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ABSTRACT

Drug discovery has been greatly enhanced through the recent fusion of molecular
sciences and natural language processing, leading these research fields to signif-
icant advancements. Considering the crucial role of molecule representation in
chemical understanding within these models, we introduce novel probing tests de-
signed to evaluate chemical knowledge of molecular structure in state-of-the-art
language models (LMs), specifically MolT5 and Text+Chem T5. These probing
tests are conducted on a molecule captioning task to gather evidence and insights
into the language models’ comprehension of chemical information. By applying
rules to transform molecular SMILES into equivalent variants, we have observed
significant differences in the natural language descriptions generated by the LM
for a given molecule depending on the exact transformation used.

1 INTRODUCTION

Several LMs, including BioBERT, BioGPT, and BioBART, have been developed for the biomedical
and clinical domain (Lee et al., 2020; Phan et al., 2021). These models were traditionally pre-
trained on textual data exclusively (Luo et al., 2022; Yuan et al., 2022; Savchenko et al., 2020).
Widespread string-based molecular representations, e.g., SMILES (Weininger, 1988), allow LMs
applications in the domain of medicinal chemistry (Schwaller et al., 2019; Irwin et al., 2022; Raffel
et al., 2020b; Ross et al., 2022). Recently, novel cross-domain LMs were developed. In contrast
with the aforementioned models, MolT5 (Edwards et al., 2022) and Text+Chem T5 (Christofidellis
et al., 2023) are pre-trained on both chemical and textual data and tasks, e.g. the large C4 (Raffel
et al., 2020a) corpus and 100 million SMILES strings from ZINC15 (Sterling & Irwin, 2015).

This paper contributes to a growing effort to understand better domain-specific capacities achieved
by novel cross-domain LMs. Evaluation of LMs such as BioBERT is typically done with various
downstream tasks (Miftahutdinov et al., 2021; Tutubalina et al., 2020; Sakhovskiy et al., 2021) or
with probing tasks using knowledge graphs (Meng et al., 2022; Makarov et al., 2022), which reveal
that biomedical LMs encounter challenges in capturing complex specialized domain terminology
and lack awareness of synonyms (Sung et al., 2021). In this paper, we present novel probing tasks
with chemical LMs. It is experimentally shown that the state-of-the-art models are vulnerable to
even slight changes in molecule representations. The source code is publicly available at https:
//github.com/ChemistryLLMs/SMILES-probing.

2 MOLECULE CAPTIONING AND PROBING RULES

The molecule captioning task aims to generate a description for a given molecule. Edwards et al.
(2022) proposed this task as a sequence-to-sequence translation task using the ChEBI-20 dataset.
We propose several SMILES-based probing tests: 1. canonicalization: the transformation from
a SMILES string to an RDKIT (Bento et al., 2020; Greg et al., 2022) canonical SMILES string.
2. hydrogen: The addition of explicit hydrogen atoms into SMILES string. 3. kekulization: the
transformation from a SMILES string to a Kekulized SMILES string (i.e., the one where the aromatic
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Table 1: Example of molecular SMILES from a test set and after our transformations.
AUGMENTATION RESULT

original (w/o aug-
mentations)

CC1=C2C=C(C=C(C2=CC=C1)C(=O)O)[O-]

canonicalization Cc1cccc2c(C(=O)O)cc([O-])cc12
hydrogen [CH3][c]1[cH][cH][cH][c]2[c]([C](=[O])[OH])[cH][c]([O-])[cH][c]12
kekulization CC1=C2C=C([O-])C=C(C(=O)O)C2=CC=C1
cycles CC1=C3C=C(C=C(C3=CC=C1)C(=O)O)[O-]

Table 2: Results on augmented sets. Non-canon. SMILES from the test set marked as “original”.
Probing Test MolT5-base Text+Chem T5-base MolT5-large Text+Chem T5-augm

ROUGE-2 METEOR ROUGE-2 METEOR ROUGE-2 METEOR ROUGE-2 METEOR
original 0.481 0.583 0.498 0.604 0.510 0.614 0.543 0.648
canonical 0.315 0.450 0.381 0.515 0.390 0.532 0.377 0.514
hydrogen 0.199 0.329 0.187 0.314 0.174 0.318 0.201 0.336
kekulization 0.333 0.475 0.413 0.574 0.405 0.546 0.410 0.546
cycles 0.417 0.540 0.483 0.600 0.566 0.603 0.4575 0.581

π-electrons are static between every second carbon). 4. cycles: valid replacement of cycle numerical
identifiers with other random numbers. Their examples are provided in Table 1.

3 EXPERIMENTAL RESULTS

We evaluate two architectures: MolT5 (Edwards et al., 2022), and Text+Chem T5 (Christofidellis
et al., 2023). We use both base (250M parameters) and large (780M) versions. The model is fur-
ther fine-tuned on the ChEBI-20 dataset (Edwards et al., 2021), which consists of 33,010 pairs of
molecule description split into 80% / 10% / 10% train / val / test sets. The URL links to pre-trained
models, data, and our source code are available in Appendix A.

For evaluation, we use the following metrics: ROUGE-1, ROUGE-2, ROUGE-L (Chin-Yew, 2004),
and METEOR (Banerjee & Lavie, 2005). Table 2 contains only the ROUGE-2 and METEOR met-
rics, as they change together, so some can be omitted from the brief discussion for the sake of sim-
plicity (all metrics in Appendix B). We expected all augmentations to cause the captioning quality
to decline. Our experimental results support this claim, as metrics on augmented datasets are sig-
nificantly (Savchenko & Savchenko, 2019) lower than on original data. Although it showed slightly
better results on average, MolT5-large fails in the hydrogen task. The Text+Chem T5-augm was
trained on the dataset augmented with additional reactions. In contrast to MolT5-large, its perfor-
mance drops on all the tasks except for hydrogen. The toughest task for all tested models is the
hydrogen one: while a simple addition of explicit ”H”s has no effect on the underlying molecular
chemistry, it changes the SMILES representation drastically. In contrast, cycle renumbering does
not affect the SMILES as much, and the metrics degradation is not so high. Two other augmen-
tations (canonicalization and kekulization) may change the SMILES significantly but more often
affect only a small part of it. While none of these augmentations transform the underlying molec-
ular structures, they change the symbols with which these structures are represented and, broadly
speaking, known by the model, which affects its performance. We present a qualitative analysis of
predictions in Appendix C. In addition, we trained models on the augmented CHEBI-20 train set:
each molecule has three augmentations (canonicalization, kekulization and explicit hydrogen). Re-
sults are slightly better: we have test models on the original test set. For example, the METEOR
metric of Molt5-base is increased from 0.583 to 0.596.

4 CONCLUSION

In this paper, we introduced novel probing tasks with chemistry LMs. Our experiments demonstrated
that the state-of-the-art models are vulnerable to changes in molecule representations, as was tested
by several augmentations. All changes in symbolic representation have proven to cause a decline
in performance, but the extent of this decline seems to be, most of the time, dictated by language
processing rather than the underlying understanding of chemistry. This new information will allow
the scientific community to better understand the domain-specific capabilities achieved by novel
cross-domain LMs, such as chemical LMs while keeping in mind their inner logic and the resulting
weak spots that can hinder their usage.
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A LINKS TO THE EVALUATED MODELS AND RESOURCES

• Publicly available source code of our experiments: will be added in the camera-ready ver-
sion

• MolT5 is available at https://huggingface.co/laituan245/
molt5-base-smiles2caption;

• Text+Chem T5 is available at https://huggingface.co/GT4SD/
multitask-text-and-chemistry-t5-base-standard;

• The ChEBI-20 dataset used for experiments: https://github.com/
blender-nlp/MolT5/tree/main/ChEBI-20_data;

• Evaluation framework luna-nlg is available at https://pypi.org/project/
luna-nlg/;

• RDKit: https://www.rdkit.org

B FULL EVALUATION RESULTS

Table 3 contains the complete results of our experiments, namely, ROUGE-1, ROUGE-2, ROUGE-
L, and METEOR metrics for molecule captioning on our datasets.

Table 3: Evaluation results on augmented datasets. We refer to a non-canonicalized SMILES from
the test set as “original”.

Probing Test Text+Chem T5-base MolT5-base
ROUGE-1 ROUGE-2 ROUGE-L METEOR ROUGE-1 ROUGE-2 ROUGE-L METEOR

original 0.647 0.498 0.586 0.604 0.633 0.481 0.574 0.583
canonical 0.487 0.381 0.487 0.515 0.493 0.315 0.435 0.450
hydrogen 0.306 0.187 0.306 0.314 0.372 0.199 0.324 0.329

kekulization 0.516 0.413 0.517 0.574 0.512 0.333 0.451 0.475
cycles 0.574 0.483 0.575 0.600 0.579 0.417 0.520 0.540

Probing Test Text+Chem T5-large MolT5-large
ROUGE-1 ROUGE-2 ROUGE-L METEOR ROUGE-1 ROUGE-2 ROUGE-L METEOR

original 0.682 0.543 0.622 0.648 0.654 0.510 0.594 0.614
canonical 0.543 0.377 0.484 0.514 0.557 0.390 0.494 0.532
hydrogen 0.376 0.201 0.325 0.336 0.348 0.174 0.297 0.318

kekulization 0.577 0.410 0.515 0.546 0.571 0.405 0.507 0.546
cycles 0.614 0.458 0.552 0.581 0.627 0.477 0.566 0.603

C QUALITATIVE ANALYSIS

Several examples of the outputs of the models are shown in Table 4. For SMILES from Pubchem, the
model managed to remember the description of the molecule exactly. In canonical form, the model
did not understand that the ring structure is aromatic and incorrectly captioned it as a cyclohexane.
Besides that, it incorrectly placed substitutions in positions 1 and 4. Hydrogen augmentation made
the model think there is deuterium in the molecule, an isotope of hydrogen. Additionally, it describes
the ring structure as a furan instead of benzene. After kekulization, the model managed to caption the
basic chemistry of the molecule but didn’t mention any phis/chem properties, such as boiling point
or color presented in the original description. Cycle augmentation made the model unsure about
chemistry: ”It is a methylcatechol and a monomethoxybenzen.” These two molecules are similar to
some extent but still different. In this case, all the augmentation except kekulization led to a wrong
chemical description.
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Table 4: Examples of SMILES and descriptions generated by Text+Chem T5-base.
Probing
Test

Input Output

original CC1=CC=CC=C1OC The molecule is a monomethoxybenzene that is o-
cresol in which phenolic hydroxy group has been
converted to the corresponding methyl ether. A
’green’ solvent (b.p. 171 °C) and food flavour
ingredient, it is found in mastic oils, virgin olive
oils and frankincense. It has a role as a po-
lar aprotic solvent and a flavouring agent. It is
a monomethoxybenzene, a volatile organic com-
pound and a member of toluenes. It derives from
an o-cresol.

canonical COc1ccccc1C The molecule is a cycloalkane that is cyclohexane
substituted by a methyl group at position 1 and a
methoxy group at position 4. It has a role as a
metabolite. It is a cycloalkane and a volatile or-
ganic compound. It derives from a hydride of a
cyclohexane.

hydrogen [CH3][O][c]1[cH][cH]
[cH][cH][c]1[CH3]

The molecule is a deuterated compound
that is is an isotopologue of cis-2,3,6-
trimethyltetrahydrofuran. It is a deuterated
compound, an isotopologue of cis-2,3,6-
trimethyltetrahydrofuran.

kekulization COC1=CC=CC=C1C The molecule is a monomethoxybenzene that is
methoxybenzene substituted by a methyl group at
position 2. It has a role as a plant metabolite.

cycles CC5=CC=CC=C5OC The molecule is a methylcatechol that is toluene
in which the hydrogen at position 2 has been re-
placed by a methoxy group. It is a methylcate-
chol and a monomethoxybenzene. It derives from
a methyl toluene.

Pubchem CC1=CC=CC=C1OC 2-methylanisole is a monomethoxybenzene that
is o-cresol in which phenolic hydroxy group has
been converted to the corresponding methyl ether.
A ’green’ solvent (b.p. 171 °C) and food flavour
ingredient, it is found in mastic oils, virgin olive
oils and frankincense. It has a role as a po-
lar aprotic solvent and a flavouring agent. It is
a monomethoxybenzene, a volatile organic com-
pound and a member of toluenes. It is functionally
related to an o-cresol.
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