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Abstract

Novel machine learning methods for tabular data
generation are often developed on small datasets
which do not match the scale required for scien-
tific applications. We investigate a recent proposal
to use XGBoost as the function approximator in
diffusion and flow-matching models on tabular
data, which proved to be extremely memory in-
tensive, even on tiny datasets. In this work, we
conduct a critical analysis of the existing imple-
mentation from an engineering perspective, and
show that these limitations are not fundamental
to the method; with better implementation it can
be scaled to datasets 370× larger than previously
used. We also propose algorithmic improvements
that can further benefit resource usage and model
performance, including multi-output trees which
are well-suited to generative modeling. Finally,
we present results on large-scale scientific datasets
derived from experimental particle physics as part
of the Fast Calorimeter Simulation Challenge.

1. Introduction
The design of neural network (NN) architectures with appro-
priate inductive biases for a given data modality has lead to
incredible breakthroughs on text (Vaswani et al., 2017), au-
dio (Hochreiter & Schmidhuber, 1997), image (Krizhevsky
et al., 2012; He et al., 2016), graph (Kipf & Welling, 2016),
and many other modalities. However, tabular data stands
out in that tree-based architectures still often outperform
NNs (Grinsztajn et al., 2022; McElfresh et al., 2023). This
can largely be attributed to the lack of consistent structure
in tabular data that NN design typically relies on.

Despite the success of boosted tree architectures like XG-
Boost (Chen & Guestrin, 2016) on discriminative tasks, they
are rarely used for generative modeling (Nock & Guillame-
Bert, 2022; 2023). This is surprising, as XGBoost brings
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Figure 1: Comparison of training time and memory us-
age between the original implementation and ours. The ×
indicates job failure, and the horizontal line indicates the
maximum system memory.

several other meaningful advantages: XGBoost does not
require significant data pre-processing (NNs are highly sen-
sitive to data scale and distribution); XGBoost can operate
on data that contains null values (NNs require null values
to be imputed or entire columns dropped); XGBoost can
be trained efficiently on CPU or GPU (NNs usually require
GPU training); and XGBoost has superior explainability
(Shapley values (Shapley, 1951) are intractable for large
NNs, but the TreeSHAP algorithm makes them computable
for trees (Lundberg & Lee, 2017; Lundberg et al., 2018)).
Similar to MLP networks, XGBoost is a universal function
approximator (Friedman et al., 2000; Friedman, 2001) and
can be used to fit any function, at least in principle.

Recently, Jolicoeur-Martineau et al. (2024) proposed a
method for training score-based diffusion (Song et al., 2021)
and flow-matching (Liu et al., 2023; Albergo & Vanden-
Eijnden, 2023; Lipman et al., 2023) generative models on
tabular data by using XGBoost as the function approximator
for a learnable vector field. Given the discussion above,
this idea shows great promise, however, the original imple-
mentation was only benchmarked on small datasets (up to
11,000 datapoints with 16 features), and proved to be in-
credibly memory intensive (Figure 1 solid lines). Important
scientific and industrial applications of tabular generative
modeling typically operate at much larger scales, such as
the Fast Calorimeter Simulation Challenge for generative
modeling of particle physics interactions (Faucci Giannelli
et al., 2022) with tabular datasets 370× larger than those
used by Jolicoeur-Martineau et al. (2024).
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In this work we conduct a deep and critical analysis of
the implementation of diffusion and flow-matching mod-
els backed by XGBoost using engineering best-practices,
and provide a new implementation re-engineered from the
ground-up. Our implementation uses more than two orders
of magnitude less CPU memory (Figure 1 dashed lines),
showing that the algorithm is much more broadly applica-
ble than previously thought. In addition, we demonstrate
techniques to improve generative quality, including by using
multi-output trees for generative modeling, which can more
efficiently represent high-dimensional distributions. Finally,
we demonstrate that the methods can scale in practice by
applying them to large scientific datasets.

2. Background
First, we briefly review diffusion and flow matching models
and then describe how to train them with XGBoost function
approximators.1 For a more extensive description of diffu-
sion and flow matching models, see (Loaiza-Ganem et al.,
2024). Finally, we introduce the application of interest from
experimental particle physics.

2.1. Diffusion Models

Score-based diffusion models (Song et al., 2021) corrupt
data x0 ∼ p0 by progressively adding noise as t ∈ [0, 1]
increases, in a process modeled by a stochastic differential
equation (SDE). Reversing this process enables the gener-
ation of data from pure noise. The reverse SDE involves a
novel term, the score function ∇xt log pt(xt), where pt is
the density corresponding to data at noise level t. Since the
data density p0 is not known in closed form, neither is pt,
so∇xt

log pt(xt) cannot be directly computed. However, it
can be estimated using a denoising score matching approach
(Hyvärinen, 2005; Vincent, 2011) with the loss

LSM(θ) =Et∼U(0,1)w(t)Ex0∼p0,xt∼pt(·|x0)

∥sθ(xt, t)−∇xt
log pt(xt | x0)∥22.

(1)

Here, sθ is a parameterized vector field that is directly re-
gressed on the score function, while w(t) is a positive-
valued weighting function that can be chosen freely. In
words, for a t sampled uniformly, and x0 drawn from the
data distribution, we sample xt from pt(· | x0) which is
Gaussian (Song et al., 2021),

pt(xt | x0) = N
(
xt;

√
1− σ2

t x0, σ
2
t ID

)
. (2)

The standard deviation σt depends on the details of the
forward SDE. For generation, sθ replaces the score function
in the reverse SDE which is then solved numerically.

1We refer to XGBoost throughout, but other tree-based re-
gressors could be used. Our implementation takes advantage of
XGBoost features that are currently unavailable in other gradient-
boosted decision tree libraries.

2.2. Flow Matching

Like continuous normalizing flows (Chen et al., 2018), flow
matching interpolates probability densities pt for t∈[0, 1]
(Liu et al., 2023; Albergo & Vanden-Eijnden, 2023; Lipman
et al., 2023). For generative modeling we consider p0 as
the data, and select a simple prior p1=N (x1|0, σ2). The
interpolation is determined by a vector field at each time µt,
which transports datapoints xt via the ODE dxt=µt(xt)dt.
When pt and µt jointly satisfy the continuity equation

d
dt
pt +∇x · (ptµt) = 0, (3)

then pt will be a properly normalized density at each t. To
perform flow matching, one would train a model νθ(xt, t)
of the vector field µt(xt) by direct regression,

LFM(θ) = Et∼U(0,1),xt∼pt
∥νθ(xt, t)− µt(xt)∥22. (4)

However, in practice neither pt nor µt is uniquely deter-
mined, we can only sample from pt for t = 0 (data) and 1
(prior), and we do not have access to µt to evaluate at xt.

As a workaround, conditional flow matching (CFM) pro-
poses to use conditional densities pt(xt | (x0,x1)) and vec-
tor fields µt(xt | (x0,x1)), where x0 ∼ p0 is a training
datapoint and x1 ∼ p1 is noise, such that both are tractable.
For example (Tong et al., 2024), when we define

pt(xt | (x0,x1)) = N
(
xt; tx1 + (1− t)x0, σ

2ID
)
,

µt(xt | (x0,x1)) = x1 − x0,
(5)

for some σ ≥ 0, the continuity equation (Eq. 3) is satisfied.
Now sampling data conditionally as xt ∼ pt(· | (x0,x1)),
the CFM loss has the same gradients as Eq. 4,

LCFM =Et∼U(0,1),x0∼p0,x1∼p1,xt∼pt(·|(x0,x1))

∥νθ(xt, t)− µt(xt | (x0,x1))∥22.
(6)

Therefore, it will lead to the same model νθ(xt, t), but is
actually tractable. Finally, new datapoints are generated
by solving the ODE starting from x1 ∼ p1 but using the
learned vector field νθ(xt, t) instead of µt(xt).

2.3. ForestDiffusion and ForestFlow

There is a clear commonality between the two methods:
both regress a parameterized vector field. In almost all
applications to date, NNs are used to parameterize the vector
field. Jolicoeur-Martineau et al. (2024) made the interesting
observation that an XGBoost regressor (Chen & Guestrin,
2016) could be used instead. However, there are several
major differences in training that must be overcome.

First, when using NNs Eq. 1 or 6 would be optimized by
sampling a minibatch of data x0 ∼ p0, sampling t ∼ U(0, 1)
independently for each x0, sampling fresh noise x1 ∼ p1
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(Eq. 6 only), and then sampling xt from the Gaussian
in Eq. 2 or 5, respectively. In particular, the timestep t
and random vector xt would be sampled anew every batch,
eventually leading to good coverage of the distributions in
the loss function expectations. XGBoost is not trained with
minibatches; it requires an entire dataset to be fed in and
then minimizes the loss overall. Hence, the random vector
xt for each training point x0 would only be sampled once.
For better coverage of the distribution, Jolicoeur-Martineau
et al. (2024) proposed to duplicate each of the n training
datapoints K times, and generate different xt for each copy.

Second, whereas with a NN the time step t could be fed in
as an additional input to the network during training and
generation, Jolicoeur-Martineau et al. (2024) argued that
simply adding t as a feature to XGBoost is unlikely to give
sufficient emphasis to it, instead proposing to discretize t
into nt uniform steps and train a different XGBoost ensem-
ble for each. The expectation over t is removed in the loss
function Eq. 1 or 6, and t is instead treated as a constant for
each of nt separate loss functions.

Third, whereas a NN can easily be designed with a number
of outputs equal to the number of features p in x (the same
size as the target vector field), standard decision trees only
output a scalar. A brute-force workaround is to train a
different XGBoost ensemble to predict each feature.

Fourth, when conditional generation on a class label y is re-
quired, a NN can accept y as an input to adapt its behaviour
while sharing parameters. Like conditioning on t, condi-
tioning on y is better done by training a separate XGBoost
ensemble for each of the ny classes.

Combining these four solutions, Jolicoeur-Martineau et al.
(2024) proposed ForestDiffusion and ForestFlow, aiming to
realize the promises of tree-based generative modeling laid
out in Section 1. While Jolicoeur-Martineau et al. (2024)
reported excellent model performance, there are clear limi-
tations, mainly the memory requirements from data duplica-
tion, and inefficient parameter use from conditioning with
separate XGBoost ensembles. In total, on a tabular dataset
of size [n, p], both methods require training nt · ny · p XG-
Boost ensembles on nt different datasets of size [ni ·K, p],
where ni is the number of datapoints with label i such that∑ny

i=1 ni = n. The recommended settings are nt ≈ 50 and
K ≈ 100, whereas ni ≈ n/ny for class-balanced data. To
emphasize the scaling issues, the libras dataset featured in
(Jolicoeur-Martineau et al., 2024) with n = 288 training
datapoints required 151 GiB of CPU memory using the orig-
inal implementation. We address these scaling issues below
with novel techniques and better implementation.

2.4. Calorimeter Simulation

To motivate the need for scalable tabular data generation,
we consider an important scientific application - calorimeter

Table 1: Top: The largest training datasets from (Jolicoeur-
Martineau et al., 2024) in terms of n, p, and np. N/A means
y is continuous. In addition, 25% of n is available for testing.
Bottom: We scale to calorimeter datasets which are up to 370×
larger in np.

Dataset Datapoints n Columns p Classes ny

california 16,512 9 N/A
libras 288 90 15
bean 10,888 16 7

Photons 121,000 368 15
Pions 120,800 533 15

simulation. Measuring particle energy with calorimeters is
one of the major components in particle accelerator exper-
iments. To understand predictions from theory, physicists
simulate interactions within calorimeters, but doing so from
first principles is computationally expensive (Agostinelli
et al., 2003; Allison et al., 2006; 2016). Generative models
have seen remarkable uptake as surrogates for fast simula-
tion, spurred on by the Fast Calorimeter Simulation Chal-
lenge (Faucci Giannelli et al., 2022) which provides large
tabular datasets of calorimeter measurements, and evalu-
ation metrics that are scientifically relevant. A compari-
son of the training dataset sizes from (Jolicoeur-Martineau
et al., 2024) and from the Challenge is given in Table 1. In
Appendix A we provide an extensive review of machine
learning methods for calorimeter simulation.

3. Scaling Up
In this section we provide a step-by-step breakdown of
the implementation of the main algorithm from (Jolicoeur-
Martineau et al., 2024), shown in pseudocode in Algorithm
1, then re-engineer it to scale to calorimeter data. After
resolving implementation issues, we offer new techniques
to further improve algorithm and model performance, in-
cluding by completely changing the XGBoost tree structure.

3.1. Limitations of the Existing Implementation

In Algorithm 1 the triple loop must be parallelized well for
the method to scale to large datasets. Since the training
dataset X0 is duplicated K times and nt different versions
are generated to represent xt at different timesteps, memory
can become a severe issue which is compounded by the
number of XGBoost ensembles to be trained. Unfortunately,
these challenges are not handled well in the implementa-
tion published by (Jolicoeur-Martineau et al., 2024). To
demonstrate the need for rework, we show the resource
usage during training for a small dataset with n = 1000,
p = 100, and ny = 10 in Figure 2. Despite our computer
having 385 GiB of CPU memory available, the training job
failed. There are three clear problems that this example
shows: (1) even on a modest dataset the absolute amount
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Algorithm 1 ForestDiffusion and ForestFlow

Input: Dataset X0 of size [n, p], K, nt.
X ′

0 ←K-fold duplicate of the rows of X0

X1 ← Dataset of x1 ∼ N (0, Ip) with the size of X ′
0

for Timestep t ∈ range(nt) do
for Class y ∈ range(ny) do

for Feature pi ∈ range(p) do
X ′

0,y ← rows of X ′
0 with label y

X1,y ← corresponding rows of X1

# Create xt and regression targets
X ′

t,y, Zt,pi
← Forward(X ′

0,y, X1,y, t, pi)
ft,y,pi

←Regress XGBoost on Zt,pi
given X ′

t,y

return {ft,y,pi
} # Set of ntnyp XGBoost ensembles

of memory consumed is unexpectedly high (250 GiB); (2)
memory usage grows at a constant rate during training, po-
tentially leading to out-of-memory errors hours into a job;
(3) training can fail due to memory issues even when the
system maximum has not been reached.

3.2. Outlining the Existing Implementation

To begin unravelling the causes of the three undesirable
behaviours above, we consider in detail the Python imple-
mentation by (Jolicoeur-Martineau et al., 2024).2 First, the
dataset X0 of size [n, p] is given as a Numpy array, with
discrete labels for conditioning denoted as y. A scaler fits
all data X0 into the range [−1, 1], after which the dataset
is duplicated K times, giving X ′

0 of size [nK, p], and noise
X1 is sampled with the same shape. For conditioning on
classes, ny Boolean masks are created over X ′

0. Next, the
regression inputs and targets are created, denoted by X ′

t and
Zt respectively. X ′

t represents samples xt from the distri-
bution in Eq. 2 or 5, while Zt is either the score function
∇xt

log pt(xt | x0) from Eq. 1 or the conditional vector
field µt(xt | (x0,x1)) from Eq. 6. Finally, all nt·ny ·p mod-
els are trained in a parallel triple loop with the widely used
Python parallelization library Joblib. These steps are shown
in the following code snippet, which has been compressed
to show only the crucial information, and uses ForestFlow
as a representative example.

3.3. Analysis and Improvement of the Implementation

While the implementation looks innocuous, Figure 2 shows
that there are serious engineering issues lurking. We aim
to answer the following specific questions based on the ob-
servations above: (1) Why are memory requirements high
for tiny datasets? (2) Why does memory usage increase dur-
ing training? (3) Why do jobs fail before memory reaches
100% usage? We proceed by identifying issues, proposing
solutions, and quantifying benefits, starting simple.

2We accessed github.com/SamsungSAILMontreal/
ForestDiffusion as of Dec. 1,2023, commit hash 855281b.

Figure 2: Training memory usage for the original implemen-
tation and ours. The red cross × indicates job failure.

Original Python Implementation of ForestFlow
1 from sklearn.preprocessing import

MinMaxScaler as Scaler↪→
2 import numpy as np, xgboost as xgb
3 from joblib import delayed, Parallel
4

5 X0, y, K, n_t, xgb_kw, n_jobs = inp()
6 n, p = X0.shape
7 # Scale data range to noise variance
8 scaler = Scaler(feature_range=(-1, 1))
9 X0 = scaler.fit_transform(X0)

10 # Duplicate data and generate noise
11 X0 = np.tile(X0, (K, 1)) # [n*K, p]
12 X1 = np.random.normal(size=X0.shape)
13 # Create Boolean masks over classes
14 mask = {}
15 y_uniq = numpy.unique(y)
16 for y_i in y_uniq:
17 mask[y_i] = np.tile(y == y_i, K)
18 # Discretize time into n_t steps
19 t = np.linspace(0, 1, num=n_t)
20 # Create ForestFlow regression targets
21 X_tr = t*X1 + (1-t)*X0 # [n_t, n*K, p]
22 Z_tr = X1 - X0 # [n*K, p]
23 # Train models in parallel triple loop
24 def train_parallel(X_tr_i, Z_tr_i):
25 model = xgb.XGBRegressor(**xgb_kw)
26 return model.fit(X_tr_i, Z_tr_i)
27 regressors = Parallel(n_jobs)(
28 delayed(train_parallel)(
29 X_tr[t_i][mask[y_i], :],

Z_tr[mask[y_i], p_i]↪→
30 ) for t_i in range(n_t) for y_i in

y_uniq for p_i in range(p)↪→
31 ) # list of n_t*n_y*p XGB ensembles

Issue 1: Regression inputs X tr for all timesteps are cre-
ated in memory at once, which is a large array of shape
[n t,n*K,p] (Line 21). Using the recommended values
creates an array 5000 times the size of the training dataset,
making even small datasets burdensome (Question 1).
Solution 1: Each XGBoost training call requires only the
information at a single timestep X tr[t i], and so this
data should be generated on-the-fly within the n t loop.
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Benefit 1: We avoid holding the size [n t,n*K,p] ar-
ray in memory. This is in fact the first issue encountered
when trying to apply the implementation to calorimeter
data (Table 1), since a numpy.float64 array of size
[50,120800*100,533] requires 2.34 TiB of memory.

Issue 1: Original
1 t = numpy.linspace(0, 1, num=n_t)
2 X_tr = t*X1 + (1-t)*X0
3 # [n_t, n*K, p] array in memory

Issue 1: Improvement
1 def train_parallel(X0,X1,Z_tr_i,t_i):
2 X_tr_i = t_i*X1 + (1-t_i)*X0
3 model = xgboost.XGBRegressor()
4 return model.fit(X_tr_i, Z_tr_i)

Issue 2: Due to the Python global interpreter lock,
parallelization is often handled through multiprocessing
wherein the main process spawns worker processes and
sends them copies of data. When a large array is assigned
to multiple workers, Joblib automatically puts it into
shared memory as a memory-mapped file, and passes
only the reference to the workers. When an array slice
like X tr[t i][mask[y i], :] is passed to Joblib’s
Parallel call (Line 29), it is treated as a distinct array
even though the same slice might appear for many jobs.
Hence, Joblib creates a new array in shared memory for
every slice throughout every call in the parallel triple loop.
By default, Joblib stores the memory-mapped arrays in
RAM disk, a virtual disk on RAM, and does not free that
memory until all parallel jobs are done. This continuously
increases RAM disk usage during training (Question 2)
and can lead to out-of-memory errors if RAM disk usage
reaches its capacity. For example, the maximum shared
memory size on our Ubuntu 22.04 machine had been set to
189 GiB by default, and the failure in Figure 2 was caused
by the RAM disk reaching this limit, even though RAM
itself (at 385 GiB) was not at 100% usage (Question 3).
Solution 2: Instead of passing array slices within the
Parallel call, pass the entire array and slice it inside
worker processes. Upon the first call, Joblib puts the array
into shared memory, but in subsequent calls it identifies the
same array being requested and passes only a reference to
workers.
Benefit 2: In the original implementation, each
train parellel call in the triple loop over (n t,n y,p)
creates a copy of the input slices in shared mem-
ory. Looking only at X tr, the triple loop consumes
n t*p*sizeof(X tr[t i])=n t*p*(n*K*p*8)
bytes in shared memory, which is p times more than Issue 1
(Question 1). For the Pions dataset (Table 1), this would
amount to 1.22 PiB. Our solution holds only one copy of
X0 and X1 in shared memory, a factor of n t*p less.

Issue 2: Improvement
1 def train_parallel(X0, X1, Z_tr, t_i,

mask_i, p_i):↪→
2 X_tr_i = t_i*X1[mask_i, :] +

(1-t_i)*X0[mask_i, :]↪→
3 Z_tr_i = Z_tr[mask_i, p_i]
4 model = xgb.XGBRegressor(**xgb_kw)
5 return model.fit(X_tr_i, Z_tr_i)
6 regressors = Parallel(n_jobs)(
7 delayed(train_parallel)(
8 X0, X1, Z_tr, t_i, mask[y_i], p_i
9 ) for t_i in t for y_i in y_uniq for

p_i in range(p) )↪→

Issue 3: All trained XGBoost models are held in memory
until the end of training, causing a steady increase of con-
sumed memory as training progresses (Question 2). The
memory consumed by these models is independent of n, but
increases with p and n y (Question 1).
Solution 3: After a model is trained, write it to disk, and
delete it from memory. Use the Universal Binary JSON
(UBJ) format as it is compatible across XGBoost versions,
and is the fastest format overall for reading and writing with
the best compression on disk.
Benefit 3: Workers writing their trained model to disk pre-
vents the growth of memory usage over training, and by-
passes the need to return models from the worker to the main
process via pickling. Furthermore, it serves as a checkpoint
so that training can be easily resumed upon system fail-
ure. ForestFlow requires n t*n y*p XGBoost ensembles,
each made of n tree trees which themselves have up to
2**(d+1)-1 nodes where d is the maximum depth. Each
node of an XGBoost tree uses 53 bytes to store parameters,
metadata, and training statistics. Using the recommended
defaults of n tree=100, d=7, and no regularization, es-
sentially all trees will have the maximum 255 nodes, and
would require in total 503 GiB on Pions (Table 1).

Issue 3: Original
1 def train_parallel(...):
2 ...
3 return model.fit(X_tr_i, Z_tr_i)

Issue 3: Improvement
1 def train_parallel(...):
2 ...
3 model.fit(X_tr_i, Z_tr_i)
4 model.save_model(f"{path}.ubj")

At this point we have reviewed the most significant training
issues which together explain the three problematic obser-
vations from Figure 2, and provide the bulk of resource
improvements that we report. In Appendix B we list four
additional issues and solutions of smaller magnitude, and
present a Python implementation with all of our changes.
Figure 2 shows that our implementation solves the three
observed problems. However, training is only one part of
the story. In Appendix B.2 we investigate improvements
to generation, with our method proving to be more than an
order of magnitude faster.
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Figure 3: Resource usage of the ForestFlow implementation from (Jolicoeur-Martineau et al., 2024), compared to our
implementation, and our extension to multi-output trees. A red cross × indicates job failure. The horizontal line indicates
the maximum system memory used for all models at 385 GiB.

Figure 4: Generation speed of the ForestFlow implementation from (Jolicoeur-Martineau et al., 2024), compared to our
implementation, and our extension to multi-output trees. Each datapoint corresponds to a model trained for Figure 3, where
missing datapoints mean the training job did not complete.

3.4. Algorithmic Modifications

Beyond improving the implementation of Algorithm 1,
we also offer modifications that can improve model per-
formance or resource efficiency. First, we propose class-
conditional data scaling, since during training each model
only sees data from one class. Second, we find that class-
conditional sampling using the labels from the training set
improves the distributional characteristics of generated data.
Third, for large datasets like Pions, we find the importance
of certain hyperparameters changes, and recommend differ-
ent defaults for better performance with fewer resources.

Finally, we propose a significant change to the structure of
trees used by XGBoost which is more suited to the high-
dimensional outputs required in generative modelling. In-
stead of training p single-output trees independently, one for
each feature, we propose to use multi-output trees (Zhang
& Jung, 2021; Ying et al., 2022; März, 2022; Iosipoi &
Vakhrushev, 2022; Schmid et al., 2023), where a single tree
outputs p values. The advantages are clear: p times fewer
XGBoost ensembles are required to represent the vector
field, which is a massive benefit for generation speed and
trained model memory requirements. The above modifica-
tions are fully described in Appendix C.

4. Experimental Results
In this section we demonstrate the improved resource scal-
ing of our implementation, provide benchmarking on small
tabular datasets for model performance improvements, then
present our results on the much larger calorimeter datasets.

4.1. Resource Usage Scaling

To begin, we quantify resource usage using synthetic
datasets of controllable size. Features and labels are ran-
domly generated, with one of n, p, or ny altered from base
values of n = 1000, p = 10, and ny = 10. The expected be-
haviour in n, p, and ny was hinted at in Section 2.3. Increas-
ing n should increase training time, but at most linearly due
to XGBoost’s hist method (Chen & Guestrin, 2016), and
linearly increase memory usage. Increasing ny with n held
fixed means increasing the number of ensembles trained, but
with each on a smaller dataset, hence memory requirements
should slightly decrease. Meanwhile, increasing p leads to
quadratic scaling in time since it both increases the number
of ensembles required, and the size of each dataset, the latter
of which also implies linear memory requirements.

Figure 3 shows our controlled experiment for runtime and
memory scaling. Both the Original and our (Single-output)
implementations show similar scaling in time as n increases,
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Table 2: Average rank (standard error) of generated data quality over 27 datasets. Lower is better.

W1train W1test Covtrain Covtest R2
gen F1gen Pbias covrate Avg.

GaussianCopula (Joe, 2014) 10.0±0.3 10.1±0.3 9.9±0.4 10.0±0.4 9.1±0.1 9.5±0.4 8.6±1.4 10.6±0.5 9.7±0.1

TVAE (Xu et al., 2019) 8.0±0.3 7.6±0.4 8.3±0.3 8.3±0.3 9.7±0.6 8.9±0.6 10.7±0.5 10.1±0.3 9.0±0.0

CTGAN (Xu et al., 2019) 11.4±0.2 11.3±0.2 11.2±0.2 11.1±0.2 11.6±0.2 11.4±0.2 8.6±1.1 10.6±0.5 10.9±0.1

CTAB-GAN+ (Zhao et al., 2024) 9.8±0.3 9.6±0.3 9.9±0.4 9.7±0.4 10.0±0.2 9.9±0.4 10.6±0.6 8.6±1.4 9.7±0.1

STaSy (Kim et al., 2023) 9.0±0.2 9.2±0.2 7.9±0.3 8.0±0.4 8.4±1.3 7.6±0.5 7.0±1.2 6.6±1.4 7.8±0.2

TabDDPM (Kotelnikov et al., 2023) 4.4±0.9 5.8±0.8 4.2±0.7 4.8±0.7 1.9±0.6 5.2±0.9 3.3±1.4 3.1±0.8 4.1±0.1

ForestFlow-original 3.6±0.2 3.4±0.3 2.9±0.3 3.0±0.4 2.5±0.4 4.6±0.4 4.2±0.8 3.5±0.8 3.5±0.1

ForestFlow-SO 1.9±0.2 2.2±0.2 2.4±0.3 2.9±0.4 2.5±0.4 4.1±0.5 4.2±0.8 3.5±0.8 3.0±0.1

ForestFlow-MO 4.2±0.3 3.0±0.3 4.0±0.3 3.7±0.4 3.7±0.5 5.1±0.5 3.6±0.5 3.4±0.3 3.9±0.0

ForestDiffusion-original 5.4±0.3 5.4±0.3 5.7±0.4 5.3±0.4 5.8±0.3 4.3±0.5 5.2±0.9 5.8±0.8 5.4±0.1

ForestDiffusion-SO 3.8±0.3 4.0±0.3 4.4±0.4 4.7±0.4 5.8±0.3 2.4±0.4 5.2±0.9 5.8±0.8 4.5±0.1

ForestDiffusion-MO 6.6±0.3 6.4±0.3 7.1±0.4 6.6±0.4 7.0±0.4 5.3±0.4 6.9±0.9 6.4±0.8 6.5±0.1

as nearly all compute time is spent in calls to XGBoost.
However, our implementation is more than two orders of
magnitude more memory efficient, and peak memory usage
scales linearly at large n. The Original implementation leads
to job failures with as few as n = 10, 000 datapoints. The
number of features p has the biggest impact on resource
requirements, but our implementation achieves the expected
linear memory scaling whereas the Original has quadratic
scaling. Finally, for ny our implementation uses a constant
amount of memory, whereas the Original shows worse than
linear scaling.

While multi-output trees behave similarly to single-output in
n and ny , they suffer from worse scaling in p. Multi-output
trees reduce the number of ensembles required by a factor
of p, but each tree’s training is more memory intensive as
XGBoost must search over a higher dimensional leaf space.

Next, in Figure 4 we show the time required to generate
five batches of n datapoints using the same models trained
for Figure 3. Not only is our implementation more than
an order of magnitude faster for most settings, we see an
even greater improvement for multi-output trees. The near-
constant scaling in p showcases the benefit of generating all
p outputs with a single ensemble. Hence, multi-output trees
are a strong candidate for applications that require large
volumes of generated data.

4.2. Model Performance on Benchmark Datasets

We directly compare our proposed algorithmic improve-
ments from Section 3.4 to the original ForestDiffusion and
ForestFlow on 27 datasets (Muzellec et al., 2020), across 8
metrics, which we averaged over 5 generated datasets for
each of 3 seeds. The metrics convey the quality of gener-
ated samples along four dimensions: distributional distance
(Wasserstein-1 distance to the training or test set), diver-
sity (Coverage (Naeem et al., 2020) of the training or test
set), usefulness for training discriminative models (R2

gen and
F1gen), and usefulness for statistical inference (Pbias and
covrate). For comparison, 6 baseline generative models are

shown ranging from statistical methods to tabular diffusion
models. The 27 datasets, 8 evaluation metrics, and 6 base-
line methods are repeated from (Jolicoeur-Martineau et al.,
2024), and described fully in Appendix D along with our
hyperparameter settings and experimental details.

Table 2 shows the average rank that each method obtained
on each metric,3 where the average and standard error are
computed over the 27 datasets, similar to prior tabular gen-
eration papers (Gorishniy et al., 2021; 2023). While the
original implementation of ForestFlow already outperforms
advanced methods like TabDDPM (Kotelnikov et al., 2023)
on several metrics, our performance improvements to the
single-output (SO) case further establish it as a state-of-the-
art tabular generative model. Multi-output (MO) trees are
also competitive with TabDDPM, slightly outperforming it
on average. While potentially more expressive in terms of
generating correlations between features, multi-output trees
have been shown to need thousands of boosting rounds to
surpass single-output trees on discriminative tasks (Zhang
& Jung, 2021). Here we use the same number of trees per
ensemble ntree to make the training times comparable (Fig-
ure 3), but also implying that the multi-output versions use
roughly p times fewer parameters. Raw metric values are
plotted in Appendix D.5.

4.3. CaloForest - Flow-based XGBoost Models for
Calorimeter Data

As a scaled-up example, we model the Photons and Pions
datasets (Table 1) from the Fast Calorimeter Simulation
Challenge (Faucci Giannelli et al., 2022). Each dataset
comes with training and test splits of size≈ 121, 000, where
each datapoint represents the energies deposited in voxels
of a calorimeter by an incident particle.

Competitive NN-based approaches perform extensive pre-
processing to the data to facilitate training (Krause & Shih,

3We also include “Avg.”, the column-wise average and standard
deviation to summarize the table.
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Table 3: Model performance on calorimeter data. Lower is better.

Photons AUC Edep/Einc Edep,L0 CEη,L1 CEϕ,L1 Widthη,L1 Widthϕ,L1

CaloMan (Cresswell et al., 2022) 0.9998 0.0020 0.0001 0.0462 0.0394 0.0366 0.0865
CaloForest (Ours) 0.8392 0.0778 0.0033 0.0056 0.0029 0.0241 0.0228

Pions AUC Edep/Einc Edep,L0 CEη,L1 CEϕ,L1 Widthη,L1 Widthϕ,L1

CaloMan (Cresswell et al., 2022) 0.9986 0.0404 0.0002 0.0477 0.0282 0.2380 0.2183
CaloForest (Ours) 0.9119 0.0625 0.0384 0.0268 0.0266 0.1935 0.1978

Figure 5: Histograms of high-level features comparing gen-
erated Photons samples to the test set. Note the log scale of
the y-axis for all but the first plot.

2021b; Mikuni & Nachman, 2022; Cresswell et al., 2022).
Since XGBoost is robust to features on different scales and
with different distributions we need only perform min-max
scaling on each class. We used our single-output variant of
ForestFlow as it gave the best performance in Table 2. Based
on the hyperparameter importance discussion in Appendix
C.3, we discretized time into nt = 100 steps, and duplicated
each datapoint K = 20 times. Each XGBoost ensemble
had ntree = 20 trees of maximum depth 7, a learning rate of
1.5, and all other XGBoost hyperparameters left as defaults.
We trained up to 20 XGBoost ensembles in parallel, each
with 2 CPUs (see discussion in Appendix B), on a single
desktop workstation with 250 GiB RAM and 40 CPUs (Intel
Xeon Silver 4114T). In total, for the Photons model 552,000
XGBoost ensembles were trained in 135 hours with a peak
memory burden of 54 GiB, while the Pions model used
799,500 ensembles, completed in 281 hours, and required
78 GiB of memory. Generation of n datapoints (matching
the number in the training and test sets) took 231 s for
Photons (1.91 ms per datapoint), and 347 s for Pions (2.87
ms per datapoint), which can be compared to 40 ms per
datapoint for diffusion-based NNs on a GPU (Mikuni &
Nachman, 2022), or anywhere from 100 ms to 3 s for the
widely used Geant4 simulator (Aad et al., 2021).

The Challenge uses three types of metrics to evaluate mod-
els: resource usage, especially generation time as discussed
above; distributional closeness to the test set judged by the

χ2 separation power between histograms in features crafted
by domain experts; and ROCAUC of a binary classifier
trained on a mix of real and generated data. We describe
these metrics in full detail in Appendix A.1. The latter two
types of metric are shown in Table 3 as compared to a NN-
based approach. We see that ForestFlow produces more
“realistic” datapoints in that they are harder for a classifier to
distinguish from the test set. Feature histograms are shown
in Figure 5 which confirms an accurate representation of the
true distribution. Complete results for all metrics are given
in Appendix A.2).

5. Conclusions and Limitations
In this work we have pushed the boundaries of tabular data
generation backed not by neural networks, but by XGBoost.
As discussed, XGBoost offers several tantalizing advan-
tages over NNs for generative modelling: XGBoost’s better
performance on discriminative tabular tasks may translate
to better tabular generation; it is robust without data pre-
processing; it natively handles missing values; it can be
efficiently trained on CPU; and finally it offers improved
explainability. However, the great differences in the mechan-
ics of XGBoost training compared to NNs led Jolicoeur-
Martineau et al. (2024) to propose overparameterized mod-
els that do achieve state-of-the-art performance, but poten-
tially at the cost of practicality and scalability.

Our contributions re-engineered the inner workings of these
models leading to peak memory burdens reduced by more
than two orders of magnitude, allowing them to scale to
datasets 370× bigger than previously tested. We also of-
fered modifications and new techniques that pushed model
performance even further. Finally, we proposed the use
of multi-output trees which are more suited to the high-
dimensional outputs required in generative modelling, and
showed that generation time can be reduced by an additional
order of magnitude for applications that require large vol-
umes of generated data. Still it is clear that the methods we
discuss have limitations. Models trained with ForestDiffu-
sion and ForestFlow are highly overparameterized (Section
4.3), still require significant computational resources (Figure
3), and our proposal to use multi-output trees for fast gener-
ation comes at the cost of somewhat reduced performance
(Table 2).
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Figure 6: Individual showers shown as energy deposited per voxel for the Photons test dataset (left), and generated by
CaloForest (right). Note the nested cylindrical geometry of voxels which is inconsistent across layers, meaning the data
must be treated as tabular, rather than as images.

A. Fast Calorimeter Simulation
Particle accelerator experiments in high energy physics utilise several components in their detectors to measure properties of
particles created in collisions. Calorimeters are one component that measure the energy of particles. Upon entering the
calorimeter, the incident particle begins interacting with the material of the calorimeter and progressively deposits its energy.
The interactions form a branching tree-like structure called a shower. Energy deposits are measured in an array of voxels
allowing the 3d reconstruction of shower shape. Since nature is inherently probabilistic, a given incident particle with fixed
energy gives rise to a probability distribution of possible showers.

Physicists desire to sample from these distributions as one component of detector simulation. By simulating detector re-
sponses using known theory, physicists can define their prior for what is expected to be measured when the actual experiment
is run. Measured deviations from the prior expectation may indicate new physics, leading to a deeper understanding of
nature.

However, sampling calorimeter showers using precise simulation of physical processes from first-principles is incredibly
slow. Currently, simulations at the largest particle accelerator, the Large Hadron Collider (LHC), are done with Geant4
(Agostinelli et al., 2003; Allison et al., 2006; 2016), which is CPU-based and can take upwards of ten minutes per shower.
Since billions of simulations are needed to provide accurate background statistics, the computational burden of exact
simulation is immense.

Generative modelling heralds a solution by directly generating showers using surrogate models instead of simulating them
from first-principles. The first method in this line of research used GANs (Paganini et al., 2018), eventually leading to actual
deployment of GAN-based generators in the experimental pipeline of the LHC (Aad et al., 2021). Following work explored
other deep generative techniques like normalizing flows (Krause & Shih, 2021a;b).

The initial success of these methods at reducing simulation time, while accurately representing the distribution of showers,
led to the public release of large-scale training datasets and a call to the community to explore new methods in the Fast
Calorimeter Simulation Challenge (Faucci Giannelli et al., 2022). The four datasets represent different types of particles
incident on the calorimeter. The datasets represent the calorimeters with a cylindrical pattern of voxels, and each datapoint’s
features represent the energy deposited in one voxel. This allows the visualization of individual showers (Figure 6), as well
as averages across the dataset (Figure 7).

Early submissions to the Challenge branched out to test score-based methods (Mikuni & Nachman, 2022) and models that
learned the low-dimensional structure of showers (Cresswell et al., 2022). Overall, submissions can be classified by the
generative modelling paradigm they build off of, with GANs (Faucci Giannelli & Zhang, 2023; Käch & Melzer-Pellmann,
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Figure 7: Average deposited energy per voxel for Photons (left) and Pions (right) on the test dataset (top), and samples
generated conditionally using the test set class distribution (bottom).

2023; Scham et al., 2023), normalizing flows (Diefenbacher et al., 2023; Buckley et al., 2023; Ernst et al., 2023; Schnake
et al., 2024), diffusion models (Amram & Pedro, 2023; Buhmann et al., 2023; Kobylianskii et al., 2024), and conditional
flow matching (Favaro et al., 2024) being popular choices.

Notably, every prior submission to the Fast Calorimeter Simulation Challenge uses deep neural networks as function
approximators. This is despite the need for GPU resources to train and generate with NNs, whereas existing scientific
computing infrastructure for shower simulation is largely CPU-based. Our method, CaloForest, provides an alternative, as it
is the only attempt to use tree-based approximators for the Challenge’s large-scale tabular datasets.

A.1. Evaluation Metrics

Since the generated showers are meant to be used in actual scientific experiments, custom evaluation metrics have been
defined for the Challenge using domain knowledge.

First, computational resources are important (hence “Fast” in the Challenge’s title). Training should be accomplished with
as little time and memory as possible, but the most important resource metric is shower generation time, as billions of
generated showers will be needed in practice. Hence, we track the training time, generation time, and peak memory usage
during training. These results are given in Section 4.3.

Second, generated showers must accurately represent the actual distribution of showers predicted by theory. Calculating this
distribution in closed form from theory is not feasible, so instead the ground truth is taken from theory-based simulations
using Geant4. A test dataset of showers generated in the same way as the training data is provided with each of the
Challenge’s datasets. Using domain knowledge, physicists defined high-level features from voxel-level information. The
one-dimensional distributions of each feature can be compared between the test set and a generated set using the χ2

separation power between histograms which is defined as

χ2(h1, h2) =
1

2

∑
i

(h1,i − h2,1)
2

h1,i + h2,i
, (7)

where hj,i is the fraction of all datapoints falling into bin i of histogram j, such that
∑

i hj,i = 1. The metric is normalized
such that χ2(h1, h2) = 0 if and only if the histograms are the same, h1 = h2, whereas when the histograms have no overlap
χ2(h1, h2) = 1. The high-level features denote the ratio of deposited energy to incident energy, the total deposited energy
in each layer of the calorimeter, the center of energy in angular directions η and ϕ per layer, and the width of the center of
energy in angular directions per layer. Example χ2 metrics are given in Table 3 with example histogram plots in Figures 5
and 8, while the complete lists of metrics are shown below in Tables 4 and 5.

Third, a binary classifier is trained to distinguish generated showers from the test set using the architecture and training
details provided by the Challenge (Faucci Giannelli et al., 2022). The ROCAUC of the classifier on a balanced, held-out set
of samples should be as low as possible, indicating that generated samples are indistinguishable from test datapoints. We
present the ROCAUC metrics in Table 3.
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Table 4: Photons dataset histogram χ2 separation powers in domain expert features. L denotes layer. CE is the center of
energy. Lower is better.

FEATURE CaloMan CaloForest

Edep/Einc 0.0020 0.0778
Edep, L0 0.00005 0.0033
Edep, L1 0.00008 0.0036
Edep, L2 0.00002 0.0031
Edep, L3 0.00001 0.0018
Edep, L12 0.00002 0.0037
CE in η, L1 0.0462 0.0056
CE in η, L2 0.0419 0.0014
CE in ϕ, L1 0.0394 0.0029
CE in ϕ, L2 0.0367 0.0017
Width in CE in η, L1 0.0366 0.0241
Width in CE in η, L2 0.0696 0.0108
Width in CE in ϕ, L1 0.0865 0.0228
Width in CE in ϕ, L2 0.0649 0.0097

Figure 8: Histograms of high-level features comparing generated Pions samples to the test set. Note the log scale of the
y-axis for all but the first plot.

A.2. Extended Results

Here we present complete information on the histogram evaluation metrics for the Challenge that are obtained with our
method CaloForest. Tables 4 and 5 show the χ2 separation powers for histograms of the generated and test set samples.
Compared to a NN-based approach designed for the challenge called CaloMan (Cresswell et al., 2022), CaloForest better
captures the distribution of Centers of Energy and their Widths. CaloMan was designed with a separate module to predict
the deposited energy in each layer, and thus has better performance in those metrics.

We also add feature histogram plots for the Pions dataset in Figure 8 to complement the Photons results shown in the main
text (Figure 5).

As mentioned above, average per-voxel energy deposits are shown for the models trained on both datasets in Figure 7 where
it is clear that these distributions are learned almost perfectly.

B. Re-engineering the ForestDiffusion and ForestFlow Implementation
In this appendix we continue our analysis of the original implementation of ForestDiffusion and ForestFlow training
(Algorithm 1) provided by (Jolicoeur-Martineau et al., 2024), and present a summary of our improvements as a unified
implementation. We further consider how to optimize data generation.

First, we comment on the pros and cons of parallelization. Most of the memory issues experienced when using ForestDiffu-
sion and ForestFlow are a result of training many XGBoost ensembles in parallel. Parallelization using multiprocessing
requires copying data arrays to worker processes, so one may ask about alternatives. Apart from multiprocessing, parallelism
in Python can also be achieved through multithreading. This avoids spawning new processes with their own memory spaces
and can allow threads to share memory in the main process, however, due to the Python global interpreter lock (GIL),
multithreading can only be done on tasks that release the GIL while running. In fact, calls to XGBoost training do release
the GIL, as XGBoost runs native C++ code, so multithreading is a potential solution for ForestDiffusion and ForestFlow.
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Table 5: Pions dataset histogram χ2 separation powers in domain expert features. L denotes layer. CE is the center of energy.
Lower is better.

FEATURE CaloMan CaloForest

Edep/Einc 0.0404 0.0625
Edep, L0 0.0002 0.0384
Edep, L1 0.0347 0.1440
Edep, L2 0.0052 0.0532
Edep, L3 0.0001 0.0178
Edep, L12 0.0008 0.0046
Edep, L13 0.0001 0.0102
Edep, L14 0.0002 0.0085
CE in η, L1 0.0477 0.0268
CE in η, L2 0.0808 0.0168
CE in η, L12 0.0477 0.0641
CE in η, L13 0.0808 0.1377
CE in ϕ, L1 0.0282 0.0266
CE in ϕ, L2 0.0240 0.0155
CE in ϕ, L12 0.0282 0.0573
CE in ϕ, L13 0.0240 0.1203
Width in CE in η, L1 0.2380 0.1935
Width in CE in η, L2 0.2074 0.1121
Width in CE in η, L12 0.2380 0.1758
Width in CE in η, L13 0.2074 0.2384
Width in CE in ϕ, L1 0.2183 0.1978
Width in CE in ϕ, L2 0.2067 0.1141
Width in CE in ϕ, L12 0.2183 0.1788
Width in CE in ϕ, L13 0.2067 0.2399

However, in our preliminary tests we found that multithreading was more prone to memory not being properly released,
causing increased usage over training. We were not able to find a definitive reason for this but we suspect that the Python
garbage collector in a multithreaded process does not effectively free up used memory. On the other hand, we observed that
multiprocessing is very effective for releasing all used memory when the corresponding job is completed.

Figure 9: XGBoost is not efficient with multiple CPUs,
especially for small datasets. Running single-CPU jobs
in parallel is the most time-efficient method as long as
adequate memory is available.

Alternatively, one may wonder why creating parallel jobs is nec-
essary at all when a single XGBoost training job can make use
of multiple CPUs. However, XGBoost is not perfectly efficient
in its use of additional CPUs, especially on small datasets like
those from Table 6; training time is reduced by less than 50%
when two CPUs are used instead of one, and this efficiency be-
comes even worse as more CPUs are provided. Hence, there is
a tradeoff between speed and memory when training many XG-
Boost ensembles in parallel: assigning all CPUs to a single job
uses the least memory but can be slow, whereas assigning one
CPU to N training jobs is much faster, while using roughly N
times as much memory. Figure 9 demonstrates this by training
our implementation of ForestFlow on a dataset with n = 1000,
p = 10, and ny = 10 for various assignments of CPUs per job
(cf. Figures 3 and 4). On our machine with 40 CPUs, we set the
number of CPUs assigned to each job to the values {1, 2, 4, 10,
20, 40} (and correspondingly set the number of parallel jobs to {40, 20, 10, 4, 2, 1}). Generally, the number of parallel
jobs times the number of CPUs assigned per job should not exceed the number of CPUs available in total, otherwise thread
contention can degrade performance. When memory is a limitation, Figure 9 shows that assigning a few CPUs per job and
reducing the number of jobs can greatly decrease peak memory requirements at a marginal increase in training time. Hence,
we used two CPUs per job when training on large-scale calorimeter data.

For the sake of our resource benchmarking across methods, we always use multiprocessing, and assign one CPU per worker,
with the number of workers equal to the available CPUs.
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B.1. Continued Analysis and Improvement of the Implementation

In Section 3.3 we began our analysis with the most impactful issues and solutions. We recommended to avoid creating large
arrays in memory and instead create slices on-the-fly as needed within parallel loops (Issue 1). We found that improper use
of multiprocessing could lead to excessive duplication of arrays in shared memory that could not be freed by the system, and
explained how to properly share an array across processes (Issue 2). Finally, we recommended to write XGBoost models
to disk as their training completed to prevent them piling up in active memory (Issue 3). These three issues and solutions
accounted for the vast majority of memory improvements we observed and explained the three problematic behaviours
pointed out in Section 3.1. Nevertheless, we pick up where we left off and present several additional improvements that
further optimize memory usage and runtime while adhering to engineering best-practices.

Issue 4: Since worker processes access data saved to shared memory, the main process does not need to occupy memory by
holding on to its copy of X0, X1, and Z tr. These costly array objects are merely used as keys for Joblib to identify the
arrays in shared memory.
Solution 4: Explicitly save the arrays in shared memory as memory-mapped files, delete them from the main process, and
retain only a reference which can be passed to worker processes.
Benefit 4: The X0, X1, and Z tr objects can be freed from the main process, amounting to 144 GiB for the Pions dataset.
Technically, we save memory-mapped files on a disk instead of a RAM disk. While a RAM disk occupies RAM space,
saving to an actual disk does not, which leaves more available memory during training. Nonetheless, this does not cause
slow downs from disk I/O. When a file is saved to a disk, it is first saved to cache memory (part of RAM). When the file is
accessed again (potentially by a different process), if it is already in cache, the file in cache is reused. Unlike in-use RAM
disk memory, this kind of cache memory can be freed upon memory pressure as it merely serves as cache for a disk.

Issue 4: Improvement
1 import tempfile, os
2 from joblib import dump, load
3 # Create memmap files
4 temp_folder = tempfile.mkdtemp()
5 def create_memmap(array, file_name):
6 file = os.path.join(temp_folder, file_name)
7 dump(array, file)
8 return load(file, mmap_mode='r')
9 X0_mmap = create_memmap(X0, "X0.mmap")

10 X1_mmap = create_memmap(X1, "X1.mmap")
11 Z_mmap = create_memmap(Z_tr, "Z.mmap")
12 # Free memory of X0, X1, Z_tr
13 del X0, X1, Z_tr

Issue 5: Using n y Boolean masks across the duplicated dataset to index each class’s data requires n*K*n y bytes, since
the numpy.bool datatype uses one byte, not one bit. Moreover, indexing a Numpy array in this way creates a copy of
underlying data.
Solution 5: First sort the data by class, then use Python’s slice(start, end) function with the beginning and end
indices of each class.
Benefit 5: On the Pions dataset these Boolean masks would occupy 173 MiB of space. Our solution only requires 2*n y
integers, and creates a view that does not copy underlying data. However, our solution does involve sorting, although the
time involved is minuscule compared to the training time for hundreds of thousands of XGBoost ensembles.

Issue 5: Original
1 # Create Boolean masks for class conditioning
2 mask = {} # Boolean mask for which rows of X0 have label y_i
3 y_uniq = np.unique(y)
4 for y_i in y_uniq:
5 mask[y_i] = np.tile(y == y_i, K)

Issue 5: Improvement
1 # Sort by label and slice for class conditioning
2 y_arg_sort = np.argsort(y)
3 y, X0 = y[y_arg_sort], X0[y_arg_sort]
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4 y_uniq, y_counts = np.unique(y, return_counts=True)
5 mask = {} # Slice of X0's rows that have label y_i
6 csum = 0
7 for y_i, count in zip(y_uniq, y_counts):
8 mask[y_i] = slice(csum, csum + count)
9 csum += count

10 y_slice = {} # adjust slices for duplicated data
11 for y_i, sl in mask.items():
12 y_slice[y_i] = slice(sl.start*K, sl.stop*K)

Issue 6: In XGBoost training, input data is converted to a DMatrix, XGBoost’s native data structure, and is reformatted
and cached for faster access. For example, features are converted to histograms when using hist training, as we do. The
histogram computations are redundant across jobs since the same X tr i is used for all p i.
Solution 6: Ever since XGBoost version 1.6, multiple regressors trained with the same features but different targets can
be encapsulated in a single Booster object. When the multi-dimensional target is passed to XGBoost’s fit(X,Z)
function, XGBoost internally trains each target sequentially while using the same DMatrix, avoiding redundant histogram
computations over p i.
Benefit 6: This reduces DMatrix constructions and reduces histogram computations by a factor of p. Additionally, all
ensembles over p for a given n t and n y are contained in the same Booster object, which, in turn, reduces the number
of model files and metadata to be stored, and reduces file I/O overhead.

Issue 6: Original
1 # One Booster for each column p_i
2 Z_tr_i = Z_tr[mask[y_i], p_i]
3 model.fit(X_tr_i, Z_tr_i)

Issue 6: Improvement
1 # Single Booster for all columns p_i
2 Z_tr_i = Z_tr[mask[y_i], :]
3 model.fit(X_tr_i, Z_tr_i)

Issue 7: XGBoost internally uses fp32 regardless of the input data type. However, numpy.float64 is implicitly used
in the original implementation.
Solution 7: Use fp32 throughout the whole pipeline.
Benefit 7: Using lower precision throughout reduces memory usage without losing model accuracy and avoids implicit data
type conversions.

Issue 7: Original
1 X0 = inp()
2 # loaded as numpy.float64
3 X1 = np.random.normal(size=X0.shape)
4 # default dtype is numpy.float64

Issue 7: Improvement
1 X0 = inp()
2 X0 = X0.astype(np.float32)
3 X1 = np.random.normal(size=X0.shape)
4 X1 = X1.astype(X0.dtype)
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To summarize, our implementation making use of all our recommended changes is given below.

Our Implementation of ForestFlow Training with Single-Output Trees
1 from sklearn.preprocessing import MinMaxScaler as Scaler
2 import numpy as np, xgboost as xgb, tempfile, os
3 from joblib import delayed, Parallel, dump, load
4

5 X0, y, K, n_t, xgb_kw, n_jobs = inp()
6 n, p = X0.shape
7 X0 = X0.astype(np.float32) # use XGBoost's native dtype
8 # Sort by label and slice for class conditioning
9 y_arg_sort = np.argsort(y)

10 y, X0 = y[y_arg_sort], X0[y_arg_sort]
11 y_uniq, y_counts = np.unique(y, return_counts=True)
12 mask = {} # Slice of X0's rows that have label y_i
13 csum = 0
14 for y_i, count in zip(y_uniq, y_counts):
15 mask[y_i] = slice(csum, csum + count)
16 csum += count
17 # Scale each class's data so that range matches noise variance
18 scalers = []
19 for y_i in y_uniq:
20 scalers.append(Scaler(feature_range=(-1, 1))
21 X0[mask[y_i], :] = scalers[-1].fit_transform(X0[mask[y_i], :])
22 # Duplicate data and generate noise
23 X0 = np.repeat(X0, K, axis=0)
24 X1 = np.random.normal(size=X0.shape).astype(X0.dtype)
25 y_slice = {} # adjust slices
26 for y_i, sl in mask.items():
27 y_slice[y_i] = slice(sl.start*K, sl.stop*K)
28 # Create regression targets (ForestFlow)
29 Z_tr = X1 - X0 # regression target is constant in t, but input is not
30 t = np.linspace(0, 1, num=n_t)
31 # Create memmap files
32 temp_folder = tempfile.mkdtemp()
33 def create_memmap(array, file_name):
34 file = os.path.join(temp_folder, file_name)
35 dump(array, file)
36 return load(file, mmap_mode='r')
37 X0_mmap = create_memmap(X0, "X0.mmap")
38 X1_mmap = create_memmap(X1, "X1.mmap")
39 Z_mmap = create_memmap(Z_tr, "Z.mmap")
40 del X0, X1, Z_tr
41 # Train models in triple loop over timesteps, classes, and features
42 def train_parallel(X0_mmap, X1_mmap, Z_mmap, t_i, y_i):
43 X_tr_i = t_i*X1_mmap[y_i, :] + (1-t_i)*X0_mmap[y_i, :]
44 Z_tr_i = Z_mmap[y_i, :]
45 model = xgb.XGBRegressor(**xgb_kw)
46 model.fit(X_tr_i, Z_tr_i) # single Booster for all columns p_i
47 model.save_model(f"{model_path}.ubj") # path for t_i, y_i
48 Parallel(n_jobs)(
49 delayed(train_parallel)(
50 X0_mmap, X1_mmap, Z_mmap, t_i, y_i,
51 ) for t_i in t for y_i in y_slice
52 )
53 shutil.rmtree(temp_folder) # clean up memmaps

For a direct comparison, we show in Figure 2 the memory usage during training using the original implementation as well
as ours on the same dataset with n = 1000, p = 100, and ny = 10. Our implementation does not suffer from the three
undesirble behaviours noted in Section 3.1.
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B.2. Analysis and Improvement of Data Generation

To this point we have focused on improving the implementation of ForestFlow training. For many applications generation
speed is also a critical requirement, including hosted generative model services and our running example of calorimeter
simulation for experimental particle physics. In this section we turn our attention to improving the implementation of
data generation with a trained ForestFlow model, starting with a summary of the existing implementation from (Jolicoeur-
Martineau et al., 2024).

First, for conditional sampling, labels are created using a multinomial distribution with probabilities equal to the relative
prevalence of labels in the training set. Boolean masks are created to indicate the conditioning. Gaussian noise X1 is
sampled to seed the generation, and Euler’s method over uniformly discretized timesteps is used to solve the ODE using the
trained models as the vector field. In particular, a triple for loop is used over timesteps, classes, and features in that order.

Original Python Implementation of ForestFlow Generation
1 import numpy as np
2

3 y, n_t, n, p, regressors = inputs()
4 # Sample labels for conditioning using frequencies from the training dataset
5 y_uniq, y_counts = np.unique(y, return_counts=True)
6 y_probs = y_counts / np.sum(y_counts)
7 y_sample = np.argmax(np.random.multinomial(1, y_probs, size=n), axis=1)
8 # Create Boolean masks for class-conditioning
9 label_y = y_uniq[y_sample]

10 mask = {}
11 for y_i in y_uniq:
12 mask[y_i] = (label_y == y_i)
13 # Solve ODE with Euler's method starting from noise
14 X1 = np.random.normal(size=(n, p))
15 h = 1 / (n_t-1) # size of timestep
16 for t_i in range(1, 0, h):
17 out = np.zeros(shape=X1.shape)
18 for y_idx, y_i in enumerate(y_uniq):
19 for p_i in range(p):
20 model = regressors[t_i][y_idx][p_i]
21 out[mask[y_i], p_i] = model.predict(X1[mask[y_i], :])
22 X1 = X1 - h * out
23 X0 = X1

Once again, we proceed by pointing out issues, offering solutions, and quantifying the benefits.

Issue 8: XGBoost’s core engine is implemented in C++, and there is hidden overhead when the Python wrapper makes a
call to its C-API.
Solution 8: Reduce the number of calls to the C-API by reducing the number of distinct Booster objects. In our training
implementation, all ensembles trained over p for a given n t and n y are contained in the same Booster object (See Issue
6 in Appendix B.1). Inference on this Booster object produces an output shape with [n i, p] containing all features.
Benefit 8: A factor of p fewer calls to the XGBoost C-API are made, and we eliminate Python’s slow for loop
over p. Additionally, cache locality is utilized more aggressively by XGBoost’s C++ inference implementation.

Issue 1: Original
1 for p_i in range(p):
2 model = regressors[t_i][y_idx][p_i]
3 out[mask[y_i], p_i] =
4 model.predict(X1[mask[y_i], :])

Issue 1: Improvement
1 model = regressors[t_i][y_idx]
2 out[mask[y_i], :] =
3 model.predict(X1[mask[y_i], :])

Issue 9: Slow Numpy indexing operations are used in the triple loop.
Solution 9: Conditional generation of datapoints with different y labels uses disjoint sets of ensembles. It is not necessary
to combine all partially generated datapoints into a single array after every timestep. Instead, concatenate all rows only at
the end.
Benefit 9: This eliminates writing intermediate results to non-contiguous memory out[mask[y i]]. It also al-
lows iterating over y i in the outer loop which reduces Numpy indexing that creates a copy of the underlying
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data. Data copying is then avoided by replacing the Boolean mask with slice as in Issue 5 from Appendix B.1.

Issue 2: Original
1 for t_i in range(1, 0, h):
2 out = np.zeros(shape=X1.shape)
3 for y_idx, y_i in enumerate(y_uniq):
4 for p_i in range(p):
5 model=regressors[t_i][y_idx][p_i]

6 out[mask[y_i],p_i] =
model.predict(X1[mask[y_i],:])↪→

7 X1 = X1 - h * out
8 X0 = X1

Issue 2: Improvement
1 results = []
2 for y_idx, y_i in enumerate(y_uniq):
3 X1_i = X1[mask[y_i], :]
4 for t_i in range(1, 0, h):
5 model = regressors[t_i][y_idx]

6 X1_i = X1_i - h*model.predict(X1_i)
7 results.append(X1_i)
8 X0 = np.concatenate(results, axis=0)

To summarize, our implementation for ForestFlow generation making use of our recommended changes is given below.
Our Implementation of ForestFlow Generation with Single-Output Trees

1 import numpy as np
2

3 y, n_t, n, p, regressors = inp()
4 # Sample labels for conditioning using frequencies from the training dataset
5 y_uniq, y_counts = np.unique(y, return_counts=True)
6 y_probs = y_counts / np.sum(y_counts)
7 y_sample = np.argmax(np.random.multinomial(1, y_probs, size=n), axis=1)
8 label_y = y_uniq[y_sample]
9 # Sort by label and slice each class

10 label_y.sort()
11 y_uniq, y_counts = np.unique(label_y, return_counts=True)
12 mask = {}
13 csum = 0
14 for y_i, count in zip(y_uniq, y_counts):
15 mask[y_i] = slice(csum, csum + count)
16 csum += count
17 # Solve ODE with Euler's method starting from noise
18 X1 = np.random.normal(size=(n, p)).astype(np.float32)
19 h = 1 / (n_t-1) # size of timestep
20 results = []
21 for y_idx, y_i in enumerate(y_uniq):
22 X1_i = X1[mask[y_i], :]
23 for t_i in range(1, 0, h):
24 model = regressors[t_i][y_idx]
25 X1_i = X1_i - h * model.predict(X1_i)
26 results.append(X1_i)
27 X0 = np.concatenate(results, axis=0)

C. Performance Improvements
In this Appendix, we further details methods to improve the generative quality or resource utilization of ForestDiffusion and
ForestFlow (Jolicoeur-Martineau et al., 2024) that go beyond implementation changes. This discussion extends Section 3.4
from the main text.

C.1. Class-conditional Scalers

One advantage of XGBoost as a function approximator is its robustness to data with varying scales and distributions. This
stands in stark contrast to deep NNs which require data to be carefully pre-processed for best results. While XGBoost
itself is agnostic, ForestDiffusion and ForestFlow do require input data to be on the same scale as the added noise in Eq. 2
and 5. Jolicoeur-Martineau et al. (2024) achieve this by applying min-max scaling over the entire input dataset. However,
when using the class-conditional variant, models are trained on disjoint sets of data belonging to each class. If the classes
have distinct distributions, which is often the case, then the data subsets actually provided to the training algorithm may
not be properly scaled. To rectify this, we propose class-conditional min-max scaling. This is especially beneficial on the
calorimeter datasets as the classes represent particle energies increasing on an exponential scale. Class-conditional scaling
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centers the data better making it more easily distinguishable as noise is added, ultimately benefiting the model performance.

C.2. Sampling with the Training Set Label Distribution

For class-conditional sampling, Jolicoeur-Martineau et al. (2024) used the relative prevalence of classes in the training set to
define a multinomial distribution and sampled from it to create class labels for conditioning. We found it advantageous to
directly use the empirical distribution of class labels from the training set for conditioning, especially on the distributional
Wasserstein metrics. For the small datasets used in benchmarking (Table 6), multinomial sampling may lead to a skewed
distribution by chance; the law of large numbers may not kick in at these sizes. This type of sampling with training set labels
is also mandated in the Fast Calorimeter Simulation Challenge (Faucci Giannelli et al., 2022).

C.3. Hyperparameters

The importance of various hyperparameters can change as datasets are scaled up. On small benchmark datasets, Jolicoeur-
Martineau et al. (2024) recommend setting the duplication factor K as large as possible (100 in practice) to achieve better
coverage of the expectations in Eq. 1 and 6. Larger datasets, on the other hand, are more prone to having duplicates, or
datapoints that convey similar information. These will naturally lead to different training examples once noise is added.
For this reason, we found that K need not be so large when the dataset itself has large n, and set K = 20 in calorimeter
experiments. This also serves to reduce the peak memory burden and computation time.

On the other hand increasing nt directly benefits model performance as it reduces approximation errors when sampling. Still,
larger nt translates to proportionally increased training time, model size, and generation time. In balancing this tradeoff we
increased nt from 50 (Jolicoeur-Martineau et al., 2024) to 100 in calorimeter experiments.

Finally, Jolicoeur-Martineau et al. (2024) noted that their models appeared to be underfitting, even though they are massively
overparameterized, and hence avoided regularization. We also observed underfitting, but mitigated it by greatly increasing
the learning rate from the default 0.3 to 1.5. On the other hand, Jolicoeur-Martineau et al. (2024) use the default number
of trees which is ntree = 100, and due to the lack of regularization, most trees reach their full depth leading to enormous
overparameterization with questionable benefit. We found that ntree = 20 still led to sufficiently expressive models but
greatly reduces the training time, and number of parameters for calorimeter datasets.

For benchmarking resource usage and performance in Sections 4.1 and 4.2, we still used the default values from Jolicoeur-
Martineau et al. (2024) for a fair and direct comparison.

C.4. Multi-output Trees

One obvious downside of using XGBoost regressors is that they output a scalar, whereas for generative modelling we need
to output a vector x. In practice x is often high dimensional, and its dimension p enters multiplicatively into the number of
ensembles needed (nt · ny · p) for ForestDiffusion and ForestFlow.

Our most significant proposal is to replace single-output trees with multi-output trees, also referred to as vector-leaf trees
(Zhang & Jung, 2021; Ying et al., 2022; März, 2022; Iosipoi & Vakhrushev, 2022; Schmid et al., 2023). Simply put,
each leaf node in the tree outputs a vector, and the training algorithm is modified to fit all output variables at once by
maximizing the sum of losses over individual outputs. Not only does this reduce the number of ensembles we require
by a factor of p, but it has the potential to increase model performance by better capturing correlations between output
variables during generation. Consider how a set of p single-output trees generates a vector output. From identical inputs,
each tree independently identifies the appropriate leaf node and outputs a scalar – there is no dependence between elements
during generation. This is clearly not desirable for generative models, where for example images have strong correlations
between nearby pixels. Multi-output trees can better represent correlations during generation since generated elements do
not come from independent trees. However, our experiments have not shown that multi-output trees improve the generative
quality of ForestDiffusion and ForestFlow compared to single-output trees at this time. While potentially more expressive,
multi-output trees have been shown to need thousands of boosting rounds to surpass their single-output counterparts on
discriminative tasks (Zhang & Jung, 2021). Due to our use of the same ntree and maximum depth hyperparameters, our
single-output models essentially use p times more parameters which may be the source of their better performance.

Since version 2.0.0, XGBoost has implemented multi-output trees. During our testing we identified a bug in the gain
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computation in the official XGBoost codebase and reported it to the maintainers who implemented our proposed fix.4 Hence,
only XGBoost version 2.1.0 or later should be used for multi-output trees. Still, this version’s implementation is not yet
optimized for time and memory performance, so our measurements in Section 4.1 should be considered preliminary.

D. Experimental Details
In this Appendix we lay out the details of the experiments conducted in Section 4.

D.1. Datasets

For the resource scaling experiments in Section 4.1 we used synthetic data that was randomly generated. The input data X
of size [n, p] was simply drawn from a identity covariance Gaussian, while the class label y was randomly drawn from the
integers [0, ny). While this data is meaningless for model performance, it gives us precise control over the dataset size for
analysing resource usage. Since the correlations between features are random, unregularized XGBoost regressors will use
essentially their entire available capacity in learning which gives us a good upper bound on resource usage. The dataset size
parameters were set at n = 1000, p = 10, and ny = 10 by default, and a single one of these three was modified at a time. We
measured training time and peak memory usage for the values n ∈ {100, 300, 1000, 3000, 10000, 30000, 100000, 300000},
p ∈ {3, 10, 30, 100, 300}, and ny ∈ {1, 3, 10, 30, 100}. For models that trained successfully (i.e. did not fail due to memory
issues), we measure the time to generate five batches of data equal in size to the dataset a given model was trained on.

In Section 4.2 we used 27 datasets from the UCI Machine Learning Repository of tabular datasets (Kelly et al.) and from
scikit-learn (Pedregosa et al., 2011) that have previously been studied (Muzellec et al., 2020; Jolicoeur-Martineau et al.,
2024). These datasets are summarized in Table 6, and showcase a variety of tabular learning tasks with variation in the
number of datapoints n, features p, and classes ny , and target types. In each case, we randomly held-out 20% of the dataset
as a test split and trained generative models on the remaining 80%. Categorical variables are one-hot encoded.

Each of the UCI datasets is covered by a CC BY 4.0 license, while the iris dataset has a BSD 3-Clause License, and
california housing has no license.

D.2. Metrics

For a fair and direct comparison in Section 4.2, we use the same eight performance metrics for generated data as in (Jolicoeur-
Martineau et al., 2024) which measure quality along four different axes: distributional distance, diversity, usefulness for
training discriminative models, and usefulness for statistical inference.

Distributional Distance We measure the Wasserstein-1 distance between the generated data and either the training set
(W1train) or test set (W1test). The Wasserstein distance quantifies similarity in distribution - smaller distance to the test set
is always desirable while distance to the training set should be similar in magnitude to the distance between the training
and test sets, as a much smaller distance here can indicate memorization. Generally W1train values are not less than the
train-test distance, so we treat lower values as better. Computation of Wasserstein distances was done with the Python
Optimal Transport library (Flamary et al., 2021). These metrics are omitted for the larger bean and california datasets as
they scale quadratically in dataset size which is prohibitively expensive (Muzellec et al., 2020; Jolicoeur-Martineau et al.,
2024).

Diversity Coverage (Naeem et al., 2020) measures to what extent the generated data covers a reference dataset, where a
reference datapoint is covered if there is at least one generated datapoint in its neighbourhood. Hence, generated data must
be as diverse as the reference data to achieve high Coverage. Coverage is computed as the ratio of covered points to all
points (Stein et al., 2023)

coverage
(
{xg

i }
n
i=1, {xr

j}mj=1

)
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1

m
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i=1,...,n

1
(
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j ,NNDk(x
r
j))

)
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where xg are the generated datapoints, xr are the reference datapoints, 1(·) denotes the indicator function, B(x, r) denotes a
ball centered at x with radius r, and NNDk(x

r
j) is the nearest-neighbour distance between xr

j and its kth nearest neighbour
in {xr

j}mj=1. We use an L1 ball to compute distances as it is more suited for mixed data types typical of tabular data. k

4See https://github.com/dmlc/xgboost/issues/9960.
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Table 6: Tabular benchmark datasets. Training dataset sizes n are 80% of the total number of datapoints. Continuous and
integer targets y are treated as an additional feature.

Dataset Citation # Datapoints # Features p # Classes ny Target y type

airfoil self noise (Brooks et al., 2014) 1503 6 N/A Continuous
bean (Koklu & Ozkan, 2020) 13611 16 7 Categorical
blood transfusion (Yeh, 2008) 748 4 2 Binary
breast cancer diagnostic (Wolberg et al., 1995) 569 30 2 Binary
california housing (Pace & Barry, 1997) 20640 9 N/A Continuous
car evaluation (Bohanec, 1997) 1728 6 4 Categorical
climate model crashes (Lucas et al., 2013) 540 18 2 Binary
concrete compression (Yeh, 2007) 1030 9 N/A Continuous
concrete slump (Yeh, 2009) 103 8 N/A Continuous
congressional voting (mis, 1987) 435 16 2 Binary
connectionist bench sonar (Sejnowski & Gorman) 208 60 2 Binary
connectionist bench vowel (Deterding et al.) 990 10 2 Binary
ecoli (Nakai, 1996a) 336 7 8 Categorical
glass (German, 1987) 214 9 6 Categorical
ionosphere (Sigillito et al., 1989) 351 33 2 Binary
iris (Fisher, 1988) 150 4 3 Categorical
libras (Dias et al., 2009) 360 90 15 Categorical
parkinsons (Little, 2008) 195 22 2 Binary
planning relax (Bhatt, 2012) 182 12 2 Binary
qsar biodegradation (Mansouri et al., 2013) 1055 41 2 Binary
seeds (Charytanowicz et al., 2012) 210 7 3 Categorical
tic-tac-toe (Aha, 1991) 958 9 2 Binary
wine (Aeberhard & Forina, 1991) 178 13 3 Categorical
wine quality red (Cortez et al., 2009) 1599 11 N/A Integer
wine quality white (Cortez et al., 2009) 4898 12 N/A Integer
yacht hydrodynamics (Gerritsma et al., 2013) 308 7 N/A Continuous
yeast (Nakai, 1996b) 1484 8 10 Categorical
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is chosen automatically as the smallest value such that the training data has at least 95% Coverage of the test data. We
calculate the Coverage using either the training (Covtrain) or test (Covtest) dataset as the reference. Covtrain helps to address
“mode dropping” where some parts of the training dataset are ignored, while Covtest helps measure the ability to generalize
with sufficient diversity. These metrics were computed for all datasets.

Usefulness for Training Discriminative Models Tabular generative models are often motivated as a way to replace or
extend training data for downstream tabular discriminative models (Xu et al., 2019; Kotelnikov et al., 2023). Available
training data may be considered private and not suitable for directly training a discriminative model, whereas synthetic
data derived from a generative model may be more palatable. Alternatively, synthetic data may be used with the hope
that it leads to better performing downstream models. Hence, we measure the usefulness of generative models by training
downstream discriminative models on generated data, and evaluating discriminative performance on the test set. Performance
is measured either by the F1-score for classification tasks (20 datasets), or the R2-coefficient for regression tasks (7 datasets),
where higher is better. Since these metrics are highly dependent on the type of discriminative model used, we average the
performance metrics over four different methods that are commonly used for tabular discriminative modelling: linear/logistic
regression, AdaBoost (Freund & Schapire, 1995), Random Forests (Ho, 1995), and, of course, XGBoost (Chen & Guestrin,
2016).

Usefulness for Statistical Inference Whereas the above metrics take a machine learning point of view in aiming to optimize
the performance of a model, we can also consider a statistical point of view and measure the usefulness of synthetic data for
inferring the importance of features (van Buuren, 2018). By training a linear model on either the training data or generated
data we can compare the regression parameters β. If the generated data accurately represents the training data, the learned
regression coefficients should be similar. If these coefficients are not similar, one might conclude from the generated data
that a given feature is statistically important when the same conclusion would not be reached using the training data. The
percent bias measures this difference and is defined as Pbias = |E β̂−β

β | using the estimated coefficients β̂ on generated data
and actual coefficients β from training data, with the expectation taken over generated data. From another direction, it is
desirable for confidence intervals on the estimated coefficients β̂ to contain the true coefficients β. This is quantified by the
coverage rate covrate, the fraction of β that are contained in the confidence intervals around β̂. These metrics were computed
only for the regression tasks (7 datasets). Lower is better for Pbias, but higher is better for covrate. Coverage rate is not to be
confused with Coverage used above as a diversity metric.

D.3. Baseline Methods

In addition to comparing our approach to the original implementation of ForestDiffusion and ForestFlow in Section 4.2, we
also compare our improved models to 6 popular baseline methods for tabular generative modelling, including state-of-the-art
deep learning methods, as done in (Jolicoeur-Martineau et al., 2024).

GaussianCopula Many deep learning-based generative models learn a mapping between a simple distribution on latent
space and the data distribution (Loaiza-Ganem et al., 2024). Generation is done by sampling from the latent distribution and
mapping the sample to data space. This overarching idea hearkens back to copula methods (Sklar, 1959) which model any
multivariate joint distribution by its univariate marginals along with a copula describing the dependence structure. We use
Gaussian copulas (Joe, 2014) implemented by Synthetic Data Vault (SDV) (Patki et al., 2016) using default hyperparameters.

TVAE Variational autoencoders (VAE) (Kingma & Welling, 2014) learn an encoder and decoder with a low dimensional
latent space through variational inference. As a typical example we use the tabular VAE (TVAE) from (Xu et al., 2019),
again implemented by SDV using default hyperparameters.

CTGAN and CTAB-GAN+ Generative adversarial networks (Goodfellow et al., 2014) train a generator which produces
synthetic datapoints, and a discriminator that tries to classify real and synthetic datapoints. The two networks are trained
simultaneously in an adversarial manner. As a typical example we use the conditional tabular GAN (CTGAN) from (Xu
et al., 2019), also as implemented by SDV. We also employ a more modern tabular GAN called CTAB-GAN+ (Zhao et al.,
2024) as implemented by its authors. Both methods use default hyperparameters from their respective implementations.

StaSy and Tab-DDPM More recently score-based (Song & Ermon, 2019) and diffusion models (Ho et al., 2020; Song
et al., 2021) have eclipsed VAEs and GANs for generative quality on the image modality. To represent these classes, we use
STaSy (Kim et al., 2023), a score-based method, and Tab-DDPM (Kotelnikov et al., 2023) a denoising diffusion model (Ho
et al., 2020) adapted for tabular settings. For the former we use hyperparameters found by (Jolicoeur-Martineau et al., 2024),
and the latter uses default hyperparameters from the author’s implementation.
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D.4. Experimental Setup and Hyperparameters

When measuring resource usage in Section 4.1 training time was clocked starting once data had been loaded and pre-
processed, and stopped once all models had been trained (i.e. generation and evaluation are not included). Since almost
all compute time is spent in calls to XGBoost during training, there was little difference between implementations. For
memory, we monitor the used CPU memory every second (or every 10 seconds for long runs taking more than one hour),
and report the peak memory burden over the entire training run. This is reasonable, as the peak memory burden determines
if a job can successfully complete on a given machine.

To make the most fair comparison possible, we refrained from tuning hyperparameters between our version of ForestDiffusion
and ForestFlow compared to the original (Jolicoeur-Martineau et al., 2024). In particular, for the resource scaling experiments
in Section 4.1, all methods use the same learning and XGBoost hyperparameters. The data was duplicated K = 100 times
with nt = 50 discrete time steps as recommended by (Jolicoeur-Martineau et al., 2024), and models were trained conditional
on y whenever ny > 1 (see Table 6). Computationally, 40 parallel training jobs were used (equal to the number of CPUs on
our machine), with one CPU assigned to each job. For the sake of benchmarking, we did not reduce the number of parallel
jobs when methods began failing due to memory issues. XGBoost hyperparameters were left at their defaults, other than
L2 regularization which was set to λ = 0. Notably, this means ntree = 100 trees were trained per ensemble of max depth
7. The same is true for our performance benchmarking in Section 4.2. The original implementation of ForestDiffusion
and ForestFlow used the same hyperparameters as our implementation, with the performance differences coming from
our proposed improvements: per-class scaling of data, and sampling using the distribution of labels from the training set.
Our multi-output tree variant used a learning rate η = 0.5 instead of the XGBoost default η = 0.3, but this was the only
parameter changed.

For the performance comparisons in Section 4.2, each method was trained with 3 different random seeds on each dataset,
and for each training run 5 sets of data the size of the training dataset were created. Each set of data was used to compute
the performance metrics independently, and the results were averaged across the 5 generations per 3 seeds. These averaged
performance metrics were then used to compute the relative rankings between methods. For each metric, we computed the
ranking of methods on each dataset and then took the mean and standard deviation of rankings across datasets. As discussed
in Appendix D.2, not all metrics could be used for all datasets, so the averages over datasets only include applicable datasets
where the metric could actually be computed.

D.5. Additional Performance Benchmarking Results

Here we complement the summarized results of Table 2 by plotting the raw metric values averaged over three seeds for
each metric, method, and dataset. We remark that the bean and california datasets were not evaluated with the Wasserstein
metrics due to their size. Other plots show missing information for datasets when the metric is suited for either classifcation
or regression tasks, but not both.
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