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Abstract. We investigate the integration of Large Language Models
(LLMs) into query encoders to improve dense retrieval without increas-
ing latency and cost, by circumventing the dependency on LLMs at infer-
ence time. SOFTQE incorporates knowledge from LLMs by mapping em-
beddings of input queries to those of the LLM-expanded queries. While
improvements over various strong baselines on in-domain MS-MARCO
metrics are marginal, SOFTQE improves performance by 2.83 absolute
percentage points on average on five out-of-domain BEIR tasks.

1 Introduction

Query expansion [I5/22] methods aim to expand search queries with additional
terms to improve downstream information retrieval (IR) performance. Expansion
terms can come directly from highly ranked documents, as in pseudo relevance
feedback based methods like RM3 [I5JI7], or from generative models as in meth-
ods like GAR [19]. While query expansion can mitigate the token mismatch
problem that plagues sparse retrieval methods like BM25 [21], which depend on
token overlap between queries and documents, dense retrieval methods [TTT4]
offer a natural solution by embedding queries and documents in a shared feature
space wherein queries and documents with strong semantic overlap are close.
Recent methods [QT330] prompt Large Language Models (LLMs) [114126] to
expand queries with relevant terms or "pseudo-documents" that resemble real
passages from the corpus. Perhaps surprisingly, query2doc (Q2D) [30] demon-
strates improved performance of dense retrievers, indicating that LLM-based
query expansion can facilitate learning the semantic overlap between underspec-
ified queries and document corpora. However, adding an LLM to a real-time
IR pipeline is often prohibitively expensive in terms of both cost and latency.
Motivated by both the promise of LLM-based query expansion for dense re-
trieval and its impracticality, we propose Soft Query Ezpansion (SOFTQE),
wherein we learn to estimate the representations of LLM expansions offline dur-
ing training, thus circumventing the dependency on LLMs at runtime as shown
in Figure[l} SOFTQE performs at least as well as baseline dense retrievers such as

* Work done as an intern at Amazon
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DPR [I4], and stronger alternatives combining large-scale pretraining and cross-
encoder distillation such as SImLM [28] and E5 [29], on in-domain MS-MARCO
[2], TREC DL 2019 and 2020 datasets [56]. Further, SOFTQE significantly im-
proves upon these baselines for a majority of out-of-domain BEIR [25] tasks.
Our findings corroborate those of Q2D, specifically that the increase in retrieval
performance diminishes when combined with stronger encoders. However, we
observe measurable improvements in the zero-shot setting, suggesting that in-
formation learned through the SOFTQE objective is complementary to other
forms of distillation, such as distillation from a cross-encoder.

Step 1: Generate Pseudo Step 2: Train Q2D Step 3: Train SoftQE
Documents Teacher Student
Write a passage that answers the given query q % (Z
Are giraffes the tallest mammals on earth

v fQ?D &
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text-davinci-003 I_ 1% _
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Giraffes are in fact, the largest and tallest
mammals or animals. They can be up to eightee a0
feet in height! As compared to a normal human

being, the tallest giraffe in the world is three

times taller than a rather tall person ... ,
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Fig. 1: Overview of the SOFTQE approach. Step 1: Given a query, prompt an LLM to
generate a pseudo-document d’, as in Q2D [30]. Step 2: Train teacher encoder using
the Q2D method and expanded queries from Step 1 (¢ ® d'). Step 3: Train SOFTQE
encoder to align query representations with the expanded query representations from
Step 2, in addition to the standard contrastive objective. hy denotes the representation
(e.g., the last hidden state of the CLS token) given an input = and encoder y.

2 Method

Expanded Queries. An expanded query ¢* is formed by appending a pseudo-
document d’ to the original query, g¢:

gt =q ®gs(T,q), (1)

where, g, is an LLM that generates pseudo document (d') with prompt Z, em-
ploying techniques such few-shot, chain of thought [31], etc. We use the pseudo-
documents releasecﬂ with Q2D [30], which were generated by text-davinci-003
[1] using an instruction and examples of positive query/document pairs from MS
MARCO [2]. An example pseudo document is shown in Figure

3 Pseudo-documents generated using text-davinci-003 for MS MARCO queries are
released by [30] here: https://huggingface.co/datasets/intfloat/query2doc_ msmarco
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Dual-Encoder Training. Dual encoders are typically trained by optimizing a
contrastive objective [14]:

©)
‘Ccont = - IOg ( h.h )7 2
et 3 e

where h, and h, represent query and passage embeddings, respectively, and N is
the number of negative passages. In Q2D, embeddings of ezpanded query inputs
(hg+) are learned, and BM25 hard negatives are used.

SorFrTQE Objective. Driven by the superior performance of Q2D, we seek to
align representations of queries with their expanded counterparts. We do so by
introducing an additional distance componentEL Laist, to the loss:

‘CSoftQE - aﬁdist(f@ <q+)7 fd) (Q)) + (1 - a)£cont7 (3>

where fy and f, are transformer-based [27] encoders that map expanded queries
and queries to vectors in the learned embedding space respectively, and « is a
hyper parameter that controls the weight assigned to each component of the
loss, as in knowledge distillation [I2]. In other words, the expanded query repre-
sentations produced by the Q2D encoder (teacher) serve as target query repre-
sentations used to distill information into the SOFTQE query encoder (student).
Importantly, the feature space is pre-defined by the Q2D dual-encoder, rather
than updated during training. Accordingly, we only learn to embed queries, and
reuse the Q2D encoder to produce passage embeddings as they are already well-
aligned with the target query representations.

We additionally experiment with state-of-the-art dense retrievers [2829] that
are trained using KL divergence from cross-encoder scores [20]. We apply SOFTQE
to distilled retrievers by simply combining the 3 objective terms with an addi-
tional weight controlled by 3:

['SQEJrKD - aﬁdist(f@(q+)7 fw(q)) + (1 - Ol) [ﬁKL(faa fCE) + (]- - B)‘Ccont} s (4)

as we find the information distilled through cross-encoder scores and expanded
query representations to be complementary.

3 Experiments

Datasets, Metrics, and Baselines. For in-domain evaluation, we use the
MS MARCO Passage Ranking [2], TREC DL 2019 [5] and TREC DL 2020 [6]
datasets. Following Q2D [30], we evaluate zero-shot performance on five low-
resource tasks from the BEIR benchmark [25], namely: SciFact, NFCorpus,
Trec-Covid, DBPedia and Touche-2020. Evaluation metrics include MRR@10,
R@50, R@1lk, and nDCG@10. We benchmark SOFTQE against a DPR [14]
dense retrieval baseline, and two state-of-the-art dense retrievers: SimLM [28],
and E5 [29].

4 In practice, we find no significant difference between distance metrics, so we simply
use mean squared error (MSE).



4 Varad Pimpalkhute, John Heyer, Xusen Yin, and Sameer Gupta

Hyperparameters. We follow the hyperparameter settings used in [30], with
a few distinctions. We initialize our DPR models from BERT},.e [7], and our
SOFTQE variants of SimLM [28], and E5 [29] from their corresponding public
checkpoints. When fine-tuning with cross-encoder distillation, 8 is set to 0.2,
following SimLM [28]. We set a to 1.0 for 3 epochs in order to establish an
initial alignment with the target expanded query embeddings, then relax « to
0.2 as well. This choice is further discussed in Section [l

Table 1: Results on in-domain MS MARCO and TREC DL datasets, grouped by re-
trievers trained with and without distillation from cross-encoders. Underline: best re-
sult including Q2D, which requires an LLM at inference time; Bold: highest result
among non-Q2D solutions; *: our reproduction; }: denotes statistical significance with
a p-value less than 0.05 using a paired T-test.
Method MS MARCO Dev Set TREC DL 19 TREC DL 20
MRR@10 R@50 R@lk nDCG@Q@10 nDCGQ10
Dual-encoder without distillation

DPR* 33.74 80.90  96.18 64.04 62.81
+ SorTQE 33.87 81.24" 96.251 65.221 63.80"
+ Q2D* 35.26 82.78 9721 70.54 66.68
Dual-encoders distilled from cross-encoders

SimLM* 41.13 87.78  98.69 71.40 69.68
+ SorTQE 41.15 87.93"7 98.617 70.50" 70.107
+ Q2D* 41.45 88.43  98.82 74.59 71.37
E5* 40.70 87.13  98.50 72.52 71.38
+ SorTQE 40.30"  87.22  98.50 72.821 71.731
+ Q2D* 40.93 87.95  98.76 75.03 73.27

Results. We first evaluate the performance on in-domain datasets (Table [1)).
SOFTQE consistently improves upon DPR across all metrics on MS MARCO,
TREC DL 19 and TREC DL 20 datasets. When evaluating the performance
against dual-encoders distilled from cross-encoders, we notice that SOFTQE and
SimLM perform closely with SOFTQE slightly underperforming in RQ1k on
MS MARCO and nDCG@10 on TREC DL2019. Similarly, SOFTQE results in
marginal improvements over E5. This finding corroborates the claim in [30] that
improvements diminish when encoders are distilled from strong cross-encoders.

Table 2: Results on out-of-domain BEIR benchmark datasets by nDCG@10. Underline:
best result including Q2D, which requires an LLM at inference time; Bold: highest re-
sult among non-Q2D solutions; *: our reproductiorﬂ t: denotes statistical significance.

Method SciFact NFCorpus Trec-Covid DBPedia Touche-2020|Average
DPR* 51.85 25.72 44.81 30.99 19.91 34.65
+ SorTQE 49.817  25.73 60.02" 31.82f 20.59 37.59
SimLM* 61.42 32.38 52.90 35.06 19.21 40.19
+ SorTQE 61.72 32.34 61.78 36.75 21.94 42.91
+ Q2D [30] 59.50 32.10 59.90 38.30 25.60 43.08
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Table 2 highlights the zero-shot evaluation results on out-of-domain datasets
from BEIR. SOFTQE considerably outperforms DPR and SimLM, by 2.94 and
2.72 absolute percentage points, respectively, averaged across tasks. SOFTQE
yields marginal differences in performance on tasks where Q2D results in regres-
sions (SciFact and NFCorpus), but substantial improvements on the remaining
tasks when applied to either DPR or SimLLM, indicating that SOFTQE is com-
plementary to cross-encoder distillation.

4 Discussion

Is Fine-tuning on Expanded Queries Necessary? Traditional query ex-
pansion methods applied to lexical systems do not require modifications to the
retrieval algorithm. Q2D [30], however, requires fine-tuning the dense retriever
on expanded queries, as demonstrated by the the difference between the first
2 rows in Table [3] Simply passing expanded queries to an off-the-shelf DPR
model actually deteriorates performance, which is somewhat surprising given
the model’s ability to effectively embed queries and passages independently.

Table 3: MS Marco MRR@10 of DPR Table 4: TREC nDCG@10 across four
and Q2D with query (¢) and expanded variations of a in the training objective:
query (g*) inputs. DPR has not been (aLcont+(1-a)Laist). In "Warm up", we set
trained with expanded query inputs, alpha to 1 for the first 3 epochs, then to 0.2

while Q2D has. for the remaining 3.
Method TRrEC DL19 TREC DL20  Method o TreEc pL19 TREC DL20
DPR(¢") 61.65 59.45 Lais; Only 1 61.62 62.81
+ Q2D(¢") 70.54 66.68 Leont Only 0 64.66 63.42
DPR(q) 64.04 62.81 Combined 0.2 63.33 63.03
+ Q2D(q) 57.78 57.12 Warm up 1-0.2  65.23 63.79

Combining Lgist and Lcont. In Table [d] we explore four variations of the
training objective in Equation [3] to determine how to balance supervision from
labeled passages vs. target representations. A perfect mapping (Lgist = 0) be-
tween query and expanded query representations would yield Q2D performance,
but is not realistic, as evident by the subpar performance of " Lgjst Only". Com-
bining the two losses by setting « to 0.2 results in query embeddings that are no
closer to the target embeddings produced when using only a contrastive loss, as
shown by the MSE Loss plot in Figure [2 (right). To remedy this, we propose a
step-wise "warm up" method, in which we set o to 1 (Lajst only) for 3 epochs to
establish a strong alignment with the target representations, then relax o to 0.2
for the remaining 3 epochs. Figure 2] demonstrates that this reduces Lg;st while
negligibly impacting Lcont, resulting in the best performance in Table [

Should we also Fine-tune the Passage Encoder? We decided not to fine-
tune the passage encoder during SOFTQE training, because it allowed us to

> We could not reliably reproduce the E5 results on BEIR datasets, but Q2D did
not yield significant improvements when applied to E5, so we assume the same for
SorTQE and omit E5 from zero-shot evaluation.
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Fig. 2: Training curves of four settings of a shown in Table 4} Left: Contrastive Loss
- does it reject negative documents? MSE-only performs the worst in terms of con-
trastive loss, while Warmup—Combined converges to the same loss as Combined. Right:
MSE Loss - is it close to the teacher? Contrast-only has the highest MSE loss, while
Warmup—Combined MSE loss increases after the warmup, but converges to a value
noticeably lower than Combined.

re-use the Q2D passage-encoder. Intuitively, this means that the space in which
passages and queries are embedded is the same as in Q2D. In Table [5| we show
that, on average, fine-tuning the passage encoder results in reduced performance.
This is assuring — if the passage representations were to change, our Q2D rep-
resentation targets would be unfounded, as they would no longer be optimally
aligned with the passages.

Table 5: Unfreezing the passage en-
coder during training results in a
degradation of performance on TREC

Table 6: Comparing our method to
traditional knowledge distillation (us-
ing only model predictions) on TREC

nDCG@10. nDCG@10.
Freeze Method DL19 DL20
Encoder Method DL19 DL20 DPR 64.04 62.81
X SorTQE 65.59 62.06 + Traditional KD 61.12 62.14
v SorTQE 65.22 63.80 + SorTQE 65.22 63.79

SorTQE vs. Traditional Knowledge Distillation. Our method distills the
high-dimensional representation of the teacher model, as opposed to teacher’s
predictions, as in traditional knowledge distillation. In Table [f] we compare our
method to a variant in which we compute MSE only over the scalar-valued scores
produced by the Q2D teacher as our distillation loss. This results in reduced per-
formance, as the score-only distillation model underperforms the DPR baseline,
indicating that the teacher’s predictions alone do not provide sufficient supervi-
sion for estimating the nuanced information contained in the high-dimensional
expanded query representations.

5 Related Work

Document Expansion. Doc2Query [I0] attempts to resolve vocabulary mis-
match by expanding documents with natural language queries whose answers



SorTQE: Learned Representations of Queries Expanded by LLMs 7

are likely to exist within the document. Document expansion is advantageous
because it can be conducted entirely offline during indexing and combined with
learned sparse retrieval methods [S8IT6/I8] to leverage both neural supervision and
efficient inverted index algorithms. However, document expansion techniques can
significantly increase the size of the index, and must be applied to the entire cor-
pus each time the expansion method is changed, which might be too costly for
corpora containing billions of documents.

Knowledge Distillation. Knowledge distillation [I2] methods use the predic-
tions of large teacher models to improve the performance of smaller, more prac-
tical student models. Knowledge distillation is ubiquitous, and has been used
to improve dense dual-encoder retrievers via distillation from a cross-encoder
[20]. SOFTQE is a form of indirect knowledge distillation, wherein a student
encoder targets the continuous representations of an architecturally-equivalent
teacher model whose discrete, natural language inputs have been augmented by
an LLM. Recent methods such as Alpaca [24] and Vicuna [3] use generations
of superior LLMs to improve the performance of smaller, instruction-following
models, but these methods imitate "teacher" LLMs by using their outputs as
training data directly.

6 Conclusion

We present SOFTQE, a technique to align query-encoder representations with
the representations of queries expanded by LLMs. Empirical evaluations demon-
strate improvements across several retrieval benchmarks and models, and sug-
gest that SOFTQE improves generalization to new domains, as made evident by
zero-shot evaluations on BEIR datasets. Importantly, this improvement comes
without increasing the cost or latency of dense retrieval at runtime compared
to other single vector dual-encoder methods, because an LLM is not required at
time of inference. Future work might consider improved prompting strategies, or
applying LLM-based supervision to higher-capacity retrieval methods like Col-
BERTv2 [23]. To the best of our knowledge, SOFTQE is the first attempt to
distill strong representations through natural language generation, and we hope
that this will inspire efficient solutions to new tasks in the future.
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A Additional BEIR Results

Table 7: nDCG@10 for the remaining BEIR tasks; *: our reproduction (not tested for
significance). Q2D was not evaluated on these datasets.

Method Signal Im  Trec-News  Quora NQ Figa  Arguana
DPR” 24.15 35.21 84.05 43.72 24.47 28.80

+ SorTQE 22.18 36.43 84.32 44.19 25.07 31.11
Method Scidocs  BioASQ HotpotQA  Climate Fever Fever  Avg.
DPR” 11.79 25.09 49.58 17.20 65.36  37.22

+ SorTQE 11.35 27.05 48.36 18.40 67.38 37.80
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