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Abstract

We study the problem of identifying whether a target sample is included in the training
procedure of neural networks (i.e. member vs. non-member). This problem is known as the
problem of membership inference attacks, and raises concerns on the security and privacy of
machine learning. In this work, we prove a separation law of membership privacy between
one- and two-layer networks: the latter provably preserves less membership privacy against
confidence-based attacks than the former. We also prove the phenomenon of confidence
collapse in two-layer networks, which refers to the phenomenon that the samples of the
same class have exactly the same confidence score. Our results are two-fold: a) gradient
methods on two-layer ReLU networks converge to a confidence-collapsed solution, such that
the attacker can classify members and non-members with perfect precision and recall; b)
under the same assumptions as in a), there exists a training dataset such that the confidence
collapse phenomenon does not occur and the attacker fails to classify all members and non-
members correctly.

1 Introduction

A growing body of research shows that neural networks are vulnerable to various threat models, ranging
from model inversion (Fredrikson et al., 2015; Wu et al., 2016), model extraction (Tramèr et al., 2016;
Wang & Gong, 2018), adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015) to membership
inference (Shokri et al., 2017; Salem et al., 2019), which leads to concerns on the security and privacy
of machine learning models. Among the applications, the fields with confidential and sensitive data have
received special attention. For example, machine learning models have been developed to predict the health
conditions of patients; a successful membership inference attack against a model trained with cancer patients
might disclose a victim’s confidential health status about cancer, which could cause possible embarrassment
and the inability to obtain employment, mortgages, or various forms of insurance. The focus of this paper
is on the vulnerability of neural networks to the membership inference attacks. Given a threatened machine
learning model and a target sample, the goal of the attacks is to identify whether the target sample was used
to train the threatened model.

Membership inference attacks rely on a separation of model behaviors between the training (a.k.a. member)
and test (a.k.a. non-member) data. There are many types of membership inference attacks, such as shadow
model based attack (Shokri et al., 2017), confidence score based attack (Salem et al., 2019), and label-only
attack (Choquette-Choo et al., 2021). In the shadow model based attack, the ultimate goal of the attacker is
to build an attack model to discriminate between the output vectors of the threatened model on the member
and non-member data. To achieve this goal, the attacker 1) initializes multiple shadow models of the same
architecture, 2) mimics the behavior of the threatened model by training the shadow models on the i.i.d.
samples of the threatened model, and 3) trains an attack model based on the confidence scores of the shadow
models. Later work (Salem et al., 2019) showed that member and non-member data are distinguishable by
simply applying a one-sided threshold classifier to the confidence scores of the threatened model.

In this work, we investigate a phenomenon called confidence collapse for two-layer networks and the mem-
bership privacy. Confidence collapse refers to the phenomenon that the training samples from the same class
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have identical confidence score. Once an attacker accesses to the confidence score of one training sample, e.g.,
by planting a Trojan instance and receiving its confidence score, the attacker is able to determine whether a
target sample is a member or non-member via querying its confidence score. We theoretically study the con-
fidence collapse for one- and two-layer neural networks. We prove that, under mild assumptions, confidence
collapse always occurs in two-layer ReLU networks trained with gradient descent, but may not occur in
their one-layer counterparts trained with the same algorithm. This provides a separation law of membership
privacy between one- and two-layer neural networks.

Our study on confidence collapse is motivated by a recently discovered phenomenon of neural collapse, which
empirically states that the penultimate-layer features of deep neural network trained by cross entropy or mean
squared loss concentrate around their class means (Papyan et al., 2020; Han et al., 2021; Zhu et al., 2021; Lu
& Steinerberger, 2022). Neural collapse implies confidence collapse, but not vice versa. Although the layer-
peeled analysis (Fang et al., 2021; Ji et al., 2021) sheds lights on the neural collapse, the analysis suffers from
strong assumptions, e.g., the feature vectors should not depend on the input data. Except the layer-peeled
analysis, there are few theoretical results to support the neural collapse phenomenon. In this work, we prove
the results of confidence collapse in two-layer ReLU networks without such strong assumptions. The study
of confidence collapse might be of independent interest to learning theory more broadly.

1.1 Our Main Research Results

Our results consist of two parts: a) two-layer ReLU networks trained by gradient descent provably leak
membership privacy (see Section 4); b) one-layer neural networks leak less membership privacy with the
same training dataset and training algorithm (see Section 5). Two results are complementary and reveal a
separation law of membership privacy between one- and two-layer networks.

Threat model. We assume that the attacker can access to the confidence score of the threatened model on
one Trojan example x0 ∈ X and a target sample x, where X is the training set. Beyond that, the attacker
has no knowledge about the training data or the threatened model. Though a one-sided threshold classifier
on the confidence score suffices to build a successful membership inference attack Salem et al. (2019). In
this paper we study a more powerful threat model where the attacker can use a two-sided threshold classifier
I(a ≤ |Φ(x; θ)| ≤ b) to decide whether a target sample x is a member (if the value is 1) or non-member (if
the value is 0), where Φ(x; θ) is the confidence score in R for binary classification problems and I(·) refers the
indicator function. Throughout the paper, we fix the threatened model and view x ∼ D as a non-member,
where D is a continuous test distribution. That is, in the evaluation phase we draw a set of samples Xneg
from D and their ground-truth labels are deemed as non-members.

Before proceeding, we define the (membership) privacy-preservation region as follows:
Definition 1 (privacy-preservation region). Let Φ(·; θ) be a neural network which maps an input example to
a confidence score in R and let X be its training set. We define the privacy-preservation region of Φ(·; θ) w.r.t.
X by R(X, Φ) := {x ∈ Rd : γ ≤ |Φ(x; θ)| ≤ Γ}, where γ = minx∈X |Φ(x; θ)| and Γ = maxx∈X |Φ(x; θ)|.

To justify how R(X, Φ) is related to privacy preservation, we highlight that for any non-member x ∼ D
in R(X, Φ) and any thresholds a and b in the threat model, the attacker cannot identify members X vs.
non-member x with 100% precision and recall. This is because in order to correctly recognize all the
members, one needs a ≤ γ and b ≥ Γ. However, the non-member sample x is misclassified as a member since
a ≤ |Φ(x; θ)| ≤ b. We thus use PrD(R(X, Φ)) to characterize the membership privacy of model Φ w.r.t. a test
distribution D. Smaller PrD(R(X, Φ)) implies that the model is more vulnerable to membership inference
attacks, as the confidence score of a target sample x ∼ D is indistinguishable from that of the training
data if x lies in the privacy-preservation region. Meanwhile, we also provide a finite-sample proof for the
phenomenon of confidence collapse for two-layer networks. Confidence collapse provably leaks membership
privacy as we show PrD(R(X, Φ)) = 0. On the other hand, we also provide a counterexample for one-layer
networks: confidence collapse does not occur in the same setting, and we show PrD(R(X, Φ)) > 0.

Below, we state our main theorems informally:

Theorems 2 and 3 (informal). Let D be any continuous input distribution supported on Rd. Suppose that
Φ is trained by gradient descent on the logistic or exponential loss. If the training data size is small enough,
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we have a) for two-layer ReLU networks, PrD(R(X, Φ)) = 0 for all training datasets X; b) for one-layer
networks, there exists one training dataset X such that PrD(R(X, Φ)) > 0.

Our result highlights a separation law of membership privacy between one- and two-layer networks by
comparing the mass of privacy-preservation regions R(X, Φ). For two-layer networks where PrD(R(X, Φ)) =
0, with probability 1 all the vectors in Xneg do not lie in the privacy-preservation region R(X, Φ). The
attacker can then query the confidence score of the Trojan example x0 and set a = b = |Φ(x0; θ)| to correctly
identify all members and non-members. In contrast, for one-layer networks where PrD(R(X, Φ)) > 0, with
probability as high as (1 − (1 − PrD(R(X, Φ)))|Xneg|) there exists at least a sample x ∈ Xneg such that
x ∈ R(X, Φ), which means that the attacker fails to correctly classify all members and non-members and the
neural networks leak less membership privacy. Besides, as gradient descent on one-layer networks converges
to a hard margin support vector machine (SVM) Soudry et al. (2018), removing any non-support vectors
in the training set of the SVM will not change the decision boundary. Thus, information-theoretically one
cannot determine whether a non-support vector is a member of one-layer networks or not with any threat
model including our confidence-based attack.

Experiments. We conduct experiments to study the confidence collapse phenomenon on one- and two-
layer networks with both synthetic dataset and real world dataset (see Fig. 2). We empirically verify our
theoretical result discussed above: confidence collapse occurs in the two-layer ReLU network but not in the
one-layer counterpart. Thus, by querying confidence scores, the two-layer ReLU network are easier to leak
membership privacy than the one-layer network.

1.2 Our Analytical Techniques

We discuss the techniques used for achieving our analytic results.

Two-layer ReLU networks. Our results are built upon the phenomenon of confidence collapse of two-layer
ReLU neural networks (see Section 4.1). We begin with the result from Lyu & Li (2019), which shows that
gradient flow on homogeneous networks converges in direction to the Karush–Kuhn–Tucker (KKT) point of
a max-margin problem (see Eq. 4). The stationarity condition of this KKT point induces an explicit formula
of the weights w.r.t. KKT multipliers (see Corollary 1) and the complementary slackness shows that if KKT
multipliers are greater than zero, the absolute values of confidence scores of corresponding samples must be
a fixed constant (see Corollary 2). We then plug the weights into our network, and show by contradiction
that when the volume of the training data is small enough, all KKT multipliers are strictly larger than 0
and the confidence collapse occurs. In Section 4.1.1, we remove the small training data assumption by a
simple data transformation via padding the input with orthogonal vectors. When the confidence collapse
occurs, the privacy-preservation region shrinks to R(X, Φ) = {x ∈ Rd : |Φ(x; θ)| = γ}. We show that the
probability mass of R(X, Φ) is 0 by the continuity of the distribution D (see Section 4.2). The attacker
can then recognize the members and non-members with 100% precision and recall, which yields membership
privacy leakage.

One-layer networks. We show that there exists a training dataset such that one-layer networks trained on
it do not suffer from confidence collapse. The dataset is linearly separable and satisfies all of assumptions that
we discussed above. Both one- and two-layer networks are able to reach 100% accuracy on this training set.
However, the confidence collapse occurs in two-layer ReLU networks but not the one-layer counterpart. In
this case, the privacy-preservation region for the one-layer network is R(X, Φ) = {x ∈ Rd : γ ≤ |Φ(x; θ)| ≤ Γ}
for Γ > γ. As R(X, Φ) is of non-zero measure on the Euclidean space Rd, the probability mass of R(X, Φ)
is strictly larger than 0. Thus with high probability, there exists x ∈ Xneg such that x ∈ R(X, Φ) and the
network preserves at least certain membership privacy.

2 Related Works

Membership inference attack on classification tasks. In membership inference attack (MIA), an
attacker aims to decide whether a sample is used to train a threatened model (Shokri et al., 2017; Salem
et al., 2019; Yeom et al., 2018; Shafran et al., 2021; Choquette-Choo et al., 2021; Yu et al., 2021; Rezaei & Liu,
2021; Olatunji et al., 2021; Hui et al., 2021; He et al., 2021; Carlini et al., 2022; Hu et al., 2022). (Shokri et al.,
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2017) conducted the first MIA on classification models, which requires multiple shadow models trained on
the i.i.d. data. (Salem et al., 2019) argued that the assumptions in shadow training technique are relatively
strong, which heavily limit its applications in different scenarios. They proposed a confidence-based attack
via focusing on the highest confidence score of the samples. (Yeom et al., 2018) invented the prediction-loss-
based MIA, which infers a sample as a member if its prediction loss is smaller than the averaged training loss.
This method can be regarded as another types of confidence based attack as the prediction loss is induced
by the confidence score. (Choquette-Choo et al., 2021) proposed the label only attack, where the attacker
can only access the hard-label output of the target model. They used the robustness of the model against
adversarial perturbation to infer membership and achieved comparable performance to the confidence-based
attacks. Our work focuses on the confidence based attacks and prove that two-layer ReLU networks leak
membership privacy through confidence collapse. Carlini et al. (2022) stated that attacks should be evaluated
by computing their true-positive rate at low false-positive rates. In our work, we prove that confidence-based
MIA on two-layer network can achieve 100% true-positive rate and 0% false-positive rate. Thus our results
still have perfect performance under the metric proposed in Carlini et al.

Neural collapse. Neural collapse is a phenomenon in training a neural network, which states that the
penultimate-layer features collapse to their class means and the class means centered at their global mean
collapse to the vertices of a simplex equiangular tight frame up to scaling. (Papyan et al., 2020) first
discovered the neural collapse phenomenon. (Fang et al., 2021; Ji et al., 2021) provided theoretical insight
of neural collapse via layer-peeled model with cross-entropy loss. In the layer-peeled model, they assumed
the network has infinite representation ability such that the penultimate-layer features are also optimizable.
Then the neural network is simplified to a linear network with optimizable inputs. (Han et al., 2021)
applied a similar assumption to study the neural collapse with mean-squared loss. However, the layer-peeled
assumption is too strong to fit the empirical situations. In our work, we theoretically prove that a weaker
version of neural collapse - confidence collapse - occurs in gradient flow of two-layer neural network with
only an assumption on the number of training samples.

Implicit bias in training classifiers. A line of works Soudry et al. (2018); Ji & Telgarsky (2018); Gu-
nasekar et al. (2018a;b); Nacson et al. (2019); Lyu & Li (2019); Ji & Telgarsky (2020) try to solve the problem
that gradient flow/descent is implicitly biased towards solutions with good generalization performance. Gra-
dient flow stands for the gradient descent with infinitesimal step size. (Soudry et al., 2018) showed that
full-batch gradient descent on linear logistic regression converges in direction of the max-margin solution of
a Support Vector Machine (SVM). (Nacson et al., 2019) analyzed gradient descent for smooth homogeneous
models and showed that the parameter converges in direction to a KKT point of the aforementioned max-
margin problem. Lyu & Li (2019) weakened the assumptions in (Nacson et al., 2019) for gradient flow on
homogeneous models. In our work, we use the KKT conditions of the max-margin problem in Lyu & Li
(2019) to prove that gradient flow on a two-layer neural network would lead to confidence collapse.

3 Preliminaries

Notations and problem settings. We use a bold capital letter to represent a matrix or a set of vectors,
a bold lower-case letter to represent a vector, and a lower-case letter to represent a scalar. Specifically, we
use X := {x1, x2, ..., xn} ⊆ Rd to represent the set of training samples with their labels {yi}n

i=1 in {−1, 1}.
The probability measure of test distribution D is denoted by PrD(·). We focus on two-layer ReLU networks
for binary classification tasks. We denote the first layer of the ReLU network by W := [w1, ..., wk] ∈ Rd×k,
and the second layer by v := (v1, ..., vk) ∈ Rk. The ReLU activation function is defined by σ(·) = max{·, 0}.
The confidence (score) of the neural network on a sample x is given by

Φ(x; θ) =
k∑

i=1
viσ(wT

i x), (1)

where θ is the concatenation of W and v. A neural network is called homogeneous if there is a constant
L ≥ 0, such that ∀z > 0, Φ(x; zθ) = zLΦ(x; θ). The two-layer ReLU neural network studied in this work is
homogeneous with L = 2. We will use ∥ · ∥2 to represent the ℓ2-norm of a vector.
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Evaluation of MIA. Following the previous works Shokri et al. (2017); Salem et al. (2019), we use a
mixture of training data X and randomly generated data Xneg from D to evaluate the attacker. Note that
with probability 1, X∩Xneg = ∅, as D is a continuous distribution. We apply precision-recall to measure the
quality of the attacker. Denote by Apos the set of attacker’s selected members, and Aneg the non-members.
The precision and recall are calculated by |Apos ∩ X|/|Apos| and |Apos ∩ X|/|X|, respectively. Higher scores
of precision and recall imply more severe leakage of membership privacy. We say perfect privacy leakage
occurs if and only if both precision and recall are 1.

Confidence collapse. Below, we define confidence collapse for binary classification tasks:
Definition 2 (Confidence collapse). In binary classification tasks, given a training set X, we say that
confidence collapse occurs in a neural network Φ parameterized by θ if and only if

∃C > 0, ∀x ∈ X, |Φ(x; θ)| = C.

For a homogeneous neural network, the confidence collapse phenomenon is scaling-invariant w.r.t. the
weights, because if |Φ(x; θ)| = C, then ∀α > 0, |Φ(x; αθ)| = αLC, which indicates that neural networks with
weights αθ, α > 0 also suffer from confidence collapse. Thus, confidence collapse of networks depends only
on the direction of θ, i.e., θ

||θ||2
, rather than the scaling of θ.

Gradient flow on homogeneous neural networks. For a training set {(xi, yi)}n
i=1 ⊆ Rd × {−1, 1}, let

Φ(·; θ) : Rd → R be a neural network mapping with weights θ. The empirical loss w.r.t. Φ(·; θ) and the loss
function l(·) : R → R is:

L(θ) :=
n∑

i=1
l(yiΦ(xi; θ)) . (2)

In this work, we focus on the exponential loss l(t) = e−t and logistic loss l(t) = log(1 + e−t). We analyze
the optimization problem of Eq. 2 with gradient flow—gradient descent with infinitesimal step size. In this
setting, the learnable parameter θ changes continuously with time t. We define the trajectory of θ by θ(t).
If limt→∞

θ(t)
||θ(t)||2

= θ̂
||θ̂||2

, we say the trajectory of θ converges in direction to θ̂. We use the result in Lyu
& Li (2019), which shows that gradient flow on a homogeneous neural network converges in direction to a
KKT point of the following max-margin problem,

min
θ

1
2 ||θ||22, s.t. yiΦ(xi; θ) ≥ 1, ∀i ∈ [n], (3)

if there exists time t0, such that Φ(·; θ(t0)) has 100% accuracy on training set. We defer the details of their
theorem to Lemma 1 in the Appendix.

4 Two-Layer Networks Provably Leak Membership Privacy

In this section, we present our theoretical contributions and show that two-layer ReLU networks provably leak
membership privacy. Our proof consists of two aspects: 1) confidence collapse in two-layer ReLU networks
is an inevitable consequence of training by gradient methods; 2) given a continuous data distribution D, the
probabilistic mass of associated privacy-preservation region is 0. With 1) and 2), a confidence-based attacker
can determine whether a given example is in the training set or not by its confidence score.

4.1 Confidence Collapse on Two-Layer Networks

Our analysis demonstrates a confidence collapse phenomenon of two-layer ReLU networks that are optimized
by gradient descent. Based on the result of Lyu & Li (2019), gradient flow on the two-layer ReLU network
Φ with weight θ = [W, v] converges in direction to the KKT point of a maximum margin problem Eq. 3. As
discussed previously, the confidence collapse phenomenon is scaling-invariant w.r.t. the weights on homoge-
neous networks, we only need to show that confidence collapse occurs when it comes to the KKT solution
of the above maximum margin problem. For simplification, we denote Φ(·; θ) by Φ(·).
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Theorem 1. Given n samples {(xi, yi)}n
i=1 in Rd ×{−1, 1}, consider a two-layer ReLU neural network Φ(·)

with k hidden neurons on the binary classification problem. Let [W, v] be a KKT point of the max-margin
problem (Eq. 3). Denote by p := maxi,j∈[n],xj ̸=±xi

|xT
i xj | and q := mini∈[n] ||xi||22. If n < min{d, q

3p }, we
have

∀i ∈ [n], yiΦ(xi) = 1.

Theorem 1 states that, a two-layer ReLU network trained with finite data converges in direction to a
solution where the confidence scores of all training samples are the same. Under the setting of homogeneous
networks, Theorem 1 implies the confidence collapse of two-layer ReLU network, but probably with a different
confidence score C. For example, if all training samples are orthogonal in Rd, then min{d, q

3p } = d. By
Theorem 1, when n ≤ d, the confidence scores of the n orthogonal examples collapse. Our theoretical analysis
does not imply that the network converges to 0 loss. In practice, when the dataset size is large, confidence
collapse will not occur on the two-layer network and we cannot use confidence-based attacks to achieve
perfect MIA on two-layer networks. Duplication of images doesn’t affect confidence collapse in practice.
This observation indicates that adding more data is a good way to defend the confidence-based attack we
propose.

Despite our strong conclusion on confidence collapse, the assumptions in our theorem are moderate. Our
theorem does not make any assumptions on the scale of the input data. The only limitation of our theorem
is the assumption of small training data: the number of training data should be fewer than min{d, q

3p }. In
the following subsection, we show how we can remove this assumption by simple data transformation.

4.1.1 Simple data transformation removes the small data assumption

We will show how simple data transformation can help us remove the small data assumption in Theorem 1.
Our technique is to pad the input with orthogonal vectors.
Proposition 1. Given n samples {(xi, yi)}n

i=1 in Rd × {−1, 1}, let p′ := maxi,j∈[n] |xT
i xj |. Consider a set

of mutually orthogonal vectors {ai ∈ Rn}n
i=1 with ||ai||2 =

√
3np′, and a two-layer ReLU neural network

Φ(·) with k hidden neurons on the new training dataset {([xi, ai], yi)}n
i=1. Let [W, v] be a KKT point of the

max-margin problem (Eq. 3). We have

∀i ∈ [n], yiΦ(xi) = 1.

Proposition 1 states that, if the training samples are padded with a set of mutually orthogonal vectors,
confidence collapse occurs no matter how large the training dataset is. For the padding vector {ai}n

i=1 ⊆ Rn,
we can simply set them as the standard basis of Rn scaled by

√
3np′, i.e., ai = (0, 0, · · · ,

√
3np′, · · · , 0),

where only the i-th entry is
√

3np′. Intuitively, this data transformation assigns each sample with its identity
pseudo-label, and uses the one-hot encoding of the pseudo-label as additional features during training. The
pseudo-labels provides additional information about the identity of each sample and thus will not conflict
with the 100% accuracy assumption of the classifier.

4.1.2 Proof sketch of Theorem 1 and Proposition 1

Proof sketch of Theorem 1. Denote by J := [k], J+ = {i ∈ [k] : vi ≥ 0}, J− = {i ∈ [k] : vi < 0} and
I := [n], I+ = {i ∈ [n] : yi = −1}, I− = {i ∈ [N ] : yi = 1}. Based on the result of (Lyu & Li, 2019) and
Eq. 3, gradient flow on the two-layer ReLU network Φ with weight W and v converges in direction to the
KKT point of a maximum margin problem

min
θ

1
2

(
||v||22 +

k∑
i=1

||wi||22

)
, s.t. yiΦ(xi) = yi

k∑
i=1

viσ(wT
i xi) ≥ 1, ∀i ∈ [n], (4)

where k is the width of the network. By applying the KKT stationarity and complementary slackness
conditions, the optimization problem Eq. 4 naturally implies the following properties of two-layer ReLU
networks.
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Corollary 1. For two-layer ReLU networks (Eq. 1), by the stationarity condition in KKT, there exists
λj ≥ 0, j ∈ [n] such that for all s ∈ [k],

ws =
∑
i∈I

λi∇ws
(yiΦ(xi)) =

∑
i∈I

λiyivsσ′
i,sxi, (5)

where σ′
i,s := I(wT

s xi > 0).
Corollary 2. For two-layer ReLU networks (Eq. 1), by the complementary slackness condition in KKT, we
have λi(yiΦ(xi) − 1) = 0, ∀i ∈ [n].

Corollary 1 identify the form of the first-layer weights. We plug this form of weights into the network Φ(x)
and obtain

Φ(x) =
∑
j∈J

vjσ(
∑
i∈I

λiyivjσ′
i,jxT

i x).

Corollary 2 shows the relation between the KKT multipliers and the associated constrains. In our proof, we
use the properties that yiΦ(xi) > 1 ⇒ λi = 0 and λi > 0 ⇒ yiΦ(xi) = 1.

Now we are ready to prove Theorem 1 by contradiction. Assume that there exists l ∈ [n] such that ylΦ(xl) >
1. Without loss of generality, let l ∈ I+. The proof for the case of l ∈ I− is similar. Our proof consists of
four steps:

Step 1. We show maxi∈I

∑
j∈J+

λiv
2
j σ′

i,j > 1
np . By the complementary slackness condition (Corollary 2)

of the KKT point, λl(ylΦ(xl) − 1) = 0. As ylΦ(xl) − 1 > 0, we have λl = 0. Then, by the stationarity
condition of the KKT point (Corollary 1), we have ws =

∑
i∈I λiyivsσ′

i,sxi. We can then plug it into
1 < ylΦ(xl) =

∑k
i=1 viσ(wT

i xl), which induces maxi∈I

∑
j∈J+

λiv
2
j σ′

i,j > 1
np .

Step 2. We show that yrΦ(xr) = 1 for r := arg maxi∈I

∑
j∈J+

λiv
2
j σ′

i,j . We assume without loss of
generality that maxi∈I

∑
j∈J+

λiv
2
j σ′

i,j ≥ maxi∈I

∑
j∈J−

λiv
2
j σ′

i,j . We have λr > 0 because λr

∑
j∈J+

v2
j σ′

r,j >
1

np > 0. Thus, by Corollary 2, we have yrΦ(xr) = 1.

Step 3. We derive a contradiction for r ∈ I−. We first plug ws =
∑

i∈I λiyivsσ′
i,sxi into yrΦ(xr). If

r ∈ I−, we have λrvjσ′
r,jq ≤

∑
i∈I λivjσ′

i,jp for j ∈ J+. Summing it over j ∈ J+ yields
∑

j∈J+
λrv2

j σ′
r,j ≤

1
3 maxi∈I

∑
j∈J+

λiv
2
j σ′

i,j , which contradicts to r = arg maxi∈I

∑
j∈J+

λiv
2
j σ′

i,j .

Step 4. We derive a contradiction for r ∈ I+. If r ∈ I+, by plugging ws =
∑

i∈I λiyivsσ′
i,sxi into yrΦ(xr),

we have 1 =
∑k

j=1 vjσ(wT
j xr) ≥ (q−2np) maxi∈I

∑
j∈J+

λiv
2
j σ′

i,j > (q−2np)
np , which contradicts to the setting

that n < q/3p.

Following Steps 1-4, we have ∀i ∈ [n], yiΦ(xi) = 1. The complete proof is in Appendix A.

Proof sketch of Proposition 1. Consider the new training set {(x′
i := [xi, ai], yi)}n

i=1. Firstly, the norm
of the new sample x′

i is given by
√

||xi||22 + ||ai||22 =
√

||xi||22 + 3np′. The inner product of x′
i and x′

j (i ̸= j)
is x′T

i x′
j = xT

i xj + aT
i aj = xT

i xj . Thus

p := max
i,j∈[n],xj ̸=±xi

|x′
i
T x′

j | ≤ max
i,j∈I

|xT
i xj | =: p′.

As the new dataset {(x′
i, yi)}n

i=1 is in Rn+d × {−1, 1}, we have a) n + d ≥ n, and b) mini∈[n] ||x′
i||2

2
3p ≥ 3np′

3p ≥
3np
3p = n. Thus n ≤ min{n + d,

mini∈[n] ||x′
i||2

2
3p′ } always holds. By applying Theorem 1 to the new dataset

{(x′
i, yi)}n

i=1, we have that the confidence collapse occurs on {(x′
i, yi)}n

i=1. The complete proofs are in
Appendix B.

4.2 Vulnerability of Two-Layer Networks to Membership Inference Attacks

We now prove that when confidence collapse occurs, the probabilistic mass of the privacy-preservation region
w.r.t. D is 0. Thus, if the test examples are generated from D, their confidence should be different from the

7
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confidence score of the training data almost surely. By Definition 1 and Definition 2, the privacy-preservation
region with confidence collapse (score γ) is given by R(X, Φ) = {x ∈ Rd : Φ(x) = ±γ}.
Theorem 2. Given R(X, Φ) = {x ∈ Rd : Φ(x) = ±γ}, where Φ(·) is an arbitrary two-layer ReLU network
and D is a continuous distribution in Rd, we have PrD(R(X, Φ)) = 0.

Theorem 2 states that, if the confidence collapse occurs on the two-layer ReLU network, its privacy-
preservation region is of zero measure w.r.t. distribution D. In the test phase, we use a mixture of training
data X and randomly generated data Xneg from D to evaluate the attacker. With PrD(R(X, Φ)) = 0, the
absolute value of the confidence score of a randomly generated data almost surely differs from γ. Thus the
attacker can use the confidence score of the Trojan sample to determine the unknown γ. Then by setting
a = b = γ in I(a ≤ |Φ(·)| ≤ b), the attacker can apply I(|Φ(·)| = γ) to identify members X and non-members
Xneg with 100% precision and recall. In conclusion, confidence collapse almost surely leaks membership pri-
vacy. Combining Theorem 1 and Theorem 2, we conclude that when the number of training data is limited,
two-layer ReLU networks provably leak membership privacy under our threat model.

Proof sketch. We calculate the probabilistic mass of {x ∈ Rd : Φ(x) = ±γ} under the distribution D.
Firstly, we consider the solution of Φ(x) = ±γ. By the stationarity condition of the KKT point (Corollary 1),
we have ws =

∑
i∈I λiyivsσ′

i,sxi. Plugging it into Φ(x) = ±γ, where x = (x(1), ..., x(d)), we obtain

Φ(x) =
∑
j∈J

vjI({wT
j x > 0})

d∑
i=1

wjix
(i) =

d∑
i=1

∑
j∈J

vjI({wT
j x > 0})wji

x(i) = ±γ.

Let aj(x) =
∑

j∈J vjI({wT
j x > 0})wji. Note that aj(x) can take at most 2j values for different x. Thus

a(x) = (a1(x), ..., ad(x)) has at most 2jd different choices. Denote by A := {a(x) : x ∈ Rd} and S(a) :=
{x ∈ Rd : aT x = ±γ}, we have R(X, Φ) ⊆ ∪a∈AS(a). Notice that S(a) consists of points on two hyperplanes
aT x = ±γ. For an arbitrary continuous distribution on Rd, we have PrD(S(a)) = 0. Thus

Pr
D

(R(X, Φ)) ≤
∑
a∈A

Pr
D

(S(a)) = |A| · 0 = 0.

That is, Prxtest∼D(xtest ∈ R(X, Φ)) = 0. The complete proof is in Appendix C.

One potential way for extending our results to multi-class classification is to convert the problem to the
binary case with one vs rest loss, i.e., we define the confidence score of multi-class classification as fy(x) −
maxi∈[k],i̸=y fi(x) for a given sample (x, y) and classifier f . We will leave the detail analysis as a future work.

5 One-Layer Networks Leak Less Membership Privacy

In this section, we provide an example where one-layer networks do not suffer from confidence collapse under
the same assumptions. Denote the network by Φ(x) = wT x+b. The existing works (Lyu & Li, 2019; Soudry
et al., 2018) show that the gradient flow on one-layer networks with linearly separable datasets converges
in direction to a max-margin solution of Eq. 3 with θ = [w, b], which is a hard-margin SVM. As discussed
previously, the confidence collapse phenomenon is scaling-invariant w.r.t. the weights on homogeneous
networks, we only need to show the confidence collapse does not occur in the KKT point of the above
maximum margin problem. With this, we prove that the probabilistic mass of the corresponding privacy-
preservation region R(X, Φ) with continuous D supported on Rd is strictly larger than 0. Recall that
according to Definition 1, R(X, Φ) := {x ∈ Rd : γ ≤ |wT x + b| ≤ Γ}, where γ = minx∈X |Φ(x)| and
Γ = maxx∈X |Φ(x)|.
Theorem 3. There exists a linearly separable training set {(xi, yi)}n

i=1 in Rd × {−1, 1}, which satisfies
all the assumptions on training data in Theorem 1, i.e., n < min{d, q

3p }, p := maxi,j∈[n],xj ̸=±xi
|xT

i xj |,
and q := mini∈[n] ||xi||2, such that the KKT point of Eq. 6 is not a confidence-collapsed solution, and
PrD(R(X, Φ)) > 0.

Theorem 3 states that, under the same data assumptions as Theorem 1, there exists at least one dataset,
such that confidence collapse does not hold true for one-layer networks. We also show that the probabilistic

8
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mass of its privacy-preservation region is non-zero. In the test phase, with probability as high as (1 −
(1 − PrD(R(X, Φ)))|Xneg|), there exists at least one sample x ∈ Xneg such that x ∈ R(X, Φ). With this,
the attacker fails to identify members X vs. non-member x with 100% precision and recall. The reason
is that to correctly recognize all members (100% precision), we need a ≤ γ and b ≥ Γ for the indicator
I(a ≤ |Φ(·)| ≤ b). However, the sample x is misclassified as a member since a ≤ |Φ(x)| ≤ b. Compared
to two-layer networks, one-layer networks leak less membership privacy under our threat model. Besides,
removing any non-support vectors in the training set of the hard-margin SVM will not change the decision
boundary. Therefore, information-theoretically one cannot determine whether a non-support vector is a
member or not with any threat model including our confidence-based attack.

Proof sketch. We prove Theorem 3 by constructing a hard instance, which satisfies the assumption on the
training dataset but does not suffer from confidence collapse by one-layer neural networks. Based on Eq. 3,
the max-margin problem is formulated by

min
θ

1
2(||w||22 + b2), s.t. yi(wT xi + b) ≥ 1, ∀i ∈ [n]. (6)

Consider (x1, +1), (x2, +1), (x3, +1), (x4, −1), where xi ∈ Rd, d > 4, ∥xi∥2 =
√

d, x2 = −x1, xT
3 x1 =

0, xT
4 x1 = 0, xT

3 x4 = −ϵ, and ϵ is an arbitrary positive constant less than 1/6 (e.g., x1 = (
√

d, 0, · · · , 0),
x2 = (−

√
d, 0, · · · , 0), x3 = (0,

√
d, 0, · · · , 0), and x4 = (0, −ϵ√

d
,
√

d − ϵ2

d , 0, · · · , 0)).

Firstly, let q := mini∈[n] ||xi||2 =
√

d and p := maxi,j∈[n],xj ̸=±xi
|xT

i xj | = ϵ. We can easily verify that
4 < min{d, q

3p }. Besides, we can use a one-layer neural network Φ(x) = (x3 − x4)T x + 1 to classify them
correctly, which means the dataset is linearly separable. Next, following the KKT stationarity condition of
the optimization problem Eq. 6, there exist λi ≥ 0, i ∈ [4] such that w =

∑4
i=1 λiyixi. For the optimization

problem Eq. 6, confidence collapse only occurs with yiΦ(xi) = 1, i ∈ [4]. Otherwise by complementary
slackness we will have λi = 0, i ∈ [4], which implies w = b = 0 and all samples are misclassified. Pluging
w into yiΦ(xi) = 1, i ∈ [4] will reach a contradiction. Thus, one-layer networks do not converge to a model
with confidence collapse under the selected training samples.

Denote by γ = arg minx∈X |wT x + b| and Γ = arg maxx∈X |wT x + b|. Confidence non-collapse implies Γ is
strictly larger than γ. By Definition 1, we have R(X, Φ) = {x ∈ Rd : γ ≤ |wT x + b| ≤ Γ}. We can rotate
the coordinate such that wT = (||w||2, 0, ..., 0). Let x = (x(1), ..., x(d)) and D′ be the new distribution after
rotation. We derive PrD(R(X, Φ)) > 0 because D is supported on Rd. The complete proof is in Appendix D.

6 Experiments

We conduct experiments on synthetic data, MNIST, and CIFAR10 to validate the confidence collapse phe-
nomenon. Our experiments are run on a 24GB Nvidia A5000 GPU. We train model with cross-entropy loss
and report the logits as the confidence score. One can normalize the logit confidence to [0,1] by applying the
Sigmoid activation.

6.1 Synthetic data

Settings. We conduct a synthetic experiment to verify the confidence collapse phenomenon on one- and
two-layer networks (see Fig. 2). Our experiments are run on a 24GB Nvidia Tesla P40 GPU. We randomly
sample 10,000 examples from Gaussian distribution on R20,000 as the training dataset, which satisfies the
data assumptions in Theorem 1. For the two-layer network, we set the width of the hidden layer as 1,000.
The number of training epochs is 40,000 and the learning rate is fixed as 0.0008 throughout the training
procedure for both networks.

Results. From Fig. 2 top and bottom left, we can see that confidence collapse occurs in the two-layer ReLU
network but not in the one-layer counterpart. Clearly, by querying confidence scores, the two-layer ReLU
network are easier to leak membership privacy than the one-layer network.
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Figure 1: Top: violin plot of absolute values of confidence scores on the synthetic (left), MNIST (middle),
and CIFAR10 (right) training examples by one- and two-layer networks. Bottom: variance of absolute
values of confidence scores on the synthetic (left), MNIST (middle), and CIFAR10 (right) training examples
across different epochs. It shows that confidence collapse occurs in the two-layer ReLU network but not in
the one-layer counterpart. From the confidence scores, it is easy to infer whether a given sample is involved
in the training phase.
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Figure 2: Violin plot of confidence scores on CIFAR10 with ResNet18.

6.2 MNIST and CIFAR10

Settings. As our paper focus on training-time binary classification problem, we select two classes from
MNIST and CIFAR10 for training and neglect the test set of our benchmarks. For the two-layer network
on MNIST, the first layer is of size (28×28, 500) and the second layer is of size (500, 1). We use ReLU
activation between the two layers and apply SGD with learning rate 0.001 to optimize it. For the one-layer
network on MNIST, the layer is of size (28×28, 1) and we apply SGD with learning rate 0.001 to optimize
it. For the two-layer network on CIFAR10, the first layer is of size (3×32×32, 1000) and the second layer is
of size (1000, 1). We use ReLU activation between the two layers and apply SGD with learning rate 0.0001
to optimize it. For the one-layer network on CIFAR10, the layer is of size (3×32×32, 1) and we apply SGD
with learning rate 0.00015 to optimize it.

Results. Fig. 2 top and bottom (middle) figures illustrate the absolute value of confidence score and its
variance (during training) for MNIST. Fig. 2 top and bottom (right) figures illustrate the absolute value
of confidence score and its variance (during training) for CIFAR10. All experiments are run over 40,000
epochs, and we report the confidence score related measurements over all epochs. From these plots we can
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see that confidence collapse occurs in the two-layer ReLU network but not in the one-layer counterpart for
MNIST and CIFAR10. Thus, by querying confidence scores, the two-layer ReLU network are easier to leak
membership privacy than the one-layer network.

7 Discussions and Conclusion

Limitation. We assume that our networks are optimized by gradient flow, which requires the step size
of gradient descent to be arbitrarily small. However, we point out that gradient flow is a frequently used
tool to analyze the dynamics of neural networks. For example, except its applications to implicit bias Lyu
& Li (2019); Soudry et al. (2018), gradient flow also serves as a key assumption in neural tangent kernel
Jacot et al. (2018), overparameterized feature learning Chen et al. (2022), robustness of neural networks
Vardi et al. (2022), etc. Lyu & Li (2019) also showed that gradient descent on homogeneous networks
converges approximately to the KKT point of the max-margin problem Eq. 3. Analyzing the phenomenon
of confidence collapse by gradient descent with finite step size is an interesting open problem. Moreover, our
current analysis is for binary classification, and it is interesting to extend it to multi-class problems.

In this work, we prove a separation law of membership privacy between a linear model and a two-layer
network under confidence-based attacks: two-layer ReLU networks trained by gradient descent provably
leak membership privacy, while linear models leak less membership privacy with the same training dataset
and algorithm. Experiments show that confidence collapse occurs in the two-layer ReLU network but not in
the one-layer counterpart. From the confidence scores, it is easy to infer whether a given sample is involved
in the training phase. Our results shed light on understanding the membership privacy in neural networks.
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A Proof of Theorem 1

Proof. The weight of the first layer of the neural network is (w1, ..., wk) ∈ Rd×k, the weight of the second
layer is (v1, ..., vk). We denote J := [k], J+ = {i ∈ [k]|vi ≥ 0}, J− = {i ∈ [k]|vi < 0} and I := [n], I+ =
{i ∈ [n]|yi = 1}, I− = {i ∈ [N ]|yi = 1}. Notice that I+ and I− are non-empty as the dataset contains
at least one sample with label 1 or -1, and thus J+ and J− are also non-empty. Denote X = {xi}, p :=
maxi,j∈I,xj ̸=±xi |xT

i xj |, and q := mini∈[n] ||xi||22. In this work we mainly use the following lemma from Lyu
& Li (2019).

Lemma 1 (Theorem 4.4 of (Lyu & Li, 2019)). Let Φ(·; θ) be a homogeneous neural network parame-
terized by θ. Consider minimizing either the exponential or the logistic loss over a binary classification
dataset {(xi, yi)}n

i=1 using gradient flow. Assume that there exists time t0 such that L(θ(t0)) < 1, namely,
yiΦ(xi; θ(t0); ) > 0 for every xi. Then, gradient flow converges in direction to a first order stationary point
(KKT point) of the following maximum margin problem in parameter space:

min
θ

1
2 ||θ||22 s.t. yiΦ(xi; θ) ≥ 1, ∀i ∈ [n]. (7)

With Lemma 1, gradient flow on the two-layer ReLU network Φ with weight W and v converges in direction
to the KKT point of a maximum margin problem

min
θ

1
2

(
||v||22 +

k∑
i=1

||wi||22

)
, s.t. yiΦ(xi) = yi

k∑
i=1

viσ(wT
i xi) ≥ 1, ∀i ∈ [n],

where k is the width of the network.

We are now ready to prove Theorem 1 by contradiction. Assume there exists l ∈ [n] such that ylΦ(xl) > 1.
Then by Corollary 2, λl = 0. If l ∈ I+, then yl = 1 and

1 < ylΦ(xl) =
k∑

i=1
viσ(wT

i xl)

≤
∑

j∈J+

vjσ(wT
j xl).
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If xl− = −xl /∈ X, by Eq. 5 we have

∑
j∈J+

vjσ(wT
j xl) =

∑
j∈J+

vjσ(
∑
i∈I

λiyivjσ′
i,jxT

i xl)

≤
∑

j∈J+

vjσ(
∑

i∈I/{l}

λiyivjσ′
i,jxT

i xl)

≤
∑

j∈J+

vj

∑
i∈I/{l}

λi|yivj |σ′
i,jp

≤
∑

j∈J+

∑
i∈I

λiv
2
j σ′

i,jp.

If xl− = −xl ∈ X, by Eq. 5 we have

∑
j∈J+

vjσ(wT
j xl) =

∑
j∈J+

vjσ(
∑
i∈I

λiyivjσ′
i,jxT

i xl)

≤
∑

j∈J+

vjσ(
∑

i∈I/{l,l−}

λiyivjσ′
i,jxT

i xl + λl−yl−vjσ′
l−,jxT

l−
xl)

≤
∑

j∈J+

∑
i∈I

λiv
2
j σ′

i,jp.

So
∑

j∈J+

vjσ(wT
j xl) ≤

∑
j∈J+

∑
i∈I λiv

2
j σ′

i,jp always holds, then we have

∑
j∈J+

vjσ(wT
j xl) ≤

∑
j∈J+

∑
i∈I

λiv
2
j σ′

i,jp

≤ p|I| max
i∈I

∑
j∈J+

λiv
2
j σ′

i,j

= np max
i∈I

∑
j∈J+

λiv
2
j σ′

i,j .

Thus we have maxi∈I

∑
j∈J+

λiv
2
j σ′

i,j > 1
np . Analogously we have maxi∈I

∑
j∈J−

λiv
2
j σ′

i,j > 1
np if l ∈ I−. Because

the symmetric of J+ and J− we can assume w.l.o.g. that maxi∈I

∑
j∈J+

λiv
2
j σ′

i,j ≥ maxi∈I

∑
j∈J−

λiv
2
j σ′

i,j .

Consider r = arg maxi∈I

∑
j∈J+

λiv
2
j σ′

i,j , we must have λr > 0 as
∑

j∈J+

λrv2
j σ′

r,j > 1
np > 0. Thus by Corollary 2,

yrΦ(xr) = 1.

Denote xr− = −xr, By Eq. 5, we have

wT
j xr = (

∑
i∈I

λiyivjσ′
i,jxT

i )xr

=
∑
i∈I

λiyivjσ′
i,jxT

i xr

= yrvj(λrσ′
r,j − I({xr− ∈ X})λr−σ′

r−,j)||xr||2 +
∑

i∈I/{r,r−}

λiyivjσ′
i,jxT

i xr.

(8)

Now we consider two case: r ∈ I− and r ∈ I+.
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Case 1. r ∈ I−, ∀j ∈ J+. If wT
j xr ≥ 0, then σ′

r,j ≥ 0, wT
j xr− ≤ 0, σ′

r−,j = 0

0 ≤ wT
j xr

= yrvj(λrσ′
r,j − I({xr− ∈ X})λr−σ′

r−,j)||xr||2 +
∑

i∈I/{r,r−}

λiyivjσ′
i,jxT

i xr

= −vjλrσ′
r,j ||xr||2 +

∑
i∈I/{r,r−}

λiyivjσ′
i,jxT

i xr

≤ −λrvjσ′
r,jq +

∑
i∈I/{r,r−}

λivjσ′
i,jp.

So λrvjσ′
r,jq ≤

∑
i∈I/{r,r−} λivjσ′

i,jp when wT
j xr ≥ 0.

If wT
j xr < 0, then σ′

r,j = 0 and

∑
i∈I/{r}

λivjσ′
i,jp ≥ 0 = λrvjσ′

r,jq.

Thus λrvjσ′
r,jq ≤

∑
i∈I/{r,r−} λivjσ′

i,jp holds for all j ∈ J+. So we have

∑
j∈J+

λrv2
j σ′

r,j ≤ p

q

∑
j∈J+

vj

∑
i∈I/{r,r−}

λivjσ′
i,j

≤ np

q
max
i∈I

∑
j∈J+

λiv
2
j σ′

i,j

≤ 1
3 max

i∈I

∑
j∈J+

λiv
2
j σ′

i,j .

This is in contradiction to the choice of r.

Case 2. r ∈ I+

1 = yrΦ(xr) =
k∑

i=1
viσ(wT

i xr)

=
∑

j∈J+

vjσ(wT
j xr) +

∑
j∈J−

vjσ(wT
j xr)

=
∑

j∈J+

vj(wT
j xr)σ′

r,j +
∑

j∈J−

vjσ(wT
j xr).

15
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Consider
∑

j∈J+

vi(wT
j xr)σ′

r,j . Notice that σ′
r,j > 0 induces σ′

r−,j = 0. By Eq. 8, we have

∑
j∈J+

vj(wT
j xr)σ′

r,j

=
∑

j∈J+

vjσ′
r,j

yrvj(λrσ′
r,j − I({xr− ∈ X})λr−σ′

r−,j)||xr||2 +
∑

i∈I/{r,r−}

λiyivjσ′
i,jxT

i xr


=

∑
j∈J+,σ′

r,j
>0

λrv2
j σ′

r,j ||xr||2 +
∑

i∈I/{r,r−}

λiyiv
2
j σ′

i,jxT
i xr


≥

∑
j∈J+,σ′

r,j
>0

λrv2
j σ′

r,jq −
∑

i∈I/{r,r−}

λiv
2
j σ′

i,jp


≥ q

∑
j∈J+,σ′

r,j
>0

λrv2
j σ′

r,j + q
∑

j∈J+,σ′
r,j

=0

λrv2
j σ′

r,j − np max
i∈I

∑
j∈J+

λiv
2
j σ′

i,j

= (q − np) max
i∈I

∑
j∈J+

λiv
2
j σ′

i,j .

Consider
∑

j∈J−

vjσ(wT
j xr), by Eq. 8 we have

∑
j∈J−

vjσ(wT
j xr)

=
∑

j∈J−,σ′
r,j

>0

vj

yrvj(λrσ′
r,j − I({xr− ∈ X})λr−σ′

r−,j)||xr||2 +
∑

i∈I/{r,r−}

λiyivjσ′
i,jxT

i xr


=

∑
j∈J−,σ′

r,j
>0

vj

vjλrσ′
r,j ||xr||2 +

∑
i∈I/{r,r−}

λiyivjσ′
i,jxT

i xr


≥

∑
j∈J−,σ′

r,j
>0

v2
j λrσ′

r,jq −
∑

i∈I/{r,r−}

λiv
2
j σ′

i,jp


≥
∑

j∈J−

v2
j λrσ′

r,jq −
∑

j∈J−

∑
i∈I/{r,r−}

λiv
2
j σ′

i,jp

≥ q
∑

j∈J−

v2
j λrσ′

r,j − np max
i∈I

∑
j∈J−

λiv
2
j σ′

i,j .

Combining the above results we have

1 ≥
∑

j∈J+

vi(wT
j xr)σ′

r,j +
∑

j∈J−

vjσ(wT
j xr)

≥ (q − np) max
i∈I

∑
j∈J+

λiv
2
j σ′

i,j − np max
i∈I

∑
j∈J−

λiv
2
j σ′

i,j

≥ (q − 2np) max
i∈I

∑
j∈J+

λiv
2
j σ′

i,j

> (q − 2np) 1
np

> 1.

Thus, we reach a contradiction.
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B Proof of Proposition 1

Consider the new training set {(x′
i := [xi, ai], yi)}n

i=1. Firstly, the norm of the new sample x′
i is given by√

||xi||22 + ||ai||22 =
√

||xi||22 + 3np′. The inner product of x′
i and x′

j (i ̸= j) is x′
i
T x′

j = xT
i xj +aT

i aj = xT
i xj .

Thus
p := max

i,j∈[n],xj ̸=±xi

|x′
i
T x′

j | ≤ max
i,j∈I

|xT
i xj | =: p′.

As the new dataset {(x′
i, yi)}n

i=1 is in Rn+d × {−1, 1}, we have a) n + d ≥ n, and b) mini∈[n] ||x′
i||2

2
3p ≥ 3np′

3p ≥
3np
3p = n. Thus n ≤ min{n + d,

mini∈[n] ||x′
i||2

2
3p′ } always holds. By applying Theorem 1 to the new dataset

{(x′
i, yi)}n

i=1, we have that the confidence collapse occurs on {(x′
i, yi)}n

i=1.

C Proof of Theorem 2

Proof. We calculate the probabilistic mass of {x ∈ Rd : Φ(x) = ±γ} under the distribution D. Firstly, we
consider the solution of Φ(x) = ±γ. By the stationarity condition of the KKT point (Corollary 1), we have
ws =

∑
i∈I λiyivsσ′

i,sxi. Plugging it into Φ(x) = ±γ, where x = (x(1), ..., x(d)), we obtain

±γ = Φ(x) =
∑
j∈J

vjσ(wT
j x) =

∑
j∈J

vjI({wT
j x > 0})wT

j x

=
∑
j∈J

vjI({wT
j x > 0})

d∑
i=1

wjixi =
d∑

i=1
(
∑
j∈J

vjI({wT
j x > 0})wji)xi.

Denote aj(x) =
∑

j∈J vjI({wT
j x > 0})wji, notice aj(x) can take at most 2j values for different x, thus

a(x) = (a1(x), ..., ad(x)) has at most 2jd different choices. Denote A := {a(x)|x ∈ Rd}, S(a) := {x ∈
Rd|aT x = ±γ} we must have R(X, Φ) ⊂ ∪a∈AS(a). Notice S(a) is just two hyperplanes aT x = ±γ, for
an arbitrary continuous distribution on Rd, assuming w.l.o.g. aT = (||a||2, 0, ..., 0) and considering the case
aT x = 1, we have

Pr(S(a), aT x = γ) = Pr({x|x1 = γ

||a||2
})

= lim
δ→0

(
Pr({x|x1 ≤ γ

||a||2
}) − Pr({x|x1 ≤ γ

||a||2
− δ})

)
= 0.

Analogously Pr(S(a), aT x = −γ) = 0, so we have Pr(S(a)) = 0. Thus

Pr(R(X, Φ)) ≤
∑
a∈A

S(a) = |A| · 0 = 0.

So for an arbitrary xtest sampled from D, PrD(xtest ∈ R(X, Φ)) = 0

D Proof of Theorem 3

Proof. We prove Theorem 3 by constructing a hard instance, which satisfies the assumption on the training
dataset but does not suffer from confidence collapse by one-layer neural networks. Based on Eq. 3, the
max-margin problem is formulated by

min
θ

1
2(||w||22 + b2), s.t. yi(wT xi + b) ≥ 1, ∀i ∈ [n].

Consider (x1, +1), (x2, +1), (x3, +1), (x4, −1), where xi ∈ Rd, d > 4, x2 = −x1, xT
3 x1 = 0, xT

4 x1 =
0, xT

3 x4 = −ϵ, and ϵ is an arbitrary positive constant less than 1/3 (e.g., x1 = (
√

d, 0, ..., 0), x2 =
(−

√
d, 0, ..., 0), x3 = (0,

√
d, 0, ..., 0), and x4 = (0, −ϵ√

d
,
√

d − ϵ2

d , 0, ..., 0)).
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Firstly, by q := mini∈[n] ||xi||2 = d and p := maxi,j∈[n],xj ̸=±xi
|xT

i xj | = ϵ, we can easily verify that 4 ≤
min{d, q

3p }. Besides, we can use a one-layer neural network Φ(x) = (x3−x4)T x+1 to classify them correctly:

wT x1 + b = 1 > 0,

wT x2 + b = 1 > 0,

wT x3 + b = d + |ϵ| + 1 > 0,

wT x4 + b = −d − |ϵ| + 1 < 0,

which means the dataset is linearly separable. Next, following the KKT stationarity condition of the opti-
mization problem Eq. 6, there exist λi ≥ 0, i ∈ [4] such that w =

∑4
i=1 λiyixi. For the optimization problem

Eq. 6, confidence collapse only occurs with yiΦ(xi) = 1, i ∈ [4]. Otherwise by complementary slackness
we will have λi = 0, i ∈ [4], which implies w = b = 0 and all samples are misclassified. Pluging w into
yiΦ(xi) = 1, i ∈ [4], we have

wT x1 + b =
4∑

i=1
λiyix

T
i x1 + b = (λ1 − λ2)d + b = 1,

wT x2 + b =
4∑

i=1
λiyix

T
i x2 + b = (λ2 − λ1)d + b = 1,

which induce b = 1. By

wT x3 + b =
4∑

i=1
λiyix

T
i x3 + b = λ3d + λ4|ϵ| + 1 = 1,

we have λ3 = λ4 = 0, at this time

wT x4 + b =
4∑

i=1
λiyix

T
i x4 + b = −λ3|ϵ| − λ4d + 1 = 1,

which reaches a contradiction (y4 = −1).

Denote by γ = arg minx∈X |wT x + b| and Γ = arg maxx∈X |wT x + b|. Confidence non-collapse implies Γ is
strictly larger than γ. By Definition 1, we have R(X, Φ) = {x ∈ Rd : γ ≤ |wT x + b| ≤ Γ}. We can rotate
the coordinate such that wT = (||w||2, 0, ..., 0). Let x = (x(1), ..., x(d)) and D′ be the new distribution after
rotation. We have

Pr
D

(R(X, Φ)) = Pr
D′

({
x : γ − b

||w||2
≤ x(1) ≤ Γ − b

||w||2

}
∪
{

x : −Γ − b

||w||2
≤ x(1) ≤ −γ − b

||w||2

})
.

As PrD′

(
{x : γ−b

||w||2
≤ x(1) ≤ Γ−b

||w||2
}
)

= F
(1)
D′ ( Γ−b

||w||2
) − F

(1)
D′ ( γ−b

||w||2
) > 0 (this is because D is supported on

Rd), where F
(i)
D′ is the marginal cumulative density function of D′ on axis i, we have PrD(R(X, Φ)) > 0.
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