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Abstract—Sorting is a fundamental operation in computer 

science with critical impact on the performance of large-scale 

data systems, real-time applications, and embedded platforms. 

However, no single sorting algorithm performs optimally across 

all data distributions and hardware environments. This paper 

introduces Adaptive Hybrid Sort (AHS)—a hardware-aware, 

entropy-driven hybrid sorting framework that dynamically 

selects the most efficient sorting strategy based on real-time 

analysis of input characteristics. AHS begin by extracting 

statistical features, including dataset size, value range, and 

Shannon entropy. These features are fed into a decision engine 

that combines a Finite State Machine and an XGBoost classifier 

to intelligently choose between Counting Sort (for small key 

ranges), Radix Sort (for large structured low-entropy data), and 

QuickSort (as a general-purpose fallback). The system includes 

hardware-conscious optimizations for memory hierarchy and 

parallel execution. Experimental evaluation on synthetic, real-

world, and worst-case datasets including float and string types 

demonstrates that AHS outperforms conventional static sorters 

by up to 40% in execution time while maintaining space 

efficiency. The framework is scalable, extensible, and well-

suited for deployment in edge computing, big data analytics, and 

resource-constrained systems 
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Entropy, Sorting Entropy, Counting Sort, Radix Sort, QuickSort, 
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I. INTRODUCTION 

The ability to analyze and manage the flow of data has 
become more important in the digital era due to the increased 
emphasis on a linked world of information and data 
generation.  Think of a librarian as someone who needs to deal 
with an ever-changing assortment of books, all of which have 
their designated spot on the shelves [1]. The role of the 
librarian extends beyond only housing these volumes; it must 
also ensure that are organized in a manner that facilitates easy 
access to them. The diligent librarians who sort material for 
easy access and recovery are analogous to computer science 
sorting algorithms. To guarantee maximum performance and 
a pleasant user experience, sorting algorithms are essential in 
data-driven applications like search engines and databases [2]. 

Sorting algorithms are an old staple of computer science, 
and are important both in theory and in practice, helping to 
index databases, process images, and perform scientific 
computation. With the rise of data-intensive applications in 
the big data era, there is an even more urgent requirement of 
efficient, scalable and adaptive sorting methods. The classic 
algorithms QuickSort, MergeSort, HeapSort, Counting Sort 
and Radix Sort [3] have been highly examined and optimised 
in regards to time, memory usage and stability. Nonetheless, 
in spite of their advantages, such algorithms face difficulty in 
sustaining performance in various data distributions, 
especially with imbalanced, sorted, or high-scale data sets. An 

example is that QuickSort often has better average-case 
performance, but breaks down badly on sorted or near-sorted 
data. Although it is predictable and stable, MergeSort suffers 
excessive space complexity and unneeded overhead in partly 
sorted data sets. Moreover, iterative algorithms such as 
Insertion Sort and Counting Sort are good at small or 
homogenous data set but do not scale efficiently with data 
complexity [4]. Such discrepancies demonstrate a 
fundamental weakness of the traditional sorting methods that 
one algorithm can never be optimum in every possible data 
situation. 

To combat this drawback, recent work has has emphasized 
on adaptive and hybrid sorting algorithms that can change 
their approach dynamically with respect to structural 
characteristics of the input[5]. This can incorporate the 
utilization of metrics including the number of inversions, run 
lengths, and shuffled subsequence entropies measures of 
entropy. There are also techniques which strive to balance the 
performance of both a presortedness and repeated values by 
incorporating fine-grained statistical characteristics into 
sorting actions. In the modern information society, it is vital 
to choose algorithms to perform basic operations like sorting 
[6]. The ability to utilize varieties of machine learning to 
dynamically select the most efficient sorting algorithm, due to 
data properties, can produce dramatic performance gains [7]. 
Machine learning has proven useful in finding patterns in 
huge, non-structured and intricate sets of data [8][9]. 
Considering developments in this field, this paper proposes an 
Adaptive Hybrid Sort (AHS) a new dynamic sort based 
algorithm with the goal of achieving good performance 
regardless of data distribution. The algorithm proposed 
incorporates the ideas of principle of partition based sorting 
with a multi element exchange strategy that compares five 
elements each iteration, two on the left two on the right, and 
one pivot at the center [10]. The given mechanism is expected 
to better utilize local order as well as minimize unnecessary 
comparisons and use more parallelism on large datasets. 

Moreover, the algorithm includes the logic of the decision 
that will be adjusted according to the size and the distribution 
peculiarities of the input. In the case of small arrays (length < 
2), the function accepts and returns without further processing, 
since the first equally signed, neighboring elements have 
already been sorted. In the case of larger inputs, it uses a dual-
min-max approach that re-arranges elements around the pivot 
element in an iterative process aimed at better performance 
with caches and balanced partitioning [11]. The proposed 
Adaptive Hybrid Sort attempts to close these performance 
divides by actively choosing sorting policies based on input 
specifics, and this panacea provides a scalable and generalized 
method of all modern environments with complex and diverse 
data patterns. 



A. Significance and Contribution  

The exploitation of sorting mechanisms in modern 
practice of data-intensive computing is crucial to the 
efficiency of data processing pipelines, especially in systems 
involving large-scale, heterogeneous, or real-time data. 
Conventional sorting algorithms are efficient under particular 
assumptions but tend to perform poorly when used on non-
stationary data sets, particularly skewed ranges or 
unpredictable entropy. This difficulty is compounded in 
distributed or embedded systems, where both the hardware 
constraints and the throughput specification impose the need 
of more clever, lower resource-intensive approaches. The 
adaptive hybrid sorting framework proposed presents a 
dynamic decision-making engine that leverages both 
statistical feature extraction and machine learning (XGBoost 
classifier) in selecting the most effective sorting algorithm 
according to the type of input be it Counting Sort, Radix Sort 
or QuickSort. The system combines entropy-aware profiling 
and algorithmic switching to minimize the time spent sorting 
resources using the best algorithms. The innovation has the 
potential of application in edge computing, database engines 
and real-time data processing systems wherein smart sorting 
may contribute in the responsiveness and scalability of the 
system. The key contributions are: 

• A variety of synthetic and benchmark dataset were 
tested, including high-entropy, skewed, and uniform 
distributions, to validate the adaptability of the 
proposed model across diverse data characteristics. 

• Introduced a Feature Extraction Module that 
dynamically computes key indicators such as data 
range (k), data size (n), and entropy (H) to enable 
intelligent strategy selection. 

• Developed a robust entropy estimation routine 
capable of quantifying distribution randomness in real-
time to support adaptive decision-making. 

• Designed a Decision Engine that integrates a Finite 
State Machine with an XGBoost classifier, allowing 
for runtime algorithm switching based on learned 
patterns from prior sorting scenarios. 

• Apply Counting Sort when k≤1000 (small key range), 
Apply Radix Sort when k> 106 and H<0.7 (sparse, 
structured data), Apply QuickSort in all other general-
purpose cases. 

• Achieved significant runtime improvements (up to 30–
40% reduction) over static sorting algorithms by 
dynamically aligning the algorithm choice with the 
input’s data profile. 

• Demonstrated the potential for extending the 
framework into hardware-specific environments (e.g., 
GPU-accelerated, SIMD-vectorized), making it 
suitable for embedded systems, big data analytics, and 
edge computing scenarios. 

B. Research Questions 

This study was guided by the following research questions 
aimed at evaluating the adaptability and efficiency of the 
proposed Adaptive Hybrid Sort (AHS) framework: 

• RQ1: Can entropy-driven switching outperform static 
or rule-based hybrid sorting algorithms across diverse 
data distributions? 

• RQ2: How do hardware-aware threshold calibrations 
improve memory usage and cache locality in 
constrained or parallel architectures. 

These questions directly inform the architectural design of 

AHS and underpin its decision logic for algorithm selection 

and hardware-level adaptability. 

C. Justification And Novelty  

The proposed Adaptive Hybrid Sort (AHS) introduces a 
novel, data-driven approach to sorting by dynamically 
selecting the optimal algorithm (Counting Sort, Radix Sort, or 
QuickSort) based on real-time analysis of input characteristics 
(size, range, and entropy). Unlike traditional static methods, 
AHS leverage an XGBoost classifier for intelligent strategy 
switching, achieving 30–40% faster performance across 
diverse datasets while maintaining O (n log n) average-case 
complexity. It’s hardware-aware optimizations, including 
cache efficiency and conditional parallelism, ensure 
scalability from edge devices to large-scale systems. By 
overcoming the limitations of fixed algorithms such as 
Quicksort’s poor performance on presorted data or Counting 
Sort’s inefficiency with large ranges AHS deliver consistent, 
near-optimal sorting for modern applications in databases, 
IoT, and real-time analytics. 

D. Structure of the paper 

The study is structured as follows: Section II reviews 
related work on adaptive and hybrid sorting techniques across 
data distributions. Section III outlines the proposed 
framework, including the feature extraction process, decision 
engine architecture, and algorithm selection criteria. Section 
IV presents the experimental setup, datasets, and performance 
evaluation of the proposed system. Finally, Section V 
concludes the study and outlines directions for future research. 

II. LITERATURE REVIEW  

This section discusses several recent research articles 
related to adaptive hybrid sorting algorithms and intelligent 
sorting optimization techniques. These are both algorithmic 
and data-based approaches that have been integrated in these 
works to make their sorting capabilities better on different data 
distributions. Table I indicates a methodology, source of data, 
major findings, and the limitations or future research that each 
paper discloses. 

Li, Zhou and Zhu (2025) present a hybrid sorting network 
that can be scaled up or down to meet performance needs 
without increasing the required amount of computing power 
or hardware.  The BISN and P-OESN, which stand for pre-
comparison odd-even sorting networks, make up the network. 
The original OESN is enhanced with an extra pre-comparison 
layer. This layer aims to significantly impact the first half of 
the input order while having a smaller impact on the second 
half. It utilizes fewer iterations when it shifts from full parallel 
to iterative execution in the P-OESN.  They provide a novel 
design that makes use of pipelined BISN, which improves 
operating frequency and throughput. Using a pre-comparison 
layer reduces the number of iterations by 50 to 6%, according 
on the experimental findings. The pipelined BISN allows for 
throughput that is four times higher and operating frequencies 
that are more than doubled. When compared to existing 
approaches, the suggested hybrid sorting network 
significantly cuts down on sorting time and resource use, 
while simultaneously opening the door to sorting massive data 
sets [12]. 

Li et al. (2025) SSA is improved by the introduction of 
population updating mechanism of moth-flame optimization 
(MFO) algorithm and by adopting adaptive mutation; 



meanwhile, NSGA-II is enhanced by using Latin hypercube 
sampling and dynamical selection mechanism of crossover 
and mutation operators. An electromagnetic actuator 
prototype's topology optimization challenge and the multi-
objective optimum designs of the TEAM22 benchmark 
problem are used to validate the performance of the suggested 
hybrid approach.  They can see that the suggested approach is 
better and more effective from the numerical results [13]. 

Zhou et al. (2024) work presents NEON Merge Sort, a 
hybrid vectorized merge sort for ARM NEON.  In particular, 
they find the best register number to prevent the register-to-
memory access caused by the write-back of intermediate 
results by analyzing the available register functions. They 
further develop their structures for high efficiency in a unified 
asymmetrical method, using the generic merge sort 
framework that principally employs sorting networks for 
column sort and merging networks for three kinds of 
vectorized merge 1) it paves the way for the realization of 
optimum sorting networks requiring minimal comparators;  2) 
The pipeline is filled with merge instructions that are 
significantly interleaved due to the hybrid implementation of 
serial and vectorized merges [14]. 

Pezhman, Rezapour and Afzali (2024) present an online 
hybrid adaptive robust control framework founded upon the 
Non-Dominated Sorting Genetic Algorithm. The control 
process begins by linearizing the nonlinear system equations 
using feedback linearization. To address the persistent 
nonlinear behavior in the output states, an adaptive robust 
sliding mode control is applied. This control is enhanced by a 
novel mathematical framework that updates controller 
parameters via the gradient descent method, utilizing the chain 
rule of derivation. Comparative study comparing the proposed 
controller with the existing techniques proves much more 
robust and stable, the system converges quickly and offers 
better performance channels [15]. 

Shaik and Srinivas (2023) described in detail the hybrid 
sorting algorithm in terms of both the merging process and the 
algorithm's switching circumstances. In addition, they 
compare the hybrid algorithm's performance to that of 
individual sorting methods in a comprehensive performance 
test. The approach has been shown to be both efficient and 
scalable in simulations conducted on various data sets. This 
hybrid sorting method outperformed its predecessor, 
particularly when dealing with large datasets that were partly 
sorted. This algorithm's flexibility, stability, and efficiency are 
shown, along with their real-world consequences. As an added 
bonus, they outline potential avenues for further study, such 

as how to improve and expand the hybrid algorithm. Applying 
the best features of Merge sort, Quick sort, and Bubble sort, 
the suggested hybrid sorting algorithm might be a good option 
for designing an adaptable and efficient sorting system. 
Significant ramifications for sorting procedures in several 
domains and for the advancement of sorting algorithms may 
also be borne by the algorithm [16]. 

Aditya and Kalyan (2023) suggest fresh ways to make 
these algorithms work better with massive datasets.  In order 
to sort data, they suggest using distributed algorithms that take 
use of several computers to sort the data simultaneously, as 
well as adaptive algorithms that change their behaviour 
depending on the data set's properties. They recommend using 
approximation techniques for searching, which get the job 
done quickly but with less precision.  The usefulness of these 
techniques is shown experimentally, and their potential to 
improve the efficiency of sorting and searching enormous data 
sets is discussed [17]. 

Goel, Dwivedi and Sharma (2023) aims to deliver a single 
accurate academic record for analysis of practical 
performance (in terms of time) of most popular sorting 
algorithms across 4 major programming languages (C, C++, 
Java and Python) that are, In-Built Sorting Algorithms, 
Insertion Sort, MergeSort, QuickSort, Selection Sort, 
CountingSort, BubbleSort, Hybrid QuickSort, HeapSort, 
RadixSort and ShellSort. The paper also highlights how well 
each algorithm scales with the quantity of data as a 
consequence of time complexity of the algorithm and the 
choice of programming language. Matplotlib is used in the 
analysis of performance scalability. The associated project's 
code has been made open source to support further research as 
it provides precise and acceptably consistent performance 
data. The paper also helps one choose the best sorting 
algorithm for their use case based on the data and language of 
choice [18]. 

Paul (2022) the literature has published methods for the 
insertion sort and bubble sort algorithms, but none of them 
attempt to combine the two to produce a combination 
algorithm similar to ours. This work altered the bubble and 
insertion sort algorithm, which was found to have an estimated 

computational complexity of O(N − √N) . Step one of the 
method is to split the input array into smaller parts. Then, 
using a modified bubble sort, sort each component separately. 
Finally, using a modified insertion sort, merge all slices 
together. With a computational cost of O(N2), the proposed 
bubble and insertion sort algorithms exceed all others and 
classic bubble and insertion sorting methods [19]. 

TABLE I.  SUMMARY OF BACKGROUND STUDY FOR SORTING ALGORITHMS AND OPTIMIZATION TECHNIQUES 

Author Methods Dataset Key Findings Limitations & Future Work 

Li, Zhou, and 
Zhu (2025) 

P-OESN + BISN hybrid sorting 
network with pipelined architecture 

Hardware-based 
synthetic and real 

datasets 

Reduced iterations by 6–50%, >4× 
throughput improvement, 2× 

higher frequency due to pipelined 

BISN 

May require further validation 
on diverse hardware platforms 

and scalability with higher-order 

networks 

Li et al. 
(2025) 

Hybrid SSA-MFO and NSGA-II 
with adaptive mutation and Latin 

hypercube sampling 

Standard benchmarks, 
TEAM22, 

electromagnetic actuator 

Superior convergence and multi-
objective optimization 

performance 

Needs testing on larger-scale 
industrial problems and real-

time constraints 

Zhou et al. 
(2024 

NEON Merge Sort: Hybrid 
vectorized merge sort using ARM 

NEON register-aware design 

NEON-based CPU 
synthetic datasets 

Optimized register use, reduced 
memory writes, hybrid 

serial/vectorized merges, high 

throughput 

Specific to ARM NEON; 
requires generalization to other 

SIMD architectures 

Pezhman, 
Rezapour, 

and Afzali 

(2024) 

Hybrid adaptive robust controller 
based on NSGA and sliding mode 

feedback linearization 

Control systems with 
nonlinear dynamics 

Superior robustness and stability, 
fast convergence in controller 

behavior 

Application-specific; limited 
sorting relevance; future work 

may adapt the framework to 

data-centric systems 



Shaik and 
Srinivas 

(2023) 

Hybrid sorting combining Merge 
Sort, QuickSort, and Bubble Sort 

with conditional switching and 

performance analysis 

Multiple test datasets 
(synthetic + real-world) 

Enhanced performance and 
scalability on large and partially 

sorted datasets 

Further optimization possible; 
research needed on dynamic 

threshold tuning 

Aditya and 
Kalyan 

(2023) 

Adaptive and distributed sorting and 
searching; approximate algorithms 

for search 

Large-scale datasets Improved efficiency using 
adaptive behaviors and 

parallelism; good for big data 

platforms 

Potential accuracy trade-offs in 
approximate search; distributed 

sort requires fault-tolerant 

systems 

Goel, 

Dwivedi, and 

Sharma 
(2023) 

Comparative study of sorting 

algorithms (including hybrid Quick 

Sort, Radix Sort, Counting Sort) 
across multiple programming 

languages 

In-built & custom 

datasets in C, C++, Java, 

Python 

Practical runtime comparisons; 

insights into scalability and 

language-specific efficiency 

Focuses on empirical 

comparison, not algorithmic 

innovation; future work may 
explore adaptive behavior 

Paul (2022) Hybrid bubble-insertion sort with 

𝑶(𝒏 − √𝒏 

Synthetic datasets Outperforms traditional quadratic 

algorithms (Bubble, Insertion 
Sort); lower theoretical complexity 

Needs extensive benchmarking; 

limited generalizability to large-
scale or unordered data 

III. METHODOLOGY 

The suggested approach entitled Adaptive Hybrid Sort 
(AHS) combines statistical feature extraction and machine 
learning-guided decision logic to achieve dynamically feature 
based on the input characteristics. The sorting pipeline starts 
with Benchmark Dataset, which the Feature Extraction 
Module analyzes to calculate important parameters: the size 
of an array (n), the range of keys (k), and entropy (H) of the 
distribution. The inputs to these parameters are fed into a 
Decision Engine that is a mixture of a Finite State Machine 
with XGBoost Classifier to give the optimum path of the 
sorting. The algorithm employs a conditional strategy: if k ≤ 
1000, the dataset is directed to Counting Sort; if k > 10⁶ and 
entropy H < 0.7·log₂(k), it is handled using Radix Sort; 
otherwise, QuickSort is selected for its average-case 
efficiency and versatility. This dynamic process can make the 
system more efficient regarding the costs of sorting with the 
consideration of alignment between the selection of 
algorithms and the characteristics of the distribution of data. 
The complete process flow is illustrated in Figure 1, which 
outlines the decision-based sorting transitions leading to the 
Sorted Output. 

 

Fig. 1. Proposed flowchart of adaptive hybrid sorting 

A. Algorithm Design 

The Adaptive Hybrid Sort (AHS) operates through 
continuous analysis of a state vector v = (n, k, H), where n 
represents the input size (cardinality of the array), k denotes 
the value range (max(arr) – min(arr)+1), and H captures the 
information entropy (− ∑ 𝑖 = 1𝑝𝑖 log2 𝑝𝑖𝑘 ).  The decision 

framework implements a hierarchical finite state machine, 
visualized in Figure 2. When the input size n is small (n ≤ 20), 

AHS defaults to Insertion Sort to leverage its cache efficiency 
for tiny datasets. For larger datasets where the range k is 
constrained (k ≤ 1000), the algorithm selects Counting Sort to 
exploit its linear-time performance on limited-range data. In 
cases where the range exceeds practical limits for Counting 
Sort (k > 106) and the entropy condition H < 0.7 log2 k holds, 
AHS switches to Radix Sort for its superior memory 
characteristics. The system defaults to Quicksort for all other 
cases, ensuring robust performance across general inputs. 

1) Formal Verification 
The correctness of AHS follows from structural induction 

on the input size n. First, it notes that all component algorithms 
(Insertion Sort, Counting Sort, Radix Sort, and Quicksort) 
satisfy the sorting correctness criterion by their classical 
definitions. 

Assuming AHS correctly sorts all arrays of size m < n, it 
examines the behavior for size n. Threshold crossings 
preserve ordering through mathematical invariants: Counting 
Sort maintains monotonicity via prefix sum accumulation, 
while Radix Sort guarantees stability through its digit-wise 
processing. Figure 2: Decision state machine for AHS 
implementation. Red dashed transitions represent adaptive 
threshold crossings based on real-time analysis of the state 
vector v, while solid arrows indicate determinist algorithmic 
paths. The diamond nodes denote conditional checks against 
the input characteristics. 

 

Fig. 2. Decision-based flowchart for selecting Insertion Sort, Counting 

Sort, or QuickSort based on input size and key range. 

Quicksort fallback, the median-of-three pivot selection 
ensures balanced partitions that maintain partial ordering. This 

Benchmark Dataset 

Feature Extraction Module 

Compute: n, k, H 

Decision Engine 
(Finite State Machine + 

XGBoost Classifier 

If K≤ 1000 
->Counting Sort 

If K > 106 and H < 0.7. log2(𝐾) -

> Radix Sort 

Sorted Output 
Else -> 

Quicksort 



inductive argument holds for all n ∈ N, establishing universal 
correctness. 

B. Dataset Characterization 

To comprehensively evaluate the Adaptive Hybrid Sort, it 
developed benchmark datasets spanning three distinct 
categories designed to stress-test all decision paths. The 
synthetic data category contains carefully constructed 
distributions including uniform distributions across varying 
ranges (𝑘 ∈  {102, 104, 106}),  Gaussian distributions 
N (µ =  0, 𝜎2 =  𝑘/4)  spanning 𝑘 ∈  10[2: 6], and Zipfian 
distributions exhibiting skewness s = 1.5 with corresponding 
entropy H ≈ 0.7 log2 k.  

The real-world datasets encompass several important 
domains, beginning with NY Taxi timestamps featuring 𝑛 =
 107 elements across a substantial range k= 109  with entropy 
H = 8.2. The evaluation also includes IoT sensor readings 
characterized by n = 106 

Measurements within a constrained range k = 500 and low 
entropy H =1.1, as well as genomic k-mers with n = 
108elements, an extremely large range k = 430, and moderate 
entropy H =3.7. 

To ensure robust performance across edge conditions, it 
incorporated several challenging test cases. These include 
datasets with uniform values, both ascending and descending 
presorted arrays, sawtooth patterns exhibiting alternating 
increasing and decreasing sequences (↑↓↑↓), and strictly 
alternating element patterns. Figure 3 visually presents the 
normalized frequency distributions across these benchmark 
datasets, demonstrating the comprehensive coverage of data 
characteristics. 

 

Fig. 3. Visually presents the Normalized frequency distributions of 

benchmark datasets. X-axis: Entropy (H), Y-axis: Normalized Frequency. 

Figure 3 provide the Normalized frequency distributions 
of benchmark datasets, showing coverage across uniform, 
Gaussian, Zipfian, and real-world data patterns. The plot 
highlights the diversity of dataset characteristics used to 
evaluate AHS performance. 

C. Threshold Calibration 

The threshold parameters in AHS were optimized through 
multi-objective Bayesian optimization, minimizing the 
weighted sum in Equation (1): 

 min
𝑛𝑡𝑘𝑡

 [𝛼𝑇 (𝑛𝑡 ,  𝑘𝑡) +  (1 −  𝛼)𝑀 (𝑛𝑡 ,  𝑘𝑡)] () 

Where T(𝑛𝑡 ,  𝑘𝑡)  represents normalized execution time 

across synthetic and real datasets (D𝑠𝑦𝑛𝑡ℎ ∪ 𝐷𝑟𝑒𝑎𝑙),
𝑀 (𝑛𝑡 ,  𝑘𝑡) denotes peak memory usage in megabytes, and α 
= 0.7 controls the time-memory tradeoff. The calibration 
protocol began with an initial grid search exploring  𝑛𝑡 ∈

 [10, 50] and  𝑘𝑡  ∈  [500, 5000], followed by 100 iterations 
of Bayesian optimization using a Gaussian process surrogate 
model. The protocol terminated in 5-fold cross-validation 
attempting at generalization by the stratification of datasets by 
category.  

TABLE II.  OPTIMIZED THRESHOLDS VS THEORETICAL BASELINES 

Metric AHS Theoretical 

nthreshold 20 16 

kthreshold 1,024 1,000 

kmax 106 220 

For hardware-aware tuning, it dynamically adapted 𝑘𝑚𝑎𝑥 
based on system resources in Equation (2): 

 𝑘𝑚𝑎𝑥 =  
L3 Cache

4×Thread Count
 () 

This implementation provides thread parallelism but 
memory efficient usage of caches. The final thresholds, as 
indicated in Table II are very close to theoretical prediction 
and include real hardware constraint, and a 12 percent increase 
in cache utilization compared with all-static approaches. 

D. Algorithm Components 

The Adaptive Hybrid Sort (AHS) creates a strategic 
composition of four basic sorting algorithms, each one of them 
was chosen to be the most effective in case of a particular data 
scenario. Such incorporation allows AHS to be flexible in 
responding to the changing nature of the inputs but still 
capable of capacity assurances. 

E. Insertion Sort 

Insertion Sort serves as the algorithm of choice for small 
datasets where n ≤ 20, leveraging its exceptional cache 
efficiency in this regime.  The comparison complexity 

demonstrates its adaptive nature, with C(n) = 
𝑛(𝑛−1)

4
 

operations required for random data, while nearly sorted 
inputs achieve near-linear 𝐶(𝑛)  ≈  𝑛  performance. These 
small scale cases are optimized in the implementation, 
depicted in Listing 1, with little memory overhead and in place 
operations. 

 

Listing 1: Insertion Sort Implementation for Small 
Datasets (n ≤ 20) 

F. Counting Sort 

Counting Sort becomes active when processing limited-
range datasets where k ≤ 1000. The algorithm operates 
through frequency by prefix accumulation, where Count[i] = 
∑ 1{𝐴[𝑗] = 𝑖}𝑛

𝑗=1  builds a histogram of element frequencies, 

followed by prefix sum computation Output[K]= Count[i] + 
Count[i-1] to determine final position. Listing 2 presents the 
implementation that achieves linear time complexity for 
suitable input ranges.  

/** 
* Insertion Sort for small datasets ( n <= 20). 
* @ param arr - The array to sort. 
* @ returns The sorted array . 
*/ 

export function insertion Sort ( arr: number []): number [] { for ( 
let i = 1; i < arr. length ; i++) { 

const key = arr[ i]; let j 
= i - 1; 
while ( j >= 0 && arr[ j] > key ) { arr[ j 

+ 1] = arr[ j]; 
j--; 

} 
arr[ j + 1] = key ; 

} 
return arr; 



 

 

Listing 2: Counting Sort Implementation for Limited-
Range Data (k ≤ 1000) 

G. Radix Sort 

For datasets with large ranges (k > 106), AHS employ 
Radix Sort with dynamic base selection. The base b adapts to 
the data characteristics, choosing 256 for very large ranges (k 
> 106) and defaulting to 10 otherwise. This adaptive approach, 
implemented in Listing 3, ensures efficient processing of 
large-range data while maintaining controlled memory usage. 

 

Listing 3: Radix Sort Implementation for Large-
Range Data (k > 106) 

1) Quicksort 
As the default strategy for large random datasets, 

Quicksort provides reliable O (n log n) performance through 
its recursive partitioning approach. The implementation in 
Listing 4 features median-of-three pivot selection, ensuring 
balanced partitions with T (n)  =  T (3n/4)  +  T (n/4)  +
 O(n) complexity that guarantees O (n log n) average-case 
performance. 

 

Listing 4: Quick Sort Implementation with Median-
of-Three Pivot Selection 

H. Machine Learning Integration 

The Adaptive Hybrid Sort (AHS) integrates a lightweight 
XGBoost classifier to predict the most suitable sorting 
algorithm based on three features: input size nnn, key range 
kkk, and data entropy HHH. The model was trained on a 
dataset of 10,000 synthetically generated arrays, where: 

• Input size (𝑛)  sampled uniformly from the range 
 [103, 106] 

• Key range (𝑘)  sampled uniformly from the range 
 [102, 106] 

• Distributions drawn from Uniform, Gaussian (μ = 0, σ 
= k/4), and Zipfian (skew = 1.5) models to reflect a 
wide spectrum of real-world and adversarial data 
characteristics. 

Each array was analysed to compute Shannon entropy 𝐻 
H, used as a core decision parameter. Entropy was calculated 
using the standard Equation (3): 

 𝐻 = − ∑ (
𝑓𝑖

𝑛
) 𝑙𝑜𝑔2 (

𝑓𝑖

𝑛
)𝑘

𝑖=1  () 

Where 𝑓𝑖  is the frequency count of key i and n is the 
dataset size. the classifier used [n, k, H] as feature vectors and 
was trained to predict the optimal sorting strategy (Counting, 
Radix, or QuickSort). After training, the model achieved 
92.4% accuracy and was quantized to 8-bit, reducing size from 
4MB to 1MB with negligible loss in performance(Table III). 

TABLE III.  CLASSIFIER PERFORMANCE METRICS 

Metric Value 

Accuracy 92.4% 

F1-Score 0.89 

Decision Latency 0.2ms 

Training Time 45s 

Model Size 1MB 

The deployed model uses several optimizations: (1) 8-bit 
quantization reduces model size from 4MB to 1MB; (2) On-
device inference requires 0.2ms per decision; (3) Model 
loading during initialization adds 1.2ms one-time overhead. 
For large datasets (n ≥ 106), ML overhead constitutes ¡0.1% 
of total execution time (1.4ms/210ms), while for small 
datasets (n ≤ 100), static thresholds reduce latency by 10% 
through bypassing ML overhead. 

TABLE IV.  ML VS RULE-BASED HEURISTICS 

Metric ML Rules 

Decision Time 0.2ms 0.05ms 

Accuracy 92.4% 84.6% 

Ideal n ≥103 ≤100 

Memory 1MB 0.1MB 

As shown in Table IV, the hybrid approach combines 
ML predictions for n ≥ 1000 with static thresholds (n ≤ 20 
Insertion Sort, k ≤ 500 Counting Sort) for smaller datasets. 
This balance achieves 30% fewer mispredictions than pure 
rule-based systems while maintaining Timsort-compatible 
performance for edge cases. 

 

Listing 5: Strategy Prediction Module  

export function counting Sort( arr: number [], min Val: number , maxVal:  number):  
number []  { 
const range = maxVal - min Val + 1; const count 
= new Array ( range ). fill (0); const output = new 
Array ( arr. length ); 

// Count occurrences 
for ( const num of arr) { count[ 

num - min Val ]++; 
} 

 
// Compute prefix sums 
for ( let i = 1; i < range ; i++) { count[ i] 

+= count[ i - 1]; 
} 

 
// Build output array 
for ( let i = arr. length - 1; i >= 0; i--) { output[ 

count[ arr[ i] - min Val] - 1] = arr[ i]; count[ arr[ i] 
- min Val ]--; 

} 

 
return output; 

/** 
* Quicksort with median - of - three pivot selection . 
* @ param arr - The array to sort. 
* @ returns The sorted array . 
*/ 

export function quicksort( arr: number []): number [] { if ( 
arr. length <= 1) return arr; 

 
// Median - of - three pivot selection const 
pivot = median OfThree ( arr); 
const left = arr. filter( x => x < pivot); const 
right = arr. filter( x => x > pivot);  

 
return [... quicksort( left), pivot , ... quicksort( right)]; 

} 

 
/** 

* Helper function to select the median of three values. 
* @ param arr - The array to select from . 
* @ returns The median value . 
*/ 

function median OfThree ( arr: number []): number { 
const [a, b, c] = [ arr[0], arr[ Math . floor( arr. length / 2)], arr[ arr. length 
- 1]]; 
return [a, b, c]. sort (( x, y) => x - y)[1]; 

} 

import * as xgboost from ’ml - xgboost ’; 
 
const model = new xgboost. XGBoostModel (); m o del. 
load Model( ’  ahs_m o del. json ’); 
 
function predictStrategy ( n: number , k: number , H: number): string { return 

m odel. predict ([[ n, k, H ]]) [0]; 
} 
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Listing 5 illustrates a Strategy Prediction Module 
implemented in TypeScript using the ml-xgboost library. It 
initializes an XGBoost model, loads a pre-trained model from 
the ahs_model.json file, and defines a predict Strategy 
function that takes three numerical inputs (n, k, H) to return 
the predicted strategy as a string output from the model. 

I. Theoretical Analysis 

The Adaptive Hybrid Sort (AHS) algorithm demonstrates 
strong theoretical guarantees in both time and space 
complexity by leveraging dynamic strategy selection across 
diverse data distributions. As formalized in Theorem 3.1, 
AHS achieves an average-case time complexity of O(n log n) 
through probabilistic strategy selection over insertion, 
counting, radix, and quicksort methods. For large datasets (n 
≥ 1000), insertion contributes minimally, while radix and 
counting sort are invoked based on entropy and range 
thresholds, ensuring optimal performance. In terms of space, 
Lemma 3.1 confirms that for large key ranges (k > 10⁶), AHS 
ensure O(n) space usage by preferring radix sort, where the 
digit count grows logarithmically. Lemma 3.2 further 
reinforces adaptive efficiency by proving that radix sort is 
selected when its space usage is lower than that of counting 
sort. Performance evaluations (Table V) highlight favorable 
space-time trade-offs under varying distributions, while 
parallel performance on a 4-core CPU (Table VI) shows 
significant speedup for radix sort with minimal overhead, 
validating AHS as a scalable and memory-efficient sorting 
solution. 

1) Time Complexity 
The time complexity of AHS establishes its efficiency 

guarantees across diverse input distributions. It formalizes this 
through the following theorem: 

Theorem 3.1 (Average-Case Complexity). AHS achieve 
O (n log n) average-case time complexity. 

Proof. The proof considers the expected time T (n) for 
input size n and range k through the law of total expectation 
in Equation (4): 

 𝑇(𝑛) =  𝑃(𝑠)𝑇𝑠(𝑛)𝑆𝜖𝑆
Σ  () 

where S = {Insertion, Counting, Radix, Quick} represents 
the strategy space and P (s) denotes the probability of selecting 
strategy s. For substantial inputs (n ≥ 1000), it analyzes each 
component: Insertion Sort contributes negligibly as P (n ≤ 20) 
TInsertion ≈ 0, while Counting Sort offers O(n/k) 
performance for limited ranges. Radix Sort achieves linear 
O(n) complexity since the digit count d = ⌈log256 k⌉ remains 
constant, and Quicksort provides the dominant O (n log n) 
term for general cases. 

2) Space Complexity 
The memory efficiency of AHS derives from its adaptive 

strategy selection, particularly for large ranges:  

Lemma 3.1 (Space Efficiency). For k>106, AHS ensure 
O(n) space complexity. 

Proof. The proof compares Radix Sort’s O(nd) space 
against Counting Sort’s O (n + k) requirement. With base b = 
256, the digit count d becomes. It is defined in Equation (5): 

 d = ⌈b k⌉ = 
3 k ≤ 16.7 × 106

4 otherwise
 (5) 

This logarithmic growth ensures MRadix = O(n) , while 
Counting Sort’s linear range dependence yields  MCounting = 
O (n + k). 

Lemma 3.2 (Adaptive Selection). For k > 106, AHS 
optimally select Radix Sort when d < 1 + k/n. 

Proof. The selection criterion follows from direct 
comparison: MRadix < MCounting implies nd < n + k, which 
simplifies to d < 1 + k/n. The logarithmic nature of d 
guarantees thVIis inequality holds for typical large-range 
scenarios. 

TABLE V.  SPACE-TIME TRADEOFFS FOR LARGE VALUE RANGES (K > 

106) 

Condition Algorithm Complexity 

Uniform distribution 
Skewed distribution 
(k′ ≪ k) High density 
(k/n < 5) 

Radix Sort 
Counting Sort 
Counting Sort 

O(n) space, O(n) time 
O(n + k′) space/time 

Time-optimized selection 

TABLE VI.  PARALLEL PERFORMANCE CHARACTERISTICS ON 4-CORE CPU 

ARCHITECTURE 

Algorithm Speedup Overhead 

Radix Sort (n = 107) 1.79× 12% 

Quicksort (n = 107) 1.12× 47% 

Counting Sort (n = 107) 0.95× 62% 

J. Implementation 

The AHS algorithm was implemented in TypeScript with 
three principal optimizations targeting modern computing 
environments. First, cache-efficient memory management 
was achieved through typed arrays (e.g., U int32Array) that 
utilize direct buffer allocation, reducing memory overhead 
and improving cache hit rates by 18% compared to 
conventional arrays during Counting and Radix Sort 
operations. Second, conditional parallelism was implemented 
to leverage multi-core architectures only when beneficial. 
Third, the design incorporates specific optimizations for edge 
device deployment.  

The AHS framework was optimized for heterogeneous 
hardware environments using OpenCL for GPU-based 
parallelism and AVX2 vector instructions for CPU-side 
acceleration. Radix Sort, being the most memory-intensive 
component, was implemented using GPU kernels to enable 
digit-wise parallel sorting, achieving up to 3.5× speedup over 
baseline CPU versions on NVIDIA RTX 3080. On CPU, 
SIMD-aware versions of QuickSort and Counting Sort were 
accelerated using AVX2 instructions via intrinsic calls in 
C++. The system dynamically chooses between CPU and 
GPU execution paths based on dataset size and hardware 
availability, allowing hardware-aware execution decisions. 

Quicksort exhibits more limited parallel scalability (1.12× 
speedup) due to significant synchronization overhead (47%) 
during parallel partitioning operations. Counting Sort actually 
experiences a 5% performance degradation in parallel mode 
because of contention in atomic histogram updates. 
Consequently, AHS employ an adaptive parallelization 
strategy that only activates parallel Radix Sort for datasets 
meeting both size (n ≥ 106) and range (k > 103) thresholds, 
automatically defaulting to sequential execution for smaller 
datasets. 

For edge computing environments, three key 
optimizations ensure compatibility and efficiency. First, 
memory usage is strictly bounded to 𝑂 ( 𝑛 ) O(n) by 
dynamically selecting Radix Sort when processing large-



range datasets ( 𝑘 > 10 6 k>10 6 ), avoiding the overhead of 
Counting Sort. Second, the XGBoost decision model was 
quantized from 32-bit to 8-bit integers, reducing its memory 
footprint from 4MB to just 1MB without sacrificing 
classification accuracy. Third, the entire AHS pipeline was 
implemented with lightweight and low-footprint components, 
enabling successful deployment on memory-constrained 
embedded platforms such as ARM-based edge processors 
with NEON SIMD extensions. Testing on devices with 
limited RAM (e.g., 16–32MB) confirmed the algorithm's 
robustness under constrained computational environments. in 
listing 6.  

 

Listing 6: Core AHS Implementation Showing 
Adaptive Strategy Selection 

K. Error Handling 

The Adaptive Hybrid Sort takes powerful error handling 
seriously with a two-level approach that sees a strict input 
validation strategy augmented by special edge case processing. 
The algorithm begins by verifying input conformance to the 
formal specification Valid Input = {r | ar∀x ∈ arr, x ∈ Z}, 
actively rejecting any array containing non-integer elements 
such as strings or floating-point values. The validation stage 
results in descriptive type errors which halt execution 
immediately, on personifying invalid inputs, leaving type safety 
before the use of computational resources. 

The system also provides optimized processing of some 
important edge cases that practically often occur. In the negative 
integer handling, the algorithm adopts a two-bucket Radix Sort 
approach that initially causes a split of positive and negative 
integers and the subsequent sorting of their absolute values and, 
in the end, combines back the previously separated values with 
the correct signum. Empty arrays result in an immediate early 
exit in constant time O (1) overhead without actually performing 
the computation. The range calculation needed to detect uniform 
value arrays efficiently is O(n) and determines whether k = 1 
avoiding the complete sorting pipeline in case all the elements 
are the same. 

 

Listing 7: Signed Integer Handling in Radix Sort 
Implementation 

Listing 7 provides a signed integer implementation, 
which shows that AHS is thoroughly concerned with the 
management of edge cases. Initial separation of negative 
and positive values is realized by application of functional 
transformations (lines 2-3) and subsequent absolute values 
are sorted separately using the radix Sort core algorithm 

(line 6). The final recombination phase (line 9) properly 
restores the original signs while maintaining the sort order, 
all within the original O(n) time complexity bound. This 
design extends Radix Sort compatibility to the full range of 
signed integers while preserving the algorithm’s efficiency 
guarantees. 

IV. RESULTS AND EVALUATION 

In this section provide the results of implementation 
system. The experimental evaluation was conducted on a 
workstation running Windows 11 24H2 with Windows 
Subsystem for Linux 2 (WSL2) Ubuntu 20.04 LTS. The AHS 
implementation was restructured using C++ and Python with 
hardware-specific enhancements for GPU and SIMD 
acceleration. GPU-based Radix Sort was developed using 
OpenCL, while CPU-side acceleration leveraged AVX2 
vector intrinsics for Counting Sort and QuickSort. 
Benchmarks were conducted on an Intel i7 (AVX2-capable) 
machine and an NVIDIA RTX 3080 GPU to measure speedup 
in hardware-accelerated environments. Benchmark Dataset 
Composition. 

A. Benchmark Dataset Composition 

The evaluation employed a comprehensive collection of 
15 datasets spanning three distinct categories designed to test 
various performance dimensions. Synthetic datasets included 
uniform distributions across ranges from 102 to 106, Gaussian 
distributions with µ = 0 and σ2 = k/4, and Zipfian distributions 
exhibiting a skewness parameter s = 1.5. Real-world datasets 
comprised NYC Taxi timestamps (n = 107, k = 109), IoT 
sensor readings (n = 106, k = 500), and genomic k-mers (n = 
108, k = 430). Additionally, specialized edge cases were 
included to test boundary conditions, including presorted 
arrays, uniform value datasets, and empty arrays. 

1) Baseline Algorithm Selection 
The performance evaluation compared AHS against four 

representative sorting algorithms selected to cover the 
spectrum of modern sorting paradigms. Timsort served as the 
primary baseline as Python’s production- grade 
implementation, representing the current industry standard for 
adaptive sorting. Introsort from the C++ Standard Template 
Library provided a comparison point for hybrid 
Quicksort/Heapsort approaches. Radix Sort was included as 
the optimal solution for large-range datasets (k > 106), while 
Counting Sort represented the best-case scenario for small-
range data (k ≤ 1000) in Table VII. This choice was made to 
provide high evaluation coverage but be reproducible in 
diverse ecosystems of programming languages. 

TABLE VII.  CHARACTERISTIC OF BENCHMARK DATASETS 

Type Size (n) Range (k) Entropy (H) 

Uniform 102-109 102-106 log2 k 

Gaussian 106 103-106 0.75 log2 k 

NYC Taxi 107 109 8.2 

IoT Sensors 106 500 1.1 

B. Performance Metrics 

The assessment of Adaptive Hybrid Sort utilised three 
additional metrics that are complementary in nature and aimed 
at evaluating the theoretical and practical performance 
properties altogether. The choice of each of the metrics was 
specific and constructed to have different insights on the 
behavior of the algorithm on the various dimensions of 
operation. 

function radix Sort( arr: number []): number [] { 
// Separate  negative  and  positive  values 
const negatives = arr. filter( x => x < 0). map ( x => -x); const 
positives = arr. filter( x => x >= 0); 

 
// Sort absolute values 
const sorted Neg = radix SortCore ( negatives).  reverse (). map ( x => -x); const 
sorted Pos = radix SortCore ( positives); 

 
return [... sorted Neg , ... sorted Pos ]; 



1) Execution Time Analysis 
The major temporal performance indicator was total 

sorting time in milliseconds, which involved all stages 
comprising of initial analysis to final output production. To 
support the robustness of the measurements, each 
experimental condition was rerun 10 times with a median 
value measured, which seemed to almost eliminate the effects 
of the system noise and transient changes in performance. The 
time complexity analysis specifically focused on average-case 
behavior across a comprehensive range of dataset sizes from 
n = 102 to n = 109 elements, capturing the algorithm’s scaling 
properties across multiple orders of magnitude. 

2) Memory Utilization 
The memory efficiency was also measured by using peak-

consumption figures expressed in megabytes and factoring 
any structured auxiliary data structures and temporary 
allocations. The space complexity followed distinct patterns 
depending on the active sorting strategy: 

• M (n, k) = O (n + k) for Counting Sort operations 

• O(nd)for Radix Sort implementations 

• O(n) for Quicksort and Insertion Sort phases 

Particular attention was given to large-range scenarios (k 
> 106) to validate the algorithm’s ability to maintain O(n) 
space complexity through strategic use of Radix Sort in 
memory-constrained situations. 

3) Machine Learning Performance  
The decision module’s effectiveness was evaluated 

through multiple complementary metrics, as detailed in Table 
VIII. Prediction accuracy reached 92.4% across test cases, 
with an F1-score of 0.89 demonstrating robust performance 
even with imbalanced strategy distributions. The module had 
very low overhead of latency, with a steady latency of 0.2ms 
per decision, which is very small as compared to sort 
functionality. 

TABLE VIII.  MACHINE LEARNING DECISION MODULE PERFORMANCE 

CHARACTERISTICS 

Metric Value Significance 

Accuracy 92.4% Correct strategy predictions 

F1-Score 0.89 Balanced performance 
across classes 

Latency 0.2ms Per-decision time overhead 

The combination of these metrics collectively allows a 
multidimensional evaluation of the AHS performance 
including basic time-space complexity tradeoffs, real-world 
portability to a variety of hardware platforms, and robustness 
of machine learning components to changing data 
distributions. The broad-based assessment scheme implies the 
comprehensive validation of consequently sophisticated 
algorithms adaptability with strict requirements of 
computational efficiency. 

C. Microbenchmarks 

The original benchmarking of Adaptive Hybrid Sort 
concentrated on three painstakingly worked out micro-
benchmark conditions which push the adaptive main points of 
the algorithm to its limits. These targeted experiments 
analyzed performance across small datasets (n ≤ 20), limited-
range data (k ≤ 1000), and large-range distributions (k > 106), 
providing granular insights into AHS’s behavior under 
controlled conditions. 

In processing small datasets, AHS was slower than a 
conventional implementation of Quicksort but 62 per cent 
faster than what the usual Quicksort implementations take. 
This marks a major performance gain because with this 
algorithm the choice of Insertion Sort is made automatically 
when the inputs are small as its property of good cache locality 
is utilized. These measurements of the empirical validation of 
the nthreshold = 20 parameter are more convincing than 
theoretical analysis because, especially in the real-time 
context with small frequent input like sensor data streams. 

The bounded-scope comparison showed that Counting 
Sort performed 1.5x faster than Radix Sort on the dataset of k 
= 500 and did not consume more than 2MB to keep memory 
footprints. 

within L3 cache boundaries. However, the O (n + k) space 
complexity necessitates automatic strategy switching to Radix 
Sort once k exceeds the kthreshold = 1000 boundary, 
preventing memory inefficiency for larger ranges. This 
transition point was carefully calibrated to balance the 
tradeoffs between Counting Sort’s speed advantages and its 
memory requirements. 

In large-range scenarios exceeding k > 106, Radix Sort’s 
O(n) space complexity provides a 27% memory reduction 
compared to Counting Sort, while maintaining nearly 
equivalent execution times (within 5% difference). This 
memory efficiency proves particularly valuable for resource-
constrained edge computing environments, as demonstrated 
by successful operation on Raspberry Pi devices with only 
16MB of available memory. 

 

Fig. 4. Execution time scaling across dataset sizes, showing logarithmic 

relationship. The plot highlights Insertion Sort’s dominance for n ≤ 20 

and the optimal scaling of Radix Sort and Quicksort for larger datasets. 

Error bars represent 95% confidence intervals across 10 trials. 

 

Fig. 5. Memory consumption patterns demonstrating Radix Sort’s linear 
scaling versus Counting Sort’s range-dependent growth. The dashed line 

at k = 106 indicates the threshold for automatic strategy switching. 



The visualizations in Figures 4 and 5 employ logarithmic 
axes to clearly demonstrate the algorithm’s asymptotic 
behavior. Figure 4 confirms the O(n log n) time complexity 
across all dataset sizes, while Figure 5 highlights the space 
efficiency gains achieved through adaptive strategy selection. 
These results collectively validate the effectiveness of AHS’s 
hierarchical decision logic, which dynamically chooses 
between four sorting strategies based on continuous analysis 
of dataset size, range, and entropy characteristics. 

D. Large-Scale Benchmarks 

It has performed full benchmarking on the datasets (n = 
106 to n = 109 elements) to compare an Adaptive Hybrid Sort 
(AHS) against three state-of-the-art variants: Timsort, 
Introsort and Radix Sort. Table IX shows the results, which 
show the steady gain of AHS in this range. Most importantly, 
AHS took only 210 seconds to sort 109 elements, almost half 
the time consuming that sorting 109 elements in Timsort (380 
seconds). 

TABLE IX.  PERFORMANCE COMPARISON OF LARGE-SCALE DATASETS 

Dataset Size 

(elements) 

AHS Time 

(seconds) 

Timsort Time 

(seconds) 

Memory Usage 

(GB) 

106 0.21 0.38 0.8 

107 2.1 3.8 8.0 

109 210 380 8.0 

Two key architectural features enable AHS’s superior 
scaling properties. First, the dynamic switching mechanism to 
Radix Sort for datasets with k > 106 effectively prevents 
memory explosion by maintaining O(n) space complexity 
compared to Counting Sort’s O(n + k) requirements. Second, 
the hybrid strategy selection algorithm systematically avoids 
the worst-case O(n2) scenarios that plague traditional 
Quicksort- based approaches, particularly important at large 
scales. 

The benchmarking results reveal several important 
performance characteristics. For n = 106 elements, AHS 
completed sorting in 210 milliseconds compared to Timsort’s 
380 milliseconds, while maintaining efficient L3 cache 
utilization (¡1GB) through selective use of Counting Sort for 
appropriate ranges. This performance advantage expanded to 
a 1.8× speedup at n = 107 elements (2.1 seconds vs 3.8 
seconds), where Radix Sort’s linear memory scaling 
properties became increasingly valuable. At the extreme scale 
of n = 109 elements, AHS maintained consistent 8GB memory 
usage, compared to Counting Sort’s 12GB requirement, 
demonstrating its suitability for modern big data applications 
where both time and space efficiency are critical. 

These large-scale benchmarks validate AHS’s 
fundamental architectural advantages. The adaptive strategy 
selection mechanism successfully prevents pathological cases 
that degrade performance in traditional algorithms, while the 
hardware-aware memory management enables consistent 
scaling across multiple orders of magnitude. The 45% 
reduction in execution time for petabyte-scale datasets (n = 
109) is particularly significant, as it demonstrates AHS’s 
practical value for real-world sorting workloads where both 
computational efficiency and memory constraints must be 
carefully balanced. 

E. Limitations 

While the proposed AHS framework demonstrates 
substantial performance improvements, several limitations are 
acknowledged: 

• Entropy Calculation Overhead: For small datasets 
(n<103n < 10^3n<103), the entropy computation 
introduces an average latency of ~0.2ms, which may 
be significant for ultra-low-latency systems. 

• Limited Type Support: The current implementation 
supports only integer-valued input. When processing 
floating-point or string datasets, AHS requires 
preprocessing (e.g., mapping tokens to integers), 
which can introduce additional overhead. Future work 
will focus on developing type-agnostic entropy 
estimators and extending native support to floats and 
strings. 

• ML Misclassification Risk: Although the XGBoost 
classifier achieves high accuracy (~92.4%), rare or 
previously unseen data distributions may result in 
suboptimal algorithm selection. Reinforcement 
learning-based online adjustment is proposed as a 
future enhancement. 

• Hardware-Specific Optimization Scope: SIMD 
(AVX2/NEON) and GPU acceleration paths are 
platform-dependent. While AHS adapts thresholds per 
platform, further generalization may be required to 
support heterogeneous devices like FPGAs or mobile 
SoCs. 

V. CONCLUSION AND FUTURE WORK 

In this paper, it presented Adaptive Hybrid Sort (AHS), a 
hardware-aware and entropy-driven sorting framework that 
dynamically selects the optimal algorithm—Counting Sort, 
Radix Sort, or QuickSort—based on real-time analysis of 
dataset size, key range, and entropy. Addressing RQ1, their 
results demonstrate that entropy-driven switching consistently 
outperforms static and rule-based hybrid sorters across diverse 
data distributions, achieving up to 40% runtime reduction. In 
response to RQ2, they showed that hardware-aware 
thresholding and optimizations such as AVX2/NEON SIMD 
acceleration and OpenCL-based GPU offloading significantly 
enhance cache efficiency and execution speed, especially in 
edge and large-scale computing scenarios. AHS integrates a 
quantized XGBoost classifier with low-latency inference, 
making it suitable for real-time and memory-constrained 
environments. Future work will focus on expanding AHS to 
support non-integer data types, integrating reinforcement 
learning for adaptive policy tuning, and deploying the 
framework in distributed and heterogeneous environments 
such as Apache Spark and mobile SoCs. 

Future research will be dedicated to increasing the model's 
decision-making abilities by leveraging reinforcement 
learning and sophisticated metaheuristics for more sensitive 
algorithm selection. Moreover, attempts will be put forth to 
implement and benchmark the adaptive hybrid sorter on 
hardware-accelerated platforms like GPUs, FPGAs, and 
SIMD-based processors for testing real-world scalability. 
Additional research will also delve into the integration of the 
framework into distributed systems and big data systems like 
Apache Spark for smart sorting at scale. Additionally, testing 
its responsiveness with streaming data and dynamic input 
conditions will give better insights into how it performs under 
real-time conditions. 
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