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Abstract
Entity linking is a prominent thread of research
focused on structured data creation by link-
ing spans of text to an ontology or knowledge
source. We revisit the use of structured predic-
tion for entity linking which classifies each indi-
vidual input token as an entity, and aggregates
the token predictions. Our system, called SPEL
(Structured prediction for Entity Linking) is a
state-of-the-art entity linking system that uses
some new ideas to apply structured prediction
to the task of entity linking including: two re-
fined fine-tuning steps; a context sensitive pre-
diction aggregation strategy; reduction of the
size of the model’s output vocabulary, and; we
address a common problem in entity-linking
systems where there is a training vs. inference
tokenization mismatch. Our experiments show
that we can outperform the state-of-the-art on
the commonly used AIDA benchmark dataset
for entity linking to Wikipedia. Our method is
also very compute efficient in terms of number
of parameters and speed of inference.

� https://github.com/shavarani/SpEL

1 Introduction

Knowledge bases, such as Wikipedia and Yago
(Pellissier Tanon et al., 2020), are valuable re-
sources that facilitate structured information extrac-
tion from textual data. Entity Linking (Shen et al.,
2014) involves identifying text spans (mentions)
and disambiguating the concept or knowledge base
entry to which the mention is linked.
Entity linking can be viewed as three interlinked
tasks (Broscheit, 2019; Poerner et al., 2020; van
Hulst et al., 2020):
(1) Mention Detection (Nadeau and Sekine, 2007)

to scan the raw text and identify the potential
spans that may contain entity links.

(2) Candidate Generation (e.g. Fang et al., 2020)
to match each potential span with a number
of potential entity records in the knowledge
base.
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Figure 1: SPEL (Structured prediction for Entity Link-
ing). In this example, we demonstrate top 3 most proba-
ble entities for each tokenized subword. In the first
phrase, the most likely entity identified for Grace
Kelly is incorrect. We use a candidate set for this
mention to filter out irrelevant entity links with a high
probability. In the second phrase, Mika is correctly
narrowed down to the top 3 potential related entities.
However, subword predictions do not consistently agree
on the most probable prediction. In such cases, we cal-
culate the average predicted probability for each entity
across subwords and select the entity with the highest
average probability.

(3) Mention Disambiguation (Ratinov et al., 2011;
Yamada et al., 2022) to select one of the poten-
tial entity records for each detected mention.

An end-to-end entity linking system does all three
tasks and links text spans to concepts. The system
can either have independently modelled compo-
nents (Piccinno and Ferragina, 2014; van Hulst
et al., 2020) or jointly modelled components (Kolit-
sas et al., 2018; De Cao et al., 2021a).

Similar to almost all NLP tasks, recent en-
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tity linking models use pre-trained representation
learning methods that are based on Transformers
(Vaswani et al., 2017). These methods commonly
utilize bidirectional language models like BERT
(Devlin et al., 2019) or auto-regressive causal lan-
guage models such as GPT (Brown et al., 2020)
or BART (Lewis et al., 2020), which are then fine-
tuned on specific entity linking training datasets.
In a number of such techniques, entity linking is
framed as another well-studied problem, such as
sequence-to-sequence translation (De Cao et al.,
2021b) or question answering (Zhang et al., 2022).

Entity linking can be viewed as sequence tagging
using structured prediction1, aiming to assign one
of the finitely many classes to every input utterance.
This approach involves using a pre-trained model
to encode each input subword token into a multi-
layer context-aware dense vector representation. A
classifier head calibrates each token representation
to predict the entity for each subword token. Due
to the large number of possible entities and issues
with consistency of entity prediction across multi-
ple subword tokens, structured prediction for entity
linking (surprisingly) has not been studied in-depth.
Our contributions in this paper are as follows:

(1) A new structured prediction framework for
entity linking called SPEL (Figure 1). We
demonstrate that SPEL establishes a new
state-of-the-art for Wikipedia entity linking
on the commonly used AIDA (Hoffart et al.,
2011) dataset.

(2) Two separate and refined fine-tuning steps.
One for general knowledge about Wikipedia
concepts and one for specifically tuning on
the AIDA dataset.

(3) A context sensitive prediction aggregation
strategy that enables subword-level token
classification while enforcing word-level and
span-level prediction coherence. This does
not incur additional inference time but dras-
tically enhances the quality of the predicted
annotation spans.

(4) We use the in-domain mention vocabulary to
create a fixed candidate set. We use this to
improve the efficiency and accuracy of entity
linking.

1Structured prediction has shown successful enhancements
in various NLP tasks, including Dependency Parsing (Zhou
et al., 2015), Question Answering (Segal et al., 2020), and
Machine Translation (Shavarani and Sarkar, 2021).

(5) Addressing the training/inference tokeniza-
tion mismatch challenge in previous works
which arises when differences in tokeniza-
tion between training and testing phases lead
to discrepancies. To address this challenge,
we introduce an additional fine-tuning step
where the model is fine-tuned on tokenized se-
quences without explicit mention location in-
formation. This encourages the model to learn
robust representations that are not dependent
on specific tokenization patterns, improving
its generalization to the mention-agnostic tok-
enization at inference.

(6) New pre-training and inference ideas that can
achieve a new state of the art with much better
compute efficiency (fewer parameters) and
much faster inference speed than previous
methods.

(7) We have annotated and released
AIDA/testc, a new entity linking
test set for the AIDA dataset.

(8) Simplify and speed up the evaluation process
of entity linking systems using the GERBIL
platform (Röder et al., 2018) by providing a
Python equivalent of its required Java middle-
ware.

We introduce recent entity linking methods in
Section 2; explain our approach to structured pre-
diction for entity linking and our context sensitive
prediction aggregation strategy in Section 3 with
comprehensive experiments in Section 4.

2 Related Work

Entity linking can be framed as another well-
studied task and the best solution for that task is
applied. Autoregressive encoder-decoder sequence-
to-sequence translation is one such approach.
De Cao et al. (2021b) consider the input text as
the source for translation and the text is annotated
with Wikimedia markup containing the mention
spans and the entity for each mention. Instead of
mapping the entity identifiers into a single id (this
is the default in many techniques including this
work because the approach can be easily ported
to ontologies other than Wikipedia), their model
generates the entity label in a token-by-token ba-
sis (it generates the Wikipedia URL one subword
at a time). The generation process follows a con-
strained decoding schema that prevents the model
from producing invalid entity URLs while limiting



the generated output to the entities in a predefined
candidate set (discussed in Section 3.1).

De Cao et al. (2021a) use a BERT-style bidirec-
tional model fine-tuned to identify potential spans
(mention detection) by learning spans using a be-
gin probability and an end probability for each
subword in the input text. For each potential span,
they use a generative LSTM-based (Hochreiter and
Schmidhuber, 1997) language model to generate
the entity identifiers (token-by-token), and limit the
generation process to pre-defined candidate sets.

Mrini et al. (2022) frame entity linking as a
sequence-to-sequence translation task using BART
(Lewis et al., 2020). They duplicate the BART de-
coder three times to fine-tune the model in a multi-
task setting. The two additional decoder modules
are trained using auxiliary objectives of mention de-
tection and re-ranking. While this training method
increases the model size during training, they mit-
igate increased model size and speed at inference
time by excluding the auxiliary decoder modules
and employing sampling and re-ranking techniques
on the generated target sequences.

Zhang et al. (2022) use Question Answering as a
way to frame the entity linking task. They suggest
a two-step entity linking model in which they use
a fine-tuned Transformer-based BLINK (Wu et al.,
2020) model to find all the potential entity records
that might exist in the text and then utilize a fine-
tuned question answering ELECTRA (Clark et al.,
2020) model to identify the matching occurrences
of the potential entities discovered in the first step.
This approach obtains high accuracy; however, it
is very resource intensive and inference is slow.

Structured prediction (subword token multi-label
classification) is the other well-studied problem.
Broscheit (2019) proposes a very simple entity link-
ing model which places a classification head on top
of a BERT language model and directly classifies
each subword representation using a softmax over
all the entities known to the model.

Our work also uses structured prediction because
it is one of the most lightweight techniques in terms
of compute cost and inference speed. We extend
the structured prediction model in this work by
(1) utilizing a context sensitive prediction aggrega-
tion strategy to form meaningful span annotations
(Section 3.2), (2) addressing a training/inference
tokenization mismatch issue (Section 3.3), (3) ex-
amining the role of different types of candidate
sets (Section 3.1) in curating the predicted results,

and (4) optimizing the implementation of the struc-
tured prediction model. We obtain more than 6.1%
points Micro-F1 improvement as well as more than
10 times reduction in required disk space, and close
to 4 times reduction in the required GPU mem-
ory (in base case) compared to Broscheit (2019).
Our approach is also faster at inference time than
previous Transformer-based methods.

A number of recent techniques focus on en-
hancing the entity linking knowledge in BERT (or
one of its variations) and utilize one or more such
knowledge-enhanced models to perform the task of
entity linking. Peters et al. (2019) inject Wikipedia
and Wordnet information into the last few layers
of BERT, Poerner et al. (2020) inject pre-trained
Wikipedia2Vec (Yamada et al., 2020a) entity em-
beddings into the input layer of the language model
while freezing the rest of its parameters, and Mar-
tins et al. (2019) leverage a Stack-LSTM (Dyer
et al., 2015) Named Entity Recognition model to
enhance entity linking performance using multi-
task learning to improve entity linking. These ap-
proaches are Wikipedia-centric and while we also
experiment on Wikipedia exclusively, our approach
can be used on any entity-linking dataset that has
entities from other ontologies such as the MedMen-
tions dataset (Mohan and Li, 2019) which links to
concepts in UMLS ontology (Bodenreider, 2004).

Kolitsas et al. (2018) jointly model mention
detection and mention disambiguation using an
LSTM-based architecture while reusing the candi-
date sets created by Ganea and Hofmann (2017)
as a replacement for the candidate generation step,
and Kannan Ravi et al. (2021) follow a similar
framework while modeling each of mention detec-
tion and mention disambiguation using separate
BERT models. Feng et al. (2022) compute en-
tity embeddings (instead of using pre-trained ones)
using the average of the subword embeddings of
the candidates and compare them to the average
of the subword embeddings for the potential span
(training a Siamese network; Bromley et al., 1993).
Févry et al. (2020) investigate pre-training strate-
gies specifically tailored for Transformer models to
perform entity linking, diverging from the conven-
tional use of pre-trained BERT models. And, van
Hulst et al. (2020) propose a modular configuration
that composes mention detection, candidate gen-
eration, and mention disambiguation in a pipeline
approach, incorporating the most promising com-
ponents from prior research.



In Section 4.4, we conduct experiments to com-
pare SPEL to the methods discussed in this section.

3 Entity Linking

Formally, entity linking receives a passage (p) con-
taining words {w1, ..., wn} and produces a list con-
taining ℓ span annotations. Each span annotation
is expected to be a triplet of the form (span start,
span end, entity identifier). The span start and
span end values are expected to be character posi-
tions on the raw input p, and the entity identifier
values are selected from a predefined vocabulary
of entities (e.g. there would be approximately 6
million entities to choose from when entity linking
to Wikipedia). The massive entity vocabulary size
increases the model’s hardware requirements and
in some cases renders the task intractable.

3.1 Candidate Sets

To solve the entity vocabulary size problem, a com-
mon approach is to limit to K most frequent enti-
ties in the knowledge base2. This vocabulary can
be simply considered as the fixed candidate set
for linking each mention to the knowledge base.
Where no more information is available, the model
will have to choose one entity from this fixed can-
didate set.

The selected fixed candidate set may lack many
of the expected entity annotations at inference.
Consequently, even if the model is highly capa-
ble, it may perform poorly during inference due to
its inability to suggest the expected entities. Recog-
nizing this challenge, there is a consensus among
existing literature (Kolitsas et al., 2018; Broscheit,
2019; Peters et al., 2019; Poerner et al., 2020) to
augment the fixed candidate set by including the
expected entities necessary for inference. We adopt
a similar approach to create the fixed candidate set,
following the same line of reasoning as previous
studies. Nonetheless, it’s important to underscore
that our adherence to this approach is driven by
the desire for consistency with prior research; our
framework, however, does not necessitate this spe-
cific method for effective functioning. In practical
scenarios, one straightforward approach to con-
struct the fixed candidate set is to base it on the
anticipated entities (any subset of knowledge base
entities that are pertinent to the task at hand) to be
detected by SPEL.

2For Wikipedia, we can define an entity frequency as the
number of times a title is hyperlinked in the other pages.

An alternative is to use mention-specific candi-
date sets (Kolitsas et al., 2018; Peters et al., 2019;
Kannan Ravi et al., 2021; De Cao et al., 2021b,a).
Mention-specific candidate sets can be divided into
two groups:

(1) context-agnostic mention-specific sets which
are usually generated over large amounts of
annotated text and try to model the prob-
ability of each mention span to all possi-
ble entity identifiers without assuming a spe-
cific context in which the mention would
appear. KB+Yago3 (Ganea and Hofmann,
2017) contains candidate lists for approxi-
mately 200K mentions created over the entire
English Wikipedia combined with the Yago
dictionary of (Hoffart et al., 2011).

(2) context-aware mention-specific sets can be
constructed if there is a method for identi-
fying mentions and a set of candidates for
those mentions. For example, Pershina et al.
(2015) have built such candidate sets, called
PPRforNED4. Such lists have been primarily
suggested for the task of entity disambigua-
tion where the mention is provided in the in-
put. As gold mentions are not available for
real-world use cases of entity linking, this type
of candidate sets have fallen out of favor.

Mention-specific candidate sets consist of many
entity identifiers and the correct entity identifier is
not guaranteed to exist given the mention span.

3.2 Structured Prediction for Entity Linking

For a sequence of subwords S = {s1, s2, ..., sn}5,
we employ RoBERTa (Liu et al., 2019), in both
base and large sizes, as our underlying model
M to encode S into H ∈ Rn×d where d is the
hidden representation dimension of M . Each repre-
sentation hi ∈ H , i ∈ 1, . . . , n is then transformed
into a distribution over the fixed candidate set of
size KB using a transformation matrixW ∈ Rd×KB.
This results in Pi = hiW , where Pi represents the
probability distribution for the ith subword in the
input sequence.

When we set up fine-tuning for this task, we
use hard negative mining (Gillick et al., 2019) to
find the most probable incorrect predictions in the

3https://github.com/yifding/deep_ed_PyTorch
4https://github.com/masha-p/PPRforNED
5When feeding a long text in training and inference, we

split the text into smaller overlapping chunks.
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batch6. In each fine-tuning step, we update the
network based on the subword classification proba-
bilities of the hard negative examples as well as the
expected prediction. To increase inference speed,
the classification head does not normalize the pre-
dicted scores.

We employ binary cross-entropy with logits,
Equation (1), as our loss function, which is calcu-
lated over many factors. Let N represent the total
number of selected examples (ψ) comprising the
one positive example corresponding to the expected
prediction and the negative examples. Additionally,
ai,j takes a value of 1 when the jth member of ψ
correctly points to the entity identifier for subword
si, pi,j denotes model’s predicted score for link-
ing the jth member of the selected examples to the
ith subword, and σ is the sigmoid function, which
maps the scores to [0, 1].

Li = − 1

N

N∑
j=1

[
ai,j · log

(
σ(pi,j)

)
(1)

+ (1− ai,j) · log
(
1− σ(pi,j)

)]
During inference we collect the top k predictions

for each subword i based on the predicted probabil-
ities in Pi. We then collect subwords that belong to
the same word into a single group, which we call
the word annotation. For each word annotation,
we generate an aggregated entity identifier predic-
tion set by taking the union of the entity identifiers
predicted for the subwords. We then compute the
weighted average of the prediction probabilities
for each entity identifier to obtain the word-level
probability score over entities.

Consecutive word-level entity labels when they
refer to the same concept are joined into a single
mention span over that phrase.

When a mention-specific candidate set is avail-
able, and the mention surface form matches one
of the mentions in the candidate set, we filter out
any predictions from the phrase annotation that are
not present in the candidate set, regardless of their
probability7. The final prediction for an entity span
is generated based on the most probable prediction

6We add random negative examples in addition to hard neg-
atives to make sure we get to 5K negative examples for each
batch when fine-tuning on CoNLL/AIDA and 10K negatives
for general fine-tuning.

7The presence of a mention-specific candidate set is not a
prerequisite for this technique to be effective.

in the phrase annotations, excluding the ones an-
notated with O (which means the phrase is not an
entity). As an additional post-processing cleanup
step, we reject phrase annotations that span over a
single punctuation subword (e.g. a single period or
comma) or a single function (sub)word (e.g. and,
by, ...). In such cases, we manually override the
model’s prediction to O.

This context sensitive prediction aggregation
strategy leads to improved performance and en-
hances prediction results in inference. Our strategy
ensures that annotation spans do not begin or end
inside a word8, and the conflicts between the sub-
word predictions within a word are resolved by
the average prediction probability for each entity
identifier.

This simpler method to ensure label consistency
does better than using a CRF layer (Lafferty et al.,
2001). Although our experiments show that a CRF
layer does not improve our model, our readers can
think of the suggested strategy as a domain-tailored,
non-parametric, and rule-driven version of a CRF
layer which guides the model to unify the predicted
subword-level entity predictions considering the
local context. Based on our experiments (Table
2), although we do not explicitly model Mention
Detection (as predicting the span start and span
end probability scores or separate BIO tags) for
each subword in inference time, we observe a high
in-domain accuracy in distinguishing O spans from
non-O spans in predictions as a result of using the
context sensitive prediction aggregation strategy.

Our modelling framework, SPEL, stands for
Structured Prediction for Entity Linking.

3.3 Fine-tuning Procedure

Heinzerling and Inui (2021) argue that pre-trained
language models can produce better representations
when they are first fine-tuned on a much larger
entity-linked training data (almost like a further pre-
training step) and then subsequently fine-tuned for
the entity-linking task. We perform such a multi-
step fine-tuning procedure: first fine-tuning on a
large dataset encompassing general knowledge on
the set of linked concepts and then fine-tuning on
an in-domain dataset specific to the target domain
over which we aim to perform entity linking.

8For instance, in the word U.S., if in the U.S part, the
subwords have high likelihood for the concept The United
States and the ending . refers to an O, the conflict is
resolved so that the entire word U.S. is linked to The
United States.



General knowledge fine-tuning. In the first
step, we fine-tune the pre-trained language model
using text that includes links to the knowledge base
(in our experiments, we use a large subset of En-
glish Wikipedia9). As mentioned in (Broscheit,
2019), it helps if this data is aware of the mentions
(using special space character subwords before and
after each span that is linked to an entity). This
helps the model learn the identification of the start-
ing and ending subwords in entity mention spans.
However, this imposes a mismatch in the distri-
butions of the data in fine-tuning compared to in-
ference, where the model does not have access to
the entity mentions to perform the customized to-
kenization. To address this issue, as a subsequent
fine-tuning step, we iterate again through the large
entity-linked dataset which is re-tokenized without
the knowledge of the mention spans.

Domain specific fine-tuning. In the third and
last fine-tuning step, we refocus the model’s at-
tention to the in-domain dataset annotated with a
fixed candidate set which usually is a subset of
all the knowledge base entities that the model has
observed in the previous two fine-tuning steps. Sim-
ilar to the second fine-tuning step, we tokenize the
in-domain dataset without the knowledge of the
mention spans.

4 Experiments

4.1 Data
For our experiments, we focus on Wikipedia as the
knowledge base and we use the following datasets
for the fine-tuning steps mentioned in Section 3.3.

Wikipedia we use the 20230820 dump of
Wikipedia (with approximately 238K documents),
and we use the script from (Broscheit, 2019) to
handle incomplete annotations, perform mention-
aware customized tokenization, and compute the
average probability of linking to no entity (called
the Nil probability) for the 1000 most frequent en-
tities. The Nil probability is used to modify the
Wikipedia training data annotations in such a way
that the chance of linking a surface form referring
to a frequent entity to O is almost 0. We construct
the Wikipedia fixed candidate set using the union of
the 500K most frequent mentions in the Wikipedia
dump and the fixed candidate set of AIDA and the
test datasets. We split the content of Wikipedia
pages into chunks consisting of 254 subwords with

9Limited to the articles that contain some presence of the
entities in our selected fixed candidate set.

a 20 subword overlap between consecutive chunks.
After the split, our dataset contains 3,055,221 train-
ing instances with 1000 instances for validation.
We also create a mention-agnostic re-tokenized ver-
sion of this dataset with the same exact mentions
to perform the second step of general knowledge
fine-tuning as explained above.

AIDA (Hoffart et al., 2011) contains manual
Wikipedia annotations for the 1393 Reuters news
stories originally published for the CoNLL-2003
Named Entity Recognition Shared Task (Tjong
Kim Sang and De Meulder, 2003). Its train,
testa, and testb splits contain 946, 216, and
231 documents, respectively. It has a fixed can-
didate set size of 5600 (including O tag) and for
evaluation on the AIDA test sets, we shrink the
classification head in the model to these 5600 can-
didates and disregard the rest of the 500K candi-
dates10.

4.2 Evaluation using GERBIL
The GERBIL platform (Röder et al., 2018) is an
evaluation toolkit (publicly available online) that
eliminates any mistakes and allows for a fair com-
parison between methods. However, GERBIL is a
Java toolkit, while most of modern entity linking
work is done in Python. GERBIL developers rec-
ommend using SpotWrapNifWS4Test (a mid-
dleware tool written in Java) to connect Python
entity linkers to GERBIL. Because of the complex-
ity of this setup, we have not been able to directly
evaluate some of the earlier publications due to
software version mismatches and communication
errors between Python and Java. This is a drawback
that discourages researchers from using GERBIL.
To address this issue, we provide a Python equiv-
alent of SpotWrapNifWS4Test to encourage
entity linking researchers to use GERBIL for fair
repeatable comparisons. We evaluate all SPEL
models using GERBIL in the A2KB experiment
type, and report InKB strong annotation matching
scores for entity linking. Only five of the publica-
tions to which we compare use GERBIL, however,
all report InKB strong Micro-F1 scores allowing a
direct comparison to our work.

4.3 Experimental Setup
For the first general knowledge fine-tuning step
(Section 3.3), as a warm-up to full fine-tuning, we

10Another implementation idea can revolve around mul-
tiplying the predicted output vector into a mask vector that
masks all the candidates not in the expected 5600 entities.



freeze the entire ROBERTA model and only mod-
ify the classification head parameters on top of the
encoder. We fine-tune with this configuration for 3
epochs and subsequently continue with fine-tuning
all model parameters. We stop the fine-tuning pro-
cess in this phase when the subword-level entity
linking F1 score on the validation set shows no
improvement for 2 consecutive epochs. Following
this, we proceed to the second phase of full fine-
tuning, where we fine-tune all model parameters
using the mention-agnostic re-tokenized Wikipedia
fine-tuning data. Just like phase one, we stop this
phase based on the same criteria. We implement
SPEL using pytorch, utilize Adam optimizer
with a learning rate of 5e−5 to fine-tune the encoder
parameters, and use SparseAdam optimizer with
a learning rate of 0.01 to fine-tune the classifica-
tion head. We run fine-tuning phases one and two
on the large subset of Wikipedia using two Nvidia
Titan RTX GPUs.

For the last phase of fine-tuning on the AIDA
dataset (Section 3.3), we freeze the first four layers
of the encoder (including the embedding layer) as
well as the shrunk classification head parameters,
and we fine-tune the rest of the model parame-
ters for 30 epochs (over the train part of AIDA
dataset). We run this step using one Nvidia 1060
with 6 GBs of GPU memory, and accumulate gradi-
ents (Ott et al., 2018) for 4 batches before updating
model parameters. We perform redirect normaliza-
tion11 on the final predicted spans.

4.4 Experiments and Results

In this section, we conduct experiments to eval-
uate the performance of both SPEL-base and
SPEL-large (referring to the size of the underlying
ROBERTA model) in different configurations con-
cerning the use of candidate sets (Section 3.1), and
report our experimental results over the AIDA test
datasets in Table 1.

In the first configuration, we examine our model
without any mention-specific candidate sets. Our
results show a minimum of 5.3 Micro-F1 score
improvement in AIDA test sets compared to
(Broscheit, 2019) while significantly reducing the
required parameter size on GPU by fourfold, re-
sulting in a 7.2 times increase in inference speed in
base case.

Next, we run SPEL in three other configu-

11See Appendix A for more on this standard normalization
technique.

rations: (1) utilizing the KB+Yago (Ganea and
Hofmann, 2017) context-agnostic candidate set,
(2) employing the PPRforNED (Pershina et al.,
2015) context-aware candidate set, and (3) adapting
PPRforNED to aggregate the candidate informa-
tion for each mention surface form, resulting in a
context-agnostic candidate set, excluding context-
specific information.

Candidate sets help reject many over-generated
spans. If a mention’s candidate set is empty, the
mention span is excluded from further consider-
ation. While this approach typically leads to im-
proved precision and subsequent enhancement in
F1 score, instances may arise where the model cor-
rectly predicts mentions that are not encompassed
within the candidate sets. This can lead to lower
recall in the evaluation. The observed Micro-F1
score drop when employing KB+Yago candidate
sets compared to the scenario where no mention-
specific candidate set is utilized, can be attributed
to these cases.

SPEL-large using context-aware candidate sets
achieves the highest boost, reporting 2.1 and 2.3
Micro-F1 scores improvement over testa and
testb sets of AIDA, respectively, and establishes
a new state-of-the-art for AIDA dataset. It is note-
worthy to consider that the proposed model by
Zhang et al. (2022) demands significant compu-
tational resources, including tens of gigabytes of
RAM and over 7 and 2.7 times the number of
parameters on GPU compared to SPEL-base and
SPEL-large, respectively. Despite these resource-
intensive requirements, SPEL outperforms Zhang
et al. (2022). The comparison between our results
and that of De Cao et al. (2021a,b) demonstrates
that generating entity descriptions (which can share
lexical information with the mention text) is not
necessary even for high accuracy Wikipedia entity
linking. Our approach can be easily extended to on-
tologies without textual concept descriptions, while
methods that generate entity descriptions cannot.

Lastly, in Table 2, we compare SPEL-base,
which utilizes the context sensitive prediction ag-
gregation strategy to convert subword-level pre-
dicted entity identifiers into span-level predictions,
to the model proposed by De Cao et al. (2021a).
The latter model explicitly models the start and end
positions of the spans for mention detection. We
employ the evaluation script released by De Cao
et al. (2021a) for our assessment. The results
confirm that, despite not using BIO tags or ex-



Approach
EL Micro-F1 #params

on GPU
speed

sec/doctesta testb

Hoffart et al. (2011) (Linear) 72.4 72.8 - -
Kolitsas et al. (2018) (LSTM) 89.4 82.4 330.7M 0.097
Broscheit (2019) (BERT) 86.0 79.3 495.1M 0.613
Peters et al. (2019) (BERT) 82.1 73.7 - -
Martins et al. (2019) (Stack-LSTM) 85.2 81.9 - -
van Hulst et al. (2020) (LSTM) 83.3 82.4 19.0M 0.337
Févry et al. (2020) (Transformer) 79.7 76.7 - -
Poerner et al. (2020) (BERT) 90.8 85.0 131.1M -
Kannan Ravi et al. (2021) (BERT) - 83.1 - -
De Cao et al. (2021b) (BART) - 83.7 406.3M 40.969
De Cao et al. (2021a) (RoBERTa+LSTM)

(no mention-specific candidate set) 61.9 49.4 124.8M 0.268
(using PPRforNED candidate set) 90.1 85.5 124.8M 0.194

Mrini et al. (2022) (BART) - 85.7
(train) 811.5M
(test) 406.2M

-

Zhang et al. (2022) (BLINK+ELECTRA) - 85.8 1004.3M -
Feng et al. (2022) (BERT) - 86.3 157.3M -
SPEL-base (no mention-specific candidate set) 91.3 85.5 128.9M 0.084
SPEL-base (KB+Yago candidate set) 90.6 85.7 128.9M 0.158
SPEL-base (PPRforNED candidate set)

context-agnostic 91.7 86.8 128.9M 0.156
context-aware 92.7 88.1 128.9M 0.156

SPEL-large (no mention-specific candidate set) 91.6 85.8 361.1M 0.273
SPEL-large (KB+Yago candidate set) 90.8 85.7 361.1M 0.267
SPEL-large (PPRforNED candidate set)

context-agnostic 92.0 87.3 361.1M 0.268
context-aware 92.9 88.6 361.1M 0.267

Table 1: Entity Linking evaluation results of SPEL compared to that of the literature over AIDA test sets.
#params on GPU only considers the total number of parameters that will directly effect the cost of GPU acquisition
and does not reflect upon the total amount of data loaded into/from main memory and disk.

plicitly modeling span boundaries, SPEL demon-
strates strong performance in mention detection,
with a high level of accuracy. Its near-perfect pre-
cision scores indicate its ability to minimize over-
generated predictions, contributing to its state-of-
the-art entity linking performance.

4.5 Comparison to OpenAI GPT

Large generative language models are effective
zero shot and few shot learners (Brown et al., 2020)
at many NLP tasks. We evaluate GPT-3.5 and
GPT-4 for the task of entity linking using various
prompts. We frame the problem for the generative
LM as in De Cao et al. (2021b), where it produces
markup around the mentions (described in detail
in Appendix B). Table 3 compares the GPT eval-
uation results to that of SPEL. For a fair compar-
ison, we consider the evaluation results without
any mention-specific candidate sets. Currently the
results are much worse than the state-of-the-art and
using GPT-4 is more expensive. Further research

into few-shot in-context learning on GPT-4 is likely
to improve these results since LLMs have extensive
knowledge about entities but cannot directly reason
about specific Wikipedia URLs12.

4.6 Practicality of the Fixed Candidate Sets
A valid concern regarding SPEL pertains to the
construction of the fixed candidate set and its prac-
ticality in real-world scenarios, where the testing
data may not be predetermined, making it chal-
lenging when attempting to assemble a subset of
knowledge base entries for this purpose. As men-
tioned in Section 3.1, it is possible to construct this
set based on the expected entities that SPEL should
detect. In this section, we take a more flexible ap-
proach, and consider the entire set of 500K general
fine-tuning entities as the fixed candidate set.

Furthermore, taking inspiration from Liu and Rit-
ter (2023) regarding the extended existence of the
CoNLL-2003 dataset, and consequently the AIDA

12See (Cho et al., 2022) for some ways to address this issue.



Approach
MD Micro Scores

testa testb
P R F1 P R F1

De Cao et al. (2021a)
(using PPRforNED c. set)

93.9 96.7 95.2 92.2 94.8 93.5

SPEL-base (no mention-specific c. set) 94.6 94.4 94.5 92.5 90.1 91.2
SPEL-base (using PPRforNED c. set - context-agnostic) 98.3 91.6 94.8 98.3 86.4 92.0
SPEL-base (using PPRforNED c. set - context-aware) 99.4 90.9 95.0 99.4 84.9 91.6

Table 2: Mention Detection evaluation results of SPEL in comparison to the work of De Cao et al. (2021a) using
their released evaluation code (from utils.py). As De Cao et al. (2021a) use PPRforNED candidate sets, we only
compare the SPEL results calculated using these candidate sets.

Approach
EL Micro-F1 US$ for

1000 docstesta testb

GPT-3.5 (zero-shot) 47.3 52.9 4.22
GPT-4.0

(zero-shot) 40.4 54.1 42.17
(few-shot w/ CoT) 62.4 66.2 59.37

SPEL-base 91.3 85.5 2.28
SPEL-large 91.6 85.8 2.64

Table 3: Comparison of the performance of SPEL (in no
mention-specific candidate set setting) to zero and few
shot GPT-3.5-turbo-16k (accessed on June 16, 2023)
and GPT-4-0613 (for the best performing prompts we
attempted; accessed on August 24, 2023). For few-shot
experiments we constructed the prompt using the chain-
of-thought (CoT) method of Wei et al. (2022).

dataset, for over two decades we acknowledge the
potential concern of adaptive overfitting. In re-
sponse to this concern, we used their newly anno-
tated NER test set of 131 Reuters news articles pub-
lished between December 5th and 7th, 2020. We
meticulously linked the named entity mentions in
this test set to their corresponding Wikipedia pages,
using the same linking procedure employed in the
original AIDA dataset. Our new entity linking test
set, AIDA/testc, has 1,160 unique Wikipedia
identifiers, spanning over 3,777 mentions and en-
compassing a total of 46,456 words.

We re-evaluate SPEL across all four settings
outlined in Section 4.4 using the 500K entity out-
put vocabulary and over all three AIDA test sets:
testa, testb, and testc. We report our find-
ings in Table 4. Examining the results shows that
our newly created testc presents a new challenge
for entity linking because the currently available
candidate sets prove unhelpful and, in fact, detri-
mental to entity linking. The SPEL-large results
for testa and testb show that SPEL with an
unconstrained fixed candidate set size still matches
the performance of the best model published before
SPEL (with fixed candidate sets).

Approach
EL Micro-F1

testa testb testc

S
P
E

L
-b

as
e no mention-specific c. set 89.6 82.3 73.7

KB+Yago c. set 89.5 83.2 57.2
PPRforNED c. set

context-agnostic 90.8 84.7 45.9
context-aware 91.8 86.1 -

S
P
E

L
-l

ar
ge

no mention-specific c. set 89.7 82.2 77.5
KB+Yago c. set 89.8 82.8 59.4
PPRforNED c. set

context-agnostic 91.5 85.2 46.9
context-aware 92.0 86.3 -

Table 4: Entity Linking evaluation results of SPEL with
a fixed candidate set size of 500K over AIDA test sets.
Since the context-aware candidate sets require a mecha-
nism for generating/looking up the candidate set during
inference, we do not evaluate testc in this setting.

5 Conclusion

We introduced several improvements to a structured
prediction approach for entity linking. Our experi-
mental results on the AIDA dataset show that our
proposed improvements to the structured predic-
tion model for entity linking can achieve state-of-
the-art results using a commonly used evaluation
toolkit providing head to head numbers for com-
peting methods on the same dataset. We show that
our approach has the best F1-score on this task
compared to the state-of-the-art on this dataset. We
are more compute efficient with many fewer pa-
rameters and our approach is also much faster at
inference time, providing faster throughput, com-
pared to previous methods.

In future work, we plan to extend our work to
other entity linking datasets in other domains such
as biomedical research. We also plan to research
multilingual applications of structured prediction
for entity linking including benefits to projection
of entity linking concepts from one language to
another and using multilingual representation learn-
ing for our base model.

https://github.com/nicola-decao/efficient-autoregressive-EL/blob/master/src/utils.py


Limitations and Ethical Considerations

Like other deep learning-based entity linking sys-
tems, SPEL relies on a predefined fixed candi-
date set. This implies that the user needs prior
knowledge about the entities which they seek (e.g.,
Barack_Obama) and must include those entities
in the model’s output mention vocabulary. It is
important to note that SPEL is unable to detect
entities that are not included in its defined fixed
candidate set. Expanding SPEL to support zero-
shot entity linking is an area that we leave for fu-
ture exploration and development. Our research
is on English only, and we acknowledge that en-
tity linking for other languages is also relevant and
important. We hope to extend our work to cover
multiple languages in the future. We inherit the
biases that exist in our training data and we do
not explicitly de-bias the data. It is possible that
certain types of entities are under-represented in
this dataset, so care must be taken before using our
model for general purpose entity-linking that it is
re-trained on a suitably de-biased training dataset
that compensates for the fact that some under repre-
sented entities might be infrequent or missing from
our training data. We are providing our models and
code to the research community and we trust that
those who use the model will do so ethically and
responsibly.
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A Wikipedia Redirect Normalization

van Hulst et al. (2020) report better results using an
older Wikipedia dump from 2014 compared to the
dump from 2019. One possible explanation for this
finding is that the 2014 dump contains Wikipedia
entries with page identifiers that are more closely
aligned with the annotated data. Over time, page
identifiers in Wikipedia have undergone changes,

and some of the older identifiers used in annotating
test datasets may now function as redirect links.
To tackle this issue, researchers such as Broscheit
(2019) and Yamada et al. (2020b, 2022) have con-
sidered redirect link normalization. We follow the
same approach and use the collection of Wikipedia
redirect links13 to find all the redirect pairs (u, v)
where u is not in our fixed candidate set and v is in
the set. In inference, whenever SPEL predicts u,
we automatically replace it with v.

B More on Comparison to OpenAI GPT
Models

In this section, we provide more information on our
experimental procedure which can help replicating
our results.

When utilizing a pre-trained GPT language
model, it is common practice to structure the task
description as a prompt, which is then passed to
the model. The model leverages its linguistic un-
derstanding to generate a solution in the form of a
completion, based on the given prompt. However,
a crucial limitation arises in the process of identify-
ing the appropriate prompt, as its selection greatly
influences the successful completion of the task.

B.1 Zero-shot experiments

Our best performing prompt was as follows:
You are a Wikipedia annotator.
Annotate the Wikipedia entities
in the following paragraph, and
produce the output in markup
using the <mark> element and the
data-entity attribute:
In each query14, in the line after the prompt,
we add the AIDA document received
from GERBIL and pass it to GPT using
openai.ChatCompletion.create API15.
In cases where the documents exceed the maxi-
mum subword limit of GPT, we employ spacy
python library, to divide the document, and create

13http://downloads.dbpedia.org/2016-10/core-
i18n/en/redirects_en.ttl.bz2

14Cho et al. (2022) employ GPT for entity linking by imple-
menting a process that involves a sequence of summarization
and multiple-choice queries to GPT. However, we have found
this approach to be rather costly. Furthermore, it necessitates
prior knowledge of the target mention to condition the sum-
mary accordingly. Additionally, it relies on a set of candidates
generated through heuristics which undermines the feasibility
of utilizing GPT for end-to-end entity linking.

15We used python’s openai package version "0.27.6"
and we set temperature=0, top_p=1, frequency_p
enalty=0., presence_penalty=0.
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query prompts consisting of approximately 1000
tokens each. Subsequently, we concatenate the
received responses to these queries to form a
comprehensive result. Following this, we parse the
generated markup and associate each annotation
with its corresponding segment in the original
text. We proceed by forwarding the predicted
annotations that match entries in the Wikipedia
fixed candidate set, along with the extracted spans,
back to GERBIL.

During the experiments, we analyzed the vali-
dation set results and observed consistent patterns
that shed light on the challenges posed by gener-
ative language models in entity linking. One no-
table observation was the presence of annotations
from a mixture of knowledge bases and domains,
indicating that the model possesses an excessive
amount of knowledge, leading to distractions in the
annotation process focused on entity linking over
Wikipedia. With this regards, we observed a lack
of stability in the model’s output even when setting
the temperature parameter to 0. Despite using
the same prompt, the model occasionally confused
entity linking (EL) with named entity recognition
(NER) and reported mentions annotated with NER
tags such as Person or Location. In our exper-
iments, we removed all predicted spans with such
tags and did not relay them back to GERBIL.

Furthermore, due to the nature of generative
models, there were instances where the model
failed to generate the complete entity, resulting
in incomplete predictions (for example it gen-
erated Leicestershire instead of the full
entity identifier Leicestershire County
Cricket Club or Pohang instead of Pohang
Steelers). In these instances, if an exact match
to an entity in the knowledge base was not found,
we collected all entities in the fixed candidate set
that included the full prediction from the genera-
tive language model. From this collection16, we
randomly selected one of those mentions and re-
ported it back to GERBIL instead of the original
prediction generated by the model.

B.2 Few-shot experiments

In light of the growing popularity of few-shot
prompting techniques with GPT language models,
we conducted a survey of some of the leading
approaches for experimenting with few-shot ex-

16In the majority of cases, the candidate set contains only
one element if it is not empty.

amples. Given the promising outcomes associated
with the chain-of-thought (CoT; Wei et al., 2022)
prompting technique, we chose to conduct our
few-shot experiments using this particular method.
To construct our best performing few-shot CoT
prompt, we retained our zero-shot prompt and
added the following lines as an extension:
Document: "EU rejects German
call to boycott British lamb."
Answer: <p> <chain-of-thought>
Considering EU, German, and
British are shown in the text
together with the word boycott,
this is a political document,
I should annotate EU with
"European Union", German with
the country "Germany", and
British with the country "United
Kingdom". I make sure I do not
mistake Wikipedia identifiers
with entity type identifiers,
for example I choose "United
Kingdom" instead of the incorrect
general entity type "country".
I make sure to annotate all
entities even if there is
a large number of entities.
</chain-of-thought> <result>
<mark data-entity="European
Union"> EU </mark> rejects <mark
data-entity="Germany"> German
</mark> call to boycott <mark
data-entity="United Kingdom">
British</mark> lamb.</result></p>

Adding more examples in the same format did not
significantly improve performance, but it substan-
tially increased the prompting cost to GPT-4.

We maintained the rest of the configurations and
setups for the few-shot experiments the same as we
had in the zero-shot experiments.

C Out-of-domain Experiments and
Results

Few of the publications listed in Table 1 recom-
mend assessing entity linking models on out-of-
domain testing datasets. These datasets typically
lack associated training sets and are often anno-
tated with entity links to variations or subsets of
the DBpedia (Auer et al., 2007) knowledge base.
Out-of-domain annotation typically operates under
the assumption that the knowledge base entry iden-



Approach MSNBC Derczynski KORE N3 Reuters N3 RSS OKE2015 OKE2016
Hoffart et al. (2011)† 65.1 32.6 55.4 46.4 42.4 63.1 0.0
Kolitsas et al. (2018) 72.4 34.1 35.2 50.3 38.2 61.9 52.7
van Hulst et al. (2020) 74.4 41.2 61.6 49.7 34.3 64.8 58.8
De Cao et al. (2021b) 73.7 54.1 60.7 46.7 40.3 56.1 50.0
Zhang et al. (2022) 72.1 52.9 64.5 54.1 41.9 61.1 51.3
SPEL-base 64.5 50.7 48.7 47.9 41.9 55.9 57.4
SPEL-large 63.1 59.1 53.7 47.1 44.4 59.5 56.6
Oracle‡ 93.2 91.4 99.6 99.7 98.0 88.2 91.4

Table 5: Comparison of SPEL (with a fixed candidate set size of 500k) evaluation results with the literature on
out-of-domain datasets. The best score is shown as bold and the second best is shown as underlined.
†Results from (Kolitsas et al., 2018 - Table 2).
‡The “Oracle” results are calculated through feeding the gold annotations of each dataset to GERBIL, and depicts
the In-KB annotation quality of each dataset.

tifiers remain consistent between in-domain and
out-of-domain scenarios. While this assumption
may hold true to a certain extent, as DBpedia’s
primary focus has been on information extraction
from Wikipedia, it’s important to note that the tem-
poral evolution of both knowledge bases has in-
troduced discrepancies. These datasets, which are
between 8 to 16 years old at the time of writing this
paper, have been affected by temporal changes, and
the two knowledge bases are not always perfectly
aligned. The following offers a concise overview of
some of the most commonly utilized out-of-domain
datasets for evaluation:

MSNBC (Cucerzan, 2007) contains 20 MSNBC
news stories (annotated with Wikipedia) from dif-
ferent categories including Health, Technology,
Sports, etc.

KORE (Hoffart et al., 2012) contains 50 sen-
tences annotated with DBpedia and chosen from
five domains: celebrities, music, business, sports,
and politics. It was created to examine the disam-
biguation functionality in the older entity disam-
biguation models.

N3 Reuters and N3 RSS (Röder et al., 2014)
contain mentions referring to persons, places and
organizations (DBpedia annotations). The Reuters
dataset contains 128 news stories from Reuters
news agency and the RSS dataset contains 500
RSS feed messages from worldwide newspapers
(in English).

Derczynski (Derczynski et al., 2015) contains
182 tweets annotated with DBpedia knowledge
base entities.

OKE challenge 2015 and 2016 evaluation sets
(Nuzzolese et al., 2015) contain 101 and 55 sen-
tences from Wikipedia articles (reporting biogra-

phies of scholars), respectively, annotated using a
mixture of annotations from DBpedia and the OKE
entity identifiers.

We provided the out-of-domain data sets to
SPEL, using a fixed candidate set of 500K enti-
ties, and compared its performance against other
methods that have reported results on these datasets.
The comparative results can be found in Table 5.

Please note that SPEL’s tokenization procedure
does not allow the generation of annotations that
start or end within a single word (separated by
space characters). For instance, in SPEL, the to-
ken washington-based is considered a sin-
gle word, whereas out-of-domain datasets con-
tain several annotations that commence or con-
clude within a single word. Additionally, each
dataset necessitates a specific redirect normaliza-
tion schema; for example, China is annotated as
People’s_Republic_of_China in KORE,
but in N3 RSS, it is annotated as China.

Nevertheless, SPEL-large delivers the best re-
sults on two out of seven and the second-best result
on one out of seven test sets. It doesn’t signifi-
cantly underperform the other models in terms of
performance on the remaining four test sets.


