
Published in Transactions on Machine Learning Research (02/2023)

Controlling Neural Network Smoothness
for Neural Algorithmic Reasoning

David A. Klindt klindt.david@gmail.com

Reviewed on OpenReview: https: // openreview. net/ forum? id= JnsGy9uWtI

Abstract

The modelling framework of neural algorithmic reasoning (Veličković & Blundell, 2021) pos-
tulates that a continuous neural network may learn to emulate the discrete reasoning steps
of a symbolic algorithm. We investigate the underlying hypothesis in the most simple con-
ceivable scenario – the addition of real numbers. Our results show that two layer neural
networks fail to learn the structure of the task, despite containing multiple solutions of the
true function within their hypothesis class. Growing the network’s width leads to highly
complex error regions in the input space. Moreover, we find that the network fails to gener-
alise with increasing severity i) in the training domain, ii) outside of the training domain but
within its convex hull, and iii) outside the training domain’s convex hull. This behaviour can
be emulated with Gaussian process regressors that use radial basis function kernels of de-
creasing length scale. Classical results establish an equivalence between Gaussian processes
and infinitely wide neural networks. We demonstrate a tight linkage between the scaling
of a network weights’ standard deviation and its effective length scale on a sinusoidal re-
gression problem, suggesting simple modifications to control the length scale of the function
learned by a neural network and, thus, its smoothness. This has important applications for
the different generalisation scenarios suggested above, but it also suggests a partial remedy
to the brittleness of neural network predictions as exposed by adversarial examples. We
demonstrate the gains in adversarial robustness that our modification achieves on simple
image classification problems. In conclusion, this work shows inherent problems of neural
networks even for the simplest algorithmic tasks which, however, may be partially remedied
through links to Gaussian processes.

1 Introduction

The two most prominent paradigms in artificial intelligence research are discrete, symbolic algorithms on
the one side, and continuous, neural information processing systems on the other (Fodor & Pylyshyn, 1988;
Natarajan, 1989; Marcus, 2003). While systems of the latter kind have caused a revolutionary transformation
of the field, they are often plagued by hard challenges, such as robustness to changes in the input distributions,
for which algorithmic approaches can provide worst-case performance guarantees. Crucially, we know that
both approaches are deployed by humans, akin to Kahneman’s 1 and 2 reasoning systems (Kahneman, 2011),
and that, therefore, algorithms must be implemented in biological neural networks in the human brain (Zador
et al., 2022). For instance, observing a scene in the world, we know that it is represented and processed in
the distributed representation of neural activity in visual cortex. However, the same scene is also represented
when we describe it with the use of symbols and the syntax of our language (Yildirim et al., 2020). Thus,
one of the most mysterious questions in neuroscience as well as in artificial intelligence research is: where
and how do these two representation systems interact?

The concept of neural algorithmic reasoning (Veličković & Blundell, 2021) is a recent proposal for a modeling
framework at the intersection between symbol processing algorithms and continuous distributed information
processing systems (see also Smolensky, 1990; Bear et al., 2020; Sabour et al., 2017). As an illustrative
example of this hybrid approach, we can think of a robot equipped with a neural network that processes

1

https://openreview.net/forum?id=JnsGy9uWtI

Published in Transactions on Machine Learning Research (02/2023)

input images to extract, e.g., its position in space (visual encoder); this is coupled with a planning algorithm
(e.g., Dijkstra) that computes the shortest path from the current location to the target; that output is then
fed into another neural network (motor controller) which translates the symbolic action plan into continuous
motor control outputs. The obvious question is how such a hybrid architecture may be trained, since we
usually require differentiability of the whole system for end-to-end training. To solve this, Veličković &
Blundell (2021) propose training a neural network to approximate the output of the algorithm in the middle
of the model. This differentiable approximation would then allowing gradient flow from motor controller to
visual encoder for effective end-to-end training.

The purpose of our work is to investigate the feasibility of neural algorithmic reasoning in one of the most
simple conceivable settings: the addition of real numbers. Integer calculus and floating-point arithmetic in
binary (symbolic) representations have previously received more attention (Nogueira et al., 2021; Talmor
et al., 2020; Jiang et al., 2019; Thawani et al., 2021; Zhou et al., 2022; Hendrycks et al., 2021; Bansal et al.,
2022). By contrast, we want to know if a simple multilayer perceptron (MLP, (Rosenblatt, 1958)), i.e. the
basic building block of most neural networks, can learn to add real-valued numbers on a compact domain
such as the unit disc. Specifically, we look at two layer MLPs which are particularly interesting because:
i) they contain a parameter subspace that perfectly solves the task (see below), ii) they can provide an
approximation of unlimited precision in the infinite width limit (Hornik et al., 1989), iii) they reveal an
interesting failure case that prompts further study of neural network functions.

In summary, in this paper we find that artificial neural networks are unable to learn the simple function
of adding real numbers, even if abundant training data is available, leaving nonlinear, uneven regions of
error within the training domain and struggling to extrapolate beyond. A comparison to Gaussian processes
suggests a simple partial remedy, exploiting classic results (Neal, 1996) about the equivalence between
these two model classes, based on a correct adjustment of the smoothness of the learned function. We
show that these modifications also translate to increased adversarial robustness on handwritten character
image recognition (Goodfellow et al., 2014). This has important implications for real world applications,
such as self-driving car vision controllers that need to be robust to shifting input statistics, where smooth,
generalisable model functions are required. It also aligns with the motivation behind neural algorithmic
reasoning to build differentiable models that generalise as broadly as classical algorithms with worst case
analytical performance guarantees. Finally, we are interested in this minimal setting where seeing how a
neural network fails to learn the correct algorithm reveals an interesting phenomenon that advances our
basic understanding of the functions learned by neural networks and how to control their smoothness.

2 Background

Simple mathematical reasoning (Saxton et al., 2019; Charton, 2021) and, specifically, the addition of real
numbers is a particularly interesting setting because it is so simple, while still elucidating important functional
complexity of neural networks (Hendrycks & Dietterich, 2019) (Fig. 1) and clearly exposing the difficult
inductive inference from an infinite look-up table to the proper representation of an algorithm (Henderson,
2022). Moreover, we know that the hypothesis class of neural networks with rectified linear unit (ReLU)
activation functions trivially contains a parameter subspace with the correct solution, i.e., given inputs
x ∈ R2, the following set of functions

f(x) := W2 max(0, W1x + b1) + b2, W1 :=

α 0
β 0
0 γ
0 δ

 , W2 :=

α−1

β−1

γ−1

δ−1

 (1)

with α, γ ∈ R>0, β, δ ∈ R<0 and b1, b2 := 0 are a subspace of the network parameters that correspond to a
perfect representation of the desired output y = x1 + x2.

Given input and output training pairs, a neural network can learn to approximate this function. However,
it is an open question how accurate the approximation will be within the compact domain of the training
data; possibly in the limit of infinite data and a model that is a universal function approximator (Hornik
et al., 1989). Secondly, it is unclear how the model will generalise outside the domain of the training data.

2

Published in Transactions on Machine Learning Research (02/2023)

Ideally, the concept of addition should only require a limited amount of training examples to understand the
underlying algorithm for producing the correct answer on any pair of inputs.

A crucial difference between algorithms and neural network solutions is the way they generalise to different
inputs (Marcus, 2003; Veličković & Blundell, 2021; Zador et al., 2022). Addition is defined on all numbers
in R, but the approximation learned by a NN can only observe a subset of those inputs in its training data
(i.e., i.i.d. – independent identically distributed). Recent discussions have investigated this from the point
of view of interpolation versus extrapolation (Nakkiran et al., 2021; Schott et al., 2021). Overparameterised
NN exhibit a double descent phenomenon, which is thought to improve their generalisation performance
by interpolating between training points (Chatterji et al., 2021) – although see (Balestriero et al., 2021).
Going beyond the convex hull of the training data would, by contrast, require the ability to extrapolate to
a new domain (o.o.d. – out of distribution). This is one of the key motivations behind neural algorithmic
reasoning and it has recently been explored with transformers (Nogueira et al., 2021; Kim et al., 2021; Anil
et al., 2022; Zhou et al., 2022; Charton, 2021; Zhang et al., 2021) and recurrent neural networks Bansal et al.
(2022); Linsley et al. (2018); Schwarzschild et al. (2021). Apart from extensions of the compact training data
domain, we also study robustness to specific distribution shifts such as added Gaussian noise (Hendrycks
& Dietterich, 2019; Rusak et al., 2020). We also study adversarial robustness (Goodfellow et al., 2014),
which can be thought of as worst-case distribution shifts, this has recently been studied in two layer MLPs
(Dohmatob & Bietti, 2022) and is specifically interesting as it relates to Lipschitz constants (Virmaux &
Scaman, 2018) and a neural networks smoothness (see section 3.5).

An important caveat is that the point of this study is not to find a tailored solution to the problem of adding
real numbers. There are many handcrafted fixes to the specific experimental setup in this paper, which i)
reduce the size of the network down to the exact required dimensions (i.e., 4, see equation 1), ii) encourage
sparsity to switch off all superfluous units, or iii) use more involved transformer-based models (Vaswani et al.,
2017; Zhou et al., 2022) to solve the task. However, none of these settings are of interest for the present
research question: i) and ii) provide solutions only to this specific problem without any transferable insights
into neural network functions as we obtain in this paper (section 3.3); and iii) obscures the simple failure
cases of MLPs, which are the minimal building blocks to study if we want to understand neural networks
(Wang et al., 2020; Dohmatob & Bietti, 2022).

3 Results

3.1 Neural Networks and Gaussian Processes Learning Addition

We first investigate learning addition of real numbers in two dimensions. For this, we uniformly draw D = 128
points on the unit disc (see also Fig. 6)

D := {x | x ∈ R2, ||x||2 ≤ 1}. (2)

We train a two layer neural network with ReLU nonlinearities after the first layer to solve the addition task
using a simple squared loss function (for additional experimental details see Appendix section A.1)

LMSE(f, x) = (f(x) − (x1 + x2))2. (3)

Across the top row of Fig. 1 we change the number of hidden units N (i.e., the width) of the network
and observe the effect on the learned solution. With few units (N = 16), the model exhibits the recently
proposed polytope structure of neural network approximated functions (Balestriero et al., 2018). With more
units we are entering the interpolation regime (i.e., zero training error), where recent work on double descent
might suggest better performance (Nakkiran et al., 2021). While the performance does increase (Appendix
A.2.1), we can see that the model uses the additional capacity to cut up the input space into increasingly
complex, uneven regions. Interestingly, the network learns intricate, nonlinear ridges of good performance
on which the training data lies. These ridges appear to be connected on continuous paths – an intriguing
observation for future NN research. Importantly, these patterns suggest that larger ReLU networks learn
sieve-like solutions of increasing complexity (see also Fig. 12), but they do not enter a qualitatively different

3

Published in Transactions on Machine Learning Research (02/2023)

Figure 1: Unit Disc Loss Surfaces. These plots show the network error in input space (remember, we are
trying to model f : R2 → R, f(x) = x1 + x2, x ∈ D ⊆ R2), where brighter regions indicate lower error, i.e.,
colorscale shows the log of the loss function equation 3 (red dots – training data points). Top row shows the
loss surface for a ReLU neural network with increasing number of hidden units (N , left to right). Bottom
row shows the loss surface for a GP with a RBF kernel of increasing length scale (λ).

regime that would resemble the simple algorithmic solution to the task. We provide some initial exploration
for why NNs fail to reach the optimal solution (equation 1) during optimisation in Appendix A.2.2.

We can produce a similar sequence of model behaviours with Gaussian process (GP) regressors with varying
radial basis function (RBF) kernel scales. We use the standard GP implementation in sklearn (Pedregosa
et al., 2011). Usually, this would include maximum likelihood length scale selection (optimum near λ ∼ 150).
However, setting this by hand lets us visualise the different solutions for suboptimal length scales. Specifically,
we see that setting the length scale too low (Fig. 1 bottom left) forces the model to learn ridges of good
solutions through the training data – similar to the NN model.1

Note that the anti-diagonal line passing through the origin indicates the null space of the target function.
Precisely, adding any vector n from the subspace N := ⟨(1, −1)⟩ = {a · (1, −1) | a ∈ R} to an input x, does
not change the output of the algorithm y(x) = x1 + x2, i.e.

y(x) = x1 + x2 = (x1 + a) + (x2 − a) = y(x + n), ∀n = a · (1, −1) ∈ N . (4)

Thus, on the anti-diagonal passing through the origin, the correct output is y(x) = 0 for all possible inputs
x = (0, 0) + N . We see that the chosen GP with a zero mean function, naturally, converges to this solution
outside of the training data. For detailed average performance levels see Appendix A.2.1 and for density
dependent solutions see Appendix A.2.6.

3.2 Out of Domain Generalisation

Building models that generalise outside of the training data is a key motivation behind neural algorithmic
reasoning (Veličković & Blundell, 2021; Zhou et al., 2022). We adjust our setting slightly to study all aspects

1The geometry of these ridges can be studied analytically for GPs. We recognise that this might give meaningful insights
into the appearance of similar ridges for NNs. However, we leave this open for future work.

4

Published in Transactions on Machine Learning Research (02/2023)

Figure 2: Annulus Loss Surfaces and Generalisation Performance. The first column shows the loss
surfaces for a NN (top) with N hidden units, and a nearly unlimited amount of training data; and (bottom)
the loss surfaces for a GP with optimal length scale (λ) and D = 256 training data points, shown as red dots.
The second column shows the negative log loss as a function of eccentricity (dots coloured by angle, black
dotted lines radially averaged kernel density estimate – ‘kde’) in the three regimes of o.o.d. (within convex
hull), i.i.d. and o.o.d. (outside of convex hull) generalisation for the NN (top) and GP (bottom). The third
column (top) shows the colour scheme of the second column; and (bottom) the GP’s uncertainty estimate.

of generalisation. Specifically, the training data is now randomly sampled from the annulus

A := {x ∈ R2 | 0.5 ≤ ∥x∥2 ≤ 1}. (5)

This allows us to test how well the model generalises:

• Within the training domain: A (Fig. 2, middle column, green).

• Outside of the training domain but within its convex hull: {x ∈ R2 | ∥x∥2 < 0.5} (Fig. 2, yellow).

• Outside of the training domain and outside its convex hull: {x ∈ R2 | ∥x∥2 > 1} (Fig. 2, red).

Moreover, to ensure that the findings from Fig. 1 do not depend on limited training data or finite network
size, we set the number of hidden units to N = 10, 000 and generate a new random batch for every gradient
step (totalling D = 256 × 50, 000 = 12, 800, 000 training examples). As before, for full experimental details,
please refer to Appendix section A.1.

The learned solution by the NN is shown in Fig. 2 top left. Again, we see an intricate, uneven pattern
emerging within the training data domain (i.i.d.) with ridges of good performance but large valleys of bad
predictions. We also observe that the model predictions deteriorate both inside the convex hull of the training
data as well as outside. This is quantified in Fig. 2 top middle as a function of the input norm (we can also
see the different ridges outside the training domain distinguished by their angles). For the GP, even with
limited training data (D = 256), we see higher performance levels (Fig. 2 bottom middle) both on training
data (green), in its convex hull (yellow) as well as outside (red). Moreover, for o.o.d. regions outside the

5

Published in Transactions on Machine Learning Research (02/2023)

Figure 3: Sinusoidal Regression. Top row shows GP models with different length scales (λ) fitted to a
sinusoidal regression problem with: true function (yellow i.i.d., purple o.o.d.), training points (red), model
prediction (light blue), uncertainty (shaded, two standard deviations). The top right plot shows the different
losses (mean squared error – MSE, and log likelihood) as a function of length scale (dotted lines indicate
length scales in plots to the left). The bottom row gives the same regression plots for the NN with TanH
activation and varying length scales (σ−1) and (right) the training and test error as a function thereof.

training data’s convex hull, where the performance starts dropping, the GP at least produces meaningful
uncertainty estimates (Fig. 2 bottom right).

3.3 Setting the Length Scale of Neural Networks

The similarity between the solution patterns for neural networks with many hidden units (Fig. 1, top right)
and GPs with short length scales (Fig. 1, bottom left) is not surprising given classical results (Neal, 1996).
Briefly, Neal established that for NNs with a hyperbolic tangent (TanH) nonlinearity

tanh(x) := sinh(x)
cosh(x) = e2x − 1

e2x + 1 (6)

and an infinite number of hidden units (with appropriate scaling of their initialisation variances) the distri-
bution over learned functions (ab initio) becomes equivalent to that of a GP. This opens an interesting path
forward in understanding and improving the neural network solution.

An important step in fitting a GP with a RBF kernel to data is finding the best length scale for the kernel.
Effectively, this controls the smoothness (Lederer et al., 2019) of the resulting non-parametric model and,
thus, the complexity of the hypothesis class (Vapnik, 1999). Translating this into the space of neural network
functions is nontrivial in the general setting with ongoing work into the Lipschitz constants of trained models
(Virmaux & Scaman, 2018; Fazlyab et al., 2019). In this section, thanks to the equivalence in the considered
settings, we are able to investigate, in parallel, the length scale selection process both in GPs and NNs.

For easier visualisation of the learned input-output mapping we reduce complexity even further: The dataset
is now simply a noisy sine function on x ∈ [−2π, 2π] (for o.o.d., we extrapolate to [−3π, 3π]). Precisely, we
are trying to model the function y = sin(x) + ϵ with ϵ ∼ N (0, 0.25). In Fig. 3 we can see that there exists
a sweet spot for the kernel’s length scale (top middle), and that the model overfits (top left) for smaller
length scales and underfits (top right) for larger length scales. This is confirmed quantitatively (top right)
by looking at the likelihood (blue) as well as the training and test error as a function of the length scale.

To get a NN to behave like a GP, we closely follow the construction in (Neal, 1996) making the following
changes to our NN model: i) We use a TanH nonlinearity; ii) We restrict the standard deviation (std)

6

Published in Transactions on Machine Learning Research (02/2023)

Figure 4: Controlling the Smoothness of Neural Network Functions. The four columns show learned
TanH two layer NN loss surfaces for the two datasets: top, disc (section 3.1, N = 10, 000, D = 128); bottom,
annulus (section 3.2, N = 10, 000, D → ∞) for increasing length scales σ−1 (left to right) producing an
increasingly smooth mapping (for comparison, see also Neal (1996) Fig. 2.3).

of the weights to σ
√

N where N is the number of inputs to a layer and σ a scaling factor. Importantly,
in contrast to Neal (1996), we enforce this standard deviation (let µ(w) =

∑N
i wi denote the mean of the

weights w) throughout training by using the scaled weights

w̃ = w
σ√

Nstd(w)
= w

σ∑N
i (wi − µ(w))2

. (7)

Intuitively, σ−1 behaves like the length scale in GPs (Fig. 3 bottom), i.e., a smaller σ−1 means larger weights
and higher curvature/lower smoothness (potentially overfitting to the training data) whereas too large σ−1

means very small weights and lower curvature/higher smoothness (potentially underfitting the training data)
(see also Neal (1996) Fig. 2.3). Again, we establish the existence of an optimum length scale σ−1 (Fig. 3,
bottom right) that produces the smallest test error. In summary, these results suggest a simple remedy to
improve NN approximations to simple algorithmic functions by making them more similar to GPs (with
TanH nonlinearity) and correctly adjusting their length scale and, thus, their functional smoothness.

3.4 Controlling Neural Network Smoothness: Addition

Returning to the initial two examples of adding real numbers from a disc or an annulus, we can now observe
the effect of varying the length scale (σ−1) of a two layer NN with a large number of hidden units (N = 10, 000,
approaching the GP regime) and TanH activation functions (see Appendix A.1 for additional details).

On both datasets (Fig. 4) it is apparent that increasing the length scale makes the learned output function
more smooth. Thus, the NN becomes qualitatively more similar to a GP with a well adjusted learning scale
for its RBF kernel. We show in Appendix A.2.8 that the weight normalisation (equation 7) is crucial for
these results, both in the case of addition and, for further verification and extension, multiplication.

7

Published in Transactions on Machine Learning Research (02/2023)

3.5 Controlling Neural Network Smoothness: Classification

As further evidence in support of the claim that this approach effectively controls the smoothness of the
learned NN input-output mapping, we turn towards the more complicated problem of performing image
recognition on MNIST (LeCun et al., 1989) and CIFAR10 (Krizhevsky et al., 2009) under different distri-
bution shifts. Briefly, we have a dataset of flattened images xi ∈ R784 and labels yi ∈ {1, ..., 10}. We are
using the same two layer TanH model as above, with the minimal modification that the second layer output
dimension is now 10 – i.e. the logits. All other details remain the same (see Appendix A.1), except for the
objective function. Over training, we are minimising the standard cross-entropy loss between the output
logits and the target label LCE(f, xi, yi) = CE(f(xi), yi).

Since the input domain is now much more complex and high dimensional than in the previous settings, we
have to adjust the different generalisation settings. Firstly, we look at additive white (Gaussian) noise of
varying standard deviation (Fig. 5, right) – i.e. exploring random L2 epsilon balls around the training data
manifold (Hendrycks & Dietterich, 2019). Secondly, we look at worst case (adversarial) distribution shifts
(Fig. 5, left) where we search for minimal perturbations that maximally change the output, which is a proxy
for the model’s smoothness (Goodfellow et al., 2014; Dohmatob & Bietti, 2022). More specifically, for a fixed
maximum L2 perturbation norm c (horizontal axis in Fig. 5), we look for

max
ϵ

LCE(f(x + ϵ), y) s.t. ||ϵ||2 ≤ c. (8)

This second setting is particularly interesting: a) in high dimensions and complex input manifolds (here
digit images) that defy simple separation of settings (Fig. 2, (Balestriero et al., 2021)), and b) because those

Figure 5: Neural Network Classification Robustness. Top, MNIST: Left) Accuracy as a function of
(FGSM) perturbation strength for TanH NN models with different length scales (σ−1); Right) Accuracy as
a function of white noise standard deviation for the same models. Bottom, same for CIFAR10 dataset.

8

Published in Transactions on Machine Learning Research (02/2023)

are the edge cases analysed when assessing the theoretical performance guarantees for classical algorithms
(Veličković & Blundell, 2021).

Fig. 5 (left) shows that controlling the length scale of a neural network on handwritten character recognition
does indeed increase the robustness to L2 adversarial perturbations. Fig. 5 (right) shows that the robustness
to white noise perturbations can be controlled in a similar way. In both cases, we can see a trade-off between
the clean and the robust accuracy with large length scales increasing the robustness while decreasing the
clean accuracy (Rusak et al., 2020). In a control experiment, we test whether the same robustness gains
may be achieved with a simple control model using ReLU activations and standard weight decay (Appendix
A.2.5). We find that this also increases adversarial robustness, however, to a smaller extent. To reduce
computational costs, we have used the fast gradient sign (FGSM) attack (Goodfellow et al., 2014). However,
in Appendix A.2.3 we show that we obtain the same qualitative results with the much stronger adaptive
attacks implemented in AutoAttack (Croce & Hein, 2020).

4 Limitations

The proposed modifications are only applicable to simple two layer MLPs – i.e., the minimal example for
which the complex input space behaviour (Fig. 1) arises (Wang et al., 2020). It is insightful to observe how
the smoothness of this simple model class can be controlled in the GP regime (Lederer et al., 2019). However,
this does not generalise to more layers (confirmed by preliminary experiments) and it is open for future work
to investigate how the composite function of more than two layers contributes to global smoothness of a NN,
potentially building on recent work extending the NN-GP equivalence to multilayer networks (Lee et al.,
2017). To extend the current results we would need a closed form, or at least simple enough, expression for
the length scale of a NN with more than two layers that allows us to control this parameter. Preliminary
experiments on deeper models (Appendix A.2.4) reveal that gains in robustness do not transfer to multi-layer
(convolutional) models in a straightforward way.

Even with the modifications, the network only becomes more similar to a tuned GP. However, there is
still a gap between this smoother function approximation and the qualitative inference step of actually
understanding the underlying arithmetic and learning the right solution for all possible inputs Henderson
(2022). Put differently, the non-zero error rates, even for the GP, indicate that even smooth NNs are only
taking us closer to the bold goal of learning how to infer and emulate simple algorithms.

While GPs show more desired behaviour on this task, again we want to highlight the fact that they do not
offer a general solution to the problem that we are interested in, because they: i) fail to generalise properly
to o.o.d. settings (see Figs. 1, 2); ii) scale poorly to problems with more data and larger input dimensions;
and iii) cannot be integrated into a differentiable model pipeline, which is the original motivation for neural
algorithmic reasoning. Moreover, using GPs instead of NNs (rather than as an inspiring analogy) would not
allow us to extract the insights into neural network functions which we obtain in this paper (section 3.3).
Therefore, we did not devote more time into studying different GP kernel and mean functions.

5 Discussion

The promise of neural algorithmic reasoning to combine distributed and discrete reasoning systems via dif-
ferentiable NN approximations is intriguing (Veličković & Blundell, 2021). Here, we show that the functions
learned by neural networks, even in one of the most simple conceivable examples of symbolic manipulation
(real addition), is prone to learning a highly complex and uneven output mapping that falls short of learn-
ing the proper algorithmic target. There are many different perspectives on this problem, with previous
approaches mostly focusing on transformers for manipulating arithmetic expressions (Thawani et al., 2021;
Zhou et al., 2022; Anil et al., 2022; Nogueira et al., 2021; Jiang et al., 2019; Talmor et al., 2020). However,
looking at the loss surface of the NN solution for a simple two layer MLP, reveals an intriguing structure
of the loss surface and analogy to GPs that we decided to pursue in this work and that may also provide a
useful pointer for future directions in basic NN theory. Specifically, as it challenges prior results stating that
MLPs are able to perfectly learn linear functions (Xu et al., 2020) (under stricter theoretical assumptions)
and that they are biased towards low frequency (i.e., smooth) solutions (Rahaman et al., 2019).

9

Published in Transactions on Machine Learning Research (02/2023)

We have demonstrated how the NN mapping can be made more similar to that of a well-calibrated GP,
specifically, by making it more smooth which also improved adversarial robustness. The smoothness is
closely related to a neural networks’ Lipschitz constant (Virmaux & Scaman, 2018). Whereas prior work
derived GP Lipschitz constants depending on the specific kernel (Lederer et al., 2019), note that designing
Lipschitz neural networks with (provably) bounded smoothness is an open research area (Fazlyab et al., 2019;
Jordan et al., 2019). Also, the performance levels in Fig. 5 are far from state of the art robust models on this
task, however, they eschew the need for (expensive) adversarial training (Kurakin et al., 2016; Wong et al.,
2020) or generative inference (Schott et al., 2018). Thus, this is a proof-of-principle that the smoothness of
a NN function can indeed be controlled with the construction proposed in this paper.

A different inductive bias (other than smoothness), is symmetry (Vapnik, 1999). For instance, the real
numbers with the addition operation form an Abelian group and, thus, addition is commutative. Finding
the right symmetries, such as permutation invariance of the inputs in the case of a commutative algorithm,
is crucial in controlling the complexity of a learning problem (Bronstein et al., 2021). Intuitively, symmetries
reduce the size of the search space by grouping parameter combinations that lead to the same function (cf.,
Entezari et al., 2021). We see in preliminary experiments that adding this additional constraint, does force
the model to become permutation invariant (commutative) in its inputs (Appendix A.2.7), but it does not
take us closer to properly learning the correct algorithm.

Here, we have closely followed the construction in Neal (1996) by normalising the network weights; future
research might investigate the effect of normalising the network activations on the phenomena studied in
this work. Prior findings suggests that batch normalisation (BN) (Ioffe & Szegedy, 2015), one of the most
commonly used activation normalisation schemes (Ren et al., 2016), helps network training and generalisation
by making the loss landscape smoother and reducing the norm of the weight gradient during optimisation
(Santurkar et al., 2018). However, despite this increased smoothness of the loss landscape, BN does actually
seem to hurt adversarial robustness (Benz et al., 2021; Singla et al., 2021) and make adversarial training
more difficult (Wang et al., 2022; Walter et al., 2022). By contrast, test-time BN can help models deal with
distribution shifts (Schneider et al., 2020), and normalisation in the form of feature competition (e.g., sparse
coding, divisive normalisation) has been shown to increase adversarial robustness (Paiton et al., 2020).

Finally, while this study focuses on the smoothness of NN approximations to simple algorithms, the larger
question remains still open how NNs can make the inferential step from any finite amount of data to an
infinite look-up table (see MLST episode 061) – this amounts to Hume’s problem of induction (Hume,
1896; Henderson, 2022) which may not be solvable with connectionist architectures (Fodor & Pylyshyn,
1988). Indeed, there remains a gap between the correct algorithm and its neural approximation which future
research may seek to close, for instance, by taking a closer look at the biological solution (Zador et al.,
2022). Surely, humans are a proof-of-concept that noisy and distributed processing systems (i.e., brains) can
implement discrete symbolic algorithms (Fias et al., 2021). We hope that future research in this area will
benefit more from interdisciplinary approaches that take inspiration across fields.

Broader Impact Statement

As neural network applications become more and more ubiquitous in transforming data, for instance, in
self-driving cars or autonomous flying drones, the need for reliable system grows proportionally. By studying
the smoothness of neural networks, we hope to contribute to these efforts. Specifically, algorithms in high
stake scenarios (such as traffic control) undergo thorough theoretical evaluation to ensure that they reach
minimal performance targets even for worst case inputs. Analogously, controlling the smoothness of neural
networks to equip them with this crucial aspect (in the spirit of neural algorithmic reasoning), takes small
steps towards the same desideratum.

Acknowledgements

The present paper has been shaped by insightful feedback from many people, including: Lukas Schott; Jing
Yang Zhou, Eero Simoncelli and members of his group; Anthony Zador, Tatiana Engel, Alexei Koulakov
and the Neuro-AI community at Cold Spring Harbor Laboratory; as well as the anonymous reviewers who

10

https://podcasts.apple.com/ca/podcast/061-interpolation-extrapolation-and-linearisation/id1510472996?i=1000546882385

Published in Transactions on Machine Learning Research (02/2023)

have suggested a number of additional experiments and valuable clarifications. We would like to thank all
of these people for their time, thought and consideration which have helped to shape this paper into its final
form, and which have, hopefully, provided them with some inspiration for their future scientific journeys.

References
Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo

permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Ambrose
Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization in large
language models. arXiv preprint arXiv:2207.04901, 2022.

Randall Balestriero, Jerome Pesenti, and Yann LeCun. Learning in high dimension always amounts to
extrapolation. arXiv preprint arXiv:2110.09485, 2021.

Randall Balestriero et al. A spline theory of deep learning. In International Conference on Machine Learning,
pp. 374–383. PMLR, 2018.

Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum, and Tom
Goldstein. End-to-end algorithm synthesis with recurrent networks: Logical extrapolation without over-
thinking. arXiv preprint arXiv:2202.05826, 2022.

Daniel Bear, Chaofei Fan, Damian Mrowca, Yunzhu Li, Seth Alter, Aran Nayebi, Jeremy Schwartz, Li F
Fei-Fei, Jiajun Wu, Josh Tenenbaum, et al. Learning physical graph representations from visual scenes.
Advances in Neural Information Processing Systems, 33:6027–6039, 2020.

Philipp Benz, Chaoning Zhang, and In So Kweon. Batch normalization increases adversarial vulnerability and
decreases adversarial transferability: A non-robust feature perspective. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7818–7827, 2021.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

François Charton. Linear algebra with transformers. arXiv preprint arXiv:2112.01898, 2021.

Niladri S Chatterji, Philip M Long, and Peter L Bartlett. When does gradient descent with logistic loss find
interpolating two-layer networks? J. Mach. Learn. Res., 22:159–1, 2021.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International conference on machine learning, pp. 2206–2216. PMLR, 2020.

Elvis Dohmatob and Alberto Bietti. On the (non-) robustness of two-layer neural networks in different
learning regimes. arXiv preprint arXiv:2203.11864, 2022.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation invariance in
linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296, 2021.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient and
accurate estimation of lipschitz constants for deep neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Wim Fias, Muhammet Ikbal Sahan, Daniel Ansari, and Ian M Lyons. From counting to retrieving: Neural
networks underlying alphabet arithmetic learning. Journal of Cognitive Neuroscience, 34(1):16–33, 2021.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3–71, 1988.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

11

Published in Transactions on Machine Learning Research (02/2023)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Leah Henderson. The Problem of Induction. In Edward N. Zalta and Uri Nodelman (eds.), The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter 2022 edition, 2022.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

David Hume. A treatise of human nature. Clarendon Press, 1896.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. PMLR, 2015.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. Advances in neural information processing systems, 31, 2018.

Chengyue Jiang, Zhonglin Nian, Kaihao Guo, Shanbo Chu, Yinggong Zhao, Libin Shen, and Kewei Tu.
Learning numeral embeddings. arXiv preprint arXiv:2001.00003, 2019.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renormalizing
permuted activations for interpolation repair. arXiv preprint arXiv:2211.08403, 2022.

Matt Jordan, Justin Lewis, and Alexandros G Dimakis. Provable certificates for adversarial examples:
Fitting a ball in the union of polytopes. Advances in neural information processing systems, 32, 2019.

Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.

Jeonghwan Kim, Giwon Hong, Kyung-min Kim, Junmo Kang, and Sung-Hyon Myaeng. Have you seen that
number? investigating extrapolation in question answering models. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 7031–7037, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1
(4):541–551, 1989.

Armin Lederer, Jonas Umlauft, and Sandra Hirche. Uniform error bounds for gaussian process regression
with application to safe control. Advances in Neural Information Processing Systems, 32, 2019.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165, 2017.

Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, and Thomas Serre. Learning long-range
spatial dependencies with horizontal gated recurrent units. Advances in neural information processing
systems, 31, 2018.

12

Published in Transactions on Machine Learning Research (02/2023)

James Lucas, Juhan Bae, Michael R Zhang, Stanislav Fort, Richard Zemel, and Roger Grosse. Analyzing
monotonic linear interpolation in neural network loss landscapes. arXiv preprint arXiv:2104.11044, 2021.

Gary F Marcus. The algebraic mind: Integrating connectionism and cognitive science. MIT press, 2003.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory and
Experiment, 2021(12):124003, 2021.

Balas K Natarajan. On learning sets and functions. Machine Learning, 4(1):67–97, 1989.

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pp. 29–53. Springer,
1996.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with simple
arithmetic tasks. arXiv preprint arXiv:2102.13019, 2021.

Dylan M Paiton, Charles G Frye, Sheng Y Lundquist, Joel D Bowen, Ryan Zarcone, and Bruno A Olshausen.
Selectivity and robustness of sparse coding networks. Journal of vision, 20(12):10–10, 2020.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio,
and Aaron Courville. On the spectral bias of neural networks. In International Conference on Machine
Learning, pp. 5301–5310. PMLR, 2019.

Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian H Sinz, and Richard S Zemel. Normalizing the normalizers:
Comparing and extending network normalization schemes. arXiv preprint arXiv:1611.04520, 2016.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the
brain. Psychological review, 65(6):386, 1958.

Evgenia Rusak, Lukas Schott, Roland S Zimmermann, Julian Bitterwolf, Oliver Bringmann, Matthias
Bethge, and Wieland Brendel. A simple way to make neural networks robust against diverse image
corruptions. In European Conference on Computer Vision, pp. 53–69. Springer, 2020.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. Advances in
neural information processing systems, 30, 2017.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normalization
help optimization? Advances in neural information processing systems, 31, 2018.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical reasoning
abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias Bethge.
Improving robustness against common corruptions by covariate shift adaptation. Advances in Neural
Information Processing Systems, 33:11539–11551, 2020.

Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Towards the first adversarially robust
neural network model on mnist. arXiv preprint arXiv:1805.09190, 2018.

Lukas Schott, Julius Von Kügelgen, Frederik Träuble, Peter Gehler, Chris Russell, Matthias Bethge, Bern-
hard Schölkopf, Francesco Locatello, and Wieland Brendel. Visual representation learning does not gen-
eralize strongly within the same domain. arXiv preprint arXiv:2107.08221, 2021.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum, and Tom
Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with recurrent networks.
Advances in Neural Information Processing Systems, 34:6695–6706, 2021.

13

Published in Transactions on Machine Learning Research (02/2023)

Vasu Singla, Songwei Ge, Basri Ronen, and David Jacobs. Shift invariance can reduce adversarial robustness.
Advances in Neural Information Processing Systems, 34:1858–1871, 2021.

Paul Smolensky. Tensor product variable binding and the representation of symbolic structures in connec-
tionist systems. Artificial intelligence, 46(1-2):159–216, 1990.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. olmpics-on what language model pre-
training captures. Transactions of the Association for Computational Linguistics, 8:743–758, 2020.

Avijit Thawani, Jay Pujara, Pedro A Szekely, and Filip Ilievski. Representing numbers in nlp: a survey and
a vision. arXiv preprint arXiv:2103.13136, 2021.

Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on neural networks, 10
(5):988–999, 1999.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273, 2021.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and efficient
estimation. Advances in Neural Information Processing Systems, 31, 2018.

Tiffany J Vlaar and Jonathan Frankle. What can linear interpolation of neural network loss landscapes tell
us? In International Conference on Machine Learning, pp. 22325–22341. PMLR, 2022.

Nils Philipp Walter, David Stutz, and Bernt Schiele. On fragile features and batch normalization in adver-
sarial training. arXiv preprint arXiv:2204.12393, 2022.

Haotao Wang, Aston Zhang, Shuai Zheng, Xingjian Shi, Mu Li, and Zhangyang Wang. Removing batch
normalization boosts adversarial training. In International Conference on Machine Learning, pp. 23433–
23445. PMLR, 2022.

Zhunxuan Wang, Linyun He, Chunchuan Lyu, and Shay B Cohen. Nonparametric learning of two-layer relu
residual units. arXiv preprint arXiv:2008.07648, 2020.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training. arXiv
preprint arXiv:2001.03994, 2020.

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. How neu-
ral networks extrapolate: From feedforward to graph neural networks. arXiv preprint arXiv:2009.11848,
2020.

Ilker Yildirim, Mario Belledonne, Winrich Freiwald, and Josh Tenenbaum. Efficient inverse graphics in
biological face processing. Science advances, 6(10):eaax5979, 2020.

Anthony Zador, Blake Richards, Bence Ölveczky, Sean Escola, Yoshua Bengio, Kwabena Boahen, Matthew
Botvinick, Dmitri Chklovskii, Anne Churchland, Claudia Clopath, et al. Toward next-generation artificial
intelligence: Catalyzing the neuroai revolution. arXiv preprint arXiv:2210.08340, 2022.

Chiyuan Zhang, Maithra Raghu, Jon Kleinberg, and Samy Bengio. Pointer value retrieval: A new benchmark
for understanding the limits of neural network generalization. arXiv preprint arXiv:2107.12580, 2021.

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and Hanie Sedghi. Teach-
ing algorithmic reasoning via in-context learning. arXiv preprint arXiv:2211.09066, 2022.

14

Published in Transactions on Machine Learning Research (02/2023)

A Appendix

A.1 Experimental Details

Figure 6: Visualisation of Addition on Disc Datasets.

To sample uniformly from the disc D := {x | x ∈ R2, ||x||2 ≤ 1}, we first sample a random angle θ ∼ U(0, 2π)
and then a random length r′ ∼ U(0, 1) of which we take the square root r =

√
r′ to get a uniform sampling

on the disc. These polar coordinates are then transform into standard euclidean coordinates x1 = r cos θ
and x2 = r sin θ (see Fig. 6). For the Annulus A := {x ∈ R2 | 0.5 ≤ ∥x∥2 ≤ 1}, we simply sample the length
from r′ ∼ U(0.25, 1).

We train for 50, 000 steps with the Adam optimizer (Kingma & Ba, 2014), an initial learning rate of 0.001
and a learning rate decay of 0.9. We verified in initial experiments that these settings led to best held-
out performance and convergence of gradient descent for the tested models. For the adversarial robustness
experiments in section 3.5, we use the fast gradient sign attack (Goodfellow et al., 2014).

A.2 Additional Experiments

A.2.1 Performance on Disc Addition

(Model) MSEtrain MSEtest MSEo.o.d.

ReLU (N=16) 2.93e-11 (2.39e-11) 8.46e-06 (2.89e-06) 1.99e-02 (4.49e-03)
ReLU (N=64) 8.05e-08 (1.20e-08) 6.22e-06 (1.10e-06) 6.94e-03 (1.91e-03)
ReLU (N=256) 1.46e-09 (3.20e-10) 6.10e-06 (5.94e-07) 2.46e-03 (4.31e-04)
ReLU (N=1024) 1.95e-10 (6.30e-11) 5.54e-06 (6.10e-07) 1.48e-03 (1.51e-04)
GP (λ=0.2) 2.09e-14 (1.79e-14) 1.58e-03 (5.11e-04) 1.55e-00 (1.12e-02)
GP (λ=1) 3.67e-12 (1.09e-13) 1.12e-10 (3.41e-11) 9.29e-04 (8.08e-05)
GP (λ=5) 1.18e-12 (4.50e-14) 2.12e-12 (2.71e-13) 4.24e-08 (3.77e-09)
GP (λ=50) 2.43e-14 (2.69e-15) 3.04e-14 (4.34e-15) 6.97e-12 (9.52e-13)

Table 1: Performance on Disc Addition. For ReLU networks with different numbers of hidden units
(N) and GPs with different length scales (λ) corresponding to the models in Fig. 1. Reported is the mean
squared error (MSE) on the training and test sets, as well as out of distribution Xo.o.d. := [−1.5, 1.5]2 \ D.

15

Published in Transactions on Machine Learning Research (02/2023)

A.2.2 Optimal Solution and Interpolation Experiments

Figure 7: Interpolation Experiments. Test loss as a function of the interpolation coefficient (α) between
models (see text) at initialisation (θ0), after training (θsgd) and with the optimal solution (θopt, equation
1). Top (bottom) row shows the value (index) of α on the horizontal axis for clearer visualisation. OLS
(ordinary least squares) denotes models where the second layer weights (W2) were set to the least squares
solution on the training data set. Light colours indicate 10 random seeds and darker colours averages.

In this section, we provide a preliminary exploration for why NNs fail to find the optimal solution (equation 1).
We primarily rely on one dimensional cross sections of the loss surface. Specifically, we look at interpolations
from initialisation to trained models (Lucas et al., 2021; Vlaar & Frankle, 2022) as well as between trained
models (Entezari et al., 2021; Ainsworth et al., 2022; Jordan et al., 2019). We choose the same settings as in
Fig. 1 (top row, third column), i.e., D = 128 data points from the disc D, N = 256 hidden units, standard
two layer MLP with ReLU. As before, we train the network with the same settings (see section A.1) and
denote the learned weights θsgd. Further, we denote the weights at initialisation θ0 and the optimal solution
θopt (equation 1). We repeat this experiment for 10 different random seeds.

First, we investigate whether interpolating from the network initialisation (θ0) to a solution produces a
monotonically decreasing test loss (Lucas et al., 2021). In Fig. 7 (left column), we see that this is the case
both when interpolating to the learned θsgd as well as the optimal θopt solution. Note that the loss curve of
the former (θ0 to θsgd) is lower for most of the interpolation distance, which might explain why a (greedy)
gradient descent algorithm would prefer that direction. However, the interpolating to the optimal solution
(θ0 to θopt) ultimately achieves a much lower test error (up to machine precision), as expected.

Second, an alternative explanation for the failure to find the optimal solution is that as the number of
units grows (N → ∞), the (first layer) weights are virtually fixed and the model is forced to utilise the
feature space provided at initialisation (cf. neural tangent kernel, (Jacot et al., 2018)). Consequently, during
gradient descent, the model cannot reach the optimal solution (equation 1). To investigate this, we compute
the ordinary least squares (OLS) solution for the second layer weights (W2). Precisely, given the hidden
activations H ∈ RN×D as Hi = max(0, W1Xi + b1) for the training set (X ∈ RD×2, Y ∈ RD) we compute

β := (HT H)+HT Y (9)

where (HT H)+ is the (Moore-Penrose) pseudo-inverse matrix of HT H. We then use this as second layer
weights W2 = β (with bias set to b2 = 0) and test the model performance on the test set.

16

https://rajatvd.github.io/NTK/

Published in Transactions on Machine Learning Research (02/2023)

In Fig. 7 (middle column) we see that interpolating from θ0 to θsgd but computing the OLS solution for the
second layer for each interpolation value (α), we obtain a nearly constant loss curve. This suggests, that
over training the quality of the first layer feature space (or equivalently, the quality of the model modulo
optimal/OLS second layer weights) does not change and that most increase in performance during training
comes from solving the (convex) optimisation of the second layer. By contrast, interpolating (modulo OLS)
to the optimal solution (θopt) stays approximately constant until, at the very end of the interpolation path,
there is a sharp decrease in test loss (i.e., increase in the quality of the first layer feature space). This
experiment suggests that: i) most training progress can be recovered by optimising the second layer during
learning, which alone cannot achieve the optimal solution; and that ii) there is a sharp transition in model
quality close to the optimal solution, until then the loss (modulo OLS) is almost constant.

Third, we may also ask: how does the loss surface behave for an interpolation between solutions, i.e., from
θsgd to θopt (Entezari et al., 2021; Ainsworth et al., 2022; Jordan et al., 2019)? We see in Fig. 7 (right
column, blue) that there is a loss barrier (Vlaar & Frankle, 2022), i.e., the loss increases from θsgd to θopt.
Recent work (Entezari et al., 2021) suggested that this barrier may be removed if permutations between
network units are taken into account. In our simple model we can easily test this, again, by computing the
OLS solution for the second layer which will account for any permutation P ∈ SN , since this can easily
be absorbed into the OLS Pβ = β̃ estimate. We see in Fig. 7 (right column, green) that the loss is now
approximately constant along the interpolation path again almost up to θopt.2

In summary, these interpolation experiments suggest that: i) Interpolating to the trained solution leads to
a faster (but ultimately smaller) decrease in loss (Fig. 7 left); ii) Most training progress can be recovered
by simply optimising the second layer weights (Fig. 7 middle); iii) The quality of the first layer features
(i.e., the loss modulo OLS) is nearly constant on the triangle (θ0, θsgd, θopt), but with a sharp transition
close to θopt (Fig. 7 middle, right). Thus, it seems that the model does not find the optimal solution during
optimisation because it stays in a regime where the quality of the first layer feature space is nearly constant
and where all training progress can be reduced to solving the (convex) optimisation of the second layer
weights. There is only a very sharp and narrow peak where the first layer feature quality rapidly increases
around the optimal solution. Reaching this point in a vast surrounding space of constant first layer quality
may be rather difficult with gradient descent optimisation.

2This supports the idea of linear mode connectivity modulo permutations (Ainsworth et al., 2022). Later work (Jordan
et al., 2022) showed that rescaling individual units to maintain variance can also be important for linear mode connectivity;
again, this linear transformation can be subsumed into the OLS β weights.

17

Published in Transactions on Machine Learning Research (02/2023)

A.2.3 Stronger Adversarial Attacks

Figure 8: Neural Network Classification Robustness. Accuracy on MNIST as a function of (L2)
adversarial perturbation size (||ϵ||2) for TanH NN models with different levels of weight decay. Attacks
computed with the stronger adaptive attacks implemented in AutoAttack (Croce & Hein, 2020).

A.2.4 Multilayer Model for CIFAR10 Classification

Figure 9: CIFAR10 Classification with ResNet Models. Accuracy on CIFAR10 as a function of
(FGSM) perturbation strength for models with different length scales (σ−1); Right) Accuracy as a function
of white noise standard deviation for the same models.

We are using a standard ResNet9 (He et al., 2016) implementation based on this public repository (kaggle).
Importantly, we exchange every fully connected layer with the construction proposed in this paper (section
3.3), i.e., normalising the weights and using TanH nonlinearities. Secondly, we apply the same normalisation
to every input channel of convolutional layers and also change their activation functions to TanH nonlin-
earities. We are using the same σ for all layers. Notice, that these are specific design choices and that we
leave it open to future research to explore different normalisation strategies or layer-dependent smoothness
parameters σ that could, potentially, improve the present results on deeper (vision) models.

18

https://www.kaggle.com/code/kmldas/cifar10-resnet-90-accuracy-less-than-5-min

Published in Transactions on Machine Learning Research (02/2023)

A.2.5 Weight Decay Robustness Comparison

Figure 10: Neural Network Classification Robustness. Top left) Accuracy on MNIST as a function
of (FGSM) perturbation strength for ReLU NN models with different levels of weight decay (wd). Top
right) Accuracy on MNIST as a function of white noise standard deviation for the same models. Middle)
Accuracy for baseline TanH (σ = 1.00) and ReLU (wd = 0.0) models for adversarial (left) and noise (right)
perturbations, and best models, i.e., maximum performance over σ (wd) for every perturbation size. Bottom)
Accuracy Gain, i.e., difference between baseline and best (middle) for both TanH and ReLU models.

19

Published in Transactions on Machine Learning Research (02/2023)

A.2.6 Density Dependent Fitting

Figure 11: TanH Neural Network Learning Addition on Gaussian Data. Data drawn from standard
normal distribution N (0, 1). Colorbar indicates the log of the loss function (equation 3).

A.2.7 Inductive Bias – Commutative Symmetry

Figure 12: Exploring Commutative Symmetry as Inductive Bias. TanH model (σ−1 = 1.0) trained on
disc addition task (Fig. 1), however, forcing commutativity in the outputs by changing the network function
f to fsym(x) = (f(x1, x2) + f(x2, x1))/2. Colorbar indicates the log of the loss function (equation 3).

20

Published in Transactions on Machine Learning Research (02/2023)

A.2.8 Results on Addition and Multiplication

Figure 13: Addition and Multiplication for ReLU Network. Results of ReLU network trained on both
addition (Fig. 1) and multiplication. Colorbar indicates the log of the loss function (equation 3).

21

Published in Transactions on Machine Learning Research (02/2023)

Figure 14: Addition and Multiplication for TanH Network. Results of TanH network, but without
weight normalisation (equation 7), trained on both addition (Fig. 1) and multiplication. Colorbar indicates
the log of the loss function (equation 3).

22

	Introduction
	Background
	Results
	Neural Networks and Gaussian Processes Learning Addition
	Out of Domain Generalisation
	Setting the Length Scale of Neural Networks
	Controlling Neural Network Smoothness: Addition
	Controlling Neural Network Smoothness: Classification

	Limitations
	Discussion
	Appendix
	Experimental Details
	Additional Experiments
	Performance on Disc Addition
	Optimal Solution and Interpolation Experiments
	Stronger Adversarial Attacks
	Multilayer Model for CIFAR10 Classification
	Weight Decay Robustness Comparison
	Density Dependent Fitting
	Inductive Bias – Commutative Symmetry
	Results on Addition and Multiplication

