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ABSTRACT

Fine-tuning large language models (LLMs) on a mixture of diverse datasets poses
challenges due to data imbalance and heterogeneity. Existing methods often
address these issues across datasets (globally) but overlook the imbalance and
heterogeneity within individual datasets (locally), which limits their effectiveness.
We introduce Hierarchical Balancing Optimization (HBO ), a novel method
that enables LLMs to autonomously adjust data allocation during fine-tuning
both across datasets (globally) and within each individual dataset (locally). HBO
employs a bilevel optimization strategy with two types of actors: a Global Actor,
which balances data sampling across different subsets of the training mixture, and
several Local Actors, which optimizes data usage within each subset based on
difficulty levels. These actors are guided by reward functions derived from the
LLM’s training state, which measure learning progress and relative performance
improvement. We evaluate HBO on three LLM backbones across nine diverse
tasks in multilingual and multitask setups. Results show that HBO consistently
outperforms existing baselines, achieving significant accuracy gains. Our in-depth
analysis further demonstrates that both the global actor and local actors of HBO
effectively adjust data usage during fine-tuning. HBO provides a comprehensive
solution to the challenges of data imbalance and heterogeneity in LLM fine-tuning,
enabling more effective training across diverse datasets.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in understanding, rea-
soning, and generating answers across diverse tasks (Reid et al., 2024; DeepSeek-AI et al., 2025;
OpenAI, 2024a;c). One of the key factors contributing to the success of LLMs is the dataset mixture
used during their fine-tuning process (Taori et al., 2023; Yang et al., 2024b; Muennighoff et al., 2023;
Chung et al., 2024a). These dataset mixtures typically encompass a diverse range of tasks, domains,
and languages, ensuring that the models can perform well across a wide variety of applications (Yang
et al., 2024a; Dubey et al., 2024; Team et al., 2025; Martins et al., 2024; Aryabumi et al., 2024).

A critical challenge in fine-tuning LLMs is managing data imbalance and heterogeneity, which arise
from the diverse nature of tasks and datasets used for fine-tuning. Data imbalance refers to the uneven
distribution of examples across different tasks, domains, or languages (Liu et al., 2020; Kamalov &
Denisov, 2020; Pouyanfar et al., 2018; Wang et al., 2019), while data heterogeneity encompasses
variations in the characteristics of the data, such as quality and difficulty (Liu et al., 2024; Hendrycks
et al., 2021b; Li et al., 2024b; Albalak et al., 2023). Addressing these factors is crucial for achieving
optimal performance, as imbalanced or heterogeneous data can lead to overfitting on certain tasks
and underperformance on others (Zhao et al., 2023; Li et al., 2024b). Recent research highlights the
importance of strategically balancing data from various sources to mitigate these issues (Wei et al.,
2021; Iyer et al., 2022; Wu et al., 2024b). However, existing methods often assume that datasets
are internally balanced and homogeneous, which may not hold true in practice, as the examples
from the same sources may also exhibit different characteristics (Schwartz & Stanovsky, 2022;
He & Garcia, 2009). This limitation underscores the need for more effective strategies that can
manage imbalance and heterogeneity both globally (across datasets) and locally (within datasets).
Developing such strategies is challenging, as finding the optimal allocation of data usage across these
dimensions requires substantial efforts and resources. This raises a natural research question: Can
LLMs determine optimal data usage strategies by themselves to address imbalance and heterogeneity?
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To address this research question, we propose a novel framework, Hierarchical Balancing Opti-
mization (HBO ), that enables LLMs to autonomously adjust their data allocation both globally and
locally based on their current training state. Our method employs a bilevel optimization framework
(Colson et al., 2007), where the outer problem minimizes the objective function of training the LLM
over a mixture of training datasets, and the inner problem adjusts the sampling probabilities both
globally (across datasets) and locally (within datasets). To achieve this optimization, we introduce
two types of actors: Global Actor and Local Actor. The global actor is responsible for balancing
data allocation across the subsets of the training data mixture, while the local actor for each individual
subset optimizes data usage within the subset. Specifically, we categorize the examples in each subset
into four groups based on their difficulty levels. To guide the global and local actors, we define two
reward functions based on the training state of the LLM. The global reward is computed as the L2

norm of the gradients, which reflects the current learning progress of the model. The local reward is
defined as the ratio of the perplexities given by the fine-tuned LLM and the original LLM, capturing
the relative improvement in model performance on specific groups. By integrating these components,
our HBO framework effectively optimizes the training process of LLMs.

To validate the effectiveness of HBO , we conduct extensive experiments using three model backbones:
Llama-3.1-8B, Qwen2.5-7B, and EuroLLM-9B. These experiments span two setups, covering a total
of nine tasks: a Multilingual setting (MMMLU, XCOPA, XStoryCloze, XNLI, and MGSM) and a Multitask
setting (MMLU, MultiFin-EN, GSM8K, and MedMCQA). Our results demonstrate that HBO consistently
outperforms existing sampling strategies, achieving substantial improvements in model performance.

Our contributions in this work can be summarized as follows:

• We propose HBO , a novel hierarchical dynamic data sampling method that enables LLMs to
autonomously address data imbalance and heterogeneity during fine-tuning. By leveraging a
bilevel optimization framework with two types of actors, HBO dynamically adjusts sampling
probabilities both globally and locally (see Section 3).

• We demonstrate the broad applicability and effectiveness of HBO across multiple LLM
backbones and tasks. Through extensive experiments with three model backbones over
nine diverse tasks, HBO consistently outperforms existing sampling strategies, achieving
substantial accuracy improvements. Visualizations of the sampling probabilities reveal that
HBO dynamically adjusts these probabilities in a fascinating cyclical pattern, highlighting
its ability to adaptively focus on areas that enhance model learning (see Section 4.2).

• We conduct extensive analyses to investigate the contributions of the global and local actors,
the robustness of HBO to varying sampling priors, the impact of data volume, and more.
Additionally, we highlight the critical role of incorporating easy examples, which are often
discarded during fine-tuning, in boosting model performance (see Section 5).

2 RELATED WORK

Fine-Tuning with Multi-Datasets Recent advances in LLMs have shown that utilizing diverse
datasets for both pre-training and fine-tuning is crucial for developing robust, generalized models
(Team et al., 2024; Anthropic, 2024; OpenAI, 2024b;c). Multi-task learning, which fine-tunes models
on multiple tasks or languages simultaneously, leverages shared knowledge and improves overall
performance (Crawshaw, 2020; Zhang et al., 2022; Le Scao et al., 2023; Aryabumi et al., 2024).
Despite these successes, critical challenges remain, particularly in balancing diverse task objectives
(Chen et al., 2018; Kendall et al., 2018; Yu et al., 2020; Wang et al., 2020c; Khalifa et al., 2024) and
enhancing cross-lingual transferability (Kew et al., 2024; Chen et al., 2024; Shaham et al., 2024).

Data Balancing Recent studies emphasize strategies to ensure that training datasets are not only
diverse but also reflective of various domain-specific characteristics (Wei et al., 2021; Iyer et al., 2022;
Chung et al., 2024b; Liu et al., 2020; Kamalov & Denisov, 2020). Prior static balancing approaches
apply fixed sampling probabilities throughout training (Arivazhagan et al., 2019; Conneau et al.,
2020). In contrast, dynamic balancing methods adapt these probabilities over time (Wang et al.,
2020b; Wu et al., 2021; Zhu et al., 2024; Wang et al., 2019), often by incorporating another scorer
network, to more effectively manage the evolving learning process (Wang et al., 2020b;a; Wu et al.,
2024a). However, most of these methods primarily address differences between datasets (global
balancing) while often neglecting the internal diversity found within a single dataset (local balancing).
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Figure 1: The bilevel optimization framework of HBO . Global Actor and Local Actors jointly
adjust data sampling probabilities both globally (across datasets) and locally (within datasets) to
optimize the LLM parameters. Based on the LLM’s training state, the global reward and the local
reward are computed to guide the optimization of the global and local actors, respectively.

Ours Our work introduces HBO that addresses data imbalances and heterogeneity at both global
and local levels. Unlike prior methods that focus solely on global balancing (Wang et al., 2020b; Wu
et al., 2024a), our approach simultaneously optimizes sampling across datasets and within individual
datasets, ensuring more effective utilization of heterogeneous training data.

3 METHODOLOGY

3.1 PRELIMINARIES

Supervised Fine-Tuning Supervised fine-tuning (SFT) is a process that enables LLMs to follow
and respond to human instructions. During SFT, an LLM with parameters θθθ is trained on instruction-
response pairs to improve its ability to generate helpful, accurate responses to user queries. For a
single training dataset with M1 examples D1 = {(xxxk, yyyk)}M1

k=1, xxxk is the instruction (input prompt),
and yyyk is the desired response, the SFT objective minimizes the negative log-likelihood:

Ls(D1;θθθ) = −
M1∑
k=1

log p(yyyk|xxxk;θθθ) (1)

In practical applications, LLMs are often fine-tuned on multiple diverse datasets D = {Di}Ni=1,
where each dataset Di = {(xxxik, yyyik)}

Mi

k=1 contains Mi examples. In this multi-dataset setting, the
naive approach combines the losses across all datasets:

L(D;θθθ) =
N∑
i=1

Ls(Di;θθθ) (2)

Static Balancing When fine-tuning on multiple datasets of varying sizes, simply merging them
underrepresent ones. Static balancing addresses this issue by adjusting each dataset’s sampling
probability with a temperature parameter τ (Arivazhagan et al., 2019; Conneau et al., 2020). The base
sampling probability of the i-th dataset is : q(i) = Mi∑N

n=1Mn
, then adjusted using temperature τ as:

qτ (i) =
q(i)1/τ∑N
n=1 q(n)

1/τ
(3)

The temperature parameter τ provides flexible control over dataset representation: τ = 1 yields
proportional sampling based on dataset sizes (equivalent to the naive approach in Equation 2), while as
τ approaches∞, sampling becomes increasingly uniform across datasets regardless of their original
sizes. With this temperature-adjusted sampling, the training objective becomes:

L(D;θθθ, qτ ) = Ei∼qτ
[
Ls(Di;θθθ)

]
(4)
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Algorithm 1: Hierarchical Balancing Optimization

Input :D = {{{(xxxi,jk , yyyi,jk )}Qi,jk=1 }
Mi
j=1}

N
i=1, a training set organized into N subsets, where each subset i

contains Mi groups, and each group j holds Qi,j pairs consisting of instruction xxxi,jk and their
response yyyi,jk ; Fglobal and γglobal, update frequency and learning rate for ψψψglobal; Flocal and γlocal,
update frequency and learning rate for ψψψlocal; T , total training steps; α, learning rate for θθθ;

Output :The converged model θθθ;
1 Initialize pψψψglobal(N) and pψψψlocal(Mi) using Equation 3 with τ = 1 ;
2 for t = 0 to T do
3 ĩ ∼ pψψψglobal(N);
4 j̃ ∼ p

ψψψĩlocal
(Mĩ) ;

5 Sample batch (xxx,yyy) ∼ Dĩ,j̃ ;
6 θθθ ← θθθ − α · ∇θθθL(yyy|xxx;θθθ);
7 if t % Fglobal == 0 then
8 for i = 1 to N do
9 (xxx′, yyy′) ∼ Di;

10 Compute rewardRglobal(i) for Di as in Section 3.3 ;
11 end
12 ψψψglobal ← ψψψglobal +

∑N
i=1 γglobal · Rglobal(i) · ∇ψψψglobal log pψψψglobal(i) ;

13 end
14 if t % Flocal == 0 then
15 for i = 1 to N do
16 for j = 1 to Mi do
17 (xxx′, yyy′) ∼ Di,j ;
18 Compute rewardRlocal(i, j) for Di,j as in Section 3.3 ;
19 end
20 ψψψlocal ← ψψψlocal +

∑Mi
j=1 γlocal · Rlocal(i, j) · ∇ψψψlocal log pψψψlocal(i, j) ;

21 end
22 end
23 end

3.2 HIERARCHICAL BALANCING OPTIMIZATION

We introduce Hierarchical Balancing Optimization (HBO ), a hierarchical dynamic data sampling
framework designed to address both global (across datasets) and local (within datasets) heterogeneity.
Our approach leverages bilevel optimization to jointly optimize the LLM parameters θθθ and two types
of actors: the Global Actor ψψψglobal and the Local Actor ψψψlocal.1 As shown in Figure 1, the LLM θθθ
and the training datasets D form the environment, while the actors ψψψglobal and ψψψlocal act as agents
that dynamically adjust sampling probabilities. The global actor ψψψglobal balances the contributions of
different datasets, ensuring fair representation across datasets of varying sizes. Meanwhile, the local
actors ψψψlocal adjusts sampling probabilities within each dataset, accounting for internal heterogeneity.

Our framework is formulated as a bilevel optimization problem (Colson et al., 2007), where the
solution to the inner problem constrains the outer problem. In our case, the outer optimization
minimizes the objective J (D;θθθ), which evaluates the LLM’s performance on the training datasets.
The inner optimization adjusts the sampling probabilities pψψψglobal(N) and pψψψilocal

(Mi) based on the
LLM’s performance. This results in the following bilevel optimization formulation:

(ψψψglobal,ψψψlocal) = argmin
ψψψglobal,ψψψlocal

J (D;θθθ(ψψψglobal,ψψψlocal)),

where θθθ(ψψψglobal,ψψψlocal) = argmin
θθθ

Ei∼pψψψglobal (N)

[
Ej∼p

ψψψilocal
(Mi)[L((xxx

i,j , yyyi,j);θθθ)]
] (5)

This hierarchical optimization framework ensures that both global and local sampling probabilities
are dynamically adjusted to maximize the LLM’s performance, enabling more effective utilization of
heterogeneous training data.

1The ψψψlocal represents the collection of the local actors for each individual dataset and the ψψψilocal indicates the
local actor for the i-th dataset.
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We present the detailed implementation of HBO in Algorithm 1. We organize the training data into
a hierarchical structure with N subsets, where each subset i contains Mi groups. The algorithm
begins by initializing both global and local sampling distributions with temperature τ = 1. During
each training iteration, we first sample a subset ĩ according to the global distribution pψψψglobal(N), then
select a group j̃ based on the local distribution p

ψψψĩlocal
(Mĩ). After updating the model parameters

θθθ using the sampled batch, we periodically update both actors. The global actor ψψψglobal is updated
every Fglobal steps by evaluating rewardsRglobal(i) for each subset, while the local actors ψψψlocal are
updated every Flocal steps by computing rewardsRlocal(i, j) for each group. These updates follow a
policy gradient approach, where the gradient of the log probability is scaled by the corresponding
reward. This optimization strategy ensures that sampling probabilities at both hierarchical levels are
continuously refined to maximize model performance.

A critical issue in Algorithm 1 is that Equation 5 is not directly differentiable with respect to the
actors ψψψglobal and ψψψlocal. We address this using the Reinforce algorithm (Williams, 1992), a policy
gradient method that enables gradient-based optimization of non-differentiable rewards. In HBO , we
compute rewards based on the model’s performance on sampled training data, then update the policy
parameters to maximize expected rewards. The updates for ψψψglobal and ψψψlocal take the unified form:

ψψψ ← ψψψ + γ · R · ∇ψψψ log pψψψ(·) (6)

where ψψψ represents either ψψψglobal or ψψψlocal, γ is the learning rate (γglobal or γlocal),R is the computed
reward (Rglobal(i) orRlocal(i, j)), and pψψψ(·) is the probability of selecting a particular group or subset.

Implementation Details In HBO , both the global actor ψψψglobal and local actors ψψψlocal are imple-
mented as 2-layer fully connected network. Each actor takes as input a feature vector representing the
corresponding sampling unit (subset or group). This lightweight architecture is sufficient because the
actors only need to model relatively simple distributions over the hierarchical training data structure.
It is important to note that these actors are used exclusively for optimizing data sampling during
the fine-tuning process, incurring about a 15% additional training overhead in total training runtime
compared with static balanced sampling. They are entirely separate from any reward models typically
employed in Reinforcement Learning with Human Feedback (RLHF). Furthermore, we employ the
SuperFiltering metric (Li et al., 2024a) to evenly divide each subset into four groups based on task
difficulty. Group 1 contains the easiest examples, while Group 4 contains the hardest examples.

3.3 A TALE OF TWO REWARDS

In HBO , we introduce two distinct reward functions to guide the optimization of the global and local
actors. The global reward Rglobal(i) evaluates the performance of the LLM on a specific subset i,
while the local reward Rlocal(i, j) assesses the performance on a specific group j within subset i.
These rewards are designed to capture different aspects of model performance and are crucial for
effective sampling in heterogeneous datasets.

Global Reward Recent work demonstrates that the L2 norm of the gradients decreases as the
model gradually learns (Chen et al., 2018), suggesting that the L2 norm of the gradients is an ideal
signal of learning dynamics of the LLM across various datasets. Based on this insight, given a random
batch Bi = {(xxxi, yyyi)} uniformly sampled from subset i, we define our global reward Rglobal(i) as
the L2 norm of the gradients computed on subset i:

Rglobal(i) = ∥∇θθθL(Bi;θθθ)∥2 (7)

This reward mechanism prioritizes datasets with larger gradient norms, effectively allocating more
training resources to subsets where the model has more to learn. As the model becomes more
proficient on a particular subset, the corresponding gradient norm naturally decreases, causing the
global actor ψψψglobal to gradually shift focus to other subsets where improvement is still needed.

Local Reward The local heterogeneity typically stems from the varying difficulty of examples
within each subset. To address this, we design a local reward mechanism that effectively prioritizes
examples based on their learning progress. Inspired by Wu et al. (2024a), we define the local reward
Rlocal(i, j) as the ratio between the current perplexity and the initial perplexity of the model on
examples from group j within subset i. This ratio serves as an indicator of learning progress, where

5
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a higher value suggests the model has made less progress on these examples relative to its starting
point. Specifically, given a random batch Bi,j = {(xxxi,jk , yyy

i,j
k )}Kk=1 sampled from group j of subset i,

Rlocal(i, j) is defined as:2

Rlocal(i, j) =
1

K

K∑
k=1

PPL(yyyk;xxxk, θθθ)
PPL(yyyk;xxxk, θθθ0)

where PPL(yyyk;xxxk, θθθ) = exp

− 1

|yyyk|

|yyyk|∑
l=1

log p(yyyk,l|xxxk, yyyk,<l;θθθ)

 (8)

Here, θθθ denotes the current model parameters, θθθ0 represents the initial model parameters, |yyyk| is the
length of the response yyyk, and K is the batch size. For examples where the model improves quickly,
Rlocal(i, j) decreases, reducing their sampling probability. Conversely, examples where improvement
is lower maintain higher rewards.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Multitask Setup We construct our training mixture from four distinct domains: general, math,
financial, and medical. The General dataset is collected from the English part of the WildChat
(Zhao et al., 2024) and LMSYS-Chat-1M (Zheng et al., 2024), resulting in a total of 1,196K examples.
The Math dataset is derived from the MetaMathQA (Yu et al., 2024), containing 393K examples. The
Finance dataset is obtained from the AQ22 3, with 256K examples. Finally, the Medical dataset is
sourced from the UltraMedical (Zhang et al., 2024), comprising 409K examples. Accordingly, we
conduct zero-shot evaluations on the following testsets: MMLU (Hendrycks et al., 2021a) for general,
GSM8K (Cobbe et al., 2021) for math, MultiFin-EN (Jørgensen et al., 2023) for finance, and MedMCQA
(Pal et al., 2022) for medical. Due to computational constraints, we sample 10% of total examples
from each training dataset. Task performance is evaluated using the accuracy metric given by (Gao
et al., 2024), and the overall performance is reported as the macro-average across all tasks (µMT).

Multilingual Setup We fine-tune multilingual LLMs using a combination of Aya Dataset (Singh
et al., 2024) and WildChat (Zhao et al., 2024), covering eight languages: English (273K), Arabic
(12K), German (6K), Spanish (15K), Hindi (1K), Russian (49K), Swahili (578), and Chinese (102K).
Zero-shot evaluations are conducted on diverse downstream tasks, including MMMLU (Hendrycks et al.,
2021a), XCOPA (Ponti et al., 2020), XStoryCloze (Lin et al., 2021), XNLI (Conneau et al., 2018), and
MGSM (Shi et al., 2022). To address computational constraints, we sample 20% of the examples from
each training dataset. Task performance is measured as macro-average accuracy across languages
(Gao et al., 2024). The overall performance is reported as the macro-average across all tasks (µML).

Model Backbones and Baselines We evaluate HBO on: Qwen2.5-7B (Yang et al., 2024a), Llama-
3.1-8B (Dubey et al., 2024), and EuroLLM-9B (Martins et al., 2024). For baselines, we compare
against: Heuristic Methods: Proportional sampling (Prop., τ = 1), temperature sampling (Temp.,
τ = 10), and uniform sampling (Uni., τ =∞), based on Equation 3. Dynamic Methods: MoS (Wu
et al., 2024a), MultiDDS (Wang et al., 2020b), and MultiUAT (Wu et al., 2021), which adjust dataset
distributions globally. We also introduce MoS+ , which balances all

∑N
i=1Mi groups in the mixture

simultaneously, where Mi is the number of groups in dataset i. HBO and all dynamic baselines, use
the same initial prior probability with τ = 1 in Equation 3. Training details appear in Appendix A.

4.2 MAIN RESULTS

In this section, we present the performance of HBO compared to heuristic and dynamic methods
across three LLMs on multilingual and multitask setups, as shown in Table 1. We demonstrate
that HBO not only significantly outperforms a number of established baselines but also effectively
balances the data allocation during the fine-tuning process.

2We omit the superscript i, j in the notation for brevity.
3https://huggingface.co/datasets/DeividasM/financial-instruction-aq22
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Table 1: Main results given by EuroLLM-9B, Llama-3.1-8B and Qwen2.5-7B on the multilingual
and multitask settings. XSC and M.Fin are the XStoryCloze and MultiFin-EN datasets. The best
results and second-best results are highlighted.

Multilingual Multitask

µML MMMLU MGSM XCOPA XSC XNLI µMT MMLU M.Fin GSM8K MedMCQA

EuroLLM-9B
Heuristic

Prop. 48.50 45.29 21.27 65.00 66.32 44.59 49.10 55.13 53.48 46.70 41.09
Temp. 47.32 43.38 19.07 65.40 66.09 42.67 48.43 55.36 53.11 43.14 42.12
Uni. 47.49 42.64 21.13 65.20 66.25 42.23 48.07 55.38 53.30 41.09 42.53

Dynamic
MultiDDS 47.34 41.76 21.87 63.90 66.81 42.36 44.02 47.66 52.38 39.42 36.62
MultiUAT 47.35 36.47 23.73 65.60 67.08 43.85 47.20 49.86 52.95 44.73 41.26
MoS 47.79 44.05 19.40 65.90 66.73 42.86 48.37 53.29 53.66 44.20 42.31
MoS+ 48.03 44.22 20.47 64.70 66.45 44.32 49.04 53.98 54.13 47.95 40.11

HBO 49.37 45.58 24.07 65.90 66.82 44.48 50.16 55.56 53.83 48.36 42.89

Llama-3.1-8B
Heuristic

Prop. 46.25 40.78 18.00 62.70 64.63 45.11 46.74 51.84 51.10 43.14 40.88
Temp. 44.78 41.97 10.33 63.50 63.95 44.16 47.68 54.34 52.93 42.91 40.55
Uni. 44.38 40.18 11.27 63.90 64.39 42.17 46.75 52.98 52.24 42.23 39.54

Dynamic
MultiDDS 46.86 41.80 18.00 64.90 65.10 44.49 47.94 54.15 52.97 48.22 36.43
MultiUAT 46.80 41.31 19.73 62.90 65.48 44.55 50.51 55.41 51.21 54.28 41.12
MoS 46.44 42.60 17.87 64.30 65.58 41.86 49.41 52.96 50.55 56.77 37.37
MoS+ 46.94 41.25 17.73 64.10 64.96 46.64 50.94 55.55 52.69 53.07 42.43

HBO 48.07 44.28 20.40 63.00 65.98 46.67 52.28 56.87 52.56 56.94 42.74

Qwen2.5-7B
Heuristic

Prop. 53.50 53.20 41.60 64.90 64.57 43.22 58.13 60.49 59.52 67.10 45.40
Temp. 54.20 51.10 46.20 65.50 64.85 43.32 54.97 62.48 49.63 62.47 45.28
Uni. 53.90 50.46 42.93 66.30 64.92 44.90 57.42 61.52 53.66 68.31 46.19

Dynamic
MultiDDS 53.82 51.84 41.80 66.70 65.42 43.36 59.27 64.81 59.16 64.90 48.22
MultiUAT 53.79 53.13 40.40 66.40 65.10 43.91 58.90 63.66 57.33 67.70 46.93
MoS 53.99 49.80 44.87 66.10 65.72 43.48 58.84 64.79 52.75 70.28 47.55
MoS+ 54.26 51.53 44.80 66.20 65.42 43.36 58.11 63.72 53.37 70.25 45.10

HBO 55.21 53.74 48.07 66.80 64.63 42.83 60.37 65.25 59.93 70.35 45.94

HBO consistently outperforms all the baselines in both multilingual and multitask setups.
Results in Table 1 demonstrate that HBO consistently outperforms both heuristic and dynamic
baselines across various models and evaluation settings. In the multilingual evaluation (µML), HBO
surpasses the best baselines by margins of +0.87, +1.13, and +0.95 on EuroLLM-9B, Llama-3.1-8B,
and Qwen2.5-7B, respectively. Similarly, in the multitask setting (µMT), HBO delivers superior
performance, with gains of +1.06, +1.34, and +1.10 over the best baselines. Beyond average scores,
HBO achieves even larger performance gains on specific tasks. For example, HBO outperforms
competing baselines by substantial margins ranging from +1.68 to +4.10 in MMMLU task with the
Llama-3.1-8B backbone. These results show HBO ’s global-local balancing mechanism is crucial for
consistently achieving optimal performance across diverse tasks and languages.

HBO can effectively balance the data allocation globally and locally. We visualize the evolution
of sampling probabilities for global actor and local actor in Figure 2. At the global level, global actor
adaptively balances emphasis between languages or tasks, gradually shifting focus from high-resource
(e.g., English or General tasks) to less-represented languages and tasks throughout training (see
Figure 2(a) and Figure 2(b)). This dynamic rebalancing prevents overfitting to large datasets while
ensuring comprehensive capability development across all languages or tasks. At the local level,
local actor reveals a cyclical pattern in sampling distributions by example difficulty. As illustrated in
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Figure 2: The variation of sampling probabilities given by (a) global actor in the multilingual setup,
(b) global actor in the multitask setup, (c) local actor in the English subset, and (d) local actor in the
Math subset. The model backbone is Llama-3.1-8B.

Table 2: Ablation study of global actor and local actors given by Llama-3.1-8B in the multilingual
setting. ✓ indicates the actor is used, while ✗ indicates the actor is ablated. The values in red and
green indicate the gap with the results given by the full HBO .

ψψψglobal ψψψlocal µML MMMLU MGSM XCOPA XStoryCloze XNLI

✓ ✓ 48.07 44.28 20.40 63.00 65.98 46.67
✓ ✗ 47.22 ↓0.85 43.15 ↓1.13 19.47 ↓0.93 63.30 ↑0.30 65.04 ↓0.94 45.14 ↓1.53
✗ ✓ 47.46 ↓0.61 43.43 ↓0.85 19.13 ↓1.27 63.10 ↑0.10 65.22 ↓0.76 46.44 ↓0.23
✗ ✗ 46.25 ↓1.82 40.78 ↓3.50 18.00 ↓2.40 62.70 ↓0.30 64.63 ↓1.35 45.11 ↓1.56

Figure 2(c), the English subset cycles approximately every 800 steps, where harder examples (groups
3 and 4) and easier examples (groups 1 and 2) alternately receive increased sampling probability.
This emergent curriculum learning behavior shows HBO ’s ability to autonomously adapt for effective
training dynamics. The complementary global-local optimization enables HBO to simultaneously
address dataset imbalance and heterogeneity at multiple levels, resulting in superior performance.

5 ANALYSIS

In this section, we evaluate HBO in a multilingual setting, examining actor ablation, different
difficulty groupings, various sampling priors, and training data sizes. Further analyses on model sizes,
reward functions and updating frequency are provided in Appendix B.

Both global actor and local actors can effectively improve performance. We conduct an ablation
study to assess the individual contributions of global actor and local actors. The results in Table 2
demonstrate that ablating local actors reduces µML by 0.85 and XNLI by 1.53, while removing global
actor lowers µML by 0.61 and MGSM by 1.27. Removing both actors causes the largest drop (1.82 on
µML and 3.50 on MMMLU), confirming that each type of actor offers distinct advantages and that their
combination optimally balances global and local distributions during training.

Table 3: Difficulty level granularity across
multilingual benchmarks with Llama-3.1-8B.
The best results are highlighted in bold.

#Groups µML MMMLU MGSM XCOPA XSC XNLI

1 47.22 43.15 19.47 63.30 65.04 45.14
2 47.09 44.09 18.07 63.60 65.52 44.16
4 48.07 44.28 20.40 63.00 65.98 46.67
8 47.45 44.16 18.53 63.80 65.06 45.68
16 47.87 43.92 20.33 64.00 65.60 45.48

The optimal number of difficulty levels balances
granularity and effective learning. We examine
the impact of difficulty level granularity on HBO by
partitioning each dataset into 1, 2, 4, 8, and 16 groups.
As shown in Table 3, four-level grouping consistently
yields the best overall performance, achieving an µML
score of 48.07. The pattern suggests that moderate
granularity provides an optimal balance, as too few
levels fail to capture meaningful distinctions between
examples, while excessive divisions may fragment the
learning signal and increase the complexity.
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Figure 3: Improvements of HBO and MoS
compared to the Prop. with Llama-3.1-8B
backbone on the MMMLU testset.

Table 4: Effect of different sampling priors (τ ) on
performance using Llama-3.1-8B backbone across
multilingual benchmarks. The best results are high-
lighted in bold.

µML MMMLU MGSM XCOPA XSC XNLI

Prop. 46.25 40.78 18.00 62.70 64.63 45.11

MoS
+τ = 1 46.44 42.60 17.87 64.30 65.58 41.86
+τ = 10 47.06 42.80 18.00 64.90 65.10 44.49
+τ =∞ 46.40 41.31 17.73 62.90 65.48 44.55

HBO
+τ = 1 48.07 44.28 20.40 63.00 65.98 46.67
+τ = 10 47.98 44.30 20.80 63.60 65.92 45.30
+τ =∞ 48.06 44.64 19.73 63.30 66.05 46.59

HBO shows robust improvements across sampling priors. Dynamic methods are often sensitive
to the choice of prior sampling distribution (Wu et al., 2021). We evaluate HBO at various temperature
settings in Table 4 and find that HBO consistently outperforms the best heuristic baseline Prop. across
all tasks, with gains of up to +1.82 in µML. While the optimal prior may vary by task, HBO remains
stable and shows significantly less variance than MoS , demonstrating its robustness against changes in
the prior sampling distribution and consistent performance gains across diverse evaluation scenarios.

HBO consistently outperforms the baselines even in resource-constrained environments. We
previously use only 20% of the available training data to test our method under constrained conditions,
and now we increase data usage to 40%, 60%, 80%, and 100%. As shown in Figure 3, HBO
consistently achieves larger performance gains compared to MoS in every setting. Notably, when
using only 20% of the training data, HBO delivers a performance boost of 3.50 over Prop..

Table 5: Performance comparison when progressively
discarding the easiest examples from the training
dataset with Llama-3.1-8B. The “pct.” is the percent-
age of easiest examples discarded from training set.

pct. µML MMMLU MGSM XCOPA XSC XNLI

Prop. 0% 46.25 40.78 18.00 62.70 64.63 45.11

HBO

0% 48.07 44.28 20.40 63.00 65.98 46.67
25% 47.41 43.08 21.00 62.30 65.94 44.75
50% 47.08 41.32 22.33 62.60 65.72 43.45
75% 46.55 41.09 18.80 66.10 63.20 43.58

Easy examples matter for model perfor-
mance. To investigate the importance of
easy examples in training, we progressively
discard increasing percentages of the easi-
est training examples while maintaining the
total training compute (e.g., doubling the
number of training steps when 50% of exam-
ples were discarded). Our findings in Table 5
show consistent performance degradation as
more easy examples are discarded. Remov-
ing 25% of the easiest examples causes a
noticeable drop in average performance (-
0.66 on µML), particularly on XNLI (-1.92).
As removal reaches 75%, performance nears that of the baseline. Although easy examples are often
considered less informative (Xu et al., 2024), they prove crucial by diversifying the training mixture.

6 CONCLUSION

In this paper, we present Hierarchical Balancing Optimization (HBO ), a novel hierarchical dynamic
data sampling method designed to tackle the critical challenges of data imbalance and heterogeneity
in fine-tuning LLMs. Leveraging a bilevel optimization framework with a Global Actor and several
Local Actors, HBO enables LLMs to autonomously adjust data sampling both across datasets
(globally) and within datasets (locally) based on their current training state. Through extensive
experiments across three LLMs and nine tasks in multilingual and multitask setups, we demonstrate
the effectiveness of HBO , achieving significant performance improvements. By autonomously
adapting LLMs’ learning strategies, HBO represents a significant advancement in addressing the
complexities of dataset mixture balancing, contributing to more effective fine-tuning of LLMs.
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ETHICS STATEMENT

This work introduces HBO , a method for fine-tuning large language models (LLMs) using hierarchical
dynamic data sampling. All experiments are conducted on publicly available datasets and open-source
model backbones, strictly adhering to their respective licenses and terms of use. No human subjects
or private data are involved. While HBO aims to improve fairness and generalization by addressing
data imbalance and heterogeneity, we acknowledge that biases present in the underlying datasets or
models may persist. We encourage responsible use of HBO , with attention to fairness, transparency,
and accountability in downstream applications.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our findings. Detailed descriptions of the HBO
methodology, including the bilevel optimization framework, actor architectures, reward functions,
and training procedures, are provided in Section 3. Experimental setups, including model backbones,
dataset statistics, sampling strategies, and evaluation metrics, are thoroughly described in Section 4
and Appendix A. All datasets and models used are publicly available, with references and links
included. To further support reproducibility, we will release our code and scripts for data preparation
and experiments upon publication, enabling other researchers to replicate and build upon our results.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this work, we utilize large language models (LLMs) as general-purpose tools to assist
with writing polish and grammar correction. The LLMs are not involved in research ideation,
experimental design, or substantive content generation. Their role is limited to improving the clarity
and readability of the text, ensuring grammatical accuracy, and refining the presentation of our
findings. All scientific contributions, analyses, and conclusions are solely the work of the authors.
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A TRAINING DETAILS

We fine-tune all parameters of LLMs using the AdamW optimizer with a learning rate of 1× 10−5

and a batch size of 16. This process is conducted over three epochs on 8 NVIDIA A100 GPUs
(80GB). During training, we use a linear learning rate schedule with a warm-up phase that constitutes
10% of the total training steps. For HBO , ψψψglobal and ψψψlocal are updated for every 200 steps with the
learning rate of 1× 10−4 and the batch size of 64. ψψψglobal and ψψψlocal are initialized by τ = 1.

B ADDITIONAL ANALYSIS

Table 6: Comparisons between HBO and heuristic meth-
ods with various model sizes in the multilingual setup.

µML MMMLU MGSM XCOPA XSC XNLI

Llama-3.2-1B
Prop. 37.60 27.43 3.53 58.30 58.00 40.73
Temp. 37.59 27.60 3.67 58.40 57.58 40.70
Uni. 37.62 27.68 3.20 58.60 57.51 41.13
HBO 38.00 28.27 3.40 58.60 58.22 41.53

Llama-3.2-3B
Prop. 41.90 37.26 7.47 60.40 61.45 42.91
Temp. 42.21 37.21 7.67 61.50 62.13 42.55
Uni. 42.32 38.26 8.20 60.80 61.79 42.57
HBO 43.15 38.23 10.93 61.30 62.08 43.18

Llama-3.1-8B
Prop. 46.24 40.78 18.00 62.70 64.63 45.11
Temp. 44.78 41.97 10.33 63.50 63.95 44.16
Uni. 44.38 40.18 11.27 63.90 64.39 42.17
HBO 48.07 44.28 20.40 63.00 65.98 46.67

Performance gains scale with param-
eter count. As shown in Table 6, we
observe that HBO consistently outper-
forms heuristic methods across all model
sizes. Notably, the performance advan-
tage scales with the model’s parame-
ter count, suggesting that larger mod-
els are better able to leverage the opti-
mized sampling strategies. For average
performance (µML), HBO demonstrates
a significant improvement over Prop.,
achieving a +1.83 gain with Llama-3.1-
8B, compared to smaller gains of +1.25
with the 3B model and +0.40 with the
1B model. While the extent of these im-
provements may vary depending on the
specific tasks, the consistent advantage
demonstrated by HBO underscores the
robustness of this approach. These re-
sults indicate that our balancing method
is effective across different model sizes,
with larger models benefiting more sig-
nificantly. This is likely because larger models often possess a greater capacity to leverage advanced
optimization techniques.

Table 7: Various combinations of reward functions in
HBO using Llama-3.1-8B under multilinguao setup.

Rglobal Rlocal µML MMMLU MGSM XCOPA XSC XNLI

L2 norm PPL Ratio 48.07 44.28 20.40 63.00 65.98 46.67
L2 norm PPL 46.94 43.18 17.81 63.30 65.08 45.31
L2 norm Loss 47.22 44.11 18.17 62.70 64.77 46.34
CosSim PPL Ratio 47.69 43.36 19.33 64.00 65.33 46.44
CosSim PPL 47.05 42.89 18.50 62.80 65.08 45.97
CosSim Loss 47.15 43.45 18.27 63.10 64.63 46.32

HBO is compatible with various re-
ward functions. The choice of reward
function significantly affect the model
performance, so we investigate the im-
pact of reward functions and present the
results in Table 7. The L2 norm and PPL
Ratio are the default global and local re-
ward function as defined in Equation 7
and Equation 8, respectively. Following
Wu et al. (2024a), we introduce CosSim
as additional global reward and PPL and
Loss as additional local rewards. The
CosSim is defined as the cosine similar-
ity between the hidden states from two batches, the PPL and Loss are defined in Equation 8 and
Equation 1, respectively. We observe that all the combinations of reward function achieve perfor-
mance gains compared to the best heuristic baseline Prop. (46.24) in µML, and the combination of L2

norm and PPL Ratio achieves the best performance among all these combination. These findings
validate the effectiveness of our design choice.

The updating frequency of global actor and local actor should be carefully determined. We
conduct an experiment to investigate the impact of the updating frequency on the runtime and model
performance, and present the results in Figure 4. As shown in Figure 4(a), we observe that global
actor and local actor consistently improve the model performance across all the updating frequency
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Figure 4: (a) The absolute performance gains of HBO compared to Prop. with different settings of
updating frequency for global actor and local actor. (b) The relative runtime overhead introduced
by HBO compared to Prop. with different settings of updating frequency for global actor and local
actor .

settings and achieve the best performance when setting the updating frequency of both global actor
and local actor to 200. Furthermore, more frequent updating results in more computational overhead.
Figure 4(b) demonstrates that a frequency of 200 for both global actor and local actor provides the
best balance between performance gains and computational efficiency.
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