
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ULD-NET: ENABLING ULTRA-LOW-DEGREE FULLY POLYNOMIAL NETWORKS FOR HOMOMORPHICALLY ENCRYPTED INFERENCE

Anonymous authors

Paper under double-blind review

ABSTRACT

Fully polynomial neural networks—models whose computations comprise only additions and multiplications—are attractive for privacy-preserving inference under homomorphic encryption (HE). Yet most prior systems obtain such models by post-hoc replacement of nonlinearities with high-degree or cascaded polynomials, which inflates HE cost and makes training numerically fragile and hard to scale.

We introduce ULD-Net, a training methodology that enable *ultra-low-degree* (multiplicative depth ≤ 3 for each operator) fully polynomial networks to be trained from scratch at ImageNet and transformer scale and maintains high accuracy. The key is a polynomial-only normalization, PolyNorm, coupled with a principled choice of normalization axis that keeps activations in a well-conditioned range across deep stacks of polynomial layers. Together with a special set of polynomial-aware operator replacement, such as polynomial activation function and linear attention, ULD-Net delivers stable optimization without resorting to high-degree approximations.

Experimental results demonstrate that ULD-Net outperforms several state-of-the-art open-source fully and partially polynomial approaches across both CNNs and ViTs on diverse datasets, in terms of both accuracy and HE inference latency. Specifically, ULD-Net achieves +0.39% accuracy and a $2.76\times$ speedup compared to the best fully polynomial baseline; up to +3.33% accuracy and a $3.17\times$ speedup compared to the best partial polynomial baseline.

Applying ULD-Net to ViT-Small and ViT-Base yields 76.70% and 75.20% top-1 accuracy on ImageNet, demonstrating the first fully polynomial models scaled to the ViT/ImageNet level.

The code is available at Anonymous GitHub¹.

1 INTRODUCTION

Machine learning is increasingly delivered as a service (e.g., AWS SageMaker (ama), Azure ML (tea, 2016)), raising serious concerns regarding the confidentiality of user data and proprietary models. Homomorphic encryption (HE) (Dathathri et al., 2019; Kim et al., 2022) enables computation directly on ciphertexts, but today’s deep networks rely on non-polynomial operators (e.g., ReLU, GELU, LayerNorm, Softmax) that are expensive or unsupported under HE. A popular workaround is to approximate such operators with high-degree polynomials or to offload them to alternative secure protocols (Tong et al., 2024; Lou et al., 2021; Ran et al., 2022). Unfortunately, high-degree or cascaded polynomials increase HE multiplicative depth and latency, and they remain brittle when scaled to large models and datasets.

Our goal. We revisit the problem from first principles: rather than approximating non-polynomial operators after training, can we directly train networks whose every layer is a low-degree polynomial, preserving accuracy while keeping HE cost small?

¹<https://anonymous.4open.science/r/ULDNet-8C27>

Figure 1: ULD-Net achieves a better accuracy–latency Pareto frontier than prior SOTA fully polynomial works (Lee et al., 2021; Tong et al., 2024) on ImageNet.

datasets. Prior fully polynomial attempts that succeed at ImageNet often rely on high-degree or cascaded high-degree polynomials, trading stability for prohibitive HE cost (Hesamifard et al., 2017; Chou et al., 2018; Al Badawi et al., 2020; Garimella et al., 2021; Lee et al., 2021; Tong et al., 2024).

Key ideas in ULD-Net.

1. **Normalization-axis principle.** We show that choosing the normalization axis to match the geometry of polynomial layers (and the data layout) imposes effective range constraints with minimal overhead, improving stability at scale.
2. **PolyNorm: polynomial-only normalization.** PolyNorm implements strong numeric control using *only* additions and multiplications, making it natively compatible with HE while serving the same stabilizing role as common non-polynomial normalizers.
3. **End-to-end design recipe.** We provide an effective and broadly applicable design recipe—including suitable ultra-low-degree polynomial replacements for common activation, attention, and normalization operators, as well as auxiliary training techniques such as variance-aware penalty losses—that reliably trains fully polynomial networks on ImageNet and ViTs without high-degree approximations.

Results at a glance. ULD-Net-applied ResNet-18 achieves **69.79%** top-1 accuracy on ImageNet, outperforming the best fully polynomial baseline by +0.39% accuracy and **2.76 \times** HE inference speedup; and reaches 78.81% top-1 accuracy on CIFAR-100, surpassing the best partial polynomial baseline by up to +3.33% accuracy and 3.17 \times speedup. ULD-Net-applied ViT-Small is successfully trained on CIFAR-10 and Tiny-ImageNet, outperforming the best HE transformer baseline by up to +0.88% accuracy and 20.5 \times reduction in non-polynomial operator cost. Applying ULD-Net to the VanillaNet-5/6/7 family yields **72.43%/76.03%/76.40%** top-1 accuracy on ImageNet, with substantially lower HE latency than ResNet-18. **Applying ULD-Net to ViT-Small/ViT-Base yields 76.70%/75.20% ImageNet accuracy, representing, to the best of our knowledge, the first successful scaling of fully polynomial models to the ViT/ImageNet level.** As shown in Figure 1, ULD-Net achieves a significantly better accuracy–latency Pareto frontier than prior works.

Relation to prior work. Partial replacement methods (Peng et al., 2023a) prune or relocate non-polynomial operators to reduce secure-inference overhead but still require costly non-polynomial handling. Fully polynomial approaches avoid that cost but often rely on high-degree or cascaded polynomials to retain accuracy at scale (Lee et al., 2021; Tong et al., 2024). ULD-Net departs from both by training *ultra-low-degree* (multiplicative depth ≤ 3) fully polynomial networks directly, enabled by PolyNorm and principled design choices that maintain numerical stability without sacrificing HE efficiency.

In summary, ULD-Net turns fully polynomial network design into a scalable, accuracy-preserving alternative for HE inference: it replaces post-hoc high-degree approximations with a pretraining-time solution that is simple to implement, architecture-agnostic, and demonstrably efficient under encryption.

This paper. We present ULD-Net, a practical answer to that question. ULD-Net combines a new polynomial-only normalization layer, PolyNorm, with a specific set of training and architectural choices that together maintain tight control over activation ranges across depth. The design is agnostic to backbone (ResNets, VanillaNets, ViTs) and naturally HE-friendly: ultra-low-degree activations reduce ciphertext multiplications and multiplicative depth per layer, translating to faster encrypted inference.

Why this is hard. Polynomial functions of degree ≥ 2 can explode outside a narrow input range; when stacked deeply, instability compounds and derails optimization, especially on large, high-variance

108 2 RELATED WORKS
109

110 2.1 PARTIAL POLYNOMIAL REPLACEMENT
111

112 Partial replacement methods reduce, but do not eliminate, non-polynomial operators in deep networks (Mishra et al., 2020; Lou et al., 2021; Peng et al., 2023a). While attractive for ease of adoption, 113 these approaches still require specialized handling (or offloading) of the remaining non-polynomial 114 components during secure inference, especially in homomorphically encrypted scheme, which 115 leads to non-negligible latency and system complexity. More importantly, the numerical constraints 116 for fully polynomial networks are substantially stricter than for partially replaced models. In prac- 117 tice, directly scaling partial-replacement techniques to the fully polynomial regime on large models 118 or datasets often results in unstable training and/or impractical secure-inference costs.
119

120 2.2 FULLY POLYNOMIAL REPLACEMENT
121

122 A second line of work targets *fully* polynomial networks by approximating all non-polynomial op- 123 erators with polynomials. Some prior works (Park et al., 2022; Aremu & Nandakumar, 2023; Ali 124 et al., 2020; Garimella et al., 2021) are successful on small datasets but are unable to scale to Image- 125 Net. Lee (Lee et al., 2021) proposed cascaded polynomials to reduce approximation error within 126 a target range. Although cascading can reduce coefficient storage, the *effective* degree relevant to 127 HE cost grows with the product of per-stage degrees, resulting in very high multiplicative depth on 128 large-scale tasks; e.g., stable ImageNet training for ResNet-18 was reported to require an effective 129 degree of 6075, which is prohibitive for HE inference. Tong et al. (Tong et al., 2024) reduced the 130 cascaded degree to 81 via a suite of techniques (coefficient tuning, progressive approximation, alter- 131 nating training, dynamic/static scaling), obtaining 69.4% top-1 on ImageNet; however, the training 132 pipeline is complex and less portable across architectures, and we found it difficult to extend to fully 133 polynomial ViTs. Diaa et al. (Diaa et al., 2024) use a quartic polynomial and introduce a penalty 134 loss to constrain the inputs to the polynomial layers. However, it does not scale effectively to Image- 135 Net or ViT-based architectures. Zimerman (Zimerman et al., 2024) reported fully polynomial ViT 136 results on CIFAR-100, but did not specify the exact polynomial forms or degrees and did not release 137 code, making the computational cost and stability trade-offs hard to assess.
138

139 2.3 POLYNOMIAL APPROXIMATIONS IN PRACTICAL HE INFERENCE
140

141 A complementary direction integrates polynomial approximation with system-level HE optimiza- 142 tions. For instance, NEXUS (Zhang et al., 2024) accelerate Transformer inference under HE by 143 combining algorithmic changes with low-level HE engineering. Nevertheless, the approach still re- 144 lies on iterative polynomial approximations for certain non-polynomial modules, which can require 145 many steps and contribute substantially to multiplicative depth and runtime.
146

147 3 BACKGROUNDS
148

149 3.1 CKKS HOMOMORPHIC ENCRYPTION
150

151 Homomorphic encryption (HE) enables computation over encrypted data without decryption. Lev- 152 eled HE (LHE) supports a bounded number of additions and multiplications, while Fully HE (FHE) 153 allows unbounded computation via bootstrapping to refresh ciphertext noise (Gentry, 2009). The 154 CKKS scheme (Cheon et al., 2017) is a widely used LHE scheme for approximate arithmetic on 155 fixed-point values encoded in complex slots, making it suitable for machine-learning workloads. 156 CKKS supports ciphertext–ciphertext addition (Add), ciphertext–ciphertext multiplication (CMult), 157 ciphertext–plaintext multiplication (PMult), and slot rotations via Galois automorphisms (Rotation, 158 $\rho(ct, k)$). In typical implementations, CMult and Rotation are substantially more expensive than 159 Add and PMult (e.g., up to 20 \times slower), so overall latency is largely driven by the number of ci- 160 phertext multiplications, rotations, and the required multiplicative depth (Ran et al., 2023). Depth 161 is controlled by modulus-chain management (rescaling) and determines whether bootstrapping is 162 needed. Consequently, model designs that minimize polynomial degree and rotation usage are gen- 163 erally preferable for HE inference.
164

162 Notably, the *multiplicative depth* is generally regarded as the primary determinant of HE computa-
163 tion speed, and it grows proportionally with the logarithm of the polynomial degree.
164

165 **3.2 FULLY POLYNOMIAL NETWORKS**
166

167 Fully polynomial networks retain the original architecture while replacing every non-polynomial
168 operation (e.g., ReLU, GELU, MaxPool, LayerNorm) with a polynomial operator, resulting in compu-
169 tation composed solely of additions and multiplications. This design eliminates the need for costly
170 non-polynomial handling under HE and aligns with the operations that CKKS supports most effi-
171 ciently. Common replacements include fixed or trainable low-degree polynomial activations (Lee
172 et al., 2021; Peng et al., 2023b), AvgPool or polynomial pooling for MaxPool (Lee et al., 2021;
173 Tong et al., 2024), and linear or iterative polynomial surrogates for normalization layers (Chen
174 et al., 2022). Training is typically conducted in plaintext with the same polynomial operators that
175 will be used at inference; any non-polynomial components used for stabilization must be removed
176 or re-expressed before export to the encrypted setting. The degree of these polynomial operators
177 directly impacts the multiplicative depth and number of ciphertext multiplications, and thus the
178 practicality of HE inference. This motivates methods—such as ULD-Net—that achieve accuracy
179 and stability with *ultra-low-degree* (multiplicative depth ≤ 3) operators.
180

181 **4 ULD-NET MODEL DESIGN**
182

183 **4.1 NUMERICAL CONSTRAINTS FOR FULLY POLYNOMIAL MODELS**
184

185 Applying numerical constraints to the data flow of a fully polynomial model is primarily achieved
186 through the normalization layers. The general form of a normalization layer is:
187

$$\text{Norm}[x] = \frac{x - \mathbb{E}[x]}{\sqrt{\text{Var}[x] + \epsilon}} \quad (1)$$

188 where $\mathbb{E}[x]$ and $\text{Var}[x]$ represent the mean and variance of the input x , respectively, and ϵ is a small
189 value to prevent division by zero. The input tensor x is constrained to a mean of zero and a variance
190 of one over the chosen normalization axes. When a normalization layer is placed before a poly-
191 nomial layer, this compression effect can effectively prevent the absolute value of the polynomial input
192 from becoming excessively large, thereby avoiding divergent outputs. In particular, when the model
193 contains many polynomial layers, it is generally necessary to insert a normalization layer before
194 each polynomial layer to regulate the data flow and maintain stability.
195

196 **4.2 CHOICE OF NORMALIZATION AXIS**
197

198 We observe that different choices of normalization axes (i.e., the axes over which the statistics
199 $\mathbb{E}[x]$ and $\text{Var}[x]$ are computed) result in different levels of stability for fully polynomial models.
200 The most favorable choice for stability is to apply normalization to each sample in the batch, i.e.,
201 normalization over all axes except the batch axis. For example, in CNNs the tensor typically has the
202 shape $[B, C, H, W]$ (samples, channels, height, width). Applying normalization over the $[C, H, W]$
203 axes provides the best stability for polynomial layers. For ViTs, the tensor typically has the shape
204 $[B, N, D]$ (samples, patches, embeddings). In this case, normalization over the $[N, D]$ axes provides
205 the most stable behavior.
206

207 To explain this phenomenon, we examine a model consisting of n normalization layer and poly-
208 nomial layer pairs. For simplicity, assume all polynomial layers share the same coefficients. For each
209 sample $x \in \mathbb{R}^m$, the model computes the following sequence:
210

$$y = p_n(z_n(\cdots p_2(z_2(p_1(z_1(x)))) \cdots)) \quad (2)$$

211 where z_1, \dots, z_n are normalization layers, with the i -th layer having parameters $(\text{mean}_i, \text{var}_i)$, and
212 p_1, \dots, p_n are all equal to a degree- d polynomial $p(x) = \sum_{k=0}^d a_k x^k$, $d \geq 2$, $a_d \neq 0$. We will show
213 through variance analysis that each sample requires its own suitable normalization layers parameters,
214

Figure 2: Experimental statistics of the v values in the normalization layers of a deep neural network model (ResNet-18) during training on ImageNet, as defined in Eq. (6), and their log-normal distribution fit. The fitted parameters are $\ln \mu = -0.09$ (mean close to 1) and $\sigma = 0.37$.

Figure 3: Comparison of $f(x) = \frac{1}{\sqrt{x}}$ and $g(x)$ with different k, μ settings. It shows that $g(x)$ fits $f(x)$ best around μ and remains monotonically decreasing within the interval $(0, k\mu)$ without exceeding $f(x)$.

otherwise numerical explosion may occur. Assume two samples X and X' : $X \sim \mathcal{N}(\mu, \sigma^2 I)$ and $X' \sim \mathcal{N}(\mu, \sigma'^2 I)$. Suppose both adopt normalization layers parameters determined by X . Hence the first normalization layer uses mean = μ , var = σ^2 . For X' , the true standard deviation is σ' , and after the first normalization its variance becomes $v'_1 = \left(\frac{\sigma'}{\sigma}\right)^2 = r$. From the second normalization onward, the parameters are determined by $\text{mean}_i = \mathbb{E}[p(\mathbb{Z})]$, $\text{var}_i = \text{Var}[p(\mathbb{Z})]$, where $\mathbb{Z} \sim \mathcal{N}(0, I)$. Then, to compute the variance of X' after the $(i+1)$ -th normalization layer and polynomial layer, we approximate using the highest-order term of the polynomial:

$$v'_{i+1} \approx c v'_i^d, \quad c = \frac{a_d^2 \text{Var}[\mathbb{Z}^d]}{\text{Var}[p(\mathbb{Z})]} \quad (3)$$

Therefore, after n layer pairs, the variance for X' satisfies $v'_n \approx c^{\frac{d^n-1}{d-1}} r^{d^n}$. When $r > c^{-\frac{1}{d-1}} > 1$, we obtain $v'_n = O(r^{d^n})$, which shows an exponential-in-layer growth and an eventual explosion of variance. This demonstrates that if normalization are not computed separately for each sample, a fraction of samples may undergo numerical explosion. Moreover, the likelihood of such explosion increases with both the model depth and the number of samples, which verifies that fully polynomial models face a scalability challenge. Therefore, applying sample-specific normalization within each batch is the most favorable strategy for stability.

4.3 POLYNORM

However, in Eq. (1), aside from the two polynomial operations $\mathbb{E}[x]$ and $\text{Var}[x]$ (where $\text{Var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2$), there exists a non-polynomial operation:

$$f(x) = \frac{1}{\sqrt{x}} \quad (4)$$

Thus, we need to replace $f(x)$ with a polynomial function $g(x)$.

Quadratic Approximation of $f(x)$. We choose to approximate $f(x)$ with a quadratic function $g(x) = a(x - b)^2 + c$. To determine the values of a , b , and c , we proceed as follows:

Since the overall shape of $f(x)$ differs from that of the quadratic function, we focus on approximating $f(x)$ around a specified positive point μ and its neighborhood. We enforce that at μ , $g(x)$ matches $f(x)$ in both function value and derivative value: $g(\mu) = f(\mu)$, $g'(\mu) = f'(\mu)$. In addition, noting that $g(x)$ is monotonically decreasing for $x \leq b$, we set $b = k\mu$, where k can be specified within a certain range. The function $g(x)$ must open upwards and remain strictly positive, i.e., $a > 0$ and $c > 0$. By solving these conditions, we obtain:

$$a = -\frac{1}{4(1-k)\mu^{5/2}}, \quad c = \frac{5-k}{4\mu^{1/2}}, \quad k \in (1, 5). \quad (5)$$

270 Furthermore, we require that $g(x) \leq f(x)$ holds for all x in the range $(0, k\mu)$. This ensures that
 271 $g(x)$ maintains good numerical constraint properties within this interval. It can be proven that this
 272 inequality holds if and only if it holds at $x = k\mu$. Simplifying the expression, we obtain $(5-k)\sqrt{k} \leq$
 273 4, which leads to $k \geq 2.438$. Consequently, the range of k is reduced to $[2.438, 5]$.
 274

275 **The Expression of PolyNorm.** The function $g(x)$ has two key properties: it closely approximates
 276 $f(x)$ near μ and is monotonically decreasing within $(0, k\mu)$. To effectively utilize these properties,
 277 we cannot directly use $\text{Var}[x]$ as the input of $g(x)$. Instead, we first compute the relative value:
 278

$$279 \quad v = \frac{\text{Var}[x]}{\bar{\text{Var}}} \quad (6)$$

280

281 where $\bar{\text{Var}}$ is the historical average of $\text{Var}[x]$ during training, ensuring that v has an expected value
 282 of 1 (as shown in Fig. 2, experimental statistics indicate that v follows a lognormal distribution with
 283 a mean close to 1). Consequently, μv has an expected value of μ . Therefore, we use μv as the input
 284 of $g(x)$ so that most inputs fall near the point where $g(x)$ exhibits its best properties. By combining
 285 Eq. (6) with Eq. (1) and ignoring ϵ , we derive the following transformation:
 286

$$287 \quad \text{Norm}[x] = \frac{x - \mathbb{E}[x]}{\sqrt{\text{Var}[x]}} = \frac{x - \mathbb{E}[x]}{\sqrt{\frac{\mu \text{Var}[x]}{\bar{\text{Var}}}}} \cdot \sqrt{\frac{\mu}{\bar{\text{Var}}}} = (x - \mathbb{E}[x]) \cdot f(\mu v) \cdot \sqrt{\frac{\mu}{\bar{\text{Var}}}}$$

288

289 By replacing the function f with the quadratic function g , we obtain the expression of PolyNorm:
 290

$$291 \quad \text{PolyNorm}[x] = (x - \mathbb{E}[x]) \cdot g(\mu v) \cdot \sqrt{\frac{\mu}{\bar{\text{Var}}}} \quad (7)$$

292

293 where

$$294 \quad g(x) = -\frac{(x - k\mu)^2}{4(1 - k)\mu^{5/2}} + \frac{5 - k}{4\mu^{1/2}}, \quad k \in [2.438, 5) \quad (8)$$

295

296 Here, k and μ are fixed parameters, and $\bar{\text{Var}}$ is a fixed value during inference. Consequently, $\sqrt{\frac{\mu}{\bar{\text{Var}}}}$
 297 is also a precomputable fixed value. Thus, $\text{PolyNorm}[x]$ serves as the polynomial replacement for
 298 $\text{Norm}[x]$. We can also apply this replacement during both the training and inference phases in order
 299 to maintain greater consistency.
 300

301 **The Numerical Constraint of PolyNorm.** PolyNorm constrains inputs with variance less than or
 302 equal to k times the historical average to have zero mean and variance no greater than 1. The proof
 303 is provided in Appendix A.
 304

305 **Analysis of Hyperparameters.** Considering the average value of $\frac{g(x)}{f(x)}$ over the interval $(0, k\mu)$,
 306 denoted as R , we have:
 307

$$308 \quad R = \frac{1}{k\mu} \int_0^{k\mu} \frac{g(x)}{f(x)} dx = \frac{4k^{5/2}}{105(k-1)} + \frac{(5-k)k^{1/2}}{6}$$

309

310 It can be proven that R is monotonically decreasing for $k \in (2.438, 5)$ and satisfies $0.532 \leq R \leq$
 311 0.913. On the other hand, we note that v follows a lognormal distribution, as shown in Fig. 2.
 312 The lognormal distribution exhibits a long-tail characteristic. Experimental statistics show that the
 313 probability of v exceeding 3 is still approximately 3×10^{-4} , while the probability of exceeding
 314 5 falls below 1×10^{-5} . Since the monotonic decreasing range of $g(x)$ increases as k increases,
 315 increasing the value of k enhances the numerical stability of PolyNorm over a wider range of v
 316 values. That is, although decreasing k improves the fitting accuracy of $g(x)$ to $f(x)$, too small a
 317 value of k will lead to a higher proportion of samples with numerical instability. Fig. 3 illustrates
 318 the comparison between $g(x)$ under different k and μ values, and $f(x)$. We empirically verify that
 319 $k = 4$ is a choice that balances both fitting accuracy and stability. The value of μ has a relatively
 320 minor impact on accuracy. In this work, we consistently use the empirical hyperparameters $k = 4$
 321 and $\mu = 2$. The corresponding $g(x)$ is:
 322

$$323 \quad g(x) = 0.01473x^2 - 0.23565x + 1.11937$$

Figure 4: Our low-degree fully polynomial model design framework. $\text{Poly}_2(\cdot)$ denotes a quadratic polynomial function.

4.4 OVERALL DESIGN RECIPE

In summary, we adopt the following fully polynomial replacement strategy:

For activation functions (e.g., ReLU, GELU), we employ trainable low-degree polynomial activations (Lee et al., 2021; Peng et al., 2023b), combined with dropout to reduce overfitting. This denoted as PolyAct, is defined as

$$\text{PolyAct}(x) = \text{Dropout} \left(\sum_{i=0}^n \alpha_i c_i x^i \right), \quad (9)$$

where α_i are trainable coefficients and c_i are fixed adjustment factors. In this work, we consistently adopt ultra-low-degree polynomials with $i \leq 3$. For softmax attention replacement in ViT, we adopt Linear Attention with Rotary Position Embedding (RoPE) (Su et al., 2024), defined as

$$\text{LinearAttn}(x) = \text{RoPE}(Q) \cdot \text{RoPE}(K)^\top \cdot V, \quad (10)$$

where $\text{RoPE}(\cdot)$ denotes the rotary position embedding operation, which is composed entirely of runtime constants and linear operations. The max pooling layer is replaced with the average pooling layer (Gilad-Bachrach et al., 2016). Normalization layers are replaced with the proposed PolyNorm layer defined in Eq. (7). To provide better initialization for $\bar{\text{Var}}$ (the running average of $\text{Var}[x]$ during training), we still employ Eq. (1) during the warmup training epochs. To further improve the stability and accuracy of PolyNorm, when adopting Eq. (7) in training we introduce two penalty loss terms, \mathcal{L}_1 and \mathcal{L}_2 , based on the magnitude of v (see Eq. (6)) and its deviation from 1:

$$\mathcal{L}_1 = \frac{1}{N} \cdot \sum_{i=1}^N v_i \cdot \lambda_1, \quad \mathcal{L}_2 = \frac{1}{N} \cdot \sum_{i=1}^N (v_i - 1)^2 \cdot \lambda_2, \quad (11)$$

where N is the number of PolyNorm layers, v_i is the v value of the i -th PolyNorm layer, and λ_1, λ_2 are scaling coefficients. The introduction of \mathcal{L}_1 suppresses excessively large v values, enhancing stability, while \mathcal{L}_2 encourages the distribution of v values to be closer to 1, which is the optimal region for the function $g(x)$.

Fig. 4 illustrates our overall design framework, which achieves near-extreme acceleration of the security scheme while largely preserving the capability of the original model.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Architectures and Datasets. We evaluate ULD-Net on both CNN models (ResNet (He et al., 2016), VanillaNet family (Chen et al., 2023)) and ViT-Small (Dosovitskiy et al., 2021; Wightman, 2019). The datasets used include CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet.

378
 379 Table 1: Comparison with SOTA fully polynomial replacement methods in terms of accuracy and
 380 HE inference latency (on ResNet-18/ImageNet, original accuracy: 69.76%). The reported latency
 381 covers both a single polynomial activation function and the entire model.

382 ResNet-18 / ImageNet 383 (Fully Polynomial)	Activation 384 Degree	Test 385 Acc.	Activation 386 Latency (s)	Speedup	Model 387 Latency (s)	Speedup
Lee et al. (2021)	6075	69.35%	16448	16.06 \times	144896	3.50 \times
SMART-PAF	81	69.40%	8311	8.12 \times	114277	2.76 \times
ULD-Net (Ours)	2	69.79%	1024	–	41408	–

388
 389 **Comparison with Prior Works.** We conduct a fair comparison of ULD-Net in terms of both model
 390 accuracy and HE inference speed against a diverse set of state-of-the-art approaches. These include
 391 fully polynomial replacement methods (Lee et al., 2021; Tong et al., 2024), partial polynomial re-
 392 placement methods (Cho et al., 2022; Peng et al., 2023a), and recent Transformer HE inference
 393 acceleration work (Zhang et al., 2024).

394 **ULD-Net Setup and Training.** We follow the replacement strategy described in Subsection 4.4.
 395 Additional hyperparameters and training details are provided in Appendix B. Training is conducted
 396 using PyTorch 2.7 on 8 NVIDIA A100 GPUs.

397 **HE Latency Evaluation.** We evaluate the HE inference latency of all experiments on a machine
 398 equipped with an AMD Threadripper 3975WX CPU under the single-thread setting. Microsoft
 399 SEAL version 3.4.5 (SEAL) is used to implement the RNS variant of the CKKS scheme (Cheon
 400 et al., 2018). We measure computation latency by running 20 samples and reporting the average.
 401 Our encryption parameter setting follows prior work (Tong et al., 2024), with polynomial degree
 402 2^{15} and modulus 881, ensuring a 128-bit security level (Albrecht et al., 2021; 2015) against known
 403 LWE attacks.

404 5.2 EXPERIMENT RESULTS

405
 406 **Comparison with SOTA Fully Polynomial Replacement Methods.** We compare ULD-Net with
 407 Lee (Lee et al., 2021) and SMART-PAF (Tong et al., 2024) on fully polynomial ResNet-18 training
 408 with ImageNet. The results are presented in Table 1. All three methods enable stable training of fully
 409 polynomial ResNet-18 on ImageNet and achieve test accuracy comparable to the original model,
 410 with the main difference lying in the polynomial degree. Lee and SMART-PAF approximate the
 411 activation function using cascaded polynomials, leading to very high equivalent polynomial degrees
 412 and correspondingly high HE multiplicative depth. The multiplicative depth is generally regarded as
 413 the primary determinant of HE computation speed, and it grows proportionally with the logarithm of
 414 the polynomial degree. In contrast, ULD-Net, with the aid of PolyNorm, performs the replacement
 415 entirely with quadratic activation functions (polynomial degree and multiplicative depth both equal
 416 to 2). This not only achieves an 8.12 \times speedup for the activation function and a 2.76 \times speedup
 417 for the entire model over SMART-PAF (the current SOTA), but also benefits from the non-linear
 418 functionality provided by quadratic activation functions (Peng et al., 2023b), leading to the highest
 419 accuracy among all methods (i.e., +0.39% higher than SMART-PAF and +0.03% higher than the
 420 original model).

421 Table 2: Comparison with SOTA partial polynomial re-
 422 placement methods (on ResNet-18/CIFAR-100, original ac-
 423 curacy: 77.84%).

424 Method	ReLU 425 Replace Ratio	Test Acc.	Activation 426 Latency (s)	Model 427 Latency (s)
SNL	0.88	73.75%	45	2052
AutoReP	0.87	75.48%	46	2053
AutoReP	0.93	74.92%	35	2042
ULD-Net (Ours)	1	78.81%	16	647

428 **Comparison with SOTA Partial
429 Polynomial Replacement Methods.** For the remaining ReLU functions
 430 in partial replacement methods, we adopt the approximation proposed
 431 by Lee et al. (2021). As shown
 432 in Table 2, ULD-Net demonstrates
 433 a significant advantage in HE la-
 434 tency compared with SNL (Cho et al.,
 435 2022) and AutoReP (Peng et al.,
 436 2023a), achieving up to a 2.88 \times
 437 speedup in activation latency and a
 438 3.17 \times speedup in overall model la-

432 Table 3: Comparison of accuracy and HE latency of non-polynomial operators for fully polynomial
 433 ViT-Small. Patch size is 4 on CIFAR-10 and 16 on Tiny-ImageNet.

435 436 437 438 439 440 441	Dataset Original Acc.	Method	Test Acc.	Non-Polynomial Operator Latency (s)				Speedup
				Softmax	LayerNorm	GELU	Total	
CIFAR-10 91.77%	NEXUS 91.48%	ULD-Net (Ours)	91.39% 91.48%	3055 156	2080 156	2860 78	7995 390	20.5× –
Tiny-ImageNet 60.90%*	NEXUS 61.40%	ULD-Net (Ours)	60.52% 61.40%	9259 472	6304 474	8668 236	24231 1182	20.5× –

442 * Using RoPE Attention.

443 tency. This improvement arises because full replacement reduces the overall evaluation circuit depth,
 444 thereby lowering the need for bootstrapping and further decreasing the end-to-end model latency.
 445 Moreover, partial polynomial replacement methods generally cannot be directly extended to fully
 446 polynomial replacements, as they fail to provide the required numerical stability. From the accuracy
 447 perspective, ULD-Net fully leverages the benefits of polynomial activations (quadratic in this case),
 448 achieving accuracy even higher than the original model (+0.97%) and outperforming AutoReP by
 449 +3.33%. Therefore, ULD-Net clearly surpasses the existing SOTA partial polynomial replacement
 450 methods in both accuracy and efficiency.

451 **Evaluation with ViT-Small and ViT-Base.** Our experiments show that ULD-Net can be applied
 452 to ViT-Small and ViT-Base, successfully training both models on ImageNet and achieving accuracy
 453 comparable to the original versions (76.7% vs. 76.5% and 75.2% vs. 75.3%, reported by Heo et al.
 454 (2021)). In Table 3, we compare ULD-Net with the recent Transformer HE inference acceleration
 455 framework NEXUS (Zhang et al., 2024). Although NEXUS is based on polynomial approximation,
 456 it requires very high polynomial degrees: the multiplicative depths of Softmax, LayerNorm, and
 457 GELU reach 16, 16, and 14, respectively. In contrast, ULD-Net uses RoPE, PolyNorm, and PolyAct
 458 (quadratic in this case), which require multiplicative depths of only 2, 3, and 2. This leads to a
 459 20.5× speedup over NEXUS in terms of total non-polynomial operator latency. ULD-Net also
 460 achieves strong accuracy: on CIFAR-10 it is +0.09% higher than NEXUS (-0.29% compared to the
 461 original model), and on Tiny-ImageNet it exceeds NEXUS by +0.88% and the original model by
 462 +0.50%.

463 Table 4: Extended experiments of ULD-Net with the Vanil-
 464 laNet family on ImageNet.

465 466 467	Model Original Acc.	Activation Degree	Test Acc.	Activation Latency (s)	Model Latency (s)
VanillaNet-5 72.49%	2	72.43%	478	3469	
VanillaNet-6 76.36%	2 3	74.25% 76.03%	597 939	4337 4678	
VanillaNet-7 77.98%	2 3	74.91% 76.40%	717 1126	5204 5614	

475 VanillaNet-7 reaches 76.40% accuracy with a 7.4× HE latency speedup compared to ResNet-18.

478 6 CONCLUSION

480 We introduced ULD-Net, a training methodology for ultra-low-degree fully polynomial networks at
 481 ImageNet and transformer scale. With polynomial-only normalization and operator replacements,
 482 ULD-Net overcomes prior instability and scalability issues. Experiments on ViT-Small and ViT-
 483 Base achieve 76.70% and 75.20% top-1 accuracy on ImageNet, representing the first ultra-low-
 484 degree fully polynomial ViT models trained at this scale.

485

**468 Extended experiments with the
 469 VanillaNet family.** VanillaNet (Chen
 470 et al., 2023) is a lightweight CNN
 471 model that achieves strong accuracy
 472 performance on ImageNet. We apply
 473 ULD-Net to VanillaNet-5/6/7 to val-
 474 idate its broad applicability and scal-
 475 ability. As shown in Table 4, ULD-
 476 Net successfully enables fully poly-
 477 nomial VanillaNets to be trained sta-
 478 bly on ImageNet, achieving accuracy
 479 close to that of the original models
 480 while maintaining substantially lower
 481 overall HE latency. In particular,
 482 VanillaNet-7 reaches 76.40% accu-
 483 racy with a 7.4× HE latency speedup
 484 compared to ResNet-18.

486 REFERENCES

487
488 Aws sagemaker. <https://aws.amazon.com/sagemaker/>.

489 Azure ml. <https://azure.microsoft.com/en-us/services/machine-learning/>, 2016.

490
491 Ahmad Al Badawi, Jin Chao, Jie Lin, Chan Fook Mun, Jun Jie Sim, Benjamin Hong Meng Tan, Xiao Nan, Khin Mi Mi Aung, and Vijay Ramaseshan Chandrasekhar. Towards the alexnet moment for homomorphic encryption: Hcnn, the first homomorphic cnn on encrypted data with gpus. *IEEE Transactions on Emerging Topics in Computing*, 2020.

492
493
494
495 Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, et al. Homomorphic encryption standard. *Protecting privacy through homomorphic encryption*, pp. 31–62, 2021.

496
497
498 Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors. *Journal of Mathematical Cryptology*, 9(3):169–203, 2015.

499
500 Rachid Elkadi Ali, Jaewoo So, and Salman A. Avestimehr. On polynomial approximations for
501 privacy-preserving and verifiable relu networks. *arXiv preprint arXiv:2011.05530*, 2020.

502
503
504 Toluwani Aremu and Kandan Nandakumar. Polykervnets: Activation-free neural networks for effi-
505 cient private inference. In *2023 IEEE Conference on Secure and Trustworthy Machine Learning
(SaTML)*, pp. 593–604. IEEE, 2023.

506
507 Hanting Chen, Yunhe Wang, Jianyuan Guo, and Dacheng Tao. Vanillanet: the power of minimalism
508 in deep learning, 2023. URL <https://arxiv.org/abs/2305.12972>.

509
510 Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong, Binxing Jiao, Dixin Jiang, Haoyi Zhou,
511 Jianxin Li, and Furu Wei. The-x: Privacy-preserving transformer inference with homomorphic
512 encryption, 2022. URL <https://arxiv.org/abs/2206.00216>.

513
514 Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arith-
515 metic of approximate numbers. In *International Conference on the Theory and Application of
516 Cryptology and Information Security*, pp. 409–437. Springer, 2017.

517
518 Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. A full rms vari-
519 ant of approximate homomorphic encryption. In *International Conference on Selected Areas in
520 Cryptography*, pp. 347–368. Springer, 2018.

521 Minsu Cho, Ameya Joshi, Siddharth Garg, Brandon Reagen, and Chinmay Hegde. Selective network
522 linearization for efficient private inference. *ArXiv*, abs/2202.02340, 2022. URL <https://api.semanticscholar.org/CorpusID:246634082>.

523
524 Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei. Faster cryp-
525 tonets: Leveraging sparsity for real-world encrypted inference. *arXiv preprint arXiv:1811.09953*,
526 2018.

527
528 Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed Maleki, Madanlal
529 Musuvathi, and Todd Mytkowicz. Chet: an optimizing compiler for fully-homomorphic neural-
530 network inferencing. In *Proceedings of the 40th ACM SIGPLAN Conference on Programming
531 Language Design and Implementation*, pp. 142–156, 2019.

532
533 Ahmed Diaa, Lucas Fenaux, Thomas Humphries, Matthew Dietz, Farhad Ebrahimiaghazani, Ben-
534 jamin Kacsmar, Xiao Li, Nicolai Lukas, Reza A. Mahdavi, Shihoh Oya, and Elmira Amjadian.
535 Fast and private inference of deep neural networks by co-designing activation functions. In *33rd
536 USENIX Security Symposium (USENIX Security 24)*, pp. 2191–2208, 2024.

537 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
538 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
539 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In *International Conference on Learning Representations (ICLR)*, 2021.

540 Karthik Garimella, Nandan Kumar Jha, and Brandon Reagen. Sisyphus: A cautionary tale of using
541 low-degree polynomial activations in privacy-preserving deep learning, 2021.
542

543 Craig Gentry. Fully homomorphic encryption using ideal lattices. In *STOC*, volume 9, pp. 169–178,
544 2009.

545 Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
546 Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy.
547 In *International conference on machine learning*, pp. 201–210. PMLR, 2016.
548

549 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
550 tion. *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
551 770–778, 2016.

552 Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Jihun Choe, and Seong Joon Oh.
553 Rethinking spatial dimensions of vision transformers. In *Proceedings of the IEEE/CVF Interna-
554 tional Conference on Computer Vision (ICCV)*, 2021.

555 Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural networks over
556 encrypted data. *arXiv preprint arXiv:1711.05189*, 2017.

557

558 Miran Kim, Xiaoqian Jiang, Kristin Lauter, Elkhan Ismayilzada, and Shayan Shams. Secure human
559 action recognition by encrypted neural network inference. *Nature communications*, 13(1):1–13,
560 2022.

561

562 Junghyun Lee, Eunsang Lee, Joon-Woo Lee, Yongjune Kim, Young-Sik Kim, and Jong-Seon No.
563 Precise approximation of convolutional neural networks for homomorphically encrypted data,
564 2021.

565

566 Qiuling Lou, Yu Shen, Hailun Jin, and Linnan Jiang. Safenet: A secure, accurate and fast neu-
567 ral network inference. In *International Conference on Learning Representations*, 2021. URL
568 <https://openreview.net/forum?id=Cz3dbFm5u->.

569

570 Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, Farinaz Koushanfar,
571 Abhi Shelat, and Ahmad-Reza Sadeghi. Delphi: A cryptographic inference service for neural
572 networks. In *29th USENIX Security Symposium (USENIX Security 20)*, pp. 2503–2520, 2020.

573

574 Juhyoung Park, Min Jeong Kim, Wooseok Jung, and Jung Ho Ahn. Aespa: Accuracy preserving
575 low-degree polynomial activation for fast private inference. *arXiv preprint arXiv:2201.06699*,
576 2022.

577

578 Hongwu Peng, Shaoyi Huang, Tong Zhou, Yukui Luo, Chenghong Wang, Zigeng Wang, Jiahui
579 Zhao, Xi Xie, Ang Li, Tony Geng, et al. Autorep: Automatic relu replacement for fast private
580 network inference. In *Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion*, pp. 5178–5188, 2023a.

581

582 Hongwu Peng, Ran Ran, Yukui Luo, Jiahui Zhao, Shaoyi Huang, Kiran Thorat, Tong Geng,
583 Chenghong Wang, Xiaolin Xu, Wujie Wen, and Caiwen Ding. Lingen: Structural linearized
584 graph convolutional network for homomorphically encrypted inference, 2023b. URL <https://arxiv.org/abs/2309.14331>.

585

586 Ran Ran, Wei Wang, Quan Gang, Jieming Yin, Nuo Xu, and Wujie Wen. Cryptogen: Fast and
587 scalable homomorphically encrypted graph convolutional network inference. *Advances in Neural
588 Information Processing Systems*, 35:37676–37689, 2022.

589

590 Ran Ran, Nuo Xu, Tao Liu, Wei Wang, Gang Quan, and Wujie Wen. Penguin: Parallel-packed
591 homomorphic encryption for fast graph convolutional network inference. *Advances in Neural
592 Information Processing Systems*, 36:19104–19116, 2023.

593 SEAL. Microsoft SEAL (release 3.4). <https://github.com/Microsoft/SEAL>, October
2019. Microsoft Research, Redmond, WA.

594 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
595 Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
596 ISSN 0925-2312. doi: <https://doi.org/10.1016/j.neucom.2023.127063>. URL <https://www.sciencedirect.com/science/article/pii/S0925231223011864>.
597
598

599 Jianming Tong, Jingtian Dang, Anupam Golder, Callie Hao, Arijit Raychowdhury, and Tushar Kr-
600 ishna. Accurate low-degree polynomial approximation of non-polynomial operators for fast pri-
601 vate inference in homomorphic encryption, 2024.

602 Ross Wightman. Pytorch image models. <https://github.com/huggingface/pytorch-image-models>, 2019.

603 Jiawen Zhang, Xinpeng Yang, Lipeng He, Kejia Chen, Wen jie Lu, Yinghao Wang, Xiaoyang Hou,
604 Jian Liu, Kui Ren, and Xiaohu Yang. Secure transformer inference made non-interactive. Cryptol-
605 ogy ePrint Archive, Paper 2024/136, 2024. URL <https://eprint.iacr.org/2024/136>.

606 Itamar Zimerman, Moran Baruch, Nir Drucker, Gilad Ezov, Omri Soceanu, and Lior Wolf. Con-
607 verting transformers to polynomial form for secure inference over homomorphic encryption. In
608 *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org,
609 2024.

610 A PROOF OF POLYNORM NUMERICAL CONSTRAINT

611 Considering the mean and variance of PolyNorm[x], it is evident that

$$612 \mathbb{E}[\text{PolyNorm}[x]] = \mathbb{E}[x - \mathbb{E}[x]] \cdot g(\mu v) \cdot \sqrt{\frac{\mu}{\text{Var}}} = 0$$

613 and then

$$\begin{aligned} 614 \text{Var}[\text{PolyNorm}[x]] &= \mathbb{E}[\text{PolyNorm}[x]^2] - \mathbb{E}[\text{PolyNorm}[x]]^2 = \mathbb{E}[\text{PolyNorm}[x]^2] \\ 615 &= \mathbb{E}[(x - \mathbb{E}[x])^2] \cdot g(\mu v)^2 \cdot \frac{\mu}{\text{Var}} \\ 616 &= \text{Var}[x] \cdot \frac{\mu}{\text{Var}} \cdot g(\mu v)^2 \\ 617 &= \mu v \cdot g(\mu v)^2 = \left(\frac{g(\mu v)}{f(\mu v)} \right)^2 \leq 1 \quad \text{for } \mu v \in (0, k\mu] \end{aligned}$$

618 Thus, PolyNorm ensures an expected value of 0 and a variance no greater than 1 for inputs satisfying
619 $\text{Var}[x] \leq k \cdot \text{Var}$.

620 B ADDITIONAL TRAINING HYPERPARAMETERS AND SETTINGS

621 For more details, please refer to our anonymous GitHub repository and instructions.

622 **Polynomial Operator Parameters.** The parameter ranges are set as follows: - For the quadratic
623 operator, $c_0 = 0.5$, $c_1 = 1$, $c_2 = 0.1$. - For the cubic operator, $c_0 = 0.5$, $c_1 = 1$, $c_2 = 0.1$, and
624 $c_3 = 0.01$. The dropout rate is selected from the range $[0, 0.3]$. All pooling layers are replaced with
625 AvgPool.

626 **Other Hyperparameters and Settings.** The training hyperparameters include those for ResNet-
627 18, the VanillaNet series, and ViT-Small. Additional training hyperparameters are summarized in
628 Table 5. The loss function is defined as $\mathcal{L}_{\text{CE}} + \mathcal{L}_1 + \mathcal{L}_2$, where \mathcal{L}_{CE} denotes the cross-entropy loss,
629 and \mathcal{L}_1 , \mathcal{L}_2 are defined in Eq. 11. Starting from the second epoch, PolyNorm is used to replace the
630 original normalization layers during training. During inference, PolyNorm is always applied.

648
649 Table 5: Training hyperparameters for ResNet-18, VanillaNet series, and ViT-Small. Definitions of
λ₁ and λ₂ are given in Eq. (11).

Hyperparameter	ResNet-18	VanillaNet Series	ViT-Small
Batch Size	1600	960	300
λ ₁	0.001	0.001	0.001
λ ₂	0.01	0.01	0.01
Epochs	300	300	300
Optimizer	LAMB	LAMB	LAMB
Learning Rate	5 × 10 ⁻³	5 × 10 ⁻³	5 × 10 ⁻³
Warmup Epochs	1	1	1
PolyAct Degree	2	2,3	2
Dropout	0.0	0.2	0.2
Mixup	0.0	0.2	0.2
Cutmix	0.0	1.0	1.0
k	4	4	4
μ	2	2	2

665
666 **C LLM USAGE**
667

668 **Large Language Models.** We acknowledge the use of Large Language Models (LLMs) during
669 the preparation of this paper. LLMs were employed exclusively to aid in language refinement and
670 stylistic polishing of the manuscript. They were not used to generate research ideas, design exper-
671 iments, analyze results, or mathematical derivations. All technical content, experimental design,
672 implementation, and analysis are the sole work of the authors.

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701