

SFT Configuration. We perform SFT using the Tulu-3 SFT mixture2. We conduct a comprehen-
sive LR sweep ranging from 5 × 10−7 to 1 × 10−3 to identify the best hyperparameters for each
pre-trained model3.

2https://huggingface.co/datasets/allenai/tulu-3-sft-olmo-2-mixture/
tree/main

3Full details about SFT are provided in Appendix D.
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Table 1: Relative performance across pre-training (PT) and supervised fine-tuning (SFT). For each
model size and each metric, values are differences (∆) from the best-performing decay-based sched-
uler for that metric. Note that WSO could perform poorly after PT but best after SFT. Bold indicates
the best performance.

Model Scheduler αpre

PT Valid
Loss ↓∆

PT Task
Avg ∆

SFT Task
Avg ∆

1B

Warmup-Stable-Only (WSO) 1.0 +0.071 -1.7 +0.3

WSD 0.1 +0.004 -1.5 +0.0
0.0 +0.000 -1.2 -1.0

Linear 0.1 +0.021 -2.0 -0.7
0.0 +0.016 +0.0 -0.9

Cosine 0.1 +0.019 -0.1 -0.7
0.0 +0.016 -2.5 -0.7

8B

Warmup-Stable-Only (WSO) 1.0 +0.127 -0.8 +1.1

WSD 0.1 +0.019 -0.2 -0.8
0.0 +0.014 +0.0 -0.3

Linear 0.1 +0.013 -1.9 -0.6
0.0 +0.000 -1.8 +0.0

Cosine 0.1 +0.009 -2.2 -0.3
0.0 +0.008 -2.3 -0.1

Evaluation. We evaluate models at two stages: after pre-training and after SFT. For pre-trained
models, we assess zero-shot performance on standard benchmarks, including question answer-
ing (ARC-Easy, ARC-Challenge (Clark et al., 2018), OpenBookQA (Mihaylov et al., 2018),
BoolQ (Clark et al., 2019)) and commonsense reasoning (HellaSwag (Zellers et al., 2019),
PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021)), along with validation loss.

For fine-tuned models, we follow the setup of OLMo (Groeneveld et al., 2024) and evaluate along
three key dimensions: instruction-following capability (AlpacaEval (Li et al., 2023)), multi-task
language understanding (MMLU (Hendrycks et al., 2021)), and truthfulness (TruthfulQA (Lin et al.,
2022)).

To highlight how LR decay affects both pre-training and SFT differently, we present results as
relative performance metrics normalized against the best decay-based scheduler for each stage. For
pre-training, we report both validation loss and the average accuracy across all zero-shot benchmarks
(PT Task Avg). For fine-tuning, we report the average across AlpacaEval, TruthfulQA, and MMLU
(SFT Task Avg)4.

Results. Table 1 shows an inversion in model performance across training stages5. For pre-training
performance, decay-based schedulers achieve the best performance with αpre = 0. Specifically,
Linear and WSD with αpre = 0 achieve the best PT Task Avg scores for the 1B and 8B models,
respectively. This result is consistent with existing findings (Bergsma et al., 2025). In contrast,
after SFT, WSO achieves the best performance for both model sizes, even though it underperforms
decay-based schedulers in pre-training metrics. These results demonstrate that while decay-based
schedulers may yield superior performance in terms of pre-training metrics, WSO is more effective
in the overall training pipeline, including SFT.

4 EXPERIMENT 2: THREE-STAGE (PRE-, MID-, AND POST-TRAINING)
SETTING

Recent LLM developments (OLMo et al., 2024; Meta, 2024c) add a mid-training stage between
pre-training and post-training, which makes LR scheduling across stages more complex due to the

4Detailed evaluation settings are provided in Appendix E.
5Detailed per-task evaluation results for all models are provided in Appendix F.
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Table 2: Relative performance across mid-training (MT) and SFT stages. Values are differences
from the best decay-based schedule. WSO throughout both stages yields the best SFT performance.

Model (Pre-training) Scheduler αpre αmid

MT Valid
Loss ↓∆

MT Task
Avg ∆

SFT Task
Avg ∆

1B

Warmup-Stable-Only (WSO) 1.0 1.0 +0.062 -0.1 +0.8

WSD
1.0 0.0 +0.000 +0.0 +0.0
0.1 1.0 +0.038 -1.5 -0.5
0.1 0.0 +0.047 -1.7 -1.3

Linear 0.1 1.0 +0.053 -2.1 -2.5
0.1 0.0 +0.058 -3.3 -3.8

Cosine 0.1 1.0 +0.053 -2.4 -2.9
0.1 0.0 +0.059 -3.1 -3.7

8B

Warmup-Stable-Only (WSO) 1.0 1.0 +0.102 -2.1 +1.1

WSD
1.0 0.0 +0.000 +0.0 -1.4
0.1 1.0 +0.057 -5.0 +0.0
0.1 0.0 +0.081 -5.6 -1.1

Linear 0.1 1.0 +0.067 -8.3 -2.2
0.1 0.0 +0.082 -9.0 -3.7

Cosine 0.1 1.0 +0.068 -8.0 -3.5
0.1 0.0 +0.084 -10.1 -4.1

various combinations of pre-training and mid-training LR schedulers. We investigate whether using
WSO in both pre-training and mid-training stages yields better performance after SFT than decay-
based schedulers.

4.1 EXPERIMENTAL SETUP

To investigate the effect of LR scheduling during mid-training, we conduct experiments following a
three-stage training pipeline: pre-training, mid-training, and post-training. We systematically vary
the LR schedulers in both pre-training and mid-training stages to understand their individual and
combined effects on downstream performance. To ensure comparability with recent mid-training
work, our setup largely follows OLMo 2 (OLMo et al., 2024), a representative study of mid-training.

Pre-training Stage. We pre-train 1B and 8B models using the same architecture and configuration
as described in Section 3. We adopt pre-training dataset olmo-mix-1124 (OLMo et al., 2024)
used in OLMo 2. Following standard practice in modern LLM development (Meta, 2024c; OLMo
et al., 2024), we employ four LR schedulers with different minimum LR factors, including WSD,
Cosine, and Linear schedulers with αpre = 0.1, and additionally WSO.

Mid-training Stage and Learning Rate Schedules. Following OLMo 2 (OLMo et al., 2024), we
conduct mid-training on the dolmino-mix-1124 dataset. We investigate the two mid-training
strategies shown in Figure 2, with αmid = 0.0 applying further Linear decay following common
practice (Meta, 2024c; OLMo et al., 2024), and αmid = 1.0 maintaining a constant LR throughout
mid-training6.

SFT and Evaluation. For SFT, we follow the configuration described in Section 3. For mid-
trained models (before SFT), we evaluate on standard benchmarks to assess the impact of mid-
training LR schedulers, following the evaluation suite used in OLMo 2 (OLMo et al., 2024).
We select benchmarks that comprehensively assess model capabilities, including reasoning tasks
(ARC-Challenge (Clark et al., 2018), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi
et al., 2021)), reading comprehension (DROP (Dua et al., 2019)), and mathematical reasoning
(GSM8K (Cobbe et al., 2021)). Following SFT, we assess models using an expanded evaluation
suite including AlpacaEval (Li et al., 2023) for instruction following, TruthfulQA (Lin et al., 2022)

6Further training configurations of mid-training are provided in Appendix G.

6
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Table 3: Relative performance after over-training (2T tokens). Values are differences (∆) from the
Cosine baseline. WSO (αpre = 1.0) achieves better SFT performance.

Model Scheduler αpre

PT Valid
Loss ↓∆

PT Task
Avg ∆

SFT Task
Avg ∆

1B
Warmup-Stable-Only (WSO) 1.0 +0.030 -0.8 +1.3

Cosine 0.1 +0.000 +0.0 +0.0

Table 4: Relative performance after over-training with mid-training (2T + 500B tokens). Values are
differences from the Cosine baseline. WSO yields the better SFT performance.

Model Scheduler αpre αmid

MT Valid
Loss ↓∆

MT Task
Avg ∆

SFT Task
Avg ∆

1B
Warmup-Stable-Only (WSO) 1.0 1.0 +0.002 +1.9 +2.7

Cosine 0.1 0.0 +0.000 +0.0 +0.0

for factual accuracy, GSM8K (Cobbe et al., 2021) for mathematical reasoning, DROP (Dua et al.,
2019) for reading comprehension, AGI Eval (Zhong et al., 2024) for general intelligence capabili-
ties, BigBench-Hard (Suzgun et al., 2022) for challenging reasoning tasks, and MMLU for multitask
understanding7. Similar to Section 3, we present results as relative improvements compared to the
best decay-based scheduler.

Results. Table 2 shows an inversion similar to our pre-training findings8. For mid-training perfor-
mance, the decay-based scheduler with αpre = 1.0 and αmid = 0.0 achieve the best performance.
However, SFT performance again shows the opposite trend. WSO achieves the best downstream
task performance after SFT, even though it underperforms the best decay-based schedulers in mid-
training metrics. Additionally, we find that introducing decay at any stage reduces SFT perfor-
mance. Notably, for models pre-trained with decay (αpre = 0.1), avoiding decay during mid-training
(αmid = 1.0) improves both mid-training metrics and SFT performance compared to applying decay.

These results extend our findings to multi-stage training pipelines, where decay at any stage con-
sistently harms SFT performance. WSO, which maintains constant learning rates throughout both
pre-training and mid-training, shows the best performance across the overall training pipeline, in-
cluding mid-training and SFT.

5 EXPERIMENT 3: THREE-STAGE SETTING IN THE OVER-TRAINING

To further probe generality, we evaluate a third regime with a substantially larger training budget.
This over-training setting serves as a test of whether the benefits of WSO persist when training on
trillions of tokens.

5.1 EXPERIMENTAL SETUP

Pre- and Mid-training. We pre-train 1B models on 2T tokens, which is approximately 100×
the Chinchilla-optimal amount of data for this model size, to evaluate whether WSO maintains its
advantages at this data scale. We compare WSO (αpre = 1.0) against Cosine with αpre = 0.1 (decay
to 10% of maximum), which represents the conventional approach used by Chinchilla (Hoffmann
et al., 2022), Llama 3 (Meta, 2024c), and OLMo 2 (OLMo et al., 2024). We additionally conduct
mid-training experiments using 500B tokens with two configurations: WSO (αpre = 1.0, αmid =
1.0) and Cosine scheduler with (αpre = 0.1, αmid = 0.0), which is the standard practice used in
OLMo 2 (OLMo et al., 2024).

7The detailed evaluation settings for these benchmarks are described in Appendix E.
8Detailed per-task evaluation results for all models are provided in Appendix F.

7
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Figure 3: Sharpness(θt) during pre-training of the 1B model. Vertical line at step Tstable indicating
where WSD decays LR. Decay-based schedulers (αpre = 0 or αpre = 0.1) lead to sharper minima,
while WSO (αpre = 1.0) maintains flatter landscapes.

Evaluation. We evaluate WSO and Cosine scheduler using the same methodology as in Sections 3
and 4, measuring performance both after mid-training and after SFT. Detailed configurations are
provided in Appendices C and D.

Results. Tables 3 and 4 confirm that the inversion observed in Sections 3 and 4 persists even in
the over-training scenarios using 2T tokens. WSO (αpre = 1.0) yields worse intermediate metrics
but superior SFT performance. This inversion holds both for single-stage over-training and when
combined with mid-training using WSO (αpre = 1.0, αmid = 1.0), demonstrating that the bene-
fits of WSO are robust across different amounts of data and remain crucial for preserving model
adaptability.

6 UNDERSTANDING ADAPTABILITY THROUGH LOSS LANDSCAPE
GEOMETRY

6.1 SHARPNESS OF THE PRE-TRAIND MODEL

To understand why models trained with WSO achieve superior SFT performance, we analyze the
loss landscape geometry throughout training. As suggested in the transfer learning literature (Ju
et al., 2022; Liu et al., 2023), we focus on sharpness as a key geometric property that characterizes
the curvature of the loss landscape around converged parameters.

The relation between lower sharpness and better SFT performance stems from how models respond
to parameter updates during fine-tuning. When the parameters of the model lie in a flatter region of
the loss landscape, which corresponds to lower sharpness, the model demonstrates superior adapt-
ability to downstream tasks (Foret et al., 2021; Li et al., 2025). The intuition is that the performance
of the model remains stable during the parameter updates of SFT. A model in a flat landscape expe-
riences less fluctuation in its loss value when its parameters are updated, which translates to more
stable performance. This characteristic is believed to confer higher adaptability, as the model can in-
corporate new data without compromising its pre-trained capabilities (Andriushchenko et al., 2023).

There are several ways to quantify sharpness, such as the largest eigenvalue of the Hessian (captur-
ing the most curved direction) or the trace of the Hessian (capturing the average curvature) (Dinh
et al., 2017; Kaur et al., 2023). Following established practice in optimization and generalization
studies (Ju et al., 2022; Liu et al., 2023), we adopt the trace as our sharpness measure, since it
provides a scalar summary of curvature across all parameter dimensions.

Definition 6.1 (Sharpness). Let L(θt;D) denote the loss function evaluated on dataset D with model
parameters θt ∈ Rd. At training step t, the sharpness of the loss landscape at parameters θt is defined
as the trace of the Hessian matrix:

Sharpness(θt) = Tr(HL(θt)) =

d∑
i=1

∂2L(θt;D)

∂θ2i
(6)
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where HL(θt) ∈ Rd×d is the Hessian matrix of the loss with respect to the parameters at θt.

Since computing the full Hessian trace is computationally prohibitive for billion-parameter models,
we employ Hutchinson’s unbiased estimator (Hutchinson, 1989; Liu et al., 2024b). This method
requires only Hessian-vector products, which can be efficiently computed through automatic differ-
entiation. Details of our sampling procedure and computational details are provided in Appendix H.

We measure sharpness throughout pre-training on validation sets from both the pre-training dataset
and the SFT dataset. Figure 3 shows the sharpness for the 1B model from Section 3. We illustrate a
vertical line at step Tstable to indicate the point at which WSD decays LR. The figure reveals distinct
patterns across schedulers. Specifically, Cosine and Linear schedulers exhibit steadily increasing
sharpness as the LR decays, while WSD shows a rise during its decay phase. In contrast, WSO
maintains lower sharpness. Across both datasets, models with decaying LRs converge to regions
with about 2–3× higher sharpness compared to WSO models. Flatter regions obtained by WSO
allow more flexible parameter adaptation during SFT, enabling better downstream performance.

6.2 DISTINGUISHING WIDE BASINS FROM SLOWER CONVERGENCE ZONES

To further interpret the low sharpness observed in WSO models, we investigate whether these min-
ima correspond to wider basins of equivalent loss or merely represent zones of slower convergence.
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Figure 4: Validation loss under parameter pertur-
bation showing WSO resides in a wider basin.

To address this, we conducted a perturbation
analysis following established methodologies
in loss landscape visualization (Chen et al.,
2025). Specifically, we applied Gaussian noise
scaled by a factor α to the pre-trained model
parameters θ, such that θ′ = θ + α · δ, where
δ ∼ N (0, I). We then evaluated the validation
loss of the perturbed models.

As visualized in Figure 4, the results demon-
strate that the WSO model exhibits significantly
higher robustness to parameter perturbations
compared to decay-based models. While the
loss for decay-based schedulers increases dras-
tically with small perturbations, which indicates convergence to sharp minima, the WSO model’s
loss landscape remains comparatively flat. This finding suggests that WSO guides the model into a
wider basin of low loss rather than simply trapping it in a slow convergence zone. Therefore, this
geometric property facilitates the superior adaptability discussed in this section.

6.3 CORRELATION BETWEEN SHARPNESS AND DOWNSTREAM ADAPTABILITY
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Figure 5: Pre-training sharpness negatively corre-
lates with downstream SFT performance.

To provide direct empirical linking loss land-
scape to downstream adaptability, we analyze
the correlation between the sharpness of pre-
trained model and their subsequent SFT perfor-
mance. Figure 5 presents the average SFT per-
formance plotted against the sharpness of the
pre-trained model (θT ) for the 1B model across
all investigated learning rate schedulers.

The analysis reveals a negative correlation
(Pearson r = −0.709) between the sharpness
of the minima and the model’s performance af-
ter SFT. As visualized in the figure, the sched-
ulers form two distinct clusters. The WSO
scheduler (αpre = 1.0) resides in the low-
sharpness, high-performance region (top-left).
In contrast, decay-based schedulers converge to sharper minima with higher sharpness values and
exhibit lower SFT scores. This quantitative evidence supports our hypothesis that preserving flatter
minima during pre-training is a factor for enhancing the model’s adaptability to downstream tasks.
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7 RELATED WORK

Learning Rate Scheduling in LLM Training. LR decay has been considered effective for LLM
pre-training, with Cosine decay remaining the de facto standard (Kaplan et al., 2020; Hoffmann
et al., 2022; Touvron et al., 2023b). Recent large-scale studies advocate for even more aggressive
decay, showing that Linear decay to zero achieves lower pre-training loss in compute-optimal set-
tings (Bergsma et al., 2025). Warmup-Stable-Decay (WSD) delays decay until the final phase of
training (Hu et al., 2024), while theoretical analysis suggests that decay may confine models to
narrow loss valleys (Wen et al., 2024). Some methods attempt to avoid the decay phase through
checkpoint averaging (Sanyal et al., 2023) or model merging (Tian et al., 2025). Despite extensive
exploration of LR scheduling, existing work primarily evaluates pre-training performance, such as
validation loss. This study shifts focus to performance after SFT and finds that WSO, which removes
the decay phase, can benefit SFT performance.

Adaptability and Loss Landscape Geometry. Early work showed that parameters in flatter loss
regions generalize better than those in sharp minima (Keskar et al., 2017), motivating sharpness-
aware minimization (Foret et al., 2021) and stochastic weight averaging (Izmailov et al., 2018). Re-
cent theoretical advances explain WSD through a river valley loss landscape perspective (Wen et al.,
2025b;a), where the stable phase explores along the valley floor while the decay phase converges to-
ward the center. Concurrent work confirmed that sharpness increase during decay is universal across
architectures (Belloni et al., 2025). Flat-minima optimizers work well under distribution shift (Kad-
dour et al., 2022), which extends to the pre-training/fine-tuning paradigm. Recent findings show
over-trained models become harder to fine-tune (Springer et al., 2025), suggesting that extended
training with decaying rates pushes models toward sharper minima. While prior work focused on
understanding sharpness dynamics during pre-training (Belloni et al., 2025; Wen et al., 2025b), we
demonstrate how these changes impact SFT performance, showing that WSO preserves flatness and
enhances adaptability.

8 CONCLUSION

In this study, we investigated the effectiveness of LR schedulers, which have been widely reported
as effective for pre-training, in practical scenarios with a focus on post-training performance. In
particular, we examine a constant learning rate scheduler, removing the decay phase from the exist-
ing WSD scheduler, which we refer to as Warmup-Stable-Only (WSO). Experimental results show
that WSO consistently outperforms decay-based schedulers in downstream tasks after SFT. This
finding holds across different training situations, including standard pre-training, mid-training, and
over-training. In addition, we analyzed the loss landscapes of models trained with each scheduler to
explore why the model trained with WSO exhibits better adaptability to SFT.

WSO is simple to apply, requiring no decay phase, and it yields improved post-training performance.
Therefore, we believe that WSO is a promising alternative to conventional decay-based schedulers in
large-scale pre-training for constructing more portable models. We also recommend releasing LLMs
trained with WSO when constructing new ones from scratch, so that numerous people interested in
tuning LLMs can benefit from their adaptability.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ethics Statement. This work investigates learning rate scheduling for LLM training to improve
downstream adaptability. While our methods may provide new findings on LR scheduling on pre-
training, we acknowledge the broader implications of advancing LLM capabilities. We encourage
responsible deployment with appropriate safety measures during post-training. We exclusively used
publicly available datasets for pre-training, supervised fine-tuning, and evaluation. Moreover, we
developed the language models entirely from scratch, avoiding the use of any publicly available
models to ensure reproducibility.

Reproducibility Statement. To ensure reproducibility of our results, we provide comprehensive
experimental details throughout the paper and appendices. Model architectures for both 1B and
8B parameter models are specified in Appendix A, including all layer configurations and attention
mechanisms. All pre-training hyperparameters, including optimizer settings, batch sizes, and train-
ing steps, are detailed in Appendix C. The supervised fine-tuning configuration, including the learn-
ing rate sweep range and evaluation protocols, is described in Appendix D. Our sharpness compu-
tation methodology using Hutchinson’s estimator is fully specified in Appendix H. We use publicly
available datasets (FineWeb-Edu, olmo-mix-1124, dolmino-mix-1124, and Tulu-3 SFT mixture)
and standard evaluation benchmarks, with detailed evaluation settings provided in Appendix E. Full
numerical results for all experiments are reported in Appendix F to facilitate comparison and vali-
dation.
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Table 5: Model configurations for the 1B and 8B models.
Configuration 1B 8B

Hidden dimension 2048 4096
FFN dimension 8192 14336
Number of layers 16 32
Number of heads 32 32
Number of KV heads 8 8
Head dimension 64 128
Vocabulary size 128256 128256
RoPE θ 10000 10000
RMS norm ϵ 10−5 10−5

Activation function SwiGLU SwiGLU

A MODEL ARCHITECTURE

We provide detailed specifications for the models used in our experiments. Both the 1B and 8B
models follow the Llama 3 architecture (Meta, 2024c), employing RMSNorm, SwiGLU activation,
and Rotary Position Embeddings. We use the Llama 3 tokenizer with a vocabulary size of 128,256
tokens for all models.

B LEARNING RATE SCHEDULER FORMULATIONS

We provide the complete formulations for the WSD, Cosine, and Linear LR schedulers used in our
experiments.

WSD Schedule: After warmup, the LR remains constant until Tstable, then decays linearly to αpre ·
ηmax at step T :

ηWSD(t, αpre) =


ηmax · t

Twarmup
t ≤ Twarmup

ηmax Twarmup < t ≤ Tstable

ηmax ·
(
(1− αpre) · T−t

T−Tstable
+ αpre

)
Tstable < t ≤ T

(7)

WSO Schedule: Obtained by setting αpre = 1 in WSD. After warmup, the LR stays constant:

ηWSO(t, αpre) =

{
ηmax · t

Twarmup
t ≤ Twarmup

ηmax Twarmup < t ≤ Tstable
(8)

Cosine Schedule: After warmup, the LR follows a Cosine decay to αpre · ηmax:

ηCosine(t, αpre) =

{
ηmax · t

Twarmup
t ≤ Twarmup

ηmax ·
(
αpre +

1−αpre

2

(
1 + cos

(
t−Twarmup

T−Twarmup
· π

)))
t > Twarmup

(9)

Linear Schedule: After warmup, the LR decays linearly to αpre · ηmax:

ηLinear(t, αpre) =

{
ηmax · t

Twarmup
t ≤ Twarmup

ηmax ·
(
(1− αpre) · T−t

T−Twarmup
+ αpre

)
t > Twarmup

(10)

All the schedulers use the same warmup phase as described in Section 2.4, and their decay is con-
trolled by the minimum LR factor αpre ∈ [0.0, 1.0].

Mid-training LR Scheduling. In the mid-training stage, we extend the pre-training learning rate
schedulers. The mid-training learning rate at time step t is defined as:
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Table 6: Pre-training hyperparameters for 1B and 8B models. The WSD stable ratio ρ = 0.75 means
the LR remains stable for 75% of training after warmup, with decay occurring in the final 25% when
αpre < 1.

Hyperparameter 1B 8B

Training Configuration
Total training steps 80,000 80,000
Total tokens 350B 500B
Batch size (tokens) 4,194,304 12,582,912
Sequence length 2,048 2,048

Optimizer (AdamW)
Max LR (ηmax) 3× 10−4 3× 10−4

Weight decay 0.1 0.1
Adam β1 0.9 0.9
Adam β2 0.95 0.95
Adam ϵ 1× 10−8 1× 10−8

Gradient clipping 1.0 1.0

LR Schedule
Warmup steps (Twarmup) 1,000 1,000
WSD stable ratio (ρ) 0.75 0.75
Min LR factor (αpre) {0.0, 0.1, 1.0} {0.0, 0.1, 1.0}
Other
Precision bfloat16 bfloat16

Table 7: Over-training configuration for the 1B model trained on 2T tokens. All other hyperparam-
eters are identical to those in Table 6.

Hyperparameter Value

Training Configuration
Total training steps 120,000
Total tokens 2T
Batch size (tokens) 16,777,216

ηScheduler(t, αpre, αmid) = ηScheduler(Tpre, αpre) ·
(
(1− αmid) ·

Tpre + Tmid − t

Tmid
+ αmid

)
(11)

for t ∈ [Tpre + 1, Tpre + Tmid], where Tpre is the total number of pre-training steps and Tmid is the
total number of mid-training steps.

C PRE-TRAINING HYPERPARAMETERS

We provide detailed hyperparameters used for pre-training our models in Table 6. All experiments
use the AdamW optimizer (Loshchilov & Hutter, 2019) with mixed precision. For over-training
experiments, we modify the training duration as shown in Table 7, where the 1B model is trained
for 120,000 steps to process 2T tokens and set different batch sizes while maintaining the other
hyperparameters in Table 6.

D SFT CONFIGURATION

We performed supervised fine-tuning for all models using the Tulu-3 SFT mixture dataset. Since
the official dataset does not provide a predefined train-validation split, we create our own using a
9:1 ratio for training and validation, respectively. We perform full parameter training for all models.
Table 8 presents the hyperparameters used in our experiments.
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Table 8: SFT hyperparameters used in our experiments. We perform a sweep over the specified LRs
and select the best value based on AlpacaEval performance.

Hyperparameter Value

LR 5.0× 10−7, 1.0× 10−6, 5.0× 10−6, 1.0× 10−5, 5.0× 10−5, 1.0× 10−4, 5.0× 10−4, 1.0× 10−3

Global Batch size 128
LR scheduler Cosine with warmup
Minimum LR 0

Optimizer AdamW
Weight decay 0.0

Gradient clipping 1.0
Warmup steps 100

Epochs 1
Training precision bfloat16

E EVALUATION DETAILS

For pre-trained models, all benchmarks are evaluated in a zero-shot setting.

For mid-trained models (before SFT), we evaluate on standard benchmarks following the evalu-
ation suite used in OLMo 2 (OLMo et al., 2024). We assess reasoning capabilities using ARC-
Challenge (Clark et al., 2018), HellaSwag (Zellers et al., 2019), and WinoGrande (Sakaguchi
et al., 2021). Reading comprehension is evaluated with DROP (Dua et al., 2019) using 5-shot
prompting, while mathematical reasoning is assessed using GSM8K (Cobbe et al., 2021) with 8-
shot chain-of-thought (CoT) prompting.

For SFT models, we use the following evaluation configurations. For AlpacaEval, following
Springer et al. (2025), rather than comparing against GPT-4o, where the win rates would be uni-
formly low, we use a reference model of the same architecture to better distinguish performance
differences between LR schedules. Specifically, we use the WSO model with αpre = 1.0, fine-tuned
with the lowest LR from our sweep (5 × 10−7) as our reference, ensuring stable and meaningful
comparisons within each model scale. Evaluations are performed by Llama-3-70B-Instruct. For
MMLU (5-shot), evaluation covers 57 subjects spanning STEM, humanities, social sciences, and
other domains. For TruthfulQA, we use the standard evaluation protocol. After mid-training and
SFT, we additionally evaluate on GSM8K (1-shot), DROP (5-shot), AGI Eval (Zhong et al., 2024)
(3-shot), and BigBench-Hard (Suzgun et al., 2022) (3-shot with CoT).

F FULL EVALUATION RESULTS

This section provides complete per-task evaluation results for all pre-trained and fine-tuned models
across different LR schedules. While the main text presents aggregated metrics and relative perfor-
mance comparisons, here we report the absolute performance values for each individual benchmark.

F.1 PRE-TRAINING EVALUATION RESULTS

Table 9 presents comprehensive zero-shot evaluation results for all pre-trained models across differ-
ent LR schedules.

F.1.1 PRE-TRAINING EVALUATION RESULTS IN OVER-TRAINING

Table 10 shows that, also in the over-training regime with 2T tokens, the Cosine scheduler with
decay achieves slightly better zero-shot task performance and lower validation loss compared to
WSO.

F.2 SFT EVALUATION RESULTS

We select the best learning rate for each pre-trained model based on its performance on the AlpacaE-
val. Table 11 shows the learning rates selected for each pre-trained model based on AlpacaEval
performance.
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Table 9: Pre-training evaluation results. Models with more decay (αpre = 0) generally achieve
lower validation loss, but not always better zero-shot task performance.
Model Scheduler αpre Valid Loss ↓ ARC-e ARC-c BoolQ Hella OBQA PIQA Wino Avg.

1B

Warmup-Stable-Only (WSO) 1.0 2.431 70.8 42.2 62.0 56.3 45.4 70.8 58.5 58.0

WSD 0.1 2.364 72.0 40.0 62.1 57.4 46.4 72.5 57.1 58.2
0.0 2.360 72.2 39.7 63.7 57.6 45.6 72.2 58.6 58.5

Linear 0.1 2.380 70.3 42.6 63.2 55.6 45.2 71.6 55.7 57.7
0.0 2.376 74.4 43.4 65.7 58.4 47.4 70.9 57.5 59.7

Cosine 0.1 2.379 71.1 43.6 66.5 59.9 47.8 71.7 56.3 59.6
0.0 2.376 74.6 41.9 50.7 58.5 48.4 71.0 55.4 57.2

8B

Warmup-Stable-Only (WSO) 1.0 2.119 79.4 52.6 69.1 69.1 52.8 76.3 64.5 66.3

WSD 0.1 2.011 80.4 52.8 69.1 72.6 53.2 75.9 64.0 66.9
0.0 2.005 81.0 53.0 67.2 72.9 54.2 76.3 65.0 67.1

Linear 0.1 2.004 79.4 53.7 64.1 71.2 50.4 75.0 62.4 65.2
0.0 1.992 76.6 48.2 71.1 71.5 53.6 74.9 61.3 65.3

Cosine 0.1 2.001 76.3 47.6 71.3 71.5 52.4 74.3 60.9 64.9
0.0 2.000 74.2 46.8 71.7 71.4 52.6 76.3 60.8 64.8

Table 10: Pre-training evaluation results for over-trained 1B models (2T tokens).
Model Scheduler αpre Valid Loss ↓ ARC-e ARC-c BoolQ Hella OBQA PIQA Wino Avg.

1B
WSO 1.0 2.625 74.4 43.3 59.7 63.5 48.6 73.2 62.0 60.7

Cosine 0.1 2.595 72.9 44.1 65.7 64.9 52.0 74.0 61.5 61.5

Table 12 shows performance after SFT across different pre-training schedules. Models pre-trained
with WSO or moderate decay (αpre = 0.1) often achieve comparable or better downstream perfor-
mance than those with aggressive decay (αpre = 0.0), despite having worse pre-training metrics.

F.2.1 SFT EVALUATION RESULTS IN OVER-TRAINING

Table 13 demonstrates that even after over-training with 2T tokens, WSO achieves superior SFT
performance compared to the Cosine scheduler with decay. Both the WSO and Cosine (αpre = 0.1)
models were supervised fine-tuned with a learning rate of 1× 10−4.

F.3 MID-TRAINING EVALUATION RESULTS

Table 14 presents evaluation results after the mid-training stage.

F.3.1 MID-TRAINING EVALUATION RESULTS IN OVER-TRAINING

Table 15 shows that after over-training and mid-training, WSO achieves superior overall perfor-
mance despite having nearly identical validation loss.

F.4 SFT EVALUATION RESULTS AFTER MID-TRAINING

Table 16 shows the optimal learning rates selected for each pre-trained model based on AlpacaEval
performance.

Table 17 shows SFT performance after mid-training. WSO during mid-training (αmid = 1.0) gener-
ally achieves better SFT performance compared to those with decay (αmid = 0.0).

F.5 SFT EVALUATION RESULTS AFTER OVER-TRAINING

Table 18 shows that WSO achieves superior SFT performance compared to the Cosine scheduler
with decay. The model trained with WSO was supervised fine-tuned with a learning rate of 3×10−5,
while the model trained with Cosine scheduler was supervised fine-tuned with 1× 10−5.
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Table 11: SFT learning rates selected for each pre-trained model based on AlpacaEval performance.
Model Scheduler αpre Selected SFT LR

1B

Warmup-Stable-Only (WSO) 1.0 3× 10−4

WSD 0.1 1× 10−4

0.0 1× 10−4

Linear 0.1 1× 10−4

0.0 1× 10−4

Cosine 0.1 1× 10−4

0.0 1× 10−4

8B

Warmup-Stable-Only (WSO) 1.0 3× 10−4

WSD 0.1 3× 10−4

0.0 1× 10−4

Linear 0.1 1× 10−4

0.0 1× 10−4

Cosine 0.1 1× 10−4

0.0 3× 10−5

Table 12: SFT evaluation results. Models pre-trained with WSO achieve the best downstream
performance.

Model Scheduler αpre AlpacaEval TruthfulQA MMLU Avg.

1B

Warmup-Stable-Only (WSO) 1.0 84.0 43.4 35.9 54.4

WSD 0.1 83.9 41.9 36.6 54.1
0.0 82.3 40.2 36.7 53.1

Linear 0.1 82.0 42.0 36.3 53.4
0.0 82.4 41.7 35.6 53.2

Cosine 0.1 83.6 41.0 35.5 53.4
0.0 83.6 41.0 35.6 53.4

8B

Warmup-Stable-Only (WSO) 1.0 79.7 42.5 42.7 55.0

WSD 0.1 77.1 40.8 41.4 53.1
0.0 77.3 39.9 43.7 53.6

Linear 0.1 76.4 41.4 42.1 53.3
0.0 78.4 40.6 42.8 53.9

Cosine 0.1 78.6 39.9 42.3 53.6
0.0 77.8 40.3 43.3 53.8

G MID-TRAINING CONFIGURATION DETAILS

We provide the detailed configuration used for mid-training experiments in Table 19. Other hyper-
parameters are the same as the configurations of pre-training in Table 6 Mid-training is conducted
on the dolmino-mix-1124 dataset, which consists of diverse high-quality data sources.

Additionally, we provide the detailed hyperparameters used for mid-training in over-training settings
in Section 5 in Table 20

H SHARPNESS COMPUTATION DETAILS

We compute the sharpness (Hessian trace) using Hutchinson’s stochastic trace estimator (Hutchin-
son, 1989), which provides an unbiased estimate through random vector sampling. For a Hessian
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Table 13: SFT evaluation results for over-trained 1B models (pre-trained on 2T tokens).
Model Scheduler αpre AlpacaEval TruthfulQA MMLU Avg.

1B
Warmup-Stable-Only (WSO) 1.0 78.1 38.7 34.5 50.4

Cosine 0.1 76.0 37.4 33.9 49.1

Table 14: Mid-training evaluation results in Section 4
Model Pre-training Scheduler αpre αmid Valid Loss ↓ ARC-C HellaSwag WinoGrande DROP GSM8K Avg.

1B

Warmup-Stable-Only (WSO) 1.0 1.0 2.335 45.0 61.1 60.4 23.3 21.1 42.2

WSD
1.0 0.0 2.273 47.0 60.5 58.6 23.9 20.4 42.1
0.1 0.0 2.320 45.0 62.0 60.7 23.8 11.0 40.5
0.1 1.0 2.310 45.1 60.7 59.8 24.5 13.0 40.6

Cosine 0.1 0.0 2.332 43.8 61.4 59.5 20.2 10.7 39.1
0.1 1.0 2.326 44.3 60.7 59.7 21.4 12.8 39.8

Linear 0.1 0.0 2.330 43.0 60.3 60.5 19.6 11.0 38.9
0.1 1.0 2.325 43.2 60.3 60.1 23.6 13.3 40.1

8B

Warmup-Stable-Only (WSO) 1.0 1.0 2.009 69.7 77.9 70.6 50.6 53.9 64.5

WSD
1.0 0.0 1.907 64.9 75.4 69.4 49.7 52.8 62.4
0.1 0.0 1.988 61.4 80.0 71.1 42.6 39.7 59.0
0.1 1.0 1.964 62.4 79.4 71.0 42.4 42.4 59.5

Cosine 0.1 0.0 1.991 54.3 77.0 69.7 35.4 36.0 54.5
0.1 1.0 1.975 57.1 77.5 69.1 38.6 40.3 56.5

Linear 0.1 0.0 1.989 55.5 77.3 71.0 36.2 37.7 55.5
0.1 1.0 1.974 56.7 77.5 69.9 36.6 40.3 56.2

matrix H, the trace is estimated as:

Tr(H) ≈ 1

N

N∑
i=1

zTi Hzi (12)

where zi are random vectors sampled from a Rademacher distribution (i.e., each element is ±1 with
equal probability).

Implementation Details. We compute Hessian-vector products using automatic differentiation,
which allows efficient computation without explicitly constructing the full Hessian matrix.

Table 21 shows computation configurations for Hutchinson’s estimator. We measure sharpness at
regular intervals throughout pre-training (every 4,000 steps) on held-out validation sets from both
the pre-training dataset and the SFT dataset to understand how the loss landscape geometry evolves
during training.

I LLM USAGE STATEMENT

We disclose the following uses of large language models in this work: Search for related works:
We used LLMs to assist in finding and summarizing relevant papers. Paper writing: LLMs were
used to suggest alternative phrasings, improve clarity, and refine the presentation of technical con-
cepts. The experimental design, implementation, data analysis, and core scientific insights presented
in this paper were conducted without LLM.
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Table 15: Mid-training evaluation results for over-trained 1B models (pre-trained on 2T tokens,
mid-trained on 500B tokens).
Model Pre-training Scheduler αpre αmid Valid Loss ↓ ARC-C HellaSwag WinoGrande DROP GSM8K Avg.

1B
Warmup-Stable-Only (WSO) 1.0 1.0 2.254 46.7 61.3 60.4 27.0 23.1 43.7

Cosine 0.1 0.0 2.252 46.0 65.1 62.3 23.8 11.4 41.7

Table 16: SFT learning rates selected for each model configuration based on AlpacaEval perfor-
mance.

Model Scheduler αpre αmid Selected SFT LR

1B

Warmup-Stable-Only (WSO) 1.0 1.0 3× 10−4

WSD
1.0 0.0 3× 10−5

0.1 1.0 1× 10−4

0.1 0.0 3× 10−5

Linear 0.1 1.0 3× 10−5

0.1 0.0 3× 10−5

Cosine 0.1 1.0 3× 10−5

0.1 0.0 1× 10−4

8B

Warmup-Stable-Only (WSO) 1.0 1.0 1× 10−6

WSD
1.0 0.0 1× 10−6

0.1 1.0 1× 10−4

0.1 0.0 3× 10−5

Linear 0.1 1.0 1× 10−5

0.1 0.0 1× 10−5

Cosine 0.1 1.0 1× 10−5

0.1 0.0 1× 10−5

Table 17: SFT evaluation results after mid-training. WSO throughout pre- and mid-training gener-
ally achieves better SFT performance.
Model Pre-training Scheduler αpre αmid AlpacaEval TruthfulQA GSM8K DROP AGI Eval BBH MMLU Avg.

1B

Warmup-Stable-Only (WSO) 1.0 1.0 79.4 39.9 27.2 22.0 21.5 22.7 35.4 35.4

WSD
1.0 0.0 79.4 41.8 29.0 22.7 21.8 23.1 35.7 36.2
0.1 0.0 76.8 41.0 18.9 22.0 22.4 23.8 34.2 34.2
0.1 1.0 78.7 40.0 21.2 23.7 23.1 23.8 34.4 35.0

Cosine 0.1 0.0 72.9 38.1 19.9 17.6 22.1 17.9 33.9 31.8
0.1 1.0 74.3 37.9 22.2 17.1 22.6 19.6 34.0 32.5

Linear 0.1 0.0 73.2 39.1 14.0 16.2 22.1 22.3 34.3 31.6
0.1 1.0 76.3 40.8 17.7 16.3 22.8 21.4 35.1 32.9

8B

Warmup-Stable-Only (WSO) 1.0 1.0 64.1 43.4 54.7 36.4 40.2 31.2 42.9 44.7

WSD
1.0 0.0 68.6 44.8 34.5 32.6 40.0 30.9 44.3 42.2
0.1 0.0 66.8 44.1 40.9 28.3 36.4 31.5 49.6 42.5
0.1 1.0 69.7 43.9 47.3 29.9 36.3 29.0 49.5 43.7

Cosine 0.1 0.0 64.7 41.1 41.0 26.9 32.3 27.9 43.0 39.6
0.1 1.0 63.9 41.9 40.8 28.8 34.6 28.5 42.8 40.2

Linear 0.1 0.0 63.9 42.5 36.8 28.3 33.6 29.3 44.9 39.9
0.1 1.0 63.8 41.3 43.5 30.5 33.0 31.0 46.8 41.4

Table 18: SFT evaluation results for over-trained 1B models after mid-training (pre-trained on 2T
tokens, mid-trained on 500B tokens, then supervised fine-tuned).
Model Pre-training Scheduler αpre αmid AlpacaEval TruthfulQA GSM8K DROP AGI Eval BBH MMLU Avg.

1B
Warmup-Stable-Only (WSO) 1.0 1.0 66.2 38.1 30.3 19.4 24.1 24.8 36.6 34.2

Cosine 0.1 0.0 62.5 41.1 18.7 20.5 23.2 18.8 35.9 31.5
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Table 19: Mid-training configuration for 1B and 8B models.
Hyperparameter 1B 8B

Training Configuration
Total training steps 36,000 36,000
Total tokens 150B 225B
Batch size (tokens) 4,194,304 12,582,912
Sequence length 2,048 2,048

Table 20: Mid-training configurations in over-training settings for the 1B model trained on 500BT
tokens. All other hyperparameters are identical to those in Table 6.

Hyperparameter Value

Training Configuration
Total training steps 30,000
Total tokens 500BT
Batch size (tokens) 16,777,216

Table 21: Configuration for sharpness (Hessian trace) computation using Hutchinson’s estimator.
Hyperparameter Value

Sequence length 1,024
Batch size 1
Number of views 2
Hutchinson samples 50
Maximum batches 4,096
Maximum texts 16,192
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