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ABSTRACT

Fully polynomial neural networks—models whose computations comprise only
additions and multiplications—are attractive for privacy-preserving inference un-
der homomorphic encryption (HE). Yet most prior systems obtain such models by
post-hoc replacement of nonlinearities with high-degree or cascaded polynomials,
which inflates HE cost and makes training numerically fragile and hard to scale.
We introduce ULD-Net, a training methodology that enable ultra-low-degree
(multiplicative depth ≤ 3 for each operator) fully polynomial networks to be
trained from scratch at ImageNet and transformer scale and maintains high accu-
racy. The key is a polynomial-only normalization, PolyNorm, coupled with a prin-
cipled choice of normalization axis that keeps activations in a well-conditioned
range across deep stacks of polynomial layers. Together with a special set of
polynomial-aware operator replacement, such as polynomial activation function
and linear attention, ULD-Net delivers stable optimization without resorting to
high-degree approximations.
Experimental results demonstrate that ULD-Net outperforms several state-of-the-
art open-source fully and partially polynomial approaches across both CNNs and
ViTs on diverse datasets, in terms of both accuracy and HE inference latency.
Specifically, ULD-Net achieves +0.39% accuracy and a 2.76× speedup compared
to the best fully polynomial baseline; up to +3.33% accuracy and a 3.17× speedup
compared to the best partial polynomial baseline.
Applying ULD-Net to ViT-Small and ViT-Base yields 76.70% and 75.20% top-1
accuracy on ImageNet, demonstrating the first fully polynomial models scaled to
the ViT/ImageNet level.
The code is available at Anonymous GitHub1.

1 INTRODUCTION

Machine learning is increasingly delivered as a service (e.g., AWS SageMaker (ama), Azure
ML (tea, 2016)), raising serious concerns regarding the confidentiality of user data and propri-
etary models. Homomorphic encryption (HE) (Dathathri et al., 2019; Kim et al., 2022) enables
computation directly on ciphertexts, but today’s deep networks rely on non-polynomial operators
(e.g., ReLU, GELU, LayerNorm, Softmax) that are expensive or unsupported under HE. A popular
workaround is to approximate such operators with high-degree polynomials or to offload them to
alternative secure protocols (Tong et al., 2024; Lou et al., 2021; Ran et al., 2022). Unfortunately,
high-degree or cascaded polynomials increase HE multiplicative depth and latency, and they remain
brittle when scaled to large models and datasets.

Our goal. We revisit the problem from first principles: rather than approximating non-polynomial
operators after training, can we directly train networks whose every layer is a low-degree polyno-
mial, preserving accuracy while keeping HE cost small?

1https://anonymous.4open.science/r/ULDNet-8C27
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Figure 1: ULD-Net achieves a better
accuracy–latency Pareto frontier than prior
SOTA fully polynomial works (Lee et al.,
2021; Tong et al., 2024) on ImageNet.

This paper. We present ULD-Net, a practical an-
swer to that question. ULD-Net combines a new
polynomial-only normalization layer, PolyNorm,
with a specific set of training and architectural
choices that together maintain tight control over ac-
tivation ranges across depth. The design is agnos-
tic to backbone (ResNets, VanillaNets, ViTs) and
naturally HE-friendly: ultra-low-degree activations
reduce ciphertext multiplications and multiplicative
depth per layer, translating to faster encrypted infer-
ence.

Why this is hard. Polynomial functions of de-
gree ≥ 2 can explode outside a narrow input range;
when stacked deeply, instability compounds and de-
rails optimization, especially on large, high-variance

datasets. Prior fully polynomial attempts that succeed at ImageNet often rely on high-degree or cas-
caded high-degree polynomials, trading stability for prohibitive HE cost (Hesamifard et al., 2017;
Chou et al., 2018; Al Badawi et al., 2020; Garimella et al., 2021; Lee et al., 2021; Tong et al., 2024).

Key ideas in ULD-Net.

1. Normalization-axis principle. We show that choosing the normalization axis to match the
geometry of polynomial layers (and the data layout) imposes effective range constraints
with minimal overhead, improving stability at scale.

2. PolyNorm: polynomial-only normalization. PolyNorm implements strong numeric con-
trol using only additions and multiplications, making it natively compatible with HE while
serving the same stabilizing role as common non-polynomial normalizers.

3. End-to-end design recipe. We provide an effective and broadly applicable design
recipe—including suitable ultra-low-degree polynomial replacements for common activa-
tion, attention, and normalization operators, as well as auxiliary training techniques such as
variance-aware penalty losses—that reliably trains fully polynomial networks on ImageNet
and ViTs without high-degree approximations.

Results at a glance. ULD-Net-applied ResNet-18 achieves 69.79% top-1 accuracy on ImageNet,
outperforming the best fully polynomial baseline by +0.39% accuracy and 2.76× HE inference
speedup; and reaches 78.81% top-1 accuracy on CIFAR-100, surpassing the best partial polynomial
baseline by up to +3.33% accuracy and 3.17× speedup. ULD-Net-applied ViT-Small is successfully
trained on CIFAR-10 and Tiny-ImageNet, outperforming the best HE transformer baseline by up
to +0.88% accuracy and 20.5× reduction in non-polynomial operator cost. Applying ULD-Net
to the VanillaNet-5/6/7 family yields 72.43%/76.03%/76.40% top-1 accuracy on ImageNet, with
substantially lower HE latency than ResNet-18. Applying ULD-Net to ViT-Small/ViT-Base yields
76.70%/75.20% ImageNet accuracy, representing, to the best of our knowledge, the first successful
scaling of fully polynomial models to the ViT/ImageNet level. As shown in Figure 1, ULD-Net
achieves a significantly better accuracy–latency Pareto frontier than prior works.

Relation to prior work. Partial replacement methods (Peng et al., 2023a) prune or re-
locate non-polynomial operators to reduce secure-inference overhead but still require costly
non-polynomial handling. Fully polynomial approaches avoid that cost but often rely on high-degree
or cascaded polynomials to retain accuracy at scale (Lee et al., 2021; Tong et al., 2024). ULD-Net
departs from both by training ultra-low-degree (multiplicative depth ≤3) fully polynomial networks
directly, enabled by PolyNorm and principled design choices that maintain numerical stability with-
out sacrificing HE efficiency.

In summary, ULD-Net turns fully polynomial network design into a scalable, accuracy-preserving
alternative for HE inference: it replaces post-hoc high-degree approximations with a
pretraining-time solution that is simple to implement, architecture-agnostic, and demonstrably effi-
cient under encryption.
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2 RELATED WORKS

2.1 PARTIAL POLYNOMIAL REPLACEMENT

Partial replacement methods reduce, but do not eliminate, non-polynomial operators in deep net-
works (Mishra et al., 2020; Lou et al., 2021; Peng et al., 2023a). While attractive for ease of adoption,
these approaches still require specialized handling (or offloading) of the remaining non-polynomial
components during secure inference, especially in homomorphically encryption scheme, which
leads to non-negligible latency and system complexity. More importantly, the numerical constraints
for fully polynomial networks are substantially stricter than for partially replaced models. In prac-
tice, directly scaling partial-replacement techniques to the fully polynomial regime on large models
or datasets often results in unstable training and/or impractical secure-inference costs.

2.2 FULLY POLYNOMIAL REPLACEMENT

A second line of work targets fully polynomial networks by approximating all non-polynomial op-
erators with polynomials. Some prior works (Park et al., 2022; Aremu & Nandakumar, 2023; Ali
et al., 2020; Garimella et al., 2021) are successful on small datasets but are unable to scale to Ima-
geNet. Lee (Lee et al., 2021) proposed cascaded polynomials to reduce approximation error within
a target range. Although cascading can reduce coefficient storage, the effective degree relevant to
HE cost grows with the product of per-stage degrees, resulting in very high multiplicative depth on
large-scale tasks; e.g., stable ImageNet training for ResNet-18 was reported to require an effective
degree of 6075, which is prohibitive for HE inference. Tong et al. (Tong et al., 2024) reduced the
cascaded degree to 81 via a suite of techniques (coefficient tuning, progressive approximation, alter-
nating training, dynamic/static scaling), obtaining 69.4% top-1 on ImageNet; however, the training
pipeline is complex and less portable across architectures, and we found it difficult to extend to fully
polynomial ViTs. Diaa et al. (Diaa et al., 2024) use a quartic polynomial and introduce a penalty
loss to constrain the inputs to the polynomial layers. However, it does not scale effectively to Ima-
geNet or ViT-based architectures. Zimerman (Zimerman et al., 2024) reported fully polynomial ViT
results on CIFAR-100, but did not specify the exact polynomial forms or degrees and did not release
code, making the computational cost and stability trade-offs hard to assess.

2.3 POLYNOMIAL APPROXIMATIONS IN PRACTICAL HE INFERENCE

A complementary direction integrates polynomial approximation with system-level HE optimiza-
tions. For instance, NEXUS (Zhang et al., 2024) accelerate Transformer inference under HE by
combining algorithmic changes with low-level HE engineering. Nevertheless, the approach still re-
lies on iterative polynomial approximations for certain non-polynomial modules, which can require
many steps and contribute substantially to multiplicative depth and runtime.

3 BACKGROUNDS

3.1 CKKS HOMOMORPHIC ENCRYPTION

Homomorphic encryption (HE) enables computation over encrypted data without decryption. Lev-
eled HE (LHE) supports a bounded number of additions and multiplications, while Fully HE (FHE)
allows unbounded computation via bootstrapping to refresh ciphertext noise (Gentry, 2009). The
CKKS scheme (Cheon et al., 2017) is a widely used LHE scheme for approximate arithmetic on
fixed-point values encoded in complex slots, making it suitable for machine-learning workloads.
CKKS supports ciphertext–ciphertext addition (Add), ciphertext–ciphertext multiplication (CMult),
ciphertext–plaintext multiplication (PMult), and slot rotations via Galois automorphisms (Rotation,
ρ(ct, k)). In typical implementations, CMult and Rotation are substantially more expensive than
Add and PMult (e.g., up to 20× slower), so overall latency is largely driven by the number of ci-
phertext multiplications, rotations, and the required multiplicative depth (Ran et al., 2023). Depth
is controlled by modulus-chain management (rescaling) and determines whether bootstrapping is
needed. Consequently, model designs that minimize polynomial degree and rotation usage are gen-
erally preferable for HE inference.
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Notably, the multiplicative depth is generally regarded as the primary determinant of HE computa-
tion speed, and it grows proportionally with the logarithm of the polynomial degree.

3.2 FULLY POLYNOMIAL NETWORKS

Fully polynomial networks retain the original architecture while replacing every non-polynomial
operation (e.g., ReLU, GELU, MaxPool, LayerNorm) with a polynomial operator, resulting in com-
putation composed solely of additions and multiplications. This design eliminates the need for costly
non-polynomial handling under HE and aligns with the operations that CKKS supports most effi-
ciently. Common replacements include fixed or trainable low-degree polynomial activations (Lee
et al., 2021; Peng et al., 2023b), AvgPool or polynomial pooling for MaxPool (Lee et al., 2021;
Tong et al., 2024), and linear or iterative polynomial surrogates for normalization layers (Chen
et al., 2022). Training is typically conducted in plaintext with the same polynomial operators that
will be used at inference; any non-polynomial components used for stabilization must be removed
or re-expressed before export to the encrypted setting. The degree of these polynomial operators
directly impacts the multiplicative depth and number of ciphertext multiplications, and thus the
practicality of HE inference. This motivates methods—such as ULD-Net —that achieve accuracy
and stability with ultra-low-degree (multiplicative depth ≤ 3) operators.

4 ULD-NET MODEL DESIGN

4.1 NUMERICAL CONSTRAINTS FOR FULLY POLYNOMIAL MODELS

Applying numerical constraints to the data flow of a fully polynomial model is primarily achieved
through the normalization layers. The general form of a normalization layer is:

Norm[x] =
x− E[x]√
Var[x] + ϵ

(1)

where E[x] and Var[x] represent the mean and variance of the input x, respectively, and ϵ is a small
value to prevent division by zero. The input tensor x is constrained to a mean of zero and a variance
of one over the chosen normalization axes. When a normalization layer is placed before a polyno-
mial layer, this compression effect can effectively prevent the absolute value of the polynomial input
from becoming excessively large, thereby avoiding divergent outputs. In particular, when the model
contains many polynomial layers, it is generally necessary to insert a normalization layer before
each polynomial layer to regulate the data flow and maintain stability.

4.2 CHOICE OF NORMALIZATION AXIS

We observe that different choices of normalization axes (i.e., the axes over which the statistics
E[x] and Var[x] are computed) result in different levels of stability for fully polynomial models.
The most favorable choice for stability is to apply normalization to each sample in the batch, i.e.,
normalization over all axes except the batch axis. For example, in CNNs the tensor typically has the
shape [B,C,H,W ] (samples, channels, height, width). Applying normalization over the [C,H,W ]
axes provides the best stability for polynomial layers. For ViTs, the tensor typically has the shape
[B,N,D] (samples, patches, embeddings). In this case, normalization over the [N,D] axes provides
the most stable behavior.

To explain this phenomenon, we examine a model consisting of n normalization layer and polyno-
mial layer pairs. For simplicity, assume all polynomial layers share the same coefficients. For each
sample x ∈ Rm, the model computes the following sequence:

y = pn(zn(· · · p2(z2(p1(z1(x)))) · · · )) (2)

where z1, . . . , zn are normalization layers, with the i-th layer having parameters (meani, vari), and
p1, . . . , pn are all equal to a degree-d polynomial p(x) =

∑d
k=0 akx

k, d ≥ 2, ad ̸= 0. We will show
through variance analysis that each sample requires its own suitable normalization layers parameters,

4
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Figure 2: Experimental statistics of the v val-
ues in the normalization layers of a deep neural
network model (ResNet-18) during training on
ImageNet, as defined in Eq. (6), and their log-
normal distribution fit. The fitted parameters are
lnµ = −0.09 (mean close to 1) and σ = 0.37.
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Figure 3: Comparison of f(x) = 1√
x

and
g(x) with different k, µ settings. It shows that
g(x) fits f(x) best around µ and remains mono-
tonically decreasing within the interval (0, kµ)
without exceeding f(x).

otherwise numerical explosion may occur. Assume two samples X and X ′: X ∼ N (µ, σ2I) and
X ′ ∼ N (µ, σ′2I). Suppose both adopt normalization layers parameters determined by X . Hence
the first normalization layer uses mean = µ, var = σ2. For X ′, the true standard deviation is σ′, and

after the first normalization its variance becomes v′1 =
(

σ′

σ

)2
= r . From the second normalization

onward, the parameters are determined by meani = E[p(Z)], vari = Var[p(Z)], where Z ∼ N (0, I).
Then, to compute the variance of X ′ after the (i + 1)-th normalization layer and polynomial layer,
we approximate using the highest-order term of the polynomial:

v′i+1 ≈ c v′i
d
, c =

a2d Var[Zd]

Var[p(Z)]
(3)

Therefore, after n layer pairs, the variance for X ′ satisfies v′n ≈ c
dn−1
d−1 r dn

. When r > c
− 1

d−1 > 1,
we obtain v′n = O(r dn

), which shows an exponential-in-layer growth and an eventual explosion of
variance. This demonstrates that if normalization are not computed separately for each sample, a
fraction of samples may undergo numerical explosion. Moreover, the likelihood of such explosion
increases with both the model depth and the number of samples, which verifies that fully polynomial
models face a scalability challenge. Therefore, applying sample-specific normalization within each
batch is the most favorable strategy for stability.

4.3 POLYNORM

However, in Eq. (1), aside from the two polynomial operations E[x] and Var[x] (where Var[x] =
E[x2]− E[x]2), there exists a non-polynomial operation:

f(x) =
1√
x

(4)

Thus, we need to replace f(x) with a polynomial function g(x).

Quadratic Approximation of f(x). We choose to approximate f(x) with a quadratic function
g(x) = a(x− b)2 + c. To determine the values of a, b, and c, we proceed as follows:

Since the overall shape of f(x) differs from that of the quadratic function, we focus on approxi-
mating f(x) around a specified positive point µ and its neighborhood. We enforce that at µ, g(x)
matches f(x) in both function value and derivative value: g(µ) = f(µ), g′(µ) = f ′(µ). In ad-
dition, noting that g(x) is monotonically decreasing for x ≤ b, we set b = kµ, where k can be
specified within a certain range. The function g(x) must open upwards and remain strictly positive,
i.e., a > 0 and c > 0. By solving these conditions, we obtain:

a = − 1

4(1− k)µ5/2
, c =

5− k

4µ1/2
, k ∈ (1, 5). (5)
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Furthermore, we require that g(x) ≤ f(x) holds for all x in the range (0, kµ). This ensures that
g(x) maintains good numerical constraint properties within this interval. It can be proven that this
inequality holds if and only if it holds at x = kµ. Simplifying the expression, we obtain (5−k)

√
k ≤

4, which leads to k ≥ 2.438. Consequently, the range of k is reduced to [2.438, 5).

The Expression of PolyNorm. The function g(x) has two key properties: it closely approximates
f(x) near µ and is monotonically decreasing within (0, kµ). To effectively utilize these properties,
we cannot directly use Var[x] as the input of g(x). Instead, we first compute the relative value:

v =
Var[x]

Var
(6)

where Var is the historical average of Var[x] during training, ensuring that v has an expected value
of 1 (as shown in Fig. 2, experimental statistics indicate that v follows a lognormal distribution with
a mean close to 1). Consequently, µv has an expected value of µ. Therefore, we use µv as the input
of g(x) so that most inputs fall near the point where g(x) exhibits its best properties. By combining
Eq. (6) with Eq. (1) and ignoring ϵ, we derive the following transformation:

Norm[x] =
x− E[x]√

Var[x]
=

x− E[x]√
µVar[x]

Var

·
√

µ

Var
= (x− E[x]) · f(µv) ·

√
µ

Var

By replacing the function f with the quadratic function g, we obtain the expression of PolyNorm:

PolyNorm[x] = (x− E[x]) · g(µv) ·
√

µ

Var
(7)

where

g(x) = − (x− kµ)2

4(1− k)µ5/2
+

5− k

4µ1/2
, k ∈ [2.438, 5) (8)

Here, k and µ are fixed parameters, and Var is a fixed value during inference. Consequently,
√

µ

Var

is also a precomputable fixed value. Thus, PolyNorm[x] serves as the polynomial replacement for
Norm[x]. We can also apply this replacement during both the training and inference phases in order
to maintain greater consistency.

The Numerical Constraint of PolyNorm. PolyNorm constrains inputs with variance less than or
equal to k times the historical average to have zero mean and variance no greater than 1. The proof
is provided in Appendix A.

Analysis of Hyperparameters. Considering the average value of g(x)
f(x) over the interval (0, kµ),

denoted as R, we have:

R =
1

kµ

∫ kµ

0

g(x)

f(x)
dx =

4k5/2

105(k − 1)
+

(5− k)k1/2

6

It can be proven that R is monotonically decreasing for k ∈ (2.438, 5) and satisfies 0.532 ≤ R ≤
0.913. On the other hand, we note that v follows a lognormal distribution, as shown in Fig. 2.
The lognormal distribution exhibits a long-tail characteristic. Experimental statistics show that the
probability of v exceeding 3 is still approximately 3 × 10−4, while the probability of exceeding
5 falls below 1 × 10−5. Since the monotonic decreasing range of g(x) increases as k increases,
increasing the value of k enhances the numerical stability of PolyNorm over a wider range of v
values. That is, although decreasing k improves the fitting accuracy of g(x) to f(x), too small a
value of k will lead to a higher proportion of samples with numerical instability. Fig. 3 illustrates
the comparison between g(x) under different k and µ values, and f(x). We empirically verify that
k = 4 is a choice that balances both fitting accuracy and stability. The value of µ has a relatively
minor impact on accuracy. In this work, we consistently use the empirical hyperparameters k = 4
and µ = 2. The corresponding g(x) is:

g(x) = 0.01473x2 − 0.23565x+ 1.11937

6
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Figure 4: Our low-degree fully polynomial model design framework. Poly2(·) denotes a quadratic
polynomial function.

4.4 OVERALL DESIGN RECIPE

In summary, we adopt the following fully polynomial replacement strategy:

For activation functions (e.g., ReLU, GELU), we employ trainable low-degree polynomial activa-
tions (Lee et al., 2021; Peng et al., 2023b), combined with dropout to reduce overfitting. This
denoted as PolyAct, is defined as

PolyAct(x) = Dropout

(
n∑

i=0

αicix
i

)
, (9)

where αi are trainable coefficients and ci are fixed adjustment factors. In this work, we consistently
adopt ultra-low-degree polynomials with i ≤ 3. For softmax attention replacement in ViT, we adopt
Linear Attention with Rotary Position Embedding (RoPE) (Su et al., 2024), defined as

LinearAttn(x) = RoPE(Q) · RoPE(K)⊤ · V, (10)

where RoPE(·) denotes the rotary position embedding operation, which is composed entirely of
runtime constants and linear operations. The max pooling layer is replaced with the average pooling
layer (Gilad-Bachrach et al., 2016). Normalization layers are replaced with the proposed PolyNorm
layer defined in Eq. (7). To provide better initialization for Var (the running average of Var[x] during
training), we still employ Eq. (1) during the warmup training epochs. To further improve the stability
and accuracy of PolyNorm, when adopting Eq. (7) in training we introduce two penalty loss terms,
L1 and L2, based on the magnitude of v (see Eq. (6)) and its deviation from 1:

L1 =
1

N
·

N∑
i=1

vi · λ1, L2 =
1

N
·

N∑
i=1

(vi − 1)2 · λ2, (11)

where N is the number of PolyNorm layers, vi is the v value of the i-th PolyNorm layer, and λ1, λ2

are scaling coefficients. The introduction of L1 suppresses excessively large v values, enhancing
stability, while L2 encourages the distribution of v values to be closer to 1, which is the optimal
region for the function g(x).

Fig. 4 illustrates our overall design framework, which achieves near-extreme acceleration of the
security scheme while largely preserving the capability of the original model.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Architectures and Datasets. We evaluate ULD-Net on both CNN models (ResNet (He et al., 2016),
VanillaNet family (Chen et al., 2023)) and ViT-Small (Dosovitskiy et al., 2021; Wightman, 2019).
The datasets used include CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet.
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Table 1: Comparison with SOTA fully polynomial replacement methods in terms of accuracy and
HE inference latency (on ResNet-18/ImageNet, original accuracy: 69.76%). The reported latency
covers both a single polynomial activation function and the entire model.

ResNet-18 / ImageNet
(Fully Polynomial)

Activation
Degree

Test
Acc.

Activation
Latency (s) Speedup Model

Latency (s) Speedup

Lee et al. (2021) 6075 69.35% 16448 16.06× 144896 3.50×
SMART-PAF 81 69.40% 8311 8.12× 114277 2.76×

ULD-Net (Ours) 2 69.79% 1024 – 41408 –

Comparison with Prior Works. We conduct a fair comparison of ULD-Net in terms of both model
accuracy and HE inference speed against a diverse set of state-of-the-art approaches. These include
fully polynomial replacement methods (Lee et al., 2021; Tong et al., 2024), partial polynomial re-
placement methods (Cho et al., 2022; Peng et al., 2023a), and recent Transformer HE inference
acceleration work (Zhang et al., 2024).

ULD-Net Setup and Training. We follow the replacement strategy described in Subsection 4.4.
Additional hyperparameters and training details are provided in Appendix B. Training is conducted
using PyTorch 2.7 on 8 NVIDIA A100 GPUs.

HE Latency Evaluation. We evaluate the HE inference latency of all experiments on a machine
equipped with an AMD Threadripper 3975WX CPU under the single-thread setting. Microsoft
SEAL version 3.4.5 (SEAL) is used to implement the RNS variant of the CKKS scheme (Cheon
et al., 2018). We measure computation latency by running 20 samples and reporting the average.
Our encryption parameter setting follows prior work (Tong et al., 2024), with polynomial degree
215 and modulus 881, ensuring a 128-bit security level (Albrecht et al., 2021; 2015) against known
LWE attacks.

5.2 EXPERIMENT RESULTS

Comparison with SOTA Fully Polynomial Replacement Methods. We compare ULD-Net with
Lee (Lee et al., 2021) and SMART-PAF (Tong et al., 2024) on fully polynomial ResNet-18 training
with ImageNet. The results are presented in Table 1. All three methods enable stable training of fully
polynomial ResNet-18 on ImageNet and achieve test accuracy comparable to the original model,
with the main difference lying in the polynomial degree. Lee and SMART-PAF approximate the
activation function using cascaded polynomials, leading to very high equivalent polynomial degrees
and correspondingly high HE multiplicative depth. The multiplicative depth is generally regarded as
the primary determinant of HE computation speed, and it grows proportionally with the logarithm of
the polynomial degree. In contrast, ULD-Net, with the aid of PolyNorm, performs the replacement
entirely with quadratic activation functions (polynomial degree and multiplicative depth both equal
to 2). This not only achieves an 8.12× speedup for the activation function and a 2.76× speedup
for the entire model over SMART-PAF (the current SOTA), but also benefits from the non-linear
functionality provided by quadratic activation functions (Peng et al., 2023b), leading to the highest
accuracy among all methods (i.e., +0.39% higher than SMART-PAF and +0.03% higher than the
original model).

Table 2: Comparison with SOTA partial polynomial re-
placement methods (on ResNet-18/CIFAR-100, original ac-
curacy: 77.84%).

Method ReLU
Replace Ratio Test Acc. Activation

Latency (s)
Model

Latency (s)

SNL 0.88 73.75% 45 2052
AutoReP 0.87 75.48% 46 2053
AutoReP 0.93 74.92% 35 2042
ULD-Net

(Ours) 1 78.81% 16 647

Comparison with SOTA Partial
Polynomial Replacement Methods.
For the remaining ReLU functions
in partial replacement methods, we
adopt the approximation proposed
by Lee et al. (2021). As shown
in Table 2, ULD-Net demonstrates
a significant advantage in HE la-
tency compared with SNL (Cho et al.,
2022) and AutoReP (Peng et al.,
2023a), achieving up to a 2.88×
speedup in activation latency and a
3.17× speedup in overall model la-
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Table 3: Comparison of accuracy and HE latency of non-polynomial operators for fully polynomial
ViT-Small. Patch size is 4 on CIFAR-10 and 16 on Tiny-ImageNet.

Dataset
Original Acc. Method Test Acc. Non-Polynomial Operator Latency (s) Speedup

Softmax LayerNorm GELU Total

CIFAR-10
91.77%

NEXUS 91.39% 3055 2080 2860 7995 20.5×
ULD-Net (Ours) 91.48% 156 156 78 390 –

Tiny-ImageNet
60.90%*

NEXUS 60.52% 9259 6304 8668 24231 20.5×
ULD-Net (Ours) 61.40% 472 474 236 1182 –

* Using RoPE Attention.

tency. This improvement arises because full replacement reduces the overall evaluation circuit depth,
thereby lowering the need for bootstrapping and further decreasing the end-to-end model latency.
Moreover, partial polynomial replacement methods generally cannot be directly extended to fully
polynomial replacements, as they fail to provide the required numerical stability. From the accuracy
perspective, ULD-Net fully leverages the benefits of polynomial activations (quadratic in this case),
achieving accuracy even higher than the original model (+0.97%) and outperforming AutoReP by
+3.33%. Therefore, ULD-Net clearly surpasses the existing SOTA partial polynomial replacement
methods in both accuracy and efficiency.

Evaluation with ViT-Small and ViT-Base. Our experiments show that ULD-Net can be applied
to ViT-Small and ViT-Base, successfully training both models on ImageNet and achieving accuracy
comparable to the original versions (76.7% vs. 76.5% and 75.2% vs. 75.3%, reported by Heo et al.
(2021)). In Table 3, we compare ULD-Net with the recent Transformer HE inference acceleration
framework NEXUS (Zhang et al., 2024). Although NEXUS is based on polynomial approximation,
it requires very high polynomial degrees: the multiplicative depths of Softmax, LayerNorm, and
GELU reach 16, 16, and 14, respectively. In contrast, ULD-Net uses RoPE, PolyNorm, and PolyAct
(quadratic in this case), which require multiplicative depths of only 2, 3, and 2. This leads to a
20.5× speedup over NEXUS in terms of total non-polynomial operator latency. ULD-Net also
achieves strong accuracy: on CIFAR-10 it is +0.09% higher than NEXUS (-0.29% compared to the
original model), and on Tiny-ImageNet it exceeds NEXUS by +0.88% and the original model by
+0.50%.

Table 4: Extended experiments of ULD-Net with the Vanil-
laNet family on ImageNet.

Model
Original Acc.

Activation
Degree Test Acc. Activation

Latency (s)
Model

Latency (s)

VanillaNet-5
72.49% 2 72.43% 478 3469

VanillaNet-6
76.36%

2 74.25% 597 4337
3 76.03% 939 4678

VanillaNet-7
77.98%

2 74.91% 717 5204
3 76.40% 1126 5614

Extended experiments with the
VanillaNet family. VanillaNet (Chen
et al., 2023) is a lightweight CNN
model that achieves strong accuracy
performance on ImageNet. We apply
ULD-Net to VanillaNet-5/6/7 to val-
idate its broad applicability and scal-
ability. As shown in Table 4, ULD-
Net successfully enables fully poly-
nomial VanillaNets to be trained sta-
bly on ImageNet, achieving accuracy
close to that of the original models
while maintaining substantially lower
overall HE latency. In particular,

VanillaNet-7 reaches 76.40% accuracy with a 7.4× HE latency speedup compared to ResNet-18.

6 CONCLUSION

We introduced ULD-Net, a training methodology for ultra-low-degree fully polynomial networks at
ImageNet and transformer scale. With polynomial-only normalization and operator replacements,
ULD-Net overcomes prior instability and scalability issues. Experiments on ViT-Small and ViT-
Base achieve 76.70% and 75.20% top-1 accuracy on ImageNet, representing the first ultra-low-
degree fully polynomial ViT models trained at this scale.
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A PROOF OF POLYNORM NUMERICAL CONSTRAINT

Considering the mean and variance of PolyNorm[x], it is evident that

E[PolyNorm[x]] = E[x− E[x]] · g(µv) ·
√

µ

Var
= 0

and then

Var[PolyNorm[x]] = E[PolyNorm[x]2]− E[PolyNorm[x]]2 = E[PolyNorm[x]2]

= E[(x− E[x])2] · g(µv)2 · µ

Var

= Var[x] · µ

Var
· g(µv)2

= µv · g(µv)2 =

(
g(µv)

f(µv)

)2

≤ 1 for µv ∈ (0, kµ]

Thus, PolyNorm ensures an expected value of 0 and a variance no greater than 1 for inputs satisfying
Var[x] ≤ k · Var.

B ADDITIONAL TRAINING HYPERPARAMETERS AND SETTINGS

For more details, please refer to our anonymous GitHub repository and instructions.

Polynomial Operator Parameters. The parameter ranges are set as follows: - For the quadratic
operator, c0 = 0.5, c1 = 1, c2 = 0.1. - For the cubic operator, c0 = 0.5, c1 = 1, c2 = 0.1, and
c3 = 0.01. The dropout rate is selected from the range [0, 0.3]. All pooling layers are replaced with
AvgPool.

Other Hyperparameters and Settings. The training hyperparameters include those for ResNet-
18, the VanillaNet series, and ViT-Small. Additional training hyperparameters are summarized in
Table 5. The loss function is defined as LCE + L1 + L2, where LCE denotes the cross-entropy loss,
and L1, L2 are defined in Eq. 11. Starting from the second epoch, PolyNorm is used to replace the
original normalization layers during training. During inference, PolyNorm is always applied.
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Table 5: Training hyperparameters for ResNet-18, VanillaNet series, and ViT-Small. Definitions of
λ1 and λ2 are given in Eq. (11).

Hyperparameter ResNet-18 VanillaNet Series ViT-Small
Batch Size 1600 960 300

λ1 0.001 0.001 0.001
λ2 0.01 0.01 0.01

Epochs 300 300 300
Optimizer LAMB LAMB LAMB

Learning Rate 5× 10−3 5× 10−3 5× 10−3

Warmup Epochs 1 1 1
PolyAct Degree 2 2,3 2

Dropout 0.0 0.2 0.2
Mixup 0.0 0.2 0.2
Cutmix 0.0 1.0 1.0

k 4 4 4
µ 2 2 2

C LLM USAGE

Large Language Models. We acknowledge the use of Large Language Models (LLMs) during
the preparation of this paper. LLMs were employed exclusively to aid in language refinement and
stylistic polishing of the manuscript. They were not used to generate research ideas, design exper-
iments, analyze results, or mathematical derivations. All technical content, experimental design,
implementation, and analysis are the sole work of the authors.
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