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Abstract

In decentralized cooperative multi-armed bandits (MAB), each agent observes a distinct
stream of rewards, and seeks to exchange information with others to select a sequence
of arms so as to minimize its regret. Agents in the cooperative setting can outperform a
single agent running a MAB method such as Upper-Confidence Bound (UCB) independently.
In this work, we study how to recover such salient behavior when an unknown fraction
of the agents can be Byzantine, that is, communicate arbitrarily wrong information in
the form of reward mean-estimates or confidence sets. This framework can be used to
model attackers in computer networks, instigators of offensive content into recommender
systems, or manipulators of financial markets. Our key contribution is the development
of a fully decentralized resilient upper confidence bound (UCB) algorithm that fuses an
information mixing step among agents with a truncation of inconsistent and extreme values.
This truncation step enables us to establish that the performance of each normal agent is no
worse than the classic single-agent UCB1 algorithm in terms of regret, and more importantly,
the cumulative regret of all normal agents is strictly better than the non-cooperative case,
provided that each agent has at least 3f + 1 neighbors where f is the maximum possible
Byzantine agents in each agent’s neighborhood. Extensions to time-varying neighbor graphs,
and minimax lower bounds are further established on the achievable regret. Experiments
corroborate the merits of this framework in practice.

1 Introduction

In multi-armed bandits (MAB) (Lattimore & Szepesvári, 2020), one is faced with the task of selecting a series
of arms so as to accumulate the most reward in the long-term when rewards are incrementally revealed. The
canonical performance measure is regret, which quantifies the difference in the cumulative return associated
with one’s chosen actions as compared with the best-in-hindsight up to some fixed time-horizon T . For the
frequentist setting, that is, no distributional model is hypothesized underlying the reward sampling process,
both lower and upper bounds on the asymptotic regret exist (Lai & Robbins, 1985). Upper confidence-bound
(UCB) selection method was proposed in Auer et al. (2002a) which achieves O(log T ) regret.

In this work, we focus on cooperative multi-agent extensions of this setting (Landgren et al., 2016), where
each node in a directed graph now receives a distinct reward sequence and needs to select its own series
of arms. Cooperative MAB has received significant attention in recent years, where agents compute locally
weighted averages of their agents’ arm index parameters, i.e., they execute consensus (Jadbabaie et al., 2003;
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Olfati-Saber et al., 2007). Numerous works have studied this problem class in recent years for the case that
agents reward distributions are homogeneous (Landgren et al., 2016; Landgrena et al., 2021; Martínez-Rubio
et al., 2019; Zhu et al., 2021; Chawla et al., 2020), as well as (Lai et al., 2008; Liu & Zhao, 2010; Szorenyi
et al., 2013; Kalathil et al., 2014; Bistritz & Leshem, 2018; Sankararaman et al., 2019; Wang et al., 2020;
Dubey & Pentland, 2020; Shi & Shen, 2021; Madhushani & Leonard, 2020a;b; Martínez-Rubio et al., 2019),
extensions to models of �collision� (Nayyar et al., 2018; Liu & Zhao, 2010; Bistritz & Leshem, 2018; Lai
et al., 2008) and federated information structures (Shi & Shen, 2021; Shi et al., 2021; Zhu et al., 2021;
Dubey & Pentland, 2020; Li et al., 2020; Réda et al., 2022). Most pertinent to this work are consensus-based
decentralized UCB-type methods (Landgren et al., 2016; Landgrena et al., 2021; Martínez-Rubio et al., 2019;
Zhu et al., 2021; Zhu & Liu, 2023). It is worth noting that in such a homogeneous setting, each agent in
a multi-agent network can independently learn an optimal arm using any conventional single-agent UCB
algorithm, ignoring any information received from other agents. With a careful design, decentralized multi-
agent multi-armed bandits can outperform centralized single-agent upper con�dence bound algorithms (Zhu
& Liu, 2021; 2024).

However, it is overly narrow to consider that all agents cooperate, as many learning processes have a mixture
of cooperative and competitive agents, and it is not always clear to delineate between them (Littman, 1994;
Ba³ar & Olsder, 1998). To encapsulate this dynamic, we consider that an unknown subset of agents are
�Byzantine" (Lamport et al., 1982), i.e., they chose their index parameters and selects arms in an arbitrary
manner and can send con�icting values to di�erent agents. The cooperative MAB in the presence of Byzantine
agents setting has intrinsic motivation in computer networks (Xiong & Jamieson, 2013; Ferdowsi et al., 2019),
recommender systems (Sankararaman et al., 2019), and economics (Misra et al., 2019), to name a few, as a
model of how these systems should optimize performance in the presence of uncertainty in their incentives.
In particular, cooperation can respectively model �lesharing, collective interest around a topic, or market
stability metrics. Moreover, the concept of Byzantine agents naturally emerges when some participants seek
to derail the goal of the collective, as in denial of service attacks, injection of o�ensive content into social
media, or market manipulation. To date, however, the majority of works that study MAB in the cooperative
multi-agent setting do not allow for any agents to be non-cooperative, leading to a learning process being
inoperable in the presence of malefactors. Therefore, in this work, we pose the following question:

Can decentralized multi-armed bandit algorithms outperform the classic single-agent counterpart even
in the presence of Byzantine agents?

In this work, we provide an a�rmative answer to this question. Therefore, our contributions are to:

ˆ pose the multi-armed bandit problem in the multi-agent setting in the presence of Byzantine agents;

ˆ derive a �ltering step on the parameters exchanged by agents that thresholds extreme values, which
guarantees consistency in the construction of con�dence sets and helps limit the deleterious impact of
the Byzantine agents by yielding accurate reward mean estimates. As a result, we construct a Byzantine-
resilient variant of decentralized UCB framework;

ˆ establish that the regret performance of this method no worse than logarithmic regret bound of its
single-agent counterpart (which is not true of MAB methods even in the Byzantine-free case (Landgren
et al., 2016; Landgrena et al., 2021; Martínez-Rubio et al., 2019)), and is better than the non-cooperative
counterpart in terms of network total regret when each agent has at least3f + 1 neighbors, wheref is an
upper-bound on the number of Byzantine agents that is commonly assumed known in resilient learning
(Gupta et al., 2021; Gupta & Vaidya, 2021; Kaheni et al., 2022; Liu et al., 2021b; Gupta et al., 2023).
Notably, we do not require global knowledge of the network connectivity, as in Vial et al. (2021; 2022);

ˆ experimentally demonstrate that the proposed methodology achieves lower regret compared with single-
agent (non-cooperative) UCB, meaning that the sum is more than the component parts. The constructed
setting is representative of a model of recommender systems, where advertising �rms may share data to
improve reliability of their targeted ads.

A detailed review of related work can be found in Appendix B.

2



Published in Transactions on Machine Learning Research (08/2024)

2 Multi-agent Multi-armed Bandits

Consider a multi-agent network consisting ofN > 1 agents, which may be mathematically formalized as a
directed graph G = ( V; E) with V = f 1; : : : ; N g. Each vertex i corresponds to an agent and each directed
edge (or arc) de�nes connectivity amongst neighbors. To be more precise, we say agentj is a neighbor of
agent i if (j; i ) is an arc in E, and similarly, agent k is an out-neighbor of agenti if (i; k ) 2 E. Each agent
may receive information only from its neighbors with an inward bound arc, meaning that the directions of
arcs represent the directions of information �ow. We useN i and N �

i to respectively denote the neighbor set
and out-neighbor set of agenti , i.e., N i = f j 2 V : (j; i ) 2 Eg and N �

i = f k 2 V : (i; k ) 2 Eg.

All agents face the same set ofM > 1 arms (or options) denoted asM = f 1; : : : ; M g. At each discrete
time t 2 f 0; 1; : : : ; Tg, agent i 2 V must select an armai (t) 2 M from the M options. If agent i selects
an arm k 2 M , it will receive a random reward X i;k (t). For any i 2 V and k 2 M , f X i;k (t)gT

t =0 is an
unknown independent and identically distributed (i.i.d.) stochastic process. For each armk 2 M , all its
reward variables over the networkX i;k (t), i 2 V share the same mean� k while their distributions may be
di�erent. Without loss of generality, we assume that all X i;k (t), i 2 V , k 2 M have bounded support[0; 1]
and that � 1 � � 2 � � � � � � M , which implies that arm 1 has the largest reward mean and thus is always an
optimal option.

There exist agents in the network which are able to transmit arbitrary values to their out-neighbors and
capable of sending con�icting values to di�erent neighbors strategically, which we refer to asByzantine agents
(Fischer et al., 1986). The set of Byzantine agents is denoted byF and the set of normal (non-Byzantine)
agents is denoted byH, whereby V = H [ F . Which agents are Byzantine is unknown to normal agents;
however, we assume that each agent has at mostf Byzantine neighbors, and knows the numberf . Knowing
the number f can be viewed as a limitation of this work, though it is a widely adopted assumption in the
existing Byzantine-resilient algorithms in the literature.

The canonical performance measure in the multi-agent MAB setting may be formalized through the concept
of regret among the non-Byzantine agents. That is, each normal agenti seeks to select its sequence of arms
f ai (t)gT

t =1 so as to minimize its contribution to a network-wide cumulative regret

R(T) =
X

i 2H

Ri (T) =
X

i 2H

�
T � 1 �

TX

t =1

E
�
X a i ( t )

�
�

; (1)

where the sum is over all non-Byzantine agents though in the presence of Byzantine agents. Moreover,Ri (T)
quanti�es the di�erence in the cumulative return

P T
t =1 E

�
X a i ( t )

�
as compared with the best-in-hindsight up

to horizon T, which by our assumption on the ordering of� i , is simply T � 1.

In the case when each agent does not have any neighbors, the aforementioned resilient multi-agent multi-
armed bandit problem reduces to the conventional single-agent multi-armed bandit problem for each normal
agent. It is well known that each normal agent can appeal to the classic UCB1 algorithm and achieve an
O(log T) regret (Auer et al., 2002a). Subsequently, we develop a Byzantine-resilient decentralized multi-agent
UCB1 algorithm which guarantees that all normal agents collectively outperform the scenario had they each
adopted the classic single-agent UCB1 algorithm. Before continuing, we introduce an example to clarify the
problem setting.

Example 1 (Recommender Systems) In personalized recommender systems in web services (Sankarara-
man et al., 2019), an application interface is charged with the task of presenting one of several advertising
options to an end-user, and receives a reward any time the selection receives a click. This click-through-rate
(CTR) paradigm of recommendation systems is standard. However, one challenge with obtaining good per-
formance in this setting is that there are many more options than arm pulls. Therefore, there is incentive for
one advertising �rm to exchange information with another in order to gain a better understanding of CTR
(Elena et al., 2021). In this case, one may pose the resulting ad targeting problem as a multi-agent MAB
problem. Here, the existence of Byzantine agents may come by the presence of �rms that seek to introduce
o�ensive or divisive content into web services for non-economic incentives (Hinds et al., 2020). This issue
has occurred several times in the past decade.
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Example 2 (Computer Networks) In this setting, each agent in the network is a device or computer
(Xiong & Jamieson, 2013; Ferdowsi et al., 2019), the arm selection speci�es a non-local node in the network
as a candidate which a data packet could be sent, meaning that the arm set is a subset of the node set.
Reward is the outcome of a simple synchronize-acknowledge protocol (Syn-Ack), which is a binary indicator
of whether a data packet was successfully received. The collaborative multi-agent aspect of this problem
permits one to allow uploads within a Local Area Network (LAN), as in �le-sharing protocols. It is natural to
consider that a random subset of nodes could be Byzantine in this context, as malicious code or devices may
attempt to deny the regular operation of a network. In this case, their presence would model a Distributed
Denial of Service (DDOS) attack, or other similar cyber-attacks � see Gollmann (2010).

Example 3 (Financial Markets) Suppose a central treasury of a national government wants to stabilize
its country's �nancial market. In this case, the arm pulled is an interest rate on treasury bonds which
are typically held by large �nancial intuitions. The reward is the rate of increase/decrease in in�ation,
or another indicator of national economic health (such as labor force participation rate). In this context,
there is an incentive to cooperate with the treasuries of other governments in order to achieve increased
economic stability(Benigno & Benigno, 2002). The presence of Byzantine agents in this context manifests
because not all governing bodies are interested in the economic stability of another. Indeed, in the presence
of a geopolitical rival, decreasing economic performance may motivate communicating spurious or incorrect
information to others (Macekura, 2020).

With the setting clari�ed, next we introduce our main algorithmic framework based upon UCB.

3 Byzantine-Resilient Collaborative UCB

To present our algorithm, we �rst need to introduce some notation. For each i 2 V and k 2 M , we use
ni;k (t) to denote the number of times agenti has selected armk prior to time t. Moreover, denote�x i;k (t) as
sample mean of armk reward tracked by i at time t, i.e., �x i;k (t) = 1

n i;k ( t )

P t
� =0 1(ai (� ) = k)X i;k (� ), where

1(�) is the indicator function which is 1 if the event in its argument is true and 0 otherwise.

We propose a protocol such that each agenti 2 V transmits two scalars for each armk 2 M to all its out-
neighbors: ni;k (t) and �x i;k (t). Due to the existence of Byzantine agents, we usenij;k (t) and �x ij;k (t), k 2 M
to denote the possibly contaminated number of arm pulls and reward mean-estimates agenti transmits to
its out-neighbor j . If agent i is normal, nij;k (t) = ni;k (t) and �x ij;k (t) = �x i;k (t) for all k 2 M and j 2 N �

i .
If agent i is Byzantine, nij;k (t) and �x ij;k (t) may be arbitrary for all k 2 M .

Before formalizing the procedure, we describe the key concepts behind its execution. The main idea is to use
UCB as the decision-making policy. The key point of departure compared with single-agent UCB or non-
Byzantine multi-agent UCB is that we have a �ltering process to down-weight the e�ect of Byzantine agents.
Recall that our goal is to design an algorithm that achieves full resilience and ensures no worse performance
than the single-agent (non-cooperative) UCB. To this end, we construct a reward mean estimatezi;k (t) to
be more accurate than the sample mean�x i;k (t) (the corresponding reward mean estimate in single-agent
UCB). For resilient bandit, there are two factors that can a�ect the accuracy of zi;k (t): (i) the consistency
of sample counts of agents in the neighborhood and (ii) the role of Byzantine agents.

(i) Consistency Filter. While UCB provides an e�ective solution for exploration in the single-agent
case, the multi-agent case mandates that each agent not only explores each arm su�ciently itself but also
requires certain local �consistency� conditions, i.e., the number of times an arm has previously been pulled is
su�cient to construct a valid con�dence set. To address this, a method to encourage a version of persistent
exploration by forcing agents to select an insu�ciently-explored arm if its corresponding sample count falls
too much behind the network maximal sample count has been developed (Zhu & Liu, 2021). The upshot
of this adjusted exploration scheme is that it can be shown to satisfy said consistency condition. However,
it is inoperable in the Byzantine setting due to potentially spurious information. To alleviate this issue,
we proposethreshold-consistency, which instead of actively balancing the sample counts over the network,
directly thresholds the number of neighbors an agent may employ to update the reward mean estimate by
removing all the neighbors that have not explored su�ciently compared with itself. To be more precise, agents
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may ensure local consistency in their con�dence sets through a proper re-weighting of standard deviation
in terms of A i;k (t) neighbors that are considered post-winnowing. In particular, we introduce a truncation
parameter � i , which parameterizes the �consistency level� (addressing issue (i)). If� i is too large, then the
consistency is insu�cient, see equation 19; if � i is set to be too small, then the restriction omits too many
agents to obtain valid reward mean estimates. This tension may be formalized by restricting its viable range
as 1 � � i < 2: For e�ect on regret for di�erent � i 2 [1; 2); see Figures 1 and 2.

(ii) Trimmed Mean. To achieve the nulli�cation of Byzantine e�ect, we further propose a winnowing
procedure on the reward mean-estimates in terms of an upper-bound on the number of Byzantine agents
(addressing issue (ii)). That this is necessary may be observed by noting that even with the restricted
construction of con�dence sets, reward information from neighbors can be arbitrarily wrong. Therefore, no
concentration bound may be employed to limit its impact. In this sense, to achieve resilience, normal agents
need to negate the Byzantine e�ect, which may be achieved through thetrimmed-mean. This procedure,
similar to hard-thresholding, truncates the received sample means from other agents by omitting thef
largest and f smallest values. This technique has found success in related resilient multi-agent consensus
methods (Vaidya et al., 2012; Leblance et al., 2013; Saldaña et al., 2017; Saulnier et al., 2017). Through a
re-parameterization (Lemma 2) and the threshold consistency previously mentioned, we can establish that
the reward mean estimate is actually superior to its single-agent counterpart. It is worth emphasizing that
the trimmed-mean idea has to be incorporated with a suitably chosen consensus variable for resilient reward
mean estimation; see Remark 2 and Example 4 in the Appendix.

With these elements properly motivated, we are ready to present the main algorithm for decentralized UCB
with Byzantine agents.

Algorithm 1: Filter (i; k; t ): Consistency and trimmed mean �lters of agent i on arm k at time t
Input: agent i , � i , arm k; time t

1 Set ~A i;k (t) = N i

2 for j 2 N i do
3 if � i nij;k (t) < n i;k (t) then
4 Removej from ~A i;k (t) // Consistency-Filter

5 end
6 end
7 Set A i;k (t) = ~A i;k (t)
8 if jA i;k (t)j � 2f then
9 zi;k (t) = �x i;k (t)

10 else
11 Set ~Bi;k (t) = A i;k (t)
12 Sort �x ji;k (t) in descending order forj 2 ~Bi;k (t) and removes the indices corresponding to the
13 f largest and f smallest values from ~Bi;k (t) // Trimmed-Mean

14 Set Bi;k (t) = ~Bi;k (t)
15 zi;k (t) = 1

jB i;k ( t ) j+1

�
�x i;k (t) +

P
j 2B i;k ( t ) �x ji;k (t)

�

16 end

Initialization: At initial time t = 0 , each normal agenti 2 H samples each armk exactly once and then
setsni;k (0) = 1 and �x i;k (0) = X i;k (0).

Between clock times t and t + 1 , with t 2 f 0; 1; : : : ; Tg, each normal agent i 2 H performs the steps
enumerated below in the order indicated.

Transmitting: Agent i transmits the possibly contaminated number of arm pullsnij;k (t) and reward mean-
estimate �x ij;k (t), k 2 M to each of its out-neighborsj 2 N �

i and meanwhile receivesnhi;k (t) and �xhi;k (t),
k 2 M from each of its neighborsh 2 N i .

Filtering: Agent i performs two steps to possibly �lter out the malefactors in its neighbor set N i .
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Step A [Consistency Filter]: For each armk 2 M , agent i �lters out those neighbors' indices j from N i for
which � i nji;k (t) < n i;k (t), where � i 2 [1; 2) is a constant, and sets the remaining index set asA i;k (t), i.e.,

A i;k (t) =
�

j 2 N i : � i nji;k (t) � ni;k (t)
	

:

Step B [Trimmed Mean Filter]: For each arm k 2 M , if jA i;k (t)j > 2f , agent i �lters out those neighbors'
indices h from A i;k (t) whose �xhi;k (t) are the f largest and f smallest among�x ji;k (t), j 2 A i;k (t), with ties
broken arbitrarily, and then sets the remaining index set asBi;k (t), otherwise agenti setsBi;k (t) = ; . To be
more precise, let� be any non-decreasing permutation ofA i;k (t) for which �x � (h) i;k (t) � �x � (h+1) i;k (t) for all
h 2 f 1; : : : ; jA i;k (t)j � 1g. Then,

Bi;k (t) =

(
; ; if jA i;k (t)j � 2f;
�

�x � (h) i;k (t) : f + 1 � h � jA i;k (t)j � f
	

; else:
(2)

Decision Making: Agent i calculates its current estimate of reward mean� k for each arm k 2 M as

zi;k (t) =
1

jBi;k (t)j + 1

�
�x i;k (t) +

X

j 2B i;k ( t )

�x ji;k (t)
�

; (3)

and based upon this information, computes its exploration bonus (derived from Hoe�ding in Lemma 3 in
the Appendix) from each arm k as

C
�
t; n i;k (t)

�
=

s
2gi;k (t) log t

ni;k (t)
;

where the variance term is de�ned in terms of the proportion of arm pulls remaining post-�ltering jB i;k (t)j as

gi;k (t) =

8
<

:

1; if Bi;k (t) = ; ;
� i

4
+

� i

4(jBi;k (t)j + 1)
+

1
(jBi;k (t)j + 1) 2 ; else:

(4)

Then, the arm ai (t + 1) that maximizes the Byzantine-�ltered upper-con�dence bound for agent i at time
t + 1 is selected

ai (t + 1) = arg max
k2M

�
zi;k (t) + C(t; n i;k (t))

�
:

Updating: Agent i updates its variables as

ni;k (t + 1) =

(
ni;k (t) + 1 if k = ai (t + 1) ;
ni;k (t) if k 6= ai (t + 1) ;

�x i;k (t + 1) =
1

ni;k (t + 1)

t +1X

� =0

1(ai (� ) = k)X i;k (� ):

These steps are summarized as Algorithm 2 in the Appendix.

Remark 1 (Communication Cost) Each agent to broadcast two variables: one real number and one
integer for each arm at each time step. The communication cost is comparable to many existing decentralized
cooperative MAB algorithms (Landgren et al., 2016; Landgrena et al., 2021; Zhu & Liu, 2021). A simple
way to reduce the communication cost of Algorithm 1 is to allow agents to pick a subset of neighbors with
which to communicate. Observe from Theorem 3 that no network connectivity requirement is needed to
ensure performance comparable to the single-agent counterpart. Using communication epochs with a �xed
constant length is an alternative approach (Martínez-Rubio et al., 2019; Dubey & Pentland, 2020)), where
each agent only communicates and makes arm decisions at the start of the epoch, and keeps selecting the
arm until the end of the phase. Doing so yields a larger constant in the regret analysis of Theorem 2.
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Remark 2 (On the insu�ciency of consensus and its variants) Consider related algorithms under
�full arm observability� setting in Landgren et al. (2016); Landgrena et al. (2021); Martínez-Rubio et al.
(2019); Zhu & Liu (2021): each agent explores the entire arm set and then decides which arm to select.
In this setting, agents arm selection strategies exhibit incompatibility with Byzantine �ltering such as the
trimmed-mean method. These methods build upon the consensus protocol, which incorporates the weighted
average of neighbors' reward mean estimates in the previous step with reward information at current step
in the updating of the reward mean estimate. For the non-Byzantine setting, such a technique propagates
information over the network and ensures the reward mean estimate tends towards consistency as time pro-
gresses. In the presence of Byzantine agents, if one employs a running consensus onzi;k (t), it forms one
component of zi;k (t + 1) , which causes each step to accumulate the bias from the previous (which can be
shown in equation 9 in Lemma 1). We note that the trimmed mean does not directly cancel out the Byzantine
e�ect, that is, zi;k (t) can still be biased. Algorithm 1 achieves resilience in that whenzi;k (t + 1) is updated,
zi;k (t) is not used. Then, the bias ofzi;k (t) due to Byzantine agents does not accumulate across time. Thus,
as normal agents have increasingly more accurate sample means as they accumulate samples, the potential
e�ect of Byzantine attacks shrinks, eventuating in the bias converging to null. Detailed discussion can be
found in Appendix E.

4 Sublinear Regret in Presence of Byzantine Agents

This section presents our key theoretical results, which establish the sublinear regret of the algorithm pre-
sented above. We begin with lower and upper bounds of each normal agent's regret.

Theorem 1 (Lower Bound) The expected cumulative regret of any normal agenti 2 H satis�es

lim inf
T !1

Ri (T)
logT

� O
� 1

maxfjN i j � 2f + 1 ; 1g

�
:

Observe from the above theorem that when a normal agent has at least2f + 1 neighbors, the lower bound
on its regret is actually better than the single-agent UCB1 algorithm (Auer et al., 2002a). We clarify the

form of this gap next. To do so, denote as� k
�
= � 1 � � k the gap between the largest mean and the mean

for each arm k 2 M .

Theorem 2 (Upper Bound) The expected cumulative regret of any normal agenti 2 H satis�es

Ri (T) � min
� 2f 1;:::;T g

 
X

k : � k > 0

�
max

t 2f 1;:::;� g

8gi;k (t) log t
� k

+
�

1 +
� 2

3

�
� k

�
+ ( T � � )� M

!

�
X

k : � k > 0

�
max

t 2f 1;:::;T g

8gi;k (t) log t
� k

+
�

1 +
� 2

3

�
� k

�
: (5)

Note that the regret upper bound in Theorem 2 depends ongi;k (t) whose de�nition equation 4 is in�uenced
by Bi;k (t) and � i . The construction of set Bi;k (t) in equation 2 implies that, in general, a larger f and a
smaller jN i j correspond to a larger regret bound. The in�uence of� i on gi;k (t) is not monotone; see Figures
1�2 and its discussion in (i) Consistency Filter in the preceding section. The following results are the
performance comparisons with the single-agent (non-cooperative) UCB1 (Auer et al., 2002a, Theorem 1),
where the upper bound of each agent's regret was establised as

P
k : � k > 0

� 8 log T
� k

+ (1 + � 2

3 )� k
�
.

Theorem 3 (Per-agent Outperformance) The regret upper bound for each normal agenti 2 H is always
no worse than that of the single-agent UCB1, i.e.,

Ri (T) �
X

k : � k > 0

�
8 logT

� k
+

�
1 +

� 2

3

�
� k

�
:
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Note that Theorems 1�3 do not rely on any graphical conditions like connectivity and local degrees, which
is a departure from prior results (Vial et al., 2021; 2022; Mitra et al., 2022). The following theorem shows
that if certain local degree condition is satis�ed, all the normal agents can collectively outperform the non-
cooperative case, which is still independent of global connectivity.

Theorem 4 (Network Outperformance) If each agent has at least3f +1 neighbors, then the cumulative
regret upper bound of all normal agents is strictly better than that of the non-cooperative counterpart:

R(T) =
X

i 2H

Ri (T) < jHj
X

k : � k > 0

�
8 logT

� k
+

�
1 +

� 2

3

�
� k

�
: (6)

The comparison of the above results with the existing literature can be found in Appendix C. The proofs of
the above theorems are given in Appendix F. Here we provide a sketch of the proofs.

Sketch of Proofs: To show the two outperformance results in Theorem 3 and Theorem 4, we �rst detail
the regret upper bound in Theorem 2. To begin with, we estimate the value ofE(ni;k (T)) as each agent's
regret satis�es Ri (T) =

P
k :� k > 0 E(ni;k (T))� k : Towards this end, we �rst follow the logic �ow of the

standard single-agent UCB1 algorithm (Auer et al., 2002a, Proof of Theorem 1), which makes use of the
decision-making step in equation 11 and turns the problem into estimating the concentration bounds of the
reward mean estimate equation 13. That is where we depart from the single-agent analysis, as we have a more
complicated design of the reward mean estimate. We proceed by dividing the analysis into two cases based on
the number of neighbors retained after the �ltering steps to estimate the concentration bound, which utilizes
the Hoe�ding's inequality (Lemma 3). To make Hoe�ding's inequality apply, there are two important steps:
we slice the random sample count to all possible values (see e.g., equation 14), the other is using Lemma 2
to restrict the Byzantine behavior with the help of Trimmed Mean Filter (Step B). In addition, to obtain a
tight concentration bound, we make use of thelocal exploration consistencyassured by Consistency Filter
(Step A) in the computation of Hoe�ding's inequality, see equation 16. In this way, our analysis contains
fundamental steps that are not present in prior analyses of UCB, and addresses fundamental challenges
associated with the Byzantine e�ect. Therefore, we can obtain equation 5, which implies Theorem 3, by
showing the adjusted variance [cf. equation 4]gi;k (t) � 1 for all i 2 H ; k 2 M and t = 1 ; : : : ; T: Then, it
su�ces to show there exists at least one agent have strictly better performance on each arm at each time for
Theorem 4.

4.1 Time-varying Random Graphs

This subsection extends theoretical results to the cases when neighbor graphG(t) changes over time. De�ne
N i (t) as N �

i (t) as the corresponding neighbor set and out-neighbor set of agenti at time t. Replacing N i

and N �
i by N i (t) and N �

i (t), respectively, in Algorithm 2, yields a Byzantine-resilient decentralized bandit
algorithm for time-varying graphs. Speci�cally, the results of per-agent regret stated in Theorems 1�3 still
hold with exactly the same analyses. This is because when we estimate the reward mean estimatezi;k (t),
we only make use of�x j;k (t) where j 2 N i (t), which is one-time local information, and thus its consequences
do not rely on graph topology variation over time. Formal de�nitions regarding time-varying graphs are
provided in Appendix D. The following theorem shows that Algorithm 2 possesses collective outperformance
over the non-cooperative case for time-varying random graphs, provided a probabilistic local degree condition
is satis�ed.

Theorem 5 (Network Outperformance) If the probability that every agent in the network has at least
3f + 1 neighbors isp 2 (0; 1] at each time t, then the network total regret upper bound is strictly better than
the non-cooperative counterpart, i.e., equation 6 holds.

We note that this is the �rst sublinear regret result for MAB in the decentralized setting in the presence of
Byzantine ageants, to the best of our knowledge.

Remark 3 From the proof of Theorem 4 in Appendix F, the outperformance over the single-agent counter-
part over �xed graphs when the 3f + 1 degree requirement is logarithmic, i.e., we have a smaller coe�cient
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