
Optimization Proxies using Limited Labeled Data and Training Time
– A Semi-Supervised Bayesian Neural Network Approach

Parikshit Pareek 1 Abhijith Jayakumar 2 Kaarthik Sundar 2 Sidhant Misra 2 Deepjyoti Deka 3

Abstract
Constrained optimization problems arise in vari-
ous engineering systems such as inventory man-
agement and power grids. Standard deep neural
network (DNN) based machine learning proxies
are ineffective in practical settings where labeled
data is scarce and training times are limited. We
propose a semi-supervised Bayesian Neural Net-
works (BNNs) based optimization proxy for this
complex regime, wherein training commences in
a sandwiched fashion, alternating between a su-
pervised learning step for minimizing cost, and
an unsupervised learning step for enforcing con-
straint feasibility. We show that the proposed
semi-supervised BNN outperforms DNN archi-
tectures on important non-convex constrained op-
timization problems from energy network opera-
tions, achieving up to a tenfold reduction in ex-
pected maximum equality gap and halving the
inequality gaps. Further, the BNN’s ability to pro-
vide posterior samples is leveraged to construct
practically meaningful probabilistic confidence
bounds on performance using a limited validation
data, unlike prior methods.

1. Introduction
Constrained optimization problems are fundamental in the
optimal operation of various engineering systems, such as
supply chains, transportation networks, and power grids.
Learning a forward mapping between the inputs and outputs
of these problems can significantly reduce computational
burdens, especially when rapid solutions are required, such
as in electricity markets or real-time transportation planning.

Recent advancements in machine learning (ML) have led to

1Department of Electrical Engineering, Indian Institute of Tech-
nology Roorkee, India 2Los Alamos National Laboratory, NM,
USA 3MIT Energy Initiative, MIT, Cambridge, USA. Correspon-
dence to: Parikshit Pareek <pareek@ee.iitr.ac.in>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

considerable efforts to solve optimization problems using
deep neural networks (DNNs) (Khadivi et al., 2025; Kotary
et al., 2021; Fajemisin et al., 2024). The idea of learning
input-to-output mappings has been explored via supervised
and unsupervised methods, particularly in power system
applications (Zamzam & Baker, 2020; Donti et al., 2021;
Park & Van Hentenryck, 2023; Fioretto et al., 2020; Ko-
tary et al., 2021; Rolnick et al., 2022a; Piloto et al., 2024).
Additionally, constraint penalization approaches have been
proposed to enforce feasibility in predicted outputs within
DNN loss functions (AI4OPT, 2023).

Supervised DNN models rely on labeled datasets obtained
by solving numerous (104 or more) instances of optimiza-
tion problems. This data generation step poses a significant
limitation due to prohibitive computational times required
for moderate to large problem instances, particularly if the
system topology and other parameters change over time.
For example, (Park & Van Hentenryck, 2023) report that
generating labeled data for a medium-sized power grid prob-
lem takes over three hours1. Unsupervised methods aim to
address the labeled data generation issue (Donti et al., 2021;
Park & Van Hentenryck, 2023); however, they often have
high training time requirements, particularly due to the use
of projection/correction steps to ensure feasibility within the
framework (Donti et al., 2021; Gupta et al., 2022; Zamzam
& Baker, 2020). Moreover, unsupervised methods still re-
quire large number of labeled data to perform validation
and provide confidence bounds on error with respect to true
solution.

Thus, it is important to note that practical performance
of ML based optimization proxies needs to be qualified
under constraints of both : (a) Total Labeled Data

(training + validation), and (b) Training time.
This is true in the context of bi-level optimization problems
such as in power grid planning where ML proxies may serve
as subroutines to simulate decision-making processes for
given first-level decisions (Ibrahim et al., 2020). Here, ML
models must be adaptable in both training and validation
to changing problem inputs and parameters. Minimizing
or limiting both the time and data required for learning
input/output mappings in optimization problems is thus cru-

1See Table 4 in (Park & Van Hentenryck, 2023).

1

Semi-Supervised Optimization Proxies using Bayesian Neural Network

cial.

Estimating the generalization error of ML models over the
testing dataset is another aspect that is particularly relevant
to engineered systems where the system must obey physical
and safety limits. When limited labeled data is available
for validation, one relies on concentration results such as
Hoeffding’s inequality (Sridharan, 2002; Hoeffding, 1994)
to develop error bounds using finite out-of-sample data.
However, these bounds are often loose and impractical, and
creates the need for frameworks that enable tighter expected
error bounds with limited labeled validation data.

Contributions: Motivated by the preceding discussion,
this paper considers the problem of designing optimization
proxies with improved confidence bounds in the setting
of limited training time requirement and limited labeled
data availability. Our major contribution is the develop-
ment of a Bayesian Neural Network (BNN) coupled with
a semi-supervised training approach for this setting, that
can be used to give tight confidence bounds on predictions.
First, we propose the use of BNNs instead of DNNs for
learning input-to-output mappings, as they provide intrinsic
uncertainty quantification and allow the integration of prior
beliefs (Papamarkou et al., 2024). Second, we introduce
a Sandwich learning method for BNN, which integrates
unlabeled data into training through feasibility-based data
augmentation. This approach enforces feasibility without
requiring more labeled instances. Third, we utilize the pre-
dictive variance information provided by BNNs to develop
tight and practically useful expected error bounds using
Bernstein concentration bounds (Audibert et al., 2007). We
intentionally restrict ourselves to 1000 training instances and
10 minutes of training tim on a single CPU core to demon-
strate the effectiveness of the proposed learning scheme
under low-data, low-compute settings. For various power
grid optimization problem instances (57-Bus, 118-Bus, 500-
Bus and 2000-Bus), we show that (i) supervised BNNs
outperform standard supervised DNN approaches under
limited training time and data; (ii) the proposed Sandwich
BNN enforces feasibility better than supervised BNNs with-
out requiring additional training time or data; and (iii) the
Bernstein bound-based expected error bounds are tight and
practically useful for constraint satisfaction studies with-
out extra computational effort. The proposed BNN-based
approaches achieve at least an order of magnitude lower
maximum equality gap compared to state-of-the-art DNN
models, without compromising the optimality gap.

1.1. Related Work

In recent years, Deep Neural Networks (DNNs) have been
applied to solve various optimization problems with physics-
based constraints, particularly in energy networks (Zamzam
& Baker, 2020; Gupta et al., 2022; Donti et al., 2021; Singh

et al., 2021; Park & Van Hentenryck, 2023; Kotary et al.,
2021). The primary motivation is to replace time-consuming
optimization algorithms with machine learning proxies, en-
abling instantaneous solutions to a large number of problem
instances (Park & Van Hentenryck, 2023; Donti et al., 2021;
Gupta et al., 2022; Zamzam & Baker, 2020).

Outside the realm of optimization proxies, several semi-
supervised learning methods have been proposed to lever-
age unlabeled data for improving ML model performance
(Yang et al., 2022). These approaches include augmenting
unlabeled data with inexpensive pseudo-labels and devel-
oping unsupervised loss functions to be minimized along-
side supervised loss functions (Sharma et al., 2024; Yang
et al., 2022). Data augmentation has been used in image
classification with Bayesian Neural Networks (BNNs) us-
ing the notion of semantic similarity (Sharma et al., 2024).
However, this concept is not readily extensible to ML prox-
ies for constrained optimization problems, where semantic
similarity is hard to quantify for input variations leading
to changes in the output. To address this challenge, we
propose a feasibility-based data augmentation scheme that
relates directly to the constraints of the optimization prob-
lem. To the best of our knowledge, these ideas have not
been explored in the context of BNN algorithms for solving
large-scale optimization problems. A related but distinct
line of work involves loss function-based prior design for
output constraint satisfaction (Sam et al., 2024; Yang et al.,
2020).

2. Background/Preliminaries
2.1. Problem Setup and Assumptions

We consider nonlinear and non-convex, constrained op-
timization problems involving both equality constraints
g(x,y) = 0 and inequality constraints h(x,y) ⩽ 0, where
y represents the decision variables and x represents the in-
put variables, both as vectors. The objective is to minimize
the cost function c(y). Mathematically, the optimization
problem is as follows:

min
y

c(y) (1a)

s.t. g(x,y) = 0 (1b)
h(x,y) ⩽ 0 (1c)
x is given (input vector) (1d)

We assume that for all ∀x ∈ X , i.e., for any input vector
in the set X (X could be as simple as a hyper-rectangle),
there exists at least one feasible solution to problem (1).
Let D = {(xi,y

⋆
i)}Ni=1 denote the labeled dataset, where

y⋆
i is the optimal solution obtained by solving optimization

problem (1) for each xi. Assuming that sampling the input
vector x is inexpensive, we construct an unlabeled dataset
Du = {xj}Mj=1.

2

Semi-Supervised Optimization Proxies using Bayesian Neural Network

Our goal is to develop a BNN surrogate that provides an
approximate optimal value of the decision variables ŷt for
a given test input vector xt ∈ X . This work falls under the
category of developing optimization proxies or surrogates,
where the machine learning model serves as a direct for-
ward mapping between the input and output variables of an
optimization problem (see (Park & Van Hentenryck, 2023)).

The paper proposes a semi-supervised framework to solve
this problem, wherein training alternates between a super-
vised step—using labeled data D to minimize prediction
error—and an unsupervised step—using unlabeled data Du

to enforce the feasibility of constraints in (1b) and (1c). Both
steps are implemented using a Bayesian Neural Network
(BNN).

2.2. Bayesian Neural Network

We consider a Bayesian Neural Network (BNN) denoted as
fw(x), where w represents all the weights and biases of the
network. These weights are assigned an isotropic normal
prior p(w) with covariance σ2I , meaning that each weight
is independently normally distributed with zero mean and
variance σ2.

In the supervised training of the BNN, the goal is to com-
pute the posterior distribution over the weights given the
labeled data D ≡ (x,y). This posterior is expressed as
p(w | x,y) ∝ p(y | x, w) p(w). Here, p(y | x, w) is the
likelihood of the labeled data given the weights, and p(w)
is the prior over the weights. The posterior distribution
p(w | x,y) encapsulates the uncertainty about the weights
after observing the data. Due to computational challenges
in calculating the normalization constant of the posterior,
approximate methods such as stochastic variational infer-
ence (SVI) with the mean-field assumption are employed the
posterior distribution estimation (see (Jospin et al., 2022)).

For making predictions, the posterior predictive distribution
is approximated as p(yt | xt,D) = Ep(w|D)

[
p
(
fw(x

t)
)]

,
where xt is a test input vector, and the expectation is taken
over the approximate posterior distribution of the weights.
Moreover, we assume a Gaussian likelihood for output:

p(y | x, w) =
∏
i

N
(
yi | fw(xi), σ

2
s

)
,

with σ2
s being a parameter in the SVI that controls the spread

(noise variance) around the target values, and (xi,yi) ∈ D.
Adapting this approach to update the BNN using the unsu-
pervised data Du requires the definition of a suitable likeli-
hood function, detailed in the next section, along with the
semi-supervised framework to obtain the BNN surrogate.

3. Semi-supervised Learning: Sandwich BNN
We start by defining a suitable likelihood function for the
unsupervised learning process. To that end, we augment the
unlabeled data Du using the necessary feasibility conditions
that the vector y must satisfy to be a solution of (1). We
propose a function F(y,x) to measure the feasibility of a
candidate solution y for a given input x. This function con-
sists of two terms: one measuring the equality gap and the
other measuring the one-sided inequality gap or violations.
The relative emphasis on each term is determined by the
parameters λe and λi, respectively, i.e.,

F(y,x) = λe

∥∥g(x,y)∥∥2︸ ︷︷ ︸
Equality Gap

+λi

∥∥ReLU[h(x,y)]
∥∥2︸ ︷︷ ︸

Inequality Gap

. (2)

For any given feasible solution yc for the optimization prob-
lem in (1)2, we have F(yc,x) = 0 for the given input
x ∈ X . Furthermore, because of our assumption in Sec. 2.1
that the problem in (1) has at least one feasible solution, the
minimum value F(·,x) = 0 for any x ∈ X . Therefore, we
can augment the unlabeled dataset Du to create a labeled fea-
sibility dataset, i.e., Df = {(xj ,F(·,x) = 0)}Mj=1. Since
input sampling is inexpensive, constructing this feasibility
dataset Df incurs no additional computational cost. Similar
to the supervised step in Sec. 2.2, we now define a Gaussian
likelihood for the unsupervised training step, with σ2

u as the
noise variance for unsupervised learning and xj ∈ Df , as

p(F | x, w) =
∏
j

N
(
0 | F

(
fw(xj),xj

)
, σ2

u

)
,

To obtain an optimization proxy, we parameterize the
candidate solution fw(x) using a Deep Neural Network
(DNN)-style architecture and employ a sandwich-style semi-
supervised training for the BNN, as illustrated in Figure 1.
The fundamental idea of this training method is to update
the network weights and biases through multiple rounds
of training in which each round alternatives between using
the labeled dataset D for prediction or cost optimality, and
the augmented feasibility data set Df for constraint feasi-
bility. We let Sup and UnSup denote the inference steps
in the BNN training using D and Df , respectively. Both
Sup and UnSup are performed for a fixed maximum time,
with the total training time constrained to Tmax. Finally,
the prediction of the mean estimate Eyt and the predictive
variance estimate Vyt is accomplished using an unbiased
Monte Carlo estimator by sampling 500 weights from the
final weight posterior pmW .

3.1. Selection via Posterior (SvP)

In Bayesian Neural Network (BNN) literature, the stan-
dard approach is to use the mean posterior prediction

2Not necessarily optimal for (1).

3

Semi-Supervised Optimization Proxies using Bayesian Neural Network

Sup

p1W ≡ p(w | y,x) ∝ p(y | x, w) p0w

UnSup Sup . . . UnSup

pm−1
W ≡ p(w | x) ∝ p(F | x, w) pm−2

w

Sup Predict
p0W

N (0, σ2I)

pmW

Eyt ,Vyt

Yp1W p2W pm−1
W

Ts Tu

Tmax

Tr

Figure 1. Flowchart of the proposed sandwich-style BNN learning. The Sup block represents the supervised learning stage with labeled
dataset D, and the UnSup block represents the unsupervised learning with the augmented feasibility dataset Df . Learning time upper
limits are represented as Ts, Tu, and Tmax for Sup, UnSup, and the complete semi-supervised BNN learning, respectively. At the prediction
stage, Y denotes the posterior prediction matrix (PPM) for one test input sample, where each column represents the predicted output
obtained via one weight sample from the posterior.

Ep(w|D)[fw(x
t)] for a test input xt. This is similar to using

the mean prediction of ensemble Deep Neural Networks
(DNNs). However, unlike DNNs, BNNs can provide multi-
ple predictions without additional training cost, as we can
sample multiple weight instances from the posterior distribu-
tion pmW and construct the posterior prediction matrix (PPM)
Y (see Figure 1 for details and Appendix B.3 for structure
of the PPM.). We propose to use the PPM to improve the
feasibility of the predicted output of the optimization proxy.
Each column of the PPM represents one predicted output
vector corresponding to a weight sample. We select the
weight sample W ⋆ that minimizes the maximum equality
gap, defined as:

W ⋆ = argmin
j

[
max

i

∣∣gi(xt,Y·j)
∣∣] , (3)

where Y·j is the j-th column of the PPM, and gi(·, ·) rep-
resents the i-th equality constraint function.3 The output
prediction corresponding to the weight sample W ⋆ will have
the minimum equality gap, and we term this process Selec-
tion via Posterior (SvP). Note that the numerical operation
in (3) can be performed in parallel and has minimal com-
putational cost compared to analytical projection methods
in (Zamzam & Baker, 2020) that focus on projecting the
prediction onto (1c) to satisfy the inequality constraints in
the problem (1). Note that it is an application motivated
design choice to emphasize enforcement of the equality
gap by using the SvP in (3). This can easily be adapted to
account for inequality constraints without any significant
computational overhead.

4. Probabilistic Confidence Bounds
This section focuses on providing bounds on the expected
absolute error of our method, i.e., testing error. We explore
probabilistic confidence bounds (PCBs) for optimization
proxies. The core concept of PCBs is to first evaluate mod-
els on a labeled testing dataset with M samples, compute
the empirical mean error, and then probabilistically bound

3In a general setting of constrained optimization problems,
there may be multiple equality and inequality constraints.

the error for any new input. Specifically, PCBs assert that
the expected error will be within ε of the empirical errors
computed from M out-of-sample inputs, with a high prob-
ability (usually 0.95). Mathematically, we aim to provide
a guarantee on the error e = y − yt, where yt is the BNN
prediction and y is the true value, as

P
{∣∣∣∣E[|e|]− 1

M

M∑
i=1

|ei|
∣∣∣∣ ⩽ ε

}
⩾ 1− δ (4)

where E[|e|] represents the expected absolute error, 1− δ is
the confidence level, and ε is the allowable prediction error.

Ideally, we would like to evaluate our model on a large num-
ber of samples since, as M → ∞, the error bound ε → 0.
However, increasing M leads to a higher requirement for
labeled data, which defeats the purpose of training using
low labeled data 4. To address this issue, confidence inequal-
ities are commonly used to provide PCBs, with Hoeffding’s
inequality ((Hoeffding, 1994)) being one of the most widely
used bounds. As stated in Appendix E, Hoeffding’s inequal-
ity assumes that the error is bounded (i.e., |ei| ⩽ R for all i)
and provides PCBs whose tightness is governed by M , with

the relationship ε = R
√

log(2/δ)
2M . However, the Hoeffding’s

bound can often be too loose to be practically relevant.

To improve upon this, we propose using Bernstein’s inequal-
ity (see (Audibert et al., 2007)) as the concentration bound,
which utilizes the total variance in error (TVE) information
along with M , under the same bounded error assumption.
The main challenge in using the Bernstein bound is obtain-
ing the TVE without extensive out-of-sample testing. One
possible solution is to use the empirical Bernstein bound
as in (Audibert et al., 2007; Mnih et al., 2008), which em-
ploys the empirical variance of the error V̂e, obtained from
the same M testing samples, and accounts for the error in
variance estimation by modifying the theoretical Bernstein
inequality. Mathematically, the PCB using the Empirical

4Note that the total labeled data requirement is the sum of
training and testing samples, i.e., N +M

4

Semi-Supervised Optimization Proxies using Bayesian Neural Network

Bernstein inequality is

ε =

√
2V̂e log (3/δ)

M
+

3R log (3/δ)

M
,

as given in (Audibert et al., 2007; Mnih et al., 2008). Since
the term under the square root depends on the empirical TVE
V̂e rather than R, the empirical Bernstein bound becomes
tighter more quickly with increasing M if V̂e ≪ R.

To further tighen the bound, we propose using the Theo-
retical Bernstein bound (Sridharan, 2002) (Theorem E.3 in
Appendix E) with the Mean Predictive Variance (MPV)
as a proxy for the TVE Ve. The MPV is the mean of
the predictive variance of testing samples, i.e., MPV =
1
M

∑M
k=1 VW

[
Yk

i·
]
, where variance VW

[
Yk

i·
]

for the kth

test sample using entries of the posterior prediction matrix
across columns, generated using posterior weights, for ith

output variable. In principle, the MPV captures the expected
variance in the predictions due to the posterior distribution
of BNN weights. We hypothesize that with a constant mul-
tiplier α > 1,

αMPV ⩾ Ve = EM [VW [e]] + VW [EM [e]] ⩾ V|e|, (5)

where EM and EW denote expectations with respect to M
testing samples and posterior weight samples, respectively,
and VM [e] and VW [e] denote the variance of the error with
respect to M testing samples and posterior weight samples,
respectively. The equality in (5) follows from the law of
total variance (Blitzstein & Hwang, 2019). V|e| represents
the variance of the absolute value of the error, which is
lower than the variance of the error.

Notice that the first term of the TVE, EM [VW [e]], is inde-
pendent of the labeled testing dataset because the true output
y is constant with respect to posterior weight samples; thus,
VW [e] = VW [y − yt] = VW [yt]. Furthermore, from the
definition of MPV, we have MPV = EM [VW [e]]. As an ex-
ample, if VW [EM [e]] ⩽ MPV, our hypothesis in (5) holds
with α = 2. Consequently, we can use 2 × MPV as an
upper bound for Ve in the Theoretical Bernstein bound (see
Theorem E.3 in Appendix E), which gives the error bound

ε =

√
4× MPV log (1/δ)

M
+

2R log (1/δ)

3M
,

which is better than the Empirical Bernstein bounds. The
hypothesis in (5) and the corresponding constant α can
be computed by using application specific information or
performing a meta-study like in Section 5.

The strength of this approach is that we do not require
labeled testing samples to calculate MPV, thus incurring
no additional computational burden from generating labels.
Also, note that this constitutes an advantage of BNNs since

MPV information is readily available with BNNs but cannot
be obtained from DNN-based optimization proxies.

In the next section, we perform a meta-study using different
BNN models on different test cases to show the performance
of our proposed learning architecture as well as demonstrate
that hypothesis (5) indeed holds for the proposed optimiza-
tion proxy learning problems.

5. Numerical Results and Discussion
We test the proposed method on the Alternating Current
Optimal Power Flow (ACOPF) problem, essential for the
economic operation of electrical power grids (Molzahn
et al., 2019). Efficient ACOPF proxies can mitigate cli-
mate change by enabling higher renewable energy integra-
tion, improving system efficiency by minimizing losses and
emissions, and enhancing grid resiliency against extreme
weather conditions (Rolnick et al., 2022a). ACOPF is a
constrained optimization problem with nonlinear equality
constraints and double-sided inequality bounds. It aims
to find the most cost-effective generator set points while
satisfying demand and adhering to physical and engineer-
ing constraints. The inputs are active and reactive power
demands; outputs include generator settings, voltage magni-
tudes, and phase angles at each bus. We adopt the standard
ACOPF formulation (Babaeinejadsarookolaee et al., 2019;
Park & Van Hentenryck, 2023; Coffrin et al., 2018) and
benchmark our method using the open-source OPFDataset
from Torch Geometric, which provides numerous solved
ACOPF instances (see (Lovett et al., 2024)).

In our results, ‘Gap%’ denotes the average relative opti-
mality gap compared to the objective values in the labeled
testing instances. ‘Max Eq.’ and ‘Mean Eq.’ represent the
maximum and mean equality gaps over all equality con-
straints, while ‘Max Ineq.’ and ‘Mean Ineq.’ indicate the
same for inequality gaps in per unit, all averaged over test-
ing instances. We compare our proposed method with the
following state-of-the-art baseline supervised learning mod-
els available in the literature using the same labeled dataset
and training time constraints, utilizing AI4OPT’s ML4OPF
package (AI4OPT, 2023) (network and hyper-parameter
details are in Appendix B):

• Naı̈ve MAE and Naı̈ve MSE (Supervised): Use l1-
norm and l2-norm loss functions, respectively, to mea-
sure differences between predicted and actual optimal
solutions (Park & Van Hentenryck, 2023), incorporat-
ing a bound repair layer with a sigmoid function. The
bound repair layer ensures that inequality constraints
are always satisfied.

• MAE + Penalty, MSE + Penalty, and LD (Super-
vised): Add penalty terms for constraint violations

5

Semi-Supervised Optimization Proxies using Bayesian Neural Network

Table 1. Comparative performance results for the ACOPF Problem for ‘case57’ with 512 labeled training samples, 2048 unlabeled samples,
and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.

Sandwich BNN SvP (Ours) 0.928 0.027 0.006 0.000 0.000
Sandwich BNN (Ours) 0.964 0.045 0.005 0.000 0.000
Supervised BNN SvP (Ours) 3.195 0.083 0.011 0.000 0.000
Supervised BNN (Ours) 3.255 0.130 0.011 0.000 0.000
Sandwich DNN (Ours) 2.878 0.358 0.014 0.006 0.000

Naı̈ve MAE 4.029 0.518 0.057 0.000 0.000
Naı̈ve MSE 3.297 0.541 0.075 0.000 0.000
MAE + Penalty 3.918 0.370 0.037 0.000 0.000
MSE + Penalty 3.748 0.298 0.039 0.000 0.000
LD + MAE 3.709 0.221 0.033 0.000 0.000

to the naı̈ve MAE or MSE loss functions (Park &
Van Hentenryck, 2023). The Lagrangian Duality (LD)
method applies the l1-norm as outlined in (Fioretto
et al., 2020; Park & Van Hentenryck, 2023), and also
uses a bound repair layer with a sigmoid function.

We exclude self-supervised constrained optimization meth-
ods like Primal-Dual Learning (PDL) (Park & Van Hen-
tenryck, 2023) and DC3 (Donti et al., 2021) due to their
significantly higher training times and computational de-
mands, which violate the premise of this paper. For ex-
ample, PDL requires over 125 minutes of training time
for the ACOPF problem on a 118-node power network us-
ing a Tesla RTX6000 GPU. Methods that require solving
alternating current power flow to recover solutions (e.g., (Za-
mzam & Baker, 2020)) are also excluded, as they result in
high prediction times compared to DNN or BNN forward
passes5. Furthermore, Graph Neural Network-based large
models, such as (Piloto et al., 2024), require extensive train-
ing datasets—for instance, (Piloto et al., 2024) utilizes 270k
training samples.

To demonstrate the effectiveness of the proposed BNN learn-
ing methods, we conduct simulation studies on both our
models and the ML4OPF models using an M1 Max CPU
with 32 GB RAM, without any GPU. This setup highlights
performance improvements due to the learning mechanism
rather than computational power. We propose two classes
of different models as:

• Supervised BNN and Supervised BNN SvP: Stan-
dard BNN learning with labeled data, utilizing mean
prediction and Selection via Posterior (SvP), respec-
tively. The network uses ReLU activation and no bound
repair layer.

• Sandwich BNN and Sandwich BNN SvP: The pro-

5see prediction time studies in (Donti et al., 2021) which sug-
gest 10 times higher prediction time with power flow based projec-
tions (0̃.080 sec. compared to 0.001 sec. for DNN and 0.003 sec.
per testing instance for proposed BNNs).

posed Sandwich BNN trained with labeled and unla-
beled data as discussed in Section 3. Unsupervised
training utilizes four times the number of labeled data
samples. The network uses ReLU activation and no
bound repair layer.

Importantly, we intentionally keep the BNN architecture un-
optimized, constructing it using four different sub-networks
(one for each of the four ACOPF outputs: real power genera-
tion, reactive power generation, voltage magnitude, and volt-
age angle). Each sub-network has two hidden layers

with the number of hidden neurons equal to 2 × input

size. In the Sup stage of the Sandwich BNN, both weights
and biases are updated, whereas in the UnSup stage, only
the weights are modified via SVI. Best model out of five
random trials is selected.

Tables 1 and 2 present the comparative performance of
different methods for solving the ACOPF problem on the
‘case57’ and ‘case118’ test cases, containing 57 and 118
nodes, respectively. For ’case57’, the Sandwich BNN SvP
method achieves the best Max Eq. performance (0.027),
outperforming all other methods, including the standard
Sandwich BNN, without compromising other metrics. All
the methods proposed in this paper outperform the best
DNN results, typically achieved with the LD+MAE model
(last row in the tables). Similar trends are observed for
the ‘case118’ as well.6 It is important to contextualize the
significance of these numerical improvements. In ACOPF
problems, cost values are in USD, with the mean cost for
‘case118’ being $97,000 or 9.7 in the per-unit system. There-
fore, a 1% Gap corresponds to an expected difference of
$970 across the testing instances. A ‘Max Eq.’ value of
0.08 implies a maximum expected power imbalance of 8.0
Megawatts among all 118 nodes of ‘case118’. Thus, re-
ducing the Max Eq. from 1.284 with the LD+MAE model
to 0.089 with our Sandwich BNN SvP model represents a
significant improvement.

6See Appendix C for similar tabular results and discussion of
trends on larger test instances.

6

Semi-Supervised Optimization Proxies using Bayesian Neural Network

Table 2. Comparative performance results for the ACOPF Problem for ‘case118’ with 512 labeled training samples, 2048 unlabeled
samples, and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.

Sandwich BNN SvP (Ours) 1.484 0.089 0.018 0.008 0.000
Sandwich BNN (Ours) 1.485 0.100 0.016 0.008 0.000
Supervised BNN SvP (Ours) 1.568 0.147 0.022 0.013 0.000
Supervised BNN (Ours) 1.567 0.205 0.020 0.013 0.000
Sandwich DNN (Ours) 3.298 0.585 0.034 0.158 0.000

Naı̈ve MAE 1.638 2.166 0.187 0.000 0.000
Naı̈ve MSE 1.622 3.780 0.242 0.000 0.000
MAE + Penalty 1.577 1.463 0.102 0.000 0.000
MSE + Penalty 1.563 2.637 0.125 0.000 0.000
LD + MAE 1.565 1.284 0.083 0.000 0.000

102 103

System Size

0

20

40

60

Ga
p%

102 103

System Size

0
6

12
18

M
ax

 E
q.

102 103

System Size

0.0
0.3
0.6
0.9

M
ax

 In
eq

.

Sandwich BNN SvP Supervised BNN SvP MAE + Penalty MSE + Penalty LD + MAE

Figure 2. Growth trajectories of performance metrics for ACOPF across system sizes for different methods. Detailed results for ‘case500’
and ‘case2000’ are given with Table 8 and Table 9 respectively, in Appendix C.

Sandwich DNN in these tables is a DNN with the same
network architecture as the BNN, trained under the same
time constraints. This network is trained by alternating
between minimizing a supervised MSE loss and and an
unsupervised feasibility loss as in (2). In both these rounds,
an ℓ1 weight regularization is added to prevent over-fitting.
We see that this DNN model shows performance comparable
to other DNN approaches. This is a strong indication that the
superior performance of the sandwich BNN model is largely
due to the superior performance of the BNN approach in the
low data regime.

Figure 2 illustrates the growth of various metrics with in-
creasing system size while keeping training resources con-
stant. The proposed BNN methods exhibit significantly
lower scaling in the expected maximum equality gap. Al-
though Sandwich BNN SvP shows slightly higher scaling
inequality gaps, the relative improvement in Max Eq. far out-
weighs these minor drawbacks. Notably, for ‘case500’ (see
Table 8 in the Appendix C), the expected maximum power
imbalance is below 0.5% of the mean real power demand
(1.7× 104 MW) and power grids already are equipped with
spinning reserves (see (Ela et al., 2011)) that have reserve
capacity to handle these imbalances. This is a significant im-
provement over the DNN models which have much higher
‘Mean Eq.’ values. Moreover, the ‘Max Ineq.’ growth could
be easily suppressed by incorporating bound repair layers,
as used in DNN models in ML4OPF (AI4OPT, 2023).

We perform robustness study on ‘case118’, by running five
different trials of 10-min and 15-min training time with
512,1024, and 5048 supervised training samples keeping
2048 unsupervised samples constant across models and tri-
als (See Appendix C for detailed graphs and tables). The
results clearly shows that increasing training time and num-
ber of supervised samples decreases decreases %Gap, Max
Eq. and Max Ineq., consistently, and keep Mean Eq. one
order of magnitude lower and Mean Ineq. at order 10−5.
The Sandwich BNN SvP model, provides 1.50% Gap, 0.094
as Max Eq. and 0.014 as Max Ineq. with 512 supervised
training samples and 10-Min training time,, on average over
five trials. The same model provides 1.46% Gap, 0.080 Max
Eq. and 0.011 as Max Ineq. with 2048 supervised train-
ing samples and 15-Min Training time. This implies that
five minute increase in training time with four times more
training samples worth 2.66% reduction in optimality error
(%Gap), 17.5% reduction in equality constraint feasibility
error (Max Eq.) and more than 27% reduction in inequality
constraint feasibility error (Max Ineq.).

This detailed study also highlight that smaller training times
are not good enough to extract complete information from
larger training datasets as various models with 2048 super-
vised samples perform better with 15-min training come
compared to 10-min training time. For instance, Max Eq. is
6.18% lesser for 2048 samples when we increase training
time from 10-Min to 15-Min, and %Gap values reduces

7

Semi-Supervised Optimization Proxies using Bayesian Neural Network

0 1 2 3
Total Variance in Error (log) 1e 3

0

1

2

3

M
PV

 x
 2

 (l
og

)

1e 3 Case500

0.0 1.5 3.0 4.5
Total Variance in Error (log) 1e 4

0.0

1.5

3.0

4.5

M
PV

 x
 2

 (l
og

)

1e 4 Case118

0.0 0.8 1.6
Total Variance in Error (log) 1e 3

0.0

0.8

1.6

M
PV

 x
 2

 (l
og

)

1e 3 Case57
Sandwich BNN Supervised BNN

Figure 3. Empirical study comparing total variance in error V̂e with 2× MPV across different cases of ACOPF and the proposed learning
mechanisms.

0 10 20 30 40 50
Bus Index

10 5

10 4

10 3

10 2

Er
ro

rs
 P

U
(lo

g)

Voltage Magnitude

0 10 20 30 40 50
Bus Index

10 4

10 2

Er
ro

rs
 R

ad
. (

lo
g)

Voltage Angle

Empirical Expected Error Theoretical Bernsteins (2 x MPV) Empirical Bernsteins Hoeffdings

0 20 40 60 80 100 120
Bus Index

10 5

10 3

10 1

Er
ro

rs
 P

U
(lo

g)

Voltage Magnitude

0 20 40 60 80 100 120
Bus Index

10 5

10 3

10 1

Er
ro

rs
 R

ad
. (

lo
g)

Voltage Angle

Figure 4. Comparison of voltage magnitude and voltage angle error bounds (in logarithmic scale) across bus indices for ‘case57’ (top row)
and ‘case118’ (bottom row). The plot illustrates that PCBs using theoretical Bernstein bounds with 2 × MPV from hypothesis (5) are
tightest among all PCBs. We consider δ = 0.95 and 1000 out-of-sample testing data points i.e. M = 1000.

from 1.52 to 1.46, on average. Lastly, we also observe
that variability in training quality reduces with increasing
number of supervised samples and training time.

Next, we present results for Proabilistic Confidence bounds,
described in Section 4. Figure 3 shows that 2 · MPV consis-
tently serves as an empirical upper bound for total variance
in error, validating its robustness across models and sys-
tem configurations7. In Figure 4, the theoretical Bernstein
bounds using Ve = 2 ·MPV provide tight, practical bounds,
whereas Hoeffding’s bounds are overly conservative and
not useful for grid operations. For example, in ‘case118’,
the Bernstein bound ensures a probabilistic guarantee on
voltage constraint satisfaction, such that a predicted voltage
between 0.91–1.09 pu guarantees no violations within the
ACOPF limits of 0.90–1.10 pu, i.e., the maximum value of
the Bernstein bound on the error is 0.010 pu across all nodes.

7Total variance in error is assumed to stabilizing with 1000
testing samples (see Figure 6 in Appendix C).

Compared to Hoeffding’s bound (0.064 pu) or the empirical
Bernstein bound (0.018 pu), the Bernstein bound (0.010 pu)
is far tighter and more practical, highlighting the benefits
of BNNs for optimization proxies. The error bounds for
the ‘case500’ is provided in Fig. 7 of the Appendix C. Fi-
nally, we note that both Hoeffding’s and empirical Bernstein
bounds can also be obtained by testing DNN models across
M samples8.

6. Conclusions
In conclusion, this paper introduces a semi-supervised
Bayesian Neural Network (BNN) approach to address the
challenges of high labeled data requirements and limited
training time in learning input-to-output maps for con-

8A form of MPV can be obtained via Ensemble DNNs (Ganaie
et al., 2022), however, it will lead to very high computational
requirement compared to the BNN.

8

Semi-Supervised Optimization Proxies using Bayesian Neural Network

strained optimization problems. The proposed Sandwich
BNN method incorporates unlabeled data through input data
augmentation, ensuring constraint feasibility without rely-
ing on a large number of labeled instances. We provide tight
confidence bounds by utilizing Bernstein’s inequality, en-
hancing the method’s practical applicability. Results show
that BNNs outperform DNNs in low-data, low-compute
settings, and the Sandwich BNN more effectively enforces
feasibility without additional computational costs compared
to supervised BNNs.

Reproducibility
We use the open-source ACOPF datasets, provided with
Torch geometric (Lovett et al., 2024), to train and test
our models as well as standard DNN models. Furthermore,
the beginning of Section 5 provides details of the DNN mod-
els used to compare the performance of the proposed meth-
ods. These models are available in AI4OPT’s open-source
ML4OPF package (AI4OPT, 2023). Hyper-parameter details
for these models and the proposed methods are provided in
Appendix B. The code used in this paper can be found
at https://github.com/kaarthiksundar/BNN-OPF/.
Additional experimental results can be found in the Sup-
plementary Information.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. In particular, enhancing the solution
of optimization problems will result in more efficient re-
source utilization, helping industries lower costs and reduce
environmental impact. Additionally, refining the ACOPF
solution pipeline will play a crucial role in addressing cli-
mate change by optimizing renewable energy usage and
ensuring the reliable operation of the power grid (Rolnick
et al., 2022b).

References
AI4OPT. Ml4opf: A machine learning library for optimal

power flow problems. https://github.com/AI4OPT/
ML4OPF, 2023.

Audibert, J.-Y., Munos, R., and Szepesvári, C. Tuning
bandit algorithms in stochastic environments. In Inter-
national conference on algorithmic learning theory, pp.
150–165. Springer, 2007.

Babaeinejadsarookolaee, S. et al. The power grid library for
benchmarking AC optimal power flow algorithms. arXiv
preprint arXiv:1908.02788, 2019.

Blitzstein, J. K. and Hwang, J. Introduction to probability.
Chapman and Hall/CRC, 2019.

Coffrin, C., Bent, R., Sundar, K., Ng, Y., and Lubin, M.
Powermodels.jl: An open-source framework for explor-
ing power flow formulations. In 2018 Power Systems
Computation Conference (PSCC), pp. 1–8, June 2018.

Donti, P., Rolnick, D., and Kolter, J. Z. Dc3: A learning
method for optimization with hard constraints. In Inter-
national Conference on Learning Representations, 2021.

Ela, E., Milligan, M., and Kirby, B. Operating reserves and
variable generation. Technical report, National Renew-
able Energy Lab.(NREL), Golden, CO (United States),
2011.

Fajemisin, A. O., Maragno, D., and den Hertog, D. Op-
timization with constraint learning: A framework and
survey. European Journal of Operational Research, 314
(1):1–14, 2024.

Fioretto, F., Mak, T. W., and Van Hentenryck, P. Predicting
ac optimal power flows: Combining deep learning and
lagrangian dual methods. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 630–
637, 2020.

Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., and
Suganthan, P. N. Ensemble deep learning: A review.
Engineering Applications of Artificial Intelligence, 115:
105151, 2022.

Gupta, S., Misra, S., Deka, D., and Kekatos, V. Dnn-based
policies for stochastic ACOPF. Electric Power Systems
Research, 213:108563, 2022.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. The collected works of Wassily Hoeffd-
ing, pp. 409–426, 1994.

Ibrahim, M. S., Dong, W., and Yang, Q. Machine learning
driven smart electric power systems: Current trends and
new perspectives. Applied Energy, 272:115237, 2020.

Jospin, L. V., Laga, H., Boussaid, F., Buntine, W., and
Bennamoun, M. Hands-on bayesian neural networks—a
tutorial for deep learning users. IEEE Computational
Intelligence Magazine, 17(2):29–48, 2022. doi: 10.1109/
MCI.2022.3155327.

Khadivi, M., Charter, T., Yaghoubi, M., Jalayer, M., Ahang,
M., Shojaeinasab, A., and Najjaran, H. Deep reinforce-
ment learning for machine scheduling: Methodology, the
state-of-the-art, and future directions. Computers & In-
dustrial Engineering, pp. 110856, 2025.

Kotary, J., Fioretto, F., van Hentenryck, P., and Wilder, B.
End-to-end constrained optimization learning: A survey.
In 30th International Joint Conference on Artificial Intel-
ligence, IJCAI 2021, pp. 4475–4482. International Joint
Conferences on Artificial Intelligence, 2021.

9

https://github.com/kaarthiksundar/BNN-OPF/
https://github.com/AI4OPT/ML4OPF
https://github.com/AI4OPT/ML4OPF

Semi-Supervised Optimization Proxies using Bayesian Neural Network

Lovett, S., Zgubic, M., Liguori, S., Madjiheurem, S., Tom-
linson, H., Elster, S., Apps, C., Witherspoon, S., and
Piloto, L. Opfdata: Large-scale datasets for ac optimal
power flow with topological perturbations. arXiv preprint
arXiv:2406.07234, 2024.

Mnih, V., Szepesvári, C., and Audibert, J.-Y. Empirical bern-
stein stopping. In Proceedings of the 25th international
conference on Machine learning, pp. 672–679, 2008.

Molzahn, D. K., Hiskens, I. A., et al. A survey of relax-
ations and approximations of the power flow equations.
Foundations and Trends® in Electric Energy Systems, 4
(1-2):1–221, 2019.

Papamarkou, T., Skoularidou, M., Palla, K., Aitchison, L.,
Arbel, J., Dunson, D., Filippone, M., et al. Position:
Bayesian deep learning is needed in the age of large-scale
AI. In Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pp. 39556–39586. PMLR,
21–27 Jul 2024.

Park, S. and Van Hentenryck, P. Self-supervised primal-
dual learning for constrained optimization. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 4052–4060, 2023.

Piloto, L., Liguori, S., Madjiheurem, S., Zgubic, M., Lovett,
S., Tomlinson, H., Elster, S., Apps, C., and Wither-
spoon, S. CANOS: A fast and scalable neural AC-
OPF solver robust to n-1 perturbations. arXiv preprint
arXiv:2403.17660, 2024.

Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., et al.
Tackling climate change with machine learning. ACM
Comput. Surv., 55(2), February 2022a. ISSN 0360-0300.
doi: 10.1145/3485128.

Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., et al.
Tackling climate change with machine learning. ACM
Computing Surveys (CSUR), 55(2):1–96, 2022b.

Sam, D., Pukdee, R., Jeong, D. P., Byun, Y., and Kolter, J. Z.
Bayesian neural networks with domain knowledge priors.
arXiv preprint arXiv:2402.13410, 2024.

Sharma, M., Rainforth, T., Teh, Y. W., and Fortuin, V. Incor-
porating unlabelled data into bayesian neural networks.
Transactions on Machine Learning Research, 2024. ISSN
2835-8856.

Singh, M. K., Kekatos, V., and Giannakis, G. B. Learning to
solve the AC-OPF using sensitivity-informed deep neural
networks. IEEE Transactions on Power Systems, 37(4):
2833–2846, 2021.

Sridharan, K. A gentle introduction to concentration in-
equalities. Dept. Comput. Sci., Cornell Univ., Tech. Rep,
pp. 8, 2002.

Yang, W., Lorch, L., Graule, M., Lakkaraju, H., and Doshi-
Velez, F. Incorporating interpretable output constraints in
bayesian neural networks. Advances in Neural Informa-
tion Processing Systems, 33:12721–12731, 2020.

Yang, X., Song, Z., King, I., and Xu, Z. A survey on deep
semi-supervised learning. IEEE Transactions on Knowl-
edge and Data Engineering, 35(9):8934–8954, 2022.

Zamzam, A. S. and Baker, K. Learning optimal solutions
for extremely fast ac optimal power flow. In 2020 IEEE
international conference on communications, control,
and computing technologies for smart grids (SmartGrid-
Comm), pp. 1–6. IEEE, 2020.

10

Semi-Supervised Optimization Proxies using Bayesian Neural Network

Supplementary Information
Optimization Proxies using Limited Labeled Data and Training Time – A Semi-Supervised Bayesian

Neural Network Approach

A. ACOPF Problem: Modeling and Dataset
The alternating current optimal power flow (ACOPF) problem is essential for power grid operations and planning across
various time scales. It determines generator set-points for real and reactive power that minimize generation costs while
meeting power demand and satisfying physical and operational constraints on output variables. We follow the ACOPF
model given in PowerModels (Coffrin et al., 2018), and take the dataset from Torch geometric ((Lovett et al., 2024)).

Table 3. Sets for ACOPF

N : buses G: generators, generators at bus i (Gi)
E: branches (forward and reverse orientation, ER) S: shunts, shunts at bus i (Si)
L: loads, loads at bus i (Li) R: reference buses

Table 4. Data for ACOPF Problem

Data
Symbol Description
Sl
g , Su

g ∀k ∈ G Generator complex power bounds.
ck2 , ck1 , ck0 ∀k ∈ G Generator cost components.
vil , v

i
u ∀i ∈ N Voltage bounds.

Sk
d ∀k ∈ L Load complex power consumption.

Y k
s ∀k ∈ S Bus shunt admittance.

Yij , Y ij
c , Y ji

c ∀(i, j) ∈ E Branch π-section parameters.
Tij ∀(i, j) ∈ E Branch complex transformation ratio.
siju ∀(i, j) ∈ E Branch apparent power limit.
iiju ∀(i, j) ∈ E Branch current limit.
θijl , θiju ∀(i, j) ∈ E Branch voltage angle difference bounds.

Variables
Symbol Description
Sk
g ∀k ∈ G Generator complex power dispatch.

Vi ∀i ∈ N (|Vi|∠θ) Bus complex voltage (Magnitude∠Angle).
Sij ∀(i, j) ∈ E ∪ ER Branch complex power flow.

Table 5. Objective Function and Constraints

Description Equation
Objective min

(∑
k∈G

(
ck2(S

k
g)

2 + ck1S
k
g + ck0

))
Reference bus voltage angle ∠Vr = 0 ∀r ∈ R

Generator power bounds Sl
g ≤ Sk

g ≤ Su
g ∀k ∈ G

Bus voltage bounds vil ≤ |Vi| ≤ viu ∀i ∈ N

Power balance ∀i ∈ N
∑

k∈Gi
Sk
g −

∑
k∈Li

Sk
d −

∑
k∈Si

Y k
s |Vi|2 =

∑
(i,j)∈E∪ER

Sij

Branch power flow ∀(i, j) ∈ E Sij = Y ∗
ij |Vi|2 + Y ∗

ijViV
∗
j /Tij ; Sji = Y ∗

ji|Vj |2 + Y ∗
jiV

∗
i Vj/T

∗
ij

Branch apparent power limits |Sij | ≤ siju ∀(i, j) ∈ E ∪ ER

Branch current limits |Sij | ≤ |Vi|iiju ∀(i, j) ∈ E ∪ ER

Branch angle difference bounds θijl ≤ ∠(ViV
∗
j) ≤ θiju ∀(i, j) ∈ E

11

Semi-Supervised Optimization Proxies using Bayesian Neural Network

B. Experimental Setting Details
B.1. Architectures

Supervised BNN and Sandwich BNN: For ACOPF problem we use real and reactive power demands as input while
predicting all decision and state variables using separate networks

– Input real and reactive power demands: Two times the number of nodes having non-zero load

– Output real and reactive power generation setpoints, voltage magnitude and voltage angle at each node: Two times the
number of generators + Two times the number of nodes

B.2. Hyper-parameters

B.2.1. ML4OPF:

config: The optimization is performed using the Adam optimizer with a learning rate of 1× 10−4 (taken from (Park &
Van Hentenryck, 2023)). All networks have two hidden layers, each with a size of 2× Number of outputs. For hidden
layers, ReLU activation function is selected while, the bound repair mechanism is handled using a Sigmoid function (Park &
Van Hentenryck, 2023).

penalty config: Multiplier of 1× 10−2, with no excluded keys.

ldf config: Step size 1× 10−2, and a kick-in value of 0. The LDF update frequency is set to 1, and no keys are excluded
from the updates.

All other hyperparameters are set at default ML4OPF values (AI4OPT, 2023).

B.2.2. PROPOSED BNNS

For all simulations, maximum training time 10 min., Tmax = 600 seconds, per round time Tr is 200 seconds with 40-60
split between Sup and UnSup models (Ts = 80 amd Tu = 120 seconds). For VI, we use MeanFieldELBO loss function
from Numpyro and Adam optimizer with a initial learning rate rate of 1× 10−3, and decay rate of 1× 10−4, both of which
are selected via grid search.

We use decay schedule as initial learning rate/(1 + decay rate × step) within a Sup or UnSup model, while simple step
decay among different rounds of Sandwich BNN. Learning is done with single batch for all models and each of the BNN
weight and bias is parameterized using mean and variance parameters of a Gaussian distribution, with mean field
assumption i.e. independent from each other. The prior for each weight and bias has zero mean and 10−2 variance while
likelihood noise variance is initialized with 10−5 mean and 10−6 variance for Sup and fixed at 10−10 for UnSup.

B.3. Structure of posterior prediction matrix (PPM)

Y ≡



y11 · · · · · · · · · y1H
...

· · · yVariable,Sample · · ·
...

yO1 · · · · · · · · · yOH


[

O : Number of variables
H : Number of posterior samples

]

12

Semi-Supervised Optimization Proxies using Bayesian Neural Network

C. Robustness Study on 118-System

512 1024 2048
#Samples (N)

1.4328

1.4904

1.5479

1.6055

%
 G

ap

% Gap

512 1024 2048
#Samples (N)

0.0734

0.1099

0.1464

0.1829

M
ax

 E
q.

Max Eq.

512 1024 2048
#Samples (N)

0.00124

0.00800

0.01477

0.02153

M
ax

 In
eq

.

Max Ineq.
Avg. (Sandwich) Avg. (Supervised) Error Bars (Sandwich) Error Bars (Supervised)

Figure 5. Summary of Results with more variations in supervised data, for higher training (15 min) for sandwich and supervised models
with SvP. Note that this computation was done on a Max Mini M4 with 24GB RAM.

Table 6. Comparison of Average Values (Over Five Trials) for BNN Models: 10/15 min, Sandwich SvP/Supervised SvP. Note that this
computation was done on a Max Mini M4 with 24GB RAM.

N Sandwich BNN SvP, 15-Min Supervised BNN SvP, 15-Min
%Cost Max Eq Mean Eq Max Ineq Mean Ineq %Cost Max Eq Mean Eq Max Ineq Mean Ineq

512 1.5305 0.1041 0.01998 0.01285 0.000046 1.5904 0.1755 0.02403 0.01446 0.000060
1024 1.5097 0.08948 0.01872 0.01442 0.000049 1.5615 0.1201 0.02075 0.01892 0.000075
2048 1.4691 0.08005 0.01709 0.01170 0.000042 1.5534 0.08776 0.01839 0.01906 0.000073

N Sandwich BNN SvP, 10-Min Supervised BNN SvP, 10-Min
%Cost Max Eq Mean Eq Max Ineq Mean Ineq %Cost Max Eq Mean Eq Max Ineq Mean Ineq

512 1.5071 0.09438 0.01912 0.01453 0.000054 1.5807 0.1644 0.02323 0.01524 0.000061
1024 1.5194 0.08693 0.01865 0.01415 0.000047 1.5562 0.1108 0.02025 0.01679 0.000065
2048 1.5297 0.08532 0.01855 0.01288 0.000042 1.5387 0.08686 0.01843 0.01912 0.000072

Table 7. Comparison of Average Values (Over Five Trials) for BNN models: 10/15-min, Sandwich/Supervised. Note that this computation
was done on a Max Mini M4 with 24GB RAM.

N Sandwich BNN, 15 Min Supervised BNN, 15 Min
%Cost Max Eq Mean Eq Max Ineq Mean Ineq %Cost Max Eq Mean Eq Max Ineq Mean Ineq

512 1.5298 0.1349 0.01810 0.01255 0.000045 1.5905 0.2281 0.02318 0.01425 0.000060
1024 1.5074 0.1106 0.01661 0.01407 0.000048 1.5594 0.1609 0.01957 0.01868 0.000074
2048 1.4687 0.09156 0.01474 0.01135 0.000041 1.5540 0.1114 0.01690 0.01890 0.000072

N Sandwich BNN, 10-Min Supervised BNN, 10-Min
%Cost Max Eq Mean Eq Max Ineq Mean Ineq %Cost Max Eq Mean Eq Max Ineq Mean Ineq

512 1.5054 0.1194 0.01710 0.01426 0.000053 1.5780 0.2204 0.02215 0.01502 0.000060
1024 1.5188 0.1064 0.01654 0.01376 0.000046 1.5573 0.1499 0.01888 0.01652 0.000064
2048 1.5284 0.09725 0.01623 0.01251 0.000041 1.5377 0.1081 0.01664 0.01887 0.000071

Figure 5 shows results of 5-Trials of proposed method of learning for three key metrics—% Gap, Max Eq., and Max
Ineq.—across different sample sizes (N = 512, 1024, 2048) for ‘case118’ on a Mac Mini M4 with 24GB RAM. The red
dashed lines with circular markers represent the mean values obtained from the sandwich training approach, while the blue
solid lines with square markers correspond to the mean values from the supervised training approach. Error bars depict the
minimum and maximum observed values for each method, providing insight into the variability of results. From the figure,
we observe that as the number of samples increases, both methods exhibit a trend of increasing Max Eq. and Max Ineq.
values, while % Gap remains relatively stable.

The supervised approach generally achieves lower variability (shorter error bars), indicating a more consistent perfor-
mance. The sandwich method, while slightly less stable, maintains comparable mean values across the three metrics. These
results suggest that supervised learning provides more predictable outcomes, whereas the sandwich method may introduce
greater flexibility with minor variations in performance. Detailed results and and graphs are given in Table 7, Table 6, Figure
8 to Figure 15.

13

Semi-Supervised Optimization Proxies using Bayesian Neural Network

Results in Figure 8 to 15 are of five trials with identical hyperparameters demonstrate consistent improvement across all
parameters except for max inequality. Max inequality remains challenging to suppress further, as it is already one order
of magnitude better than max equality. Also the spread of error decreases with more samples indicating robust learning
performance with more data. Note that these computations was done on a Mac Mini M4 with 24GB RAM.

C.1. Larger System Results

Table 8. Comparative performance results for the ACOPF Problem for case500 with 512 labeled training samples, 2048 unlabeled samples
and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.

Sandwich BNN SvP (Ours) 2.009 0.770 0.066 0.190 0.000
Sandwich BNN (Ours) 2.002 0.781 0.056 0.191 0.000
Supervised BNN SvP (Ours) 1.191 2.204 0.088 0.141 0.000
Supervised BNN (Ours) 1.191 2.401 0.072 0.140 0.000
Sandwich DNN (Ours) 1.782 13.800 0.268 0.2707 0.000

Naı̈ve MAE 1.208 20.818 0.905 0.000 0.000
Naı̈ve MSE 1.201 24.089 1.031 0.000 0.000
MAE + Penalty 1.205 11.833 0.580 0.000 0.000
MSE + Penalty 1.215 10.314 0.475 0.000 0.000
LD + MAE 1.279 11.166 0.532 0.000 0.000

Table 9. Comparative performance results for the ACOPF Problem for case2000 with 512 labeled training samples, 2048 unlabeled
samples and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.

Sandwich BNN SvP (Ours) 0.514 5.114 0.324 0.196 0.000
Sandwich BNN (Ours) 0.503 5.409 0.262 0.187 0.000
Supervised BNN SvP (Ours) 0.461 4.107 0.238 0.917 0.000
Supervised BNN (Ours) 0.451 4.225 0.193 0.922 0.000
Sandwich DNN (Ours) 54.505 27.747 1.659 1.228 0.339

Naı̈ve MAE 56.365 43.529 4.392 0.000 0.000
Naı̈ve MSE 56.366 43.085 4.261 0.000 0.000
MAE + Penalty 56.349 19.591 1.055 0.000 0.000
MSE + Penalty 56.377 12.592 0.682 0.000 0.000
LD + MAE 57.257 18.870 0.647 0.000 0.000

Here, we present the complete results analogous to Tables 1 and 2 for the larger test cases: ‘case500’ and ‘case2000’
with 500 and 2000 nodes, respectively, in Tables 8 and 9. In general, it is clear from the tables that the approaches presented
in this paper outperform the state-of-the-art DNN-based approaches when limited training time and compute resources are
provided. Between the supervised and the sandwich BNN models, it appears that there is no clear winner. Table 8 indicates
that the supervised BNN outperforms the sandwich BNN model on the Max. Ineq. gap metric for the ‘case500’ whereas the
trend is reversed for the case2000’ in Table 9. This minor variation is attributed to the fact that the maximum training time
of Tmax = 600 sec. is insufficient for both cases, and with more training time, these trends should look similar to the ones
in Tables 1 and 2.

Another critical observation for both cases is that the ‘Max. Eq.’ value is substantially high even for the proposed best
model (in Tables 8 and 9, respectively). However, it is clear that the proposed BNN proxies are better than standard DNN
models with an order-of-magnitude difference. On the surface, readers may dismiss the efficacy of the proposed BNN
models due to these large values. Still, these values have to be examined in conjunction with the error bounds on the voltage
magnitude and voltage angles in Fig. 7. Examined together, the BNN model predictions have very low errors for the voltage
magnitude and angles, and it is very much possible to develop a computationally inexpensive projection algorithm that
projects this prediction onto the feasibility set of the ACOPF problem on lines of (Zamzam & Baker, 2020). This procedure
would further reduce the Max. Eq. values and makes the projected solution usable. This is a minor detail regularly tackled
in a power grid context and is not dealt with extensively in this paper.

Finally, Figure 6 shows the stabilization of the mean errors and the MPV with varying testing samples and posterior

14

Semi-Supervised Optimization Proxies using Bayesian Neural Network

0 250 500 750
#Testing Samples

1.5

3.0

4.5

M
ea

n
Er

ro
r

1e 2

0 250 500 750
#Testing Samples

1.5

3.0

4.5

To
ta

l V
ar

. E
rro

r

1e 6

0 250 500 750
#Testing Samples

0.50

0.75

1.00

M
ea

n
Er

ro
r

0 250 500 750
#Testing Samples

2.1
2.4
2.7
3.0

To
ta

l V
ar

. E
rro

r
1e 4

Voltage Magnitude
Voltage Angle

Real Power Generation
Reactive Power Generation

0 200 400
#Posterior Samples

0.0
0.8
1.6
2.4

M
PV

1e 6

0 200 400
#Posterior Samples

0.0
0.8
1.6
2.4

To
ta

l V
ar

. E
rro

r

1e 6

0 200 400
#Posterior Samples

0.0
0.8
1.6
2.4

M
PV

1e 4

0 200 400
#Posterior Samples

0.0
0.8
1.6
2.4

To
ta

l V
ar

. E
rro

r

1e 4

Voltage Magnitude
Voltage Angle

Real Power Generation
Reactive Power Generation

Figure 6. Convergence of mean error, MPV, total variance in error with respect to number of testing samples, and number of posterior
samples.

0 100 200 300 400 500
Bus Index

10 5

10 3

10 1

Er
ro

rs
 P

U
(lo

g)

Voltage Magnitude

0 100 200 300 400 500
Bus Index

10 5

10 3

10 1
Er

ro
rs

 R
ad

. (
lo

g)
Voltage Angle

Empirical Expected Error Theoretical Bernsteins (2 x MPV) Empirical Bernsteins Hoeffdings

Figure 7. Comparison of voltage magnitude and voltage angle error bounds (in logarithmic scale) across bus indices for case500. The plot
illustrates that PCBs using theoretical Bernstein bounds with 2 × MPV from hypothesis (5) are tightest among all PCBs. We consider
δ = 0.95 and 1000 out-of-sample testing data points i.e. M = 1000.

samples, respectively. These plots validate the number of testing and posterior samples chosen for generating the results
presented in Section 5.

D. Performance on a non-OPF dataset
The semi-supervised training approach described in this work can be used to train optimization proxies for any

constrained optimization problem over continuous variables. In this section we look at the performance of our method on
the following non-convex optimization problem described in Donti et.al. (Donti et al., 2021).

min
y∈Rn

1

2
yTQy + pT sin(y), s.t. Ay = x, Gy ≤ h. (6)

The sinusoid function in the objective makes this a non-convex problem. We used the code provided by Donti et.al. to
generate two sets of randomized instances of this problem. The comparative performance of the sandwiched training method
against purely supervised BNN training is given in Table 10

15

Semi-Supervised Optimization Proxies using Bayesian Neural Network

Model (nV, nEq, nInEq) Max-Eq violation Max-InEq violation Gap% Time

BNN-Supervised (70,20,50) 0.484 0.170 2.6 800s
BNN-Sandwich (70,20,50) 0.298 0.109 7.1 800s

BNN-Supervised (20,10,20) 0.264 0.108 1.4 400s
BNN-Sandwich (20,10,20) 0.114 0.000 0.07 400s

Table 10. nV, nEq and nInEq are respectively the number of variables, equality constraints and inequality constraints in the optimization
problem. For these experiments we use 212 samples in the supervised stage and 29 samples in the unsupervised stage. Results above are
evaluated on 100 testing instances and averaged over three different random instantiations of the training procedure. These show the
advantages of using the sandwiched approach for training a BNN model in the low-data/time-constrained regime for this problem. . The
hardware used here is the Google Collab instance with Intel(R) Xeon(R) CPU @ 2.20GHz.

E. Concentration Bounds
This section presents three bounds used in Section 4. Here, X represents a generic random variable and is not related to

the optimization proxy variables. Since these are well-known inequalities, we omit the proofs, which can be found in the
respective references.

Theorem E.1 (Hoeffding’s). (Hoeffding, 1994) Let X1, . . . , XM i.i.d. random variables and suppose that |Xi| ⩽ R with
expectation E(Xi), and let X̄M = 1

M

∑M
i=1 Xi. Then, with probability at least 1− δ,

∣∣X̄M − E(Xi)
∣∣ ⩽ R

√
log(2/δ)

2M
.

.

Theorem E.2 (Empirical Bernstein). (Audibert et al., 2007; Mnih et al., 2008) Let X1, . . . , XM be i.i.d. and suppose that
|Xi| ⩽ R, expectation E(Xi) and let X̄M = 1

M

∑M
i=1 Xi. With probability at least 1− δ,

∣∣X̄M − E(Xi)
∣∣ ⩽

√
2V̂ log(3/δ)

M
+

2R log(3/δ)

M

where, V̂ = (1/M)
∑M

i=1(Xi − X̄M)2 is empirical variance.

Theorem E.3 (Bernstein). (Sridharan, 2002) Let X1, . . . , XM be i.i.d. and suppose that |Xi| ⩽ R, mean E(Xi) and
V = Var(Xi). With probability at least 1− δ,

∣∣X̄M − E(Xi)
∣∣ ⩽ √

2V log(1/δ)

M
+

2R log(1/δ)

3M

Table 11. Error bound ε in PCBs, provided by different concentration inequalities.

Hoeffding’s Empirical Bernstein Bernstein

R
√

log(2/δ)
2M

√
2V̂e log(3/δ)

M + 3R log(3/δ)
M

√
2(2×MPV) log(1/δ)

M + 2R log(1/δ)
3M

16

Semi-Supervised Optimization Proxies using Bayesian Neural Network

512 1024 2048
#Samples

1.48

1.50

1.52

1.54
Gap% (SvP)

512 1024 2048
#Samples

0.085

0.090

0.095

0.100
Max Eq.(SvP)

Mean
Min
Max

512 1024 2048
#Samples

0.0185

0.0190

0.0195

Mean Eq.(SvP)

512 1024 2048
#Samples

0.010

0.015

0.020

Max Ineq.(SvP)

Figure 8. Performance metrics for Sandwich BNN SvP model with 10-minute training.

512 1024 2048
#Samples

1.54

1.56

1.58

Gap% (SvP)

512 1024 2048
#Samples

0.10

0.12

0.14

0.16

Max Eq.(SvP)

Mean
Min
Max

512 1024 2048
#Samples

0.020

0.022

Mean Eq.(SvP)

512 1024 2048
#Samples

0.016

0.018

0.020
Max Ineq.(SvP)

Figure 9. Performance metrics for Supervised BNN SvP model with 10-minute training.

512 1024 2048
#Samples

1.48

1.50

1.52

1.54
Gap%

512 1024 2048
#Samples

0.10

0.11

0.12

0.13

Max Eq.

Mean
Min
Max

512 1024 2048
#Samples

0.0160

0.0165

0.0170

0.0175

0.0180
Mean Eq.

512 1024 2048
#Samples

0.010

0.015

0.020
Max Ineq.

Figure 10. Performance metrics for Sandwich BNN model with 10-minute training.

512 1024 2048
#Samples

1.54

1.56

1.58

Gap%

512 1024 2048
#Samples

0.15

0.20

Max Eq.

Mean
Min
Max

512 1024 2048
#Samples

0.018

0.020

0.022
Mean Eq.

512 1024 2048
#Samples

0.014

0.016

0.018

Max Ineq.

Figure 11. Performance metrics for Supervised BNN model with 10-minute training.

17

Semi-Supervised Optimization Proxies using Bayesian Neural Network

512 1024 2048
#Samples

1.45

1.50

1.55

1.60
Gap% (SvP)

512 1024 2048
#Samples

0.08

0.09

0.10

0.11

Max Eq.(SvP)

Mean
Min
Max

512 1024 2048
#Samples

0.017

0.018

0.019

0.020

Mean Eq.(SvP)

512 1024 2048
#Samples

0.005

0.010

0.015

Max Ineq.(SvP)

Figure 12. Performance metrics for ‘Case118’ with fixed unsupervised samples (2048) over Tmax = 900sec (15 minutes) using the
Sandwich BNN SvP model.

512 1024 2048
#Samples

1.56

1.58

1.60
Gap% (SvP)

512 1024 2048
#Samples

0.100

0.125

0.150

0.175
Max Eq.(SvP)

Mean
Min
Max

512 1024 2048
#Samples

0.020

0.022

0.024

Mean Eq.(SvP)

512 1024 2048
#Samples

0.014

0.016

0.018

0.020

Max Ineq.(SvP)

Figure 13. Performance metrics for Supervised BNN SvP model model with 15-minute training.

512 1024 2048
#Samples

1.45

1.50

1.55

1.60
Gap%

512 1024 2048
#Samples

0.10

0.12

0.14

0.16
Max Eq.

Mean
Min
Max

512 1024 2048
#Samples

0.014

0.016

0.018

Mean Eq.

512 1024 2048
#Samples

0.005

0.010

0.015

Max Ineq.

Figure 14. Performance metrics for Sandwich BNN model with 15-minute training.

512 1024 2048
#Samples

1.54

1.56

1.58

1.60
Gap%

512 1024 2048
#Samples

0.15

0.20

Max Eq.

Mean
Min
Max

512 1024 2048
#Samples

0.018

0.020

0.022

Mean Eq.

512 1024 2048
#Samples

0.014

0.016

0.018

0.020

Max Ineq.

Figure 15. Performance metrics for Supervised BNN model with 15-minute training.

18

