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ABSTRACT

Adversarial attacks pose a major challenge for modern deep neural networks. Re-
cent advancements show that adversarially robust generalization requires a large
amount of labeled data for training. If annotation becomes a burden, can unla-
beled data help bridge the gap? In this paper, we propose ARMOURED, an ad-
versarially robust training method based on semi-supervised learning that consists
of two components. The first component applies multi-view learning to simul-
taneously optimize multiple independent networks and utilizes unlabeled data to
enforce labeling consistency. The second component reduces adversarial trans-
ferability among the networks via diversity regularizers inspired by determinantal
point processes and entropy maximization. Experimental results show that un-
der small perturbation budgets, ARMOURED is robust against strong adaptive
adversaries. Notably, ARMOURED does not rely on generating adversarial sam-
ples during training. When used in combination with adversarial training, AR-
MOURED yields competitive performance with the state-of-the-art adversarially-
robust benchmarks on SVHN and outperforms them on CIFAR-10, while offering
higher clean accuracy.

1 INTRODUCTION

Modern deep neural networks have met or even surpassed human-level performance on a variety
of image classification tasks. However, they are vulnerable to adversarial attacks, where small,
calculated perturbations in the input sample can fool a network into making unintended behaviors,
e.g., misclassification. (Szegedy et al., 2014; Biggio et al., 2013). Such adversarial attacks have been
found to transfer between different network architectures (Papernot et al., 2016) and are a serious
concern, especially when neural networks are used in real-world applications.

As a result, much work has been done to improve the robustness of neural networks against adver-
sarial attacks (Miller et al., 2020). Of these techniques, adversarial training (AT) (Goodfellow et al.,
2015; Madry et al., 2018) is widely used and has been found to provide the most robust models
in recent evaluation studies (Dong et al., 2020; Croce & Hein, 2020). Nonetheless, even models
trained with AT have markedly reduced performance on adversarial samples in comparison to clean
samples. Models trained with AT also have worse accuracy on clean samples when compared to
models trained with standard classification losses. Schmidt et al. (2018) suggest that one reason for
such reductions in model accuracy is that training adversarially robust models requires substantially
more labeled data. Due to the high costs of obtaining such labeled data in real-world applications,
recent work has explored semi-supervised AT-based approaches that are able to leverage unlabeled
data instead (Uesato et al., 2019; Najafi et al., 2019; Zhai et al., 2019; Carmon et al., 2019).
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Orthogonal to AT-based approaches that focus on training robust single models, a few works have
explored the use of diversity regularization for learning adversarially robust classifiers. These works
rely on encouraging ensemble diversity through regularization terms, whether on model predictions
(Pang et al., 2019) or model gradients (Dabouei et al., 2020), guided by the intuition that diver-
sity amongst the model ensemble will make it difficult for adversarial attacks to transfer between
individual models, thus making the ensemble as a whole more resistant to attack.

In this work, we propose ARMOURED: Adversarially Robust MOdels using Unlabeled data by
REgularizing Diversity, a novel algorithm for adversarially robust model learning that elegantly uni-
fies semi-supervised learning and diversity regularization through a multi-view learning framework.
ARMOURED applies a pseudo-label filter similar to co-training (Blum & Mitchell, 1998) to en-
force consistency of different networks’ predictions on the unlabeled data. In addition, we derive
a regularization term inspired by determinantal point processes (DPP) (Kulesza & Taskar, 2012)
that encourages the two networks to predict differently for non-target classes. Lastly, ARMOURED
maximizes the entropy of the combined multi-view output on the non-target classes. We show in
empirical evaluations that ARMOURED achieves state-of-the-art robustness against strong adaptive
adversaries as long as the perturbations are within small `∞ or `2 norm-bounded balls. Notably,
unlike previous semi-supervised methods, ARMOURED does not use adversarial samples during
training. When used in combination with AT, ARMOURED is competitive with the state-of-the-art
methods on SVHN and outperforms them on CIFAR-10, while offering higher clean accuracy.

In summary, the major contributions of this work are as follows:

1. We propose ARMOURED, a novel semi-supervised method based on multi-view learning
and diversity regularization for training adversarially robust models.

2. We perform an extensive comparison, including standard semi-supervised learning ap-
proaches in addition to methods for learning adversarially robust models.

3. We show that ARMOURED+AT achieves state-of-the-art adversarial robustness while
maintaining high accuracy on clean data.

2 RELATED WORK

To set the stage for ARMOURED, in this section, we briefly review adversarially robust learning
and semi-supervised learning - two paradigms in the literature that are related to our work.

2.1 ADVERSARIALLY ROBUST LEARNING

Adversarial attacks: We consider attacks where adversarial samples stay within a `p ball with
fixed radius ε around the clean sample. In this setting, the two standard white-box attacks are the
Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) that computes a one-step perturba-
tion that maximizes the cross entropy loss function, and Projected Gradient Descent (PGD) (Madry
et al., 2018), a stronger attack that performs multiple iterations of gradient updates to maximize
the loss; this may be seen as a multi-step version of FGSM. Auto-PGD attack (APGD) (Croce &
Hein, 2020) is a parameter-free, budget-aware variant of PGD which aims at better convergence.
However, robustness against these gradient-based attacks may give a false sense of security due to
gradient-masking. This phenomenon happens when the defense does not produce useful gradients
to generate adversarial samples (Athalye et al., 2018). Gradient-masking is known to affect PGD by
preventing its convergence to the actual adversarial samples (Tramèr & Boneh, 2019). There exists
gradient-based attacks such as Fast Adaptive Boundary attack (Croce & Hein, 2019) (FAB) which is
invariant to rescaling, thus is unaffected by gradient-masking. FAB minimizes the perturbation norm
as long as misclassification is achieved. Black box attacks that rely on random search alone without
gradient information, such as Square attack (Andriushchenko et al., 2020), are also unaffected by
gradient masking. Finally, AutoAttack (Croce & Hein, 2020) is a strong ensemble adversary which
applies four attacks sequentially (APGD with cross entropy loss, followed by targeted APGD with
difference-of-logits-ratio loss, targeted FAB, then Square).

Adversarial training: Adversarial training (AT) is a popular approach that performs well in practice
(Dong et al., 2020). Madry et al. (2018) formulate AT as a min-max problem, where the model is
trained with adversarial samples found via PGD. Variants of this method such as TRADES (Zhang
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et al., 2019b) and ALP (Kannan et al., 2018) further decompose the error into natural error and
boundary error for higher robustness. Zhang et al. (2019a); Wang et al. (2019) theoretically prove the
convergence of AT. Two drawbacks of AT are its slow training due to adversarial example generation
requiring multiple gradient computations, and the significant reduction in model accuracy on clean
samples. Several recent works have focused on speeding up AT (Zhang et al., 2019a; Qin et al.,
2019; Shafahi et al., 2019); ARMOURED addresses the second limitation, enabling significantly
improved performance on clean samples.

Semi-supervised adversarial training: Schmidt et al. (2018) showed that adversarial robust gener-
alization requires much more labeled data. To relieve the annotation burden, several semi-supervised
adversarially robust learning (SSAR) methods have been developed to exploit unlabeled data instead.
Uesato et al. (2019) introduced unsupervised adversarial training, a simple self-training model which
optimizes a smoothness loss and a classification loss using pseudo-labels. Carmon et al. (2019) revis-
ited the Gaussian model by Schmidt et al. (2018) and introduced robust self-training (RST), another
self-training model that computes a regularization loss from unlabeled data, either via adversarial
training or stability training. Zhai et al. (2019) applied a generalized virtual adversarial training
to optimize the prediction stability of their model in the presence of perturbations. Najafi et al.
(2019) proposed a semi-supervised extension of the distributionally robust optimization framework
by Sinha et al. (2018). They replace pseudo-labels with soft-labels for unlabeled data and train them
together with labeled data. It is worth noting that all of these four state-of-the-art SSAR methods
apply AT in their training procedure.

Diversity regularization: Diversity regularization is an orthogonal direction to AT that has the po-
tential to further improve the performance of AT. In earlier work, Pang et al. (2018) showed that
for a single network, adversarial robustness can be improved when the features learned for differ-
ent classes are diverse. Pang et al. (2019) further developed this concept by introducing Adaptive
Promoting Diversity regularization (ADP). Given an ensemble of neural network classifiers, ADP
promotes diversity among non-target predictions of the networks. ADP is inspired by determinan-
tal point processes (Hough et al., 2006), an elegant statistical tool to model repulsive interactions
among items of a fixed ground set; applications to machine learning are reviewed in (Kulesza &
Taskar, 2012). Dabouei et al. (2020) enforce diversity on the gradients of individual networks in
the ensemble instead of their predictions. We note that unlike ARMOURED, the methods described
here are developed for the fully-supervised setting, and are not able to utilize unlabeled data.

2.2 SEMI-SUPERVISED LEARNING

Semi-supervised learning: Semi-supervised learning (SSL) is an effective strategy to learn from
low-cost unlabeled data. There is considerable recent work in this practically relevant and active
research area; we will not be able to cover all these works here. Existing SSL methods can be
broadly categorized into three groups: consistency-based, graph-based, and generative models. Re-
cent methods, such as Mean Teacher (Tarvainen & Valpola, 2017) and MixMatch (Berthelot et al.,
2019), are consistency-based as this approach can be adapted to generic problems and have superior
performance in practice. The key idea behind consistency-based methods is that model predictions
on different augmentations of the same input should be consistent.

Multi-view learning: Multi-view learning is a SSL paradigm that is capable of representing di-
versity in addition to consistency. A dataset is considered to have multiple views when its data
samples are represented by more than one set of features and each set is sufficient for the learning
task. In this setting, a multi-view method assigns one modeling function to each view and jointly
optimizes the functions to improve generalization performance (Zhao et al., 2017). By analyzing
various multi-view algorithms, Xu et al. (2013) summarized consensus and complementary as the
two underpinning principles of multi-view learning. The consensus principle states that a multi-
view technique must aim at maximizing the prediction agreement on different views, similar to the
consistency-based SSL methods discussed above. The complementary principle states that in order
to make improvement, each view must contain some information that the other views do not carry,
that the views should be sufficiently diverse. This principle has been applied to boost generalization
capability in regular SSL (Qiao et al., 2018) and learning with label noise (Han et al., 2018). In this
paper, we argue that multi-view complementarity also plays a critical role in improving adversarial
robustness, by reducing the transferability of adversarial attacks across different views.
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3 THE ARMOURED METHOD

In this section, we introduce ARMOURED, our proposed semi-supervised adversarially robust
learning method. To utilize both labeled and unlabeled data, ARMOURED adopts a multi-view
framework where multiple networks output different predictions (posterior probabilities, which we
will refer to as deep views) on the same input image. The networks are then co-optimized by a
single loss function computed on the deep views. We adhere to both the consensus and comple-
mentary principles of multi-view learning by ensuring that the deep views maximize their consensus
on the target class (the ground truth class for labeled examples), but complement each other on
the non-target classes. To determine a “target” class for unlabeled samples, ARMOURED applies
a matching filter to pick out a target class based on agreement between views. Since our method
is designed for adversarial robustness, we place a greater emphasis on the complementary princi-
ple. More concretely, we introduce two levels of complementarity: (i) among the deep views via
a regularizer based on DPP and (ii) among the non-target classes via an entropy regularization ap-
plied on the combined multi-view output. Following this, we will describe ARMOURED in detail.
Pseudocode detailing the training procedure is provided in Algorithm 1 in Appendix A.1.
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Figure 1: ARMOURED dual-view framework: (a) training and (b) inference procedures. Solid
black and dotted red arrows denote forward and backward passes, respectively; double black arrows
represent image augmentation; double-dashed green arrows denote pseudo-label filter.

Overview: We describe the general M -view model. Consider a semi-supervised image classifi-
cation task on input image x and target label y from one of K classes, y ∈ {1, 2, . . . ,K}. In
each minibatch, our training data consists of a labeled set L = {(xi, yi)}nL

i=1 and an unlabeled set
U = {xi}nU

i=1. For each input image x, we apply random augmentations to generate M differ-
ent augmented images {xm}Mm=1. Let {Nm}Mm=1 be architecturally similar neural networks with
respective parameters {θm}Mm=1. Each network takes the corresponding augmented input and pro-
duces predictions fm(x) = Nm(xm, θm) ∀m = 1, . . . ,M . Due to the different augmentations and
network parameters, each output fm can be treated as one deep view of the original image x. Finally,
we compute a loss function on these deep views and backpropagate to optimize the parameters

L(x, y) = LCE(x, y) + λDPPLDPP(x, y) + λNEMLNEM(x, y) (1)

where λDPP and λNEM are model hyperparameters. We describe each component of the overall loss
function, LCE, LDPP and LNEM in the following. At inference time, the M outputs are combined
to produce a single prediction. Since our networks possess similar learning capability, the final
output is computed by averaging the deep views: f(x) = 1

M

∑M
m=1 f

m(x). The detailed inference
procedure is given in Algorithm 2 in Appendix A.1. Figure 1 illustrates the ARMOURED multi-
view framework for the dual-view scenario.

Cross-entropy loss (LCE) and pseudo-label filter: For each labeled sample, we minimize the stan-
dard cross-entropy loss LCE(x, y) = −

∑M
m=1 log fmy (x). While one may train each deep view in-

dependently using only the labeled data, the fact that augmented inputs are generated from the same
original image enables us to add an additional constraint – that the deep views should agree with
each other even on unlabeled samples. Hence, when all M networks assign the highest probability
to the same class, we can be confident about their prediction on the sample. We denote such sample
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as a stable sample and define a pseudo-label ŷ for it as ŷ = arg maxk=1,...,K fmk ∀m = 1, . . . ,M .
This pseudo-labeling technique has its roots in co-training (Blum & Mitchell, 1998), a multi-view
technique that conforms to the consensus principle. After a stable sample is confirmed, it is treated
as a labeled sample and the cross-entropy loss LCE applies. We recompute pseudo-labels for each
minibatch to avoid making incorrect pseudo-labels permanent.
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Figure 2: Three models are trained on CIFAR-10-semi-1k setup. We plot the average prediction
of test samples with label “airplane”. (a) ARMOURED without DPP regularization: each network
predicts randomly on non-target classes. (b) ARMOURED-I: with identity matrix as kernel, network
predictions on non-target classes are orthogonal. (c) ARMOURED-H: hand-crafted kernel causes a
clustering effect, where each network prefers a group of classes, either vehicles or animals.

DPP regularization (LDPP): Suppose that the number of deep views is smaller than the num-
ber of classes, i.e., (M < K). Let F be the K ×M matrix formed by stacking the deep views
horizontally, i.e., F =

[
f1, f2, . . . , fM

]
. Furthermore, let S be a K × K positive semidefinite

kernel matrix that measures the pairwise similarity among the classes. For each sample, we ex-
tract F\y and S\y as the submatrices of F and S that correspond to the non-target classes. Let
F̃\y denote the normalized F\y where each column is scaled to unit length. Inspired by deter-
minantal point processes (Kulesza & Taskar, 2012), ARMOURED minimizes the following loss:
LDPP(x, y) = − log

[
det
(
F̃>\yS\yF̃\y

)]
.

This loss is minimized at F̃\y = F̃∗, where F̃∗ is the horizontal concatenation of the first M dom-
inant eigenvectors of S\y; a proof is provided in Appendix A.2. Since eigenvectors are always
orthogonal, LDPP encourages the deep views to make diverse predictions on non-target classes. If
the kernel matrix is predefined, this result allows us to interpret the non-target predictions implied
by the DPP regularizer. Specifically, if the kernel S is constructed by a similarity measure over
the classes, then a clustering effect will be observed, where similar classes are “preferred” by the
same view. On the other hand, we can also inject prior knowledge or encourage desired behavior
by designing a custom kernel. Exploitation of prior knowledge can be beneficial to generalization,
especially when labeled training data are limited.

We note that our DPP regularizer generalizes the ensemble diversity regularizer of ADP (Pang et al.,
2019), that uses the identity matrix as its kernel (S ≡ I). If we decompose the kernel matrix such
that S = Φ>Φ, then our DPP regularizer is equivalent to the ADP regularizer applied on a linear
transformation ΦF̃\y of the non-target predictions. Again, this linear transformation is another way
to regulate the deep views, and can either be learned or predefined. Figure 2 illustrates the difference
between the predictions from baseline model vs from ARMOURED models with different kernels.
Another related work is cost-sensitive robustness (Zhang & Evans, 2018), which uses a cost matrix
to weigh different adversarial transformations (attacks) among the classes. Our kernel matrix does
not serve the same purpose, but the effects are similar. In our model, network preference would
prevent adversarial transformations across different groups of classes.

Non-target entropy maximization (LNEM): Besides the multi-view diversity, we further propose
an entropy regularizer that encourages larger margins among non-target classes in the final predic-
tions f(x). Specifically, let f\y be the (K − 1) × 1 vector of non-target predictions, and f̃\y be
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the normalized vector where the elements sum up to 1. We propose to maximize the entropy de-
fined over the normalized non-target predictions. Our entropy regularizer is therefore defined as the
negative entropy LNEM(x, y) = −H(f̃\y) =

∑K−1
k=1 f̃\y log f̃\y .

This loss is minimized when all elements of f\y are equal to 1
K−1 (1−fy). Intuitively, this regularizer

acts as a balancing force on the non-target predictions. It prevents ARMOURED from assigning high
probability to any of the incorrect classes. We note thatLNEM differs from the entropy maximization
technique adopted in Pang et al. (2019) that encourages a uniform distribution over all K classes.
Although our regularizer is similar to the complement objective proposed by Chen et al. (2019),
we extend this technique to semi-supervised learning and provide more theoretical insight – we
show that entropy maximization increases a lower bound on the average (logit) margin under mild
assumptions (Theorem A.2 in Appendix A.3).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset: We evaluate ARMOURED on the CIFAR-10 and SVHN datasets. We use the official
train/test splits (50k/10k labeled samples) for CIFAR-10 (Krizhevsky et al., 2009) and reserve 5k
samples from the training samples for a validation set. In our semi-supervised setup, the label budget
is either 1k or 4k; remaining samples from training set are treated as unlabeled samples. For the
SVHN dataset (Netzer et al., 2011), our train/validation/test split is 65,932 / 7,325 / 26,032 samples.
We use only 1k samples as the label budget in our semi-supervised setup for SVHN. For simplicity,
we will refer to our setup as “Dataset-semi-budget”, e.g., CIFAR-10-semi-4k, SVHN-semi-1k.

Adversarial attacks: To evaluate robustness, we apply the following adversaries: (i) Fast Gradi-
ent Sign Method attack (Goodfellow et al., 2015) (FGSM), (ii) Projected Gradient Descent attack
(Madry et al., 2018) (PGD) with random initialization and (iv) AutoAttack (Croce & Hein, 2020).
For `∞ attacks, the default perturbation budget is ε = 8/255; for `2 attacks, ε = 0.5.

Backbone network and training: To enable fair comparison, the same Wide ResNet (Oliver et al.,
2018) backbone is used for all methods. Specifically, we implement “WRN-28-2” with depth 28
and width 2 along with batch normalization, leaky ReLU activation and Adam optimizer. We train
each method for 600 epochs on CIFAR-10-semi-4k and SVHN-semi-1k. Learning rate is decayed
by a factor of 0.2 after the first 400k iterations.

AT wrapper for SSL: We notice that many concepts in SSL, such as multi-view diversity or consis-
tency, are orthogonal to AT, and that successful defenses against large-perturbation attacks always
rely on AT (Croce & Hein, 2020). Therefore, we hope to combine the best of both worlds by imple-
menting AT as a wrapper method for SSL. Algorithm 3 in Appendix A.1 describes our Method+AT
wrapper, which consists of three main steps. First, for each batch of semi-supervised data, we apply
the inference procedure of the Method (e.g., Algorithm 2 of ARMOURED) to generate pseudo-
labels for unlabeled data. Second, for each input sample in the batch, we compute its adversarial
sample using either the true label (if the sample is labeled) or the pseudo-label (if the sample is
unlabeled). Third, we execute the training procedure of the Method (e.g., Algorithm 1 of AR-
MOURED) using the adversarial samples and the original labels. The pseudo-labels computed from
the first step are now dropped, so that the training is still semi-supervised. We note that this wrapper
algorithm resembles RST (Carmon et al., 2019).

ARMOURED variants: We design three variants based on the dual-view model shown in Figure 1
that differ only in choice of diversity kernel. ARMOURED-I is our standard model that uses the
Identity matrix as its diversity kernel. ARMOURED-H uses a Hand-crafted binary matrix intended
to group the classes into two predefined clusters. On CIFAR-10, these are “vehicles” (airplane,
ship, truck, automobile) vs. “animals” (bird, cat, deer, dog, frog, horse). On SVHN, we split the
digits into “simple & edgy” (0, 1, 2, 4, 7) vs. “curvy & loopy” (3, 5, 6, 8, 9). The third variant is
ARMOURED-F, which uses a learnable Feature-based kernel. From a pre-trained SSL model, we
first compute the adversarial samples corresponding to the labeled training samples. Then, for each
class, we extract feature vectors by averaging over the adversarial samples associated with the class.
Finally, we combine the feature vectors into a matrix B and compute a kernel S = B>B. More
details of the kernels are provided in Appendix A.4. In our experiments, we evaluate the following

6



Published as a conference paper at ICLR 2021

four variants: ARMOURED-I+AT, ARMOURED-H+AT, ARMOURED-F+AT and ARMOURED-
F (trained without AT). For the AT wrapper, we apply a 7-step PGD `∞ attack with total ε = 8/255
(for CIFAR-10), ε = 4/255 (for SVHN) and step size of ε/4.

Comparison benchmarks: We test the proposed method against a wide range of state-of-the-art
SSL and SSAR benchmarks: Mean Teacher (MT) (Tarvainen & Valpola, 2017), MixMatch (Berth-
elot et al., 2019), RST (Carmon et al., 2019) (RST has two variants, we implemented RSTadv),
and the method of Zhai et al. (2019) that we denote as ARG. In addition, we combine MT with
adversarial training (MT+AT) using the wrapper Algorithm 3 in Appendix A.1. To the best of our
knowledge, this is the first time MT+AT has been evaluated for adversarial robustness. For AT-
based methods (RST, ARG), we use a 7-step PGD `∞ attack in their AT phase, similar to MT+AT
and ARMOURED+AT.

4.2 RESULTS1

Results on CIFAR-10 (Table 1, Figure 3): On clean data, MixMatch yields the best performance,
while ARMOURED-F surpasses all methods trained with AT by large margins (18%-26%) and is
even better than MT – a SSL method. ARMOURED variants demonstrate substantially higher clean
performance over the SSAR benchmarks. Under standard FGSM and PGD attacks, the most robust
defense is still ARMOURED-F, followed by its AT-based variants with accuracy drops of 2%-5%.
Other methods shows larger gaps: 25%-35% for SSAR and 10%-50% for SSL benchmarks. We
note that the improvements by ARMOURED are not due to gradient masking (see Appendix B).
Under AutoAttack, ARMOURED-F is no longer robust, instead, ARMOURED+AT variants are
more resilient. ARMOURED-F+AT is the best defense, outperforming ARG by 5.23% for `∞ and
9.85% for `2 attacks. We also notice that the two best defenses against AutoAttack are trained with
the hand-crafted and feature kernels. The former requires only human knowledge while the latter
just needs additional computing resources, giving our method flexible ways to boost adversarial
robustness with or without prior knowledge.

In Figure 3, we plot the robust accuracy against AutoAttack as the perturbation budget ε gradually
increases. ARMOURED-F obtains highest accuracy on clean data as well as for small perturbation
budgets, but its accuracy drops rapidly as ε is increased. Meanwhile, the ARMOURED+AT variants
are able to achieve a better trade-off between clean accuracy and robustness.

Table 1: Benchmark results on CIFAR-10-semi-4k

Method Clean FGSM `∞ PGD `∞ PGD `2 AutoAttack `∞ AutoAttack `2
MT 84.55± 0.64 14.00± 1.70 0.03± 0.02 19.55± 0.26 0.01± 0.01 0.46± 0.02
MixMatch 89.95± 0.96 57.42± 2.78 0.25± 0.14 9.10± 0.82 0.00± 0.00 0.01± 0.01

RST 58.81± 0.28 33.80± 0.20 31.28± 0.26 43.70± 0.33 25.38± 0.15 39.79± 0.60
ARG 67.07± 0.22 36.65± 1.79 32.12± 1.74 42.95± 0.82 30.01± 1.85 40.86± 0.69
MT+AT 64.77± 0.28 30.50± 3.16 25.76± 3.16 41.34± 1.76 24.28± 2.90 39.93± 1.63

ARMOURED-F 84.90± 0.22 68.27± 1.53 56.42± 3.93 67.45± 2.76 8.70± 1.27 25.80± 2.50
ARMOURED-I+AT 77.73± 0.11 63.56± 1.71 54.22± 3.68 61.95± 2.11 29.22± 3.18 44.44± 3.15
ARMOURED-H+AT 76.74± 0.73 63.41± 1.94 54.94± 4.30 61.89± 2.74 31.88± 7.19 46.29± 5.84
ARMOURED-F+AT 76.76± 1.60 64.05± 3.00 55.12± 4.90 61.93± 3.06 35.24± 4.56 49.78± 3.80

Results on SVHN (Table 2): On clean test samples, ARMOURED-F yields the best performance,
with a small improvement over the second best competing method. Against FGSM and PGD at-
tacks, even the worst ARMOURED variant is more robust than MT+AT (the best benchmark) by
13%-20%. Under AutoAttack, ARMOURED-H+AT falls behind MT+AT and ARG by a significant
gap of 15% under `∞ attacks, while outperforming them by 4%-11% under `2 attacks. Overall,
ARMOURED shows competitive performance compared to state-of-the-art SSL and SSAR bench-
marks. Results on CIFAR-10 and SVHN suggest that MT+AT is a strong defense.

Ablation study (Table 3): We perform an ablation study to investigate the contribution of each
component to the performance of ARMOURED-F+AT agaisnt AutoAttack. First, we remove both
DPP and entropy regularization terms from the total loss in equation (1). This model, denoted as w/o

1Each result contains mean and standard deviation statistics computed from three independent runs with
different random data seeds (for selecting labeled samples).
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Figure 3: Robustness against AutoAttack vs. perturbation budget ε on CIFAR-10-semi-4k.

Table 2: Benchmark results on SVHN-semi-1k

Method Clean FGSM `∞ PGD `∞ PGD `2 AutoAttack `∞ AutoAttack `2
MT 93.73± 0.96 24.44± 2.13 4.14± 0.81 34.64± 3.12 1.50± 0.37 12.43± 1.53
MixMatch 91.35± 1.00 43.75± 23.50 0.05± 0.05 3.72± 3.31 0.00± 0.00 0.21± 0.20

RST 55.67± 1.79 30.40± 1.30 25.99± 1.79 33.71± 3.32 17.33± 1.94 25.08± 3.79
ARG 91.66± 0.51 58.22± 0.95 44.42± 1.11 44.12± 1.07 39.50± 1.11 34.19± 0.93
MT+AT 92.71± 0.22 58.45± 1.02 44.70± 0.42 50.42± 1.02 38.06± 0.11 41.71± 0.93

ARMOURED-F 93.93± 0.79 72.11± 1.67 57.91± 5.08 73.44± 3.18 7.88± 0.87 24.62± 1.38
ARMOURED-I+AT 92.01± 0.44 74.22± 1.32 62.04± 4.93 71.38± 2.28 22.04± 3.04 41.57± 2.45
ARMOURED-H+AT 92.53± 0.35 73.54± 1.58 61.41± 1.14 70.53± 0.71 24.04± 1.30 45.58± 2.39
ARMOURED-F+AT 92.44± 0.64 74.78± 4.37 62.10± 8.39 71.37± 6.32 23.35± 3.22 44.41± 3.20

(LDPP + LNEM), performs relatively well on clean data, but its performance suffers under attacks,
dropping by 26% for `∞ and by 22% for `2 attacks. We then keep the term LNEM, but remove
the diversity regularizer from the loss function2. This model – w/o LDPP – performs worse than
the complete model by 1%. We conclude that the entropy regularizer plays a more vital role than
the DPP regularizer. Besides, we train ARMOURED-F+AT using only the 4k labeled samples and
call this model w/o Unlabeled. Its poor performance reinforce the importance of unlabeled data
towards improving adversarial robustness. Finally, we include ARMOURED-F (trained without
AT), which performs very well on clean data but fails against AutoAttack. Additional results are
provided in Appendix B.

Visualization of learned representations (Figure 4): On CIFAR-10 test samples, we visualize the
feature embeddings (extracted from the last layer of WRN-28-2 before the linear layer) learned by
the four models in our ablation study. On clean test samples, ARMOURED-F produces the best em-
beddings. On adversarial samples, we observe gradual improvements in the representations, starting
from (a) no diversity regularization to (b) diversity on only labeled samples, with networkN1 show-
ing well-defined clusters; then (c) diversity on whole training set with better cluster separation and
(d) combining diversity with AT, where clusters are less contaminated under attacks.

5 CONCLUSION

In this work, we presented ARMOURED, a novel method for learning adversarially robust models
that unifies semi-supervised learning and diversity regularization in a multi-view framework. AR-
MOURED alone is robust against standard white-box attacks as well as strong adaptive attacks with

2The DPP regularization term cannot function properly without entropy regularization, due to a trivial opti-
mum at the one-hot vector 1y , as shown by Pang et al. (2019). Hence, we must keep LNEM.
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Table 3: Ablation study on CIFAR-10-semi-4k

Method Clean AutoAttack `∞ AutoAttack `2
w/o (LDPP + LNEM) 75.60± 0.44 9.27± 0.28 27.32± 0.85
w/o LDPP 77.44± 0.85 34.02± 2.80 48.52± 1.79
w/o Unlabeled 72.50± 0.21 10.26± 1.57 25.23± 0.59
ARMOURED-F 84.90± 0.22 8.70± 1.27 25.80± 2.50
ARMOURED-F+AT 76.76± 1.60 35.24± 4.56 49.78± 3.80
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Network N1 Network N2 Network N1 Network N2

(a)

100 75 50 25 0 25 50 75

75

50

25

0

25

50

75

100

75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75

100 75 50 25 0 25 50 75

75

50

25

0

25

50

75

100

75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75

w
/o

(L
D
P
P

+
L
N
E
M

)

(b)

100 50 0 50 100

100

50

0

50

100

75 50 25 0 25 50 75 100

100

50

0

50

100

100 50 0 50 100

100

50

0

50

100

75 50 25 0 25 50 75 100

100

50

0

50

100 w
/o

U
n
la
b
e
le
d

(c)

100 50 0 50 100

100

50

0

50

100

100 50 0 50 100

100

50

0

50

100

100 50 0 50 100

100

50

0

50

100

100 50 0 50 100

100

50

0

50

100 A
R

M
O

U
R

E
D

-F

(d)

100 50 0 50 100

100

50

0

50

100

100 50 0 50 100

100

50

0

50

100

100 50 0 50 100

100

50

0

50

100

100 50 0 50 100

100

50

0

50

100

A
R

M
O

U
R

E
D

-F+A
T

Figure 4: t-SNE plots of feature embeddings from CIFAR-10 test samples generated by ablation
models: (a) w/o (LDPP +LNEM), (b) w/o Unlabeled, (c) ARMOURED-F and (d) ARMOURED-
F+AT. For each of the 8 network/method pairs, the clean and adversarial samples are processed
together in a single t-SNE run. Adversarial samples are generated with PGD-`∞ (ε = 8/255). From
(a) to (d), the embeddings of adversarial samples are progressively enhanced, while (c) yields the
best representations on clean data.

small perturbation budgets. When combined with adversarial training, ARMOURED demonstrates
much better robustness against a wider range of perturbation budgets. Additionally, ARMOURED
improves clean accuracy when compared with state-of-the-art semi-supervised adversarial training
methods. The empirical performance of ARMOURED+AT suggests that it is possible to learn ad-
versarially robust models while upholding a reasonable accuracy on clean samples. Extending this
method to exploit more than two views or alternative custom kernels for the DPP regularizer could
result in further performance gains.
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APPENDICES

A ARMOURED METHOD

A.1 DETAILED PSEUDOCODES

Algorithm 1: ARMOURED Minibatch Training Procedure
Input: Labeled samples L = {(xi, yi)}nL

i=1; unlabeled samples U = {xi}nU
i=1; kernel matrix S;

random augmentation η(x); hyperparameters (λDPP, λNEM)
Output: Networks {Nm}Mm=1 with updated parameters {θm}Mm=1

for i = 1, . . . , nU do
for m = 1, . . . ,M do

xmi = η(xi) // random augmentation
fm(xi) = Nm(xmi , θ

m) // forward pass
end
if ŷi = arg maxk=1,...,K fmk (xi) ∀m = 1, . . . ,M then

add (xi, ŷi) to L
remove xi from U

end
end
for i = 1, . . . , nl do

for m = 1, . . . ,M do
xmi = η(xi) // random augmentation
fm(xi) = Nm(xmi , θ

m) // forward pass
end
L(xi, yi) = LCE(xi, yi) + λDPPLDPP(xi, yi) + λNEMLNEM(xi, yi) // sample loss

end
L =

∑nL

i=1 L(xi, yi) // batch loss
backpropagate L to optimize {θm}Mm=1 // backward pass

Algorithm 2: ARMOURED Inference Procedure

Input: Sample x; networks {Nm}Mm=1 with parameters {θm}Mm=1; random augmentation η(x)
Output: Posterior output f(x); predicted label ŷ

for m = 1, . . . ,M do
xm = η(x) // random augmentation
fm(x) = Nm(xm, θm) // forward pass

end
f(x) = 1

M

∑M
m=1 f

m(x) // posterior output
ŷ = arg maxk=1,...,K fk(x) // predicted label

A.2 OPTIMA OF DPP REGULARIZER

For simplicity, we find the maximum of the exponential of negative loss LDPP(x, y), defined as

Q(x, y) = exp [−LDPP(x, y)] = det
(
F̃>\yS\yF̃\y

)
(2)

Since S\y is a principal submatrix of S, it is also positive semidefinite. We can decompose S\y as
follows: S\y = V DV >, where V is a square matrix whose k-th column is the eigenvector vk of
S\y , and D is a diagonal matrix whose (k, k)-th element λk is the k-th largest eigenvalue of S\y .
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Algorithm 3: Method+AT Minibatch Training Procedure
Input: Labeled samples L = {(xi, yi)}nL

i=1; unlabeled samples U = {xi}nU
i=1;

SSL technique Method with hyperparameters ΩMethod; adversarial attack π(x, y)
Output: Method model with updated parameters

create Ladv = ∅ and Uadv = ∅ // new empty sets
for i = 1, . . . , nL do

zi = π(xi, yi) // adversarial sample
add (zi, yi) to Ladv

end
for i = 1, . . . , nU do

apply inference procedure of Method on xi to generate pseudo-label ŷi
zi = π(xi, ŷi) // adversarial sample
add (zi) to Uadv

end
execute training procedure of Method with inputs: Ladv; Uadv; ΩMethod

The gradient of Q with respect to F̃\y is given by Petersen & Pedersen (2012) as

∂Q

∂F̃\y
= 2 det(F̃>\yS\yF̃\y)S\yF̃\y(F̃>\yS\yF̃\y)−1 (3)

Let F̃∗ be the horizontal concatenation of the first M eigenvectors, i.e., F̃∗ = [v1, v2, . . . , vM ].
Notice that F̃>∗ S\yF̃∗ = DM , where DM is the M ×M leading principal submatrix of D. We
evaluate the gradient at F̃∗ as follows

∂Q

∂F̃\y

∣∣∣∣
F̃∗

= 2 det(F̃>∗ S\yF̃∗)S\yF̃∗(F̃
>
∗ S\yF̃∗)

−1 (4)

= 2 det(DM )S\yF̃∗D
−1
M (5)

= 2 det(DM )DM F̃∗D
−1
M (6)

= 2 det(DM )F̃∗ (7)

Interestingly, since DM is a diagonal matrix, det(DM ) equals the product of the first M eigenval-
ues of S\y . This product is also nonnegative because S\y is positive semidefinite. Therefore, the
gradient at F̃∗ is a nonnegative scaling of F̃∗ itself. Since F̃∗ is normalized to unit length, adding
this gradient does not update it any further, i.e., the angular gradient at F̃∗ is zero. As shown by
Cover & Thomas (1988), given a fixed positive semidefinite kernel, the determinant in equation (2)
is a concave function of F̃\y . Thus, F̃∗ is a maximum of Q.

Note that F̃∗ is not the only maximum. Let R be a M ×M orthogonal matrix, so that F̃∗R is a
rotation of F̃∗. Then, F̃∗R is also a maximum of Q, because

(F̃∗R)>S\y(F̃∗R) = R>(F̃>∗ S\yF̃∗)R = R>DMR = DMR
>R = DM = F̃>∗ S\yF̃∗ (8)

This means that a family of maxima exists for Q, which includes F̃∗ and its orthogonal transforma-
tions in the M -dimensional subspace spanned by F̃∗.

For example, when M = 2, objective Q is maximized at F̃∗ = [v1, v2]

det

([
v>1
v>2

]
S\y [v1 v2]

)
= det

([
v>1 S\yv1 v>1 S\yv2
v>2 S\yv1 v>2 S\yv2

])
= det

([
λ1 0
0 λ2

])
= λ1λ2 (9)

Any rotation of (v1, v2) in the 2-dimensional plane spanned by them is also a maximum.
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A.3 ANALYSIS OF NON-TARGET ENTROPY MAXIMIZATION

For ease of exposition, we denote g(x) as the unnormalized logits of f(x), the Lipschitz constant
LN as the scalar satisfying,

||g(x)− g(x+ ε)||2 ≤ LN ||ε||2 (10)

The guarded adversarial area (Tsuzuku et al., 2018) is defined as the hypersphere satisfying the
following condition, where c is the largest perturbation radius measured in `p distance

∀ε : ||ε||p ≤ c⇒ fy(x+ ε) ≥ max f\y(x+ ε) (11)

The max/average logit gap is the gap bewteen target class logit and maxmimal/average non target
class logit,

maxgap(x) = gy(x)−max
k 6=y

gk(x), avggap(x) = gy(x)− avg
k 6=y

gk(x) (12)

We start by introducing the following lemma which is related to Proposition 1 of Tsuzuku et al.
(2018).
Lemma A.1 For any adversarial perturbation ε smaller than the logit gap divided by the Liptschitz
constant, it is guaranteed the class prediction does not change.

Proof. Lemma A.1 can be written as the following,

maxgap(x) = gy(x)−max
k 6=y

gk(x) ≥
√

2LN ||ε|| ⇒ gy(x+ ε)−max
k 6=y
{(gk(x+ ε)} ≥ 0 (13)

A proof that Lemma A.1 is the same with the proof for Proposition 1 of Tsuzuku et al. (2018).

This lemma suggests that it is possible to increase the robustness, the guarded adversarial area ε, by
either decreasing the Lipschitz constant and/or increasing the logit gap. It is often acknowledged,
as with the analysis in Tsuzuku et al. (2018), that the Lipschitz constant for large neural network
is very hard to quantify. Instead we find it is easier to enlarge the logit gap by non-target entropy
maximization and reveal a relation between them as follows,
Theorem A.2 The non-target entropyH(f̃\y) is a lower bound of average logit gap plus a constant.

The entropy maximization term will encourage a uniform distribution over non-target classes, i.e.
maxgap(x) ≈ avggap(x). By referring to Lemma A.1, this theorem suggests maximizing non-
target entropyH(f̃\y) leads to higher guarded adversarial attack area ε. As result, the overall robust-
ness to adversarial attack is improved by introducing the additional non-target entropy maximization
loss.

Proof. We first write the theorem to prove as the following:

H(f̃\y) ≤ gy(x)− avg
k 6=y
{(gk(x)}+ C (14)

Before we provide the proof, we introduce the following two lemmas and make a mild assumption:
Lemma A.3 LogSumExp is a smooth approximation to and upper bounded by the maximum func-
tion plus a constant.

log
∑
k 6=y

exp gk ≤ max
k 6=y

gk + log(K − 1) (15)

Proof. We relax the summation with maximization and arrive at the following inequalities.

log
∑
k 6=y

exp gk ≤ log((K − 1) exp(max
k 6=y

gk))

= max
k 6=y

gk + log(K − 1)
(16)

Lemma A.4 The following inequality holds for real number vector g of length K.

avg
k
gk ≤

∑
k

gk exp gk∑
k

exp gk
(17)
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Proof. W.l.o.g. we assume gk is in descending order, i.e. ∀i < j, gi ≥ gj . The proof is rewritten
as,

g1(exp g1 + · · · exp gK) + · · · gK(exp g1 + · · · exp gK) ≤ Kg1 exp g1 + · · ·KgK exp gK (18)

The difference between RHS and LHS is written as,

RHS − LHS = (exp g1 − exp g2)(g1 − g2) + (exp g1 − exp g3)(g1 − g3)+ (19)
· · ·+ (exp g1 − exp gK)(g1 − gK)+ (20)
(exp g2 − exp g3)(g2 − g3) + (exp g2 − exp g4)(g2 − g4)+ (21)
· · ·+ (exp g2 − exp gN )(g2 − gN )+ (22)
· · ·+ (exp gK−1 − exp gK)(gK−1 − gK) (23)

Obviously, RHS − LHS is non-negative, thus the inequality holds.

Assumption A.5 Assume the clean samples are mostly correctly classified.

max
k 6=y

gk(x) ≤ gy(x) (24)

Given the fact that we can achieve relatively high classification accuracy on clean samples, the
assumption is realistic in most cases.

Now we prove the inequality for equation (14) holds.

H(f̃\y) = −
∑
k 6=y

exp gk∑
k 6=y

exp gk
log

exp gk∑
k 6=y

exp gk
(25)

=
∑
k 6=y

exp gk∑
k 6=y

exp gk
(log

∑
k 6=y

exp gk − gk) (26)

≤
∑
k 6=y

exp gk∑
k 6=y

exp gk
(max
k 6=y

gk + log(K − 1)− gk) (27)

≤
∑
k 6=y

exp gk∑
k 6=y

exp gk
(gy + log(K − 1)− gk) (28)

≤
∑
k 6=y

exp gk∑
k 6=y

exp gk
(gy + log(K − 1))− avg

k 6=y
gk (29)

≤ (gy − avg
k 6=y

gk + log(K − 1)) (30)

A.4 IMPLEMENTATION DETAILS

Hyperparameters: We fine tune λDPP and λNEM with ARMOURED-I+AT model trained on
CIFAR10 and SVHN individually. The tuning ranges are as follows: λDPP ∈ [0.25, 0.5, 1] and
λNEM ∈ [1, 2, 4]. Each model is trained with one seed and is evaluated on the standard validation
set (5k labeled samples for CIFAR-10 and 7325 labeled samples for SVHN). Please see Table A.4
and Table A.5 for the numerical results. After tuning, we decide to apply (λDPP, λNEM) = (1, 1)
for SVHN and (λDPP, λNEM) = (1, 0.5) for CIFAR-10.

Random augmentations: Regarding the random augmentations η(x), we apply translations and
horizontal flips on CIFAR-10 images and apply only random translations for SVHN images.

Feature-based kernel: We learn the feature-based kernel following the steps below. The learned
kernels are plotted in Figure A.5.

1. Train a MT+AT model using both labeled and unlabeled training data.

2. Using the teacher model, feed forward the adversarial samples generated from labeled train-
ing data. Extract feature vectors from the last layer of WRN-28-2 before the linear layer.
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3. For each class, compute the average feature vectors: b1, b2, . . . bK .
4. Normalize each feature vector by its L-2 norm.
5. Generate the feature matrix B = [b1b2 . . . bK ] and compute the kernel as S = B>B.
6. Normalize S by its largest eigenvalue (equivalent to L-2 normalization).

Table A.4: Fine-tuning of λDPP and λNEM on CIFAR10-semi-4k (reporting validation accuracy)

Autoattack `∞ Autoattack `2

λDPP

λNEM 1 2 4
λDPP

λNEM 1 2 4

0.25 28.50 25.67 6.48 0.25 44.08 41.56 20.02
0.5 32.60 26.25 6.45 0.5 48.08 41.21 21.04
1 32.45 27.87 7.83 1 46.07 41.29 22.80

Table A.5: Fine-tuning of λDPP and λNEM on SVHN-semi-1k (reporting validation accuracy)

Autoattack `∞ Autoattack `2

λDPP

λNEM 1 2 4
λDPP

λNEM 1 2 4

0.25 24.42 22.46 7.70 0.25 44.38 41.56 24.38
0.5 22.82 16.53 8.41 0.5 42.62 41.21 24.15
1 25.15 24.83 7.60 1 44.31 42.79 21.74

(a) CIFAR-10-semi-4k (b) SVHN-semi-1k (c) CIFAR-10-semi-1K

Figure A.5: Visualization of the learned feature-based kernels.

B SUPPLEMENTARY RESULTS

Additional results on CIFAR-10-semi-4k (Table B.6): In this table, we provide the numerical
results that are plotted in Figure 3.

Additional results on SVHN-semi-1k (Table B.7, Figure B.6): Here, we evaluate the robustness
of ARMOURED variants and SSAR benchmarks against AutoAttack with varying perturbation bud-
gets. The results show that MT+AT achieves the best robustness. Among ARMOURED variants,
ARMOURED-H+AT and ARMOURED-F+AT are the most robust and are comparable to each other.

Additional results from ablation study (Table B.8): In this table, we report the full evaluation
results from our ablation study, adding results from standard attacks. In addition, we create a new
model w/ H(f) by replacing H(f̃\y) in LNEM by the entropy of the averaged prediction f over all
classes, similar to the term used by Pang et al. (2019). This model is less robust than ARMOURED-
F+AT against AutoAttack, suggesting that our entropy regularization is better.

Check on gradient masking (Table B.9): We evaluate ARMOURED-F, ARMOURED-F+AT
and other benchmarks against individual components of AutoAttack. The results show that both
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Table B.6: Benchmark against AtutoAttack with varying budgets on CIFAR-10-semi-4k

Method AutoAttack `∞ AutoAttack `2
1/255 2/255 4/255 0.1 0.2 0.3

RST 54.38± 0.30 50.80± 0.32 41.35± 0.14 55.04± 0.24 51.34± 0.37 47.44± 0.39
ARG 62.57± 0.23 57.83± 0.36 48.09± 1.05 62.27± 0.14 57.11± 0.20 51.83± 0.53
MT+AT 59.26± 0.55 53.94± 1.13 43.12± 1.99 59.80± 0.46 54.91± 0.73 49.86± 1.21

ARMOURED-F 70.72± 0.88 57.36± 1.59 33.52± 1.93 71.93± 0.65 59.40± 0.93 46.45± 1.85
ARMOURED-I+AT 65.26± 1.07 60.43± 1.42 48.40± 2.80 65.95± 0.89 61.43± 1.60 55.53± 2.00
ARMOURED-H+AT 65.20± 1.39 60.36± 2.64 49.79± 5.31 65.72± 1.11 61.61± 2.70 56.14± 3.53
ARMOURED-F+AT 65.75± 2.01 62.14± 2.33 52.99± 3.53 65.98± 1.90 62.94± 2.34 58.79± 2.90

Table B.7: Benchmark against AtutoAttack with varying budgets on SVHN-semi-1k

Method AutoAttack `∞ AutoAttack `2
1/255 2/255 4/255 0.1 0.2 0.3

RST 50.23± 1.88 44.76± 2.07 34.25± 2.08 49.74± 2.26 43.65± 2.77 37.33± 3.16
ARG 88.25± 0.32 83.52± 0.21 70.55± 0.72 85.99± 0.31 76.37± 0.76 62.31± 1.22
MT+AT 89.37± 0.33 84.53± 0.55 71.42± 0.70 87.99± 0.45 80.51± 0.65 69.26± 1.04

ARMOURED-F 81.54± 1.46 64.45± 2.08 33.68± 2.07 82.57± 1.14 66.33± 1.31 49.34± 1.18
ARMOURED-I+AT 83.55± 0.21 73.85± 1.83 51.96± 2.96 83.80± 0.07 74.17± 1.33 63.09± 1.98
ARMOURED-H+AT 84.58± 0.34 75.37± 0.98 55.49± 1.87 85.09± 0.17 76.25± 0.66 66.27± 1.40
ARMOURED-F+AT 84.78± 1.10 75.59± 2.03 54.64± 3.42 85.11± 1.09 76.24± 1.85 65.71± 2.53

ARMOURED-F and ARMOURED-F+AT are very robust against black-box attacks (FAB and
Square), which suggests that gradient-masking is less likely to exist in our models.

Utilization of unlabeled data (Table B.10): We define the utilization rate as the ratio between
the number of stable samples and the total number of unlabeled samples in each minibatch. For
each setup, we report the average utilization rate in the last 1000 training iterations. While the
utilization rates on CIFAR-10-semi-4k are high (about 90%), they are much lower on CIFAR-10-
semi-1k (65%-80%) and SVHN-semi-1k (about 80% except for ARMOURED-F). We suspect that
the low utilization rates negatively affect the performance of ARMOURED but was not able to
conduct further investigation on this issue.

Regularization effect of DPP kernel (Figure B.7): We illustrate the average prediction of test sam-
ples generated by ARMOURED variants. From all the subplots, we can clearly see that each network
has developed a preference on high or low posterior for each class. For example, in Figure B.7b,
network N2 (right side) tends to have high predictions for airplane, automobile, ship and truck,
while network N1 (left side) has higher predictions on the remaining six classes. This behaviour
is promoted by the hand-crafted kernel. The feature-based kernel (Figure B.7c and Figure B.7d)
encourages a similar grouping of classes, even though the distinctions are less severe. With the
identity matrix as kernel, the predictions in Figure B.7a also form two groups, but the correlation
among classes of the same group are less intuitive.

Results on CIFAR-10-semi-1k (Table B.11, Table B.12, Figure B.8): We conduct an experi-
ment on CIFAR-10-semi-1k setup. The results in Table B.11 show that ARMOURED variants
achieve higher clean accuracy and better robustness against standard attacks, when compared to
SSAR benchmarks. However, under AutoAttack, the best benchmark (ARG for `∞ and MT+AT for
`2) outperforms ARMOURED-F+AT by about 3%. We suspect that the drops in the performance
of ARMOURED are due to low utilization rate (see Table B.10), but were not able to investigate
this issue further. In addition, we plot the robustness against AutoAttack for varying perturbation
budgets in Figure B.8. Similar to the results on CIFAR-10-semi-4k, ARMOURED-F shows better
performance than SSAR benchmarks under small ε attacks.
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Figure B.6: Robustness against AutoAttack vs. perturbation budget ε on SVHN-semi-1k.

Table B.8: Ablation study on CIFAR-10-semi-4k (full results)

Method Clean FGSM `∞ PGD `∞ PGD `2 AutoAttack `∞ AutoAttack `2
w/o (LDPP + LNEM) 75.60± 0.44 42.19± 0.40 18.96± 0.22 40.05± 0.91 9.27± 0.28 27.32± 0.85
w/o LDPP 77.44± 0.85 66.42± 1.27 59.65± 2.07 65.18± 1.14 34.02± 2.80 48.52± 1.79
w/ H(f) 76.91± 0.71 63.81± 1.99 55.83± 3.70 61.93± 2.40 31.20± 6.22 45.07± 6.48
w/o Unlabeled 72.50± 0.21 41.66± 1.29 22.26± 2.54 36.29± 1.42 10.26± 1.57 25.23± 0.59
ARMOURED-F 84.90± 0.22 68.27± 1.53 56.42± 3.93 67.45± 2.76 8.70± 1.27 25.80± 2.50
ARMOURED-F+AT 76.76± 1.60 64.05± 3.00 55.12± 4.90 61.93± 3.06 35.24± 4.56 49.78± 3.80

Table B.9: Benchmark against components of AutoAttack on CIFAR-10-semi-4k

Attack (ε) MT+AT ARG RST ARMOURED-F ARMOURED-F+AT
Clean 64.77± 0.28 67.07± 0.22 58.81± 0.28 84.90± 0.22 76.76± 1.60

`∞

APGD (8/255) 24.68± 3.03 30.98± 1.78 30.66± 0.38 20.24± 2.57 44.51± 3.97
FAB-t (8/255) 24.63± 2.95 30.34± 1.81 25.62± 0.18 44.17± 0.82 62.60± 2.25
Square (8/255) 29.84± 2.94 35.37± 1.68 29.00± 0.22 77.90± 0.59 70.99± 1.37

AutoAttack (8/255) 24.28± 2.90 30.01± 1.85 25.38± 0.15 8.70± 1.27 35.24± 4.56

`2

APGD (0.5) 40.48± 1.72 41.71± 0.66 43.05± 0.41 41.25± 2.76 57.62± 2.88
FAB-t (0.5) 40.13± 1.63 41.15± 0.70 39.94± 0.56 50.14± 1.29 65.69± 1.75
Square (0.5) 51.87± 1.12 54.26± 0.58 48.76± 0.26 82.05± 0.46 72.49± 1.32

AutoAttack (0.5) 39.93± 1.63 40.86± 0.69 39.79± 0.60 25.80± 2.50 49.78± 3.80

Table B.10: Utilization rate of unlabeled data

CIFAR-10-semi-4k SVHN-semi-1k CIFAR-10-semi-1k

ARMOURED-I+AT 87.97± 0.86 83.79± 6.94 81.93± 7.04
ARMOURED-H+AT 88.61± 0.92 81.93± 1.20 64.99± 2.33
ARMOURED-F+AT 87.95± 1.01 82.28± 0.58 65.84± 6.13

ARMOURED-F 96.55± 1.22 94.35± 0.47 78.08± 2.08

Table B.11: Benchmark results on CIFAR-10-semi-1k

Method Clean FGSM `∞ PGD `∞ PGD `2 AutoAttack `∞ AutoAttack `2
MT 65.12± 2.69 4.40± 0.16 0.35± 0.31 9.21± 2.43 0.06± 0.06 3.98± 2.15
MixMatch 75.70± 1.35 16.99± 1.96 0.00± 0.00 0.85± 0.32 0.00± 0.00 0.02± 0.02

RST 45.74± 2.07 21.31± 0.74 19.33± 1.17 32.05± 2.38 14.28± 1.78 28.29± 3.08
ARG 51.20± 0.67 23.57± 0.55 20.49± 0.79 32.28± 1.11 18.84± 0.99 30.55± 1.03
MT+AT 50.89± 0.37 20.39± 2.03 17.44± 1.96 32.11± 1.30 16.63± 1.83 31.21± 1.32

ARMOURED-F 62.64± 0.48 42.16± 4.64 31.94± 6.27 40.20± 4.44 9.40± 1.51 22.93± 0.75
ARMOURED-I+AT 56.35± 1.69 27.31± 4.17 15.73± 3.48 29.16± 2.83 9.59± 2.61 22.40± 2.67
ARMOURED-H+AT 54.26± 1.18 26.26± 4.33 13.55± 6.38 26.14± 6.32 8.27± 4.91 19.62± 6.13
ARMOURED-F+AT 56.74± 0.97 35.37± 6.34 23.90± 5.99 34.91± 4.41 15.10± 2.72 28.31± 3.75
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(a) ARMOURED-I+AT

(b) ARMOURED-H+AT

(c) ARMOURED-F+AT

(d) ARMOURED-F

Figure B.7: Posterior outputs on CIFAR-10 test data, generated by networks N1 (left side) and
N2 (right side). Horizontal labels show the ground truth classes, vertical axis shows the predicted
probabilities multiplied by 100. All models are trained on CIFAR-10-semi-4k.
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Table B.12: Benchmark against AtutoAttack with varying budgets on CIFAR-10-semi-1k

Method AutoAttack `∞ AutoAttack `2
1/255 2/255 4/255 0.1 0.2 0.3

RST 40.89± 2.12 36.30± 1.89 27.46± 2.01 42.06± 2.37 38.54± 2.27 35.06± 3.54
ARG 46.50± 0.75 41.80± 0.85 33.12± 0.75 46.89± 0.59 42.57± 0.85 38.58± 0.84
MT+AT 45.65± 0.75 40.59± 1.22 31.10± 1.56 46.75± 0.64 42.88± 0.84 38.87± 1.19

ARMOURED-F 48.63± 1.35 41.44± 1.29 26.57± 0.96 49.43± 1.55 42.93± 1.17 35.83± 0.86
ARMOURED-I+AT 39.19± 2.63 33.97± 2.92 23.17± 3.31 39.93± 2.41 35.54± 2.62 30.90± 2.89
ARMOURED-H+AT 35.98± 3.41 30.60± 4.87 20.35± 6.15 36.75± 3.12 32.41± 4.36 27.52± 5.18
ARMOURED-F+AT 42.21± 2.31 38.11± 3.40 29.34± 4.04 42.47± 2.18 39.39± 2.76 35.42± 3.64
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Figure B.8: Robustness against AutoAttack vs. perturbation budget ε on CIFAR-10-semi-1k.
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