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Abstract

In decentralized cooperative multi-armed bandits (MAB), each agent observes a distinct
stream of rewards, and seeks to exchange information with others to select a sequence
of arms so as to minimize its regret. Agents in the cooperative setting can outperform a
single agent running a MAB method such as Upper-Confidence Bound (UCB) independently.
In this work, we study how to recover such salient behavior when an unknown fraction
of the agents can be Byzantine, that is, communicate arbitrarily wrong information in
the form of reward mean-estimates or confidence sets. This framework can be used to
model attackers in computer networks, instigators of offensive content into recommender
systems, or manipulators of financial markets. Our key contribution is the development
of a fully decentralized resilient upper confidence bound (UCB) algorithm that fuses an
information mixing step among agents with a truncation of inconsistent and extreme values.
This truncation step enables us to establish that the performance of each normal agent is no
worse than the classic single-agent UCB1 algorithm in terms of regret, and more importantly,
the cumulative regret of all normal agents is strictly better than the non-cooperative case,
provided that each agent has at least 3f + 1 neighbors where f is the maximum possible
Byzantine agents in each agent’s neighborhood. Extensions to time-varying neighbor graphs,
and minimax lower bounds are further established on the achievable regret. Experiments
corroborate the merits of this framework in practice.

1 Introduction

In multi-armed bandits (MAB) (Lattimore & Szepesvári, 2020), one is faced with the task of selecting a series
of arms so as to accumulate the most reward in the long-term when rewards are incrementally revealed. The
canonical performance measure is regret, which quantifies the difference in the cumulative return associated
with one’s chosen actions as compared with the best-in-hindsight up to some fixed time-horizon T . For the
frequentist setting, that is, no distributional model is hypothesized underlying the reward sampling process,
both lower and upper bounds on the asymptotic regret exist (Lai & Robbins, 1985). Upper confidence-bound
(UCB) selection method was proposed in Auer et al. (2002a) which achieves O(log T ) regret.

In this work, we focus on cooperative multi-agent extensions of this setting (Landgren et al., 2016), where
each node in a directed graph now receives a distinct reward sequence and needs to select its own series
of arms. Cooperative MAB has received significant attention in recent years, where agents compute locally
weighted averages of their agents’ arm index parameters, i.e., they execute consensus (Jadbabaie et al., 2003;
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Olfati-Saber et al., 2007). Numerous works have studied this problem class in recent years for the case that
agents reward distributions are homogeneous (Landgren et al., 2016; Landgrena et al., 2021; Martínez-Rubio
et al., 2019; Zhu et al., 2021; Chawla et al., 2020), as well as (Lai et al., 2008; Liu & Zhao, 2010; Szorenyi
et al., 2013; Kalathil et al., 2014; Bistritz & Leshem, 2018; Sankararaman et al., 2019; Wang et al., 2020;
Dubey & Pentland, 2020; Shi & Shen, 2021; Madhushani & Leonard, 2020a;b; Martínez-Rubio et al., 2019),
extensions to models of “collision” (Nayyar et al., 2018; Liu & Zhao, 2010; Bistritz & Leshem, 2018; Lai
et al., 2008) and federated information structures (Shi & Shen, 2021; Shi et al., 2021; Zhu et al., 2021;
Dubey & Pentland, 2020; Li et al., 2020; Réda et al., 2022). Most pertinent to this work are consensus-based
decentralized UCB-type methods (Landgren et al., 2016; Landgrena et al., 2021; Martínez-Rubio et al., 2019;
Zhu et al., 2021; Zhu & Liu, 2023). It is worth noting that in such a homogeneous setting, each agent in
a multi-agent network can independently learn an optimal arm using any conventional single-agent UCB
algorithm, ignoring any information received from other agents. With a careful design, decentralized multi-
agent multi-armed bandits can outperform centralized single-agent upper confidence bound algorithms (Zhu
& Liu, 2021; 2024).

However, it is overly narrow to consider that all agents cooperate, as many learning processes have a mixture
of cooperative and competitive agents, and it is not always clear to delineate between them (Littman, 1994;
Başar & Olsder, 1998). To encapsulate this dynamic, we consider that an unknown subset of agents are
“Byzantine" (Lamport et al., 1982), i.e., they chose their index parameters and selects arms in an arbitrary
manner and can send conflicting values to different agents. The cooperative MAB in the presence of Byzantine
agents setting has intrinsic motivation in computer networks (Xiong & Jamieson, 2013; Ferdowsi et al., 2019),
recommender systems (Sankararaman et al., 2019), and economics (Misra et al., 2019), to name a few, as a
model of how these systems should optimize performance in the presence of uncertainty in their incentives.
In particular, cooperation can respectively model filesharing, collective interest around a topic, or market
stability metrics. Moreover, the concept of Byzantine agents naturally emerges when some participants seek
to derail the goal of the collective, as in denial of service attacks, injection of offensive content into social
media, or market manipulation. To date, however, the majority of works that study MAB in the cooperative
multi-agent setting do not allow for any agents to be non-cooperative, leading to a learning process being
inoperable in the presence of malefactors. Therefore, in this work, we pose the following question:

Can decentralized multi-armed bandit algorithms outperform the classic single-agent counterpart even
in the presence of Byzantine agents?

In this work, we provide an affirmative answer to this question. Therefore, our contributions are to:

• pose the multi-armed bandit problem in the multi-agent setting in the presence of Byzantine agents;

• derive a filtering step on the parameters exchanged by agents that thresholds extreme values, which
guarantees consistency in the construction of confidence sets and helps limit the deleterious impact of
the Byzantine agents by yielding accurate reward mean estimates. As a result, we construct a Byzantine-
resilient variant of decentralized UCB framework;

• establish that the regret performance of this method no worse than logarithmic regret bound of its
single-agent counterpart (which is not true of MAB methods even in the Byzantine-free case (Landgren
et al., 2016; Landgrena et al., 2021; Martínez-Rubio et al., 2019)), and is better than the non-cooperative
counterpart in terms of network total regret when each agent has at least 3f + 1 neighbors, where f is an
upper-bound on the number of Byzantine agents that is commonly assumed known in resilient learning
(Gupta et al., 2021; Gupta & Vaidya, 2021; Kaheni et al., 2022; Liu et al., 2021b; Gupta et al., 2023).
Notably, we do not require global knowledge of the network connectivity, as in Vial et al. (2021; 2022);

• experimentally demonstrate that the proposed methodology achieves lower regret compared with single-
agent (non-cooperative) UCB, meaning that the sum is more than the component parts. The constructed
setting is representative of a model of recommender systems, where advertising firms may share data to
improve reliability of their targeted ads.

A detailed review of related work can be found in Appendix B.
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2 Multi-agent Multi-armed Bandits

Consider a multi-agent network consisting of N > 1 agents, which may be mathematically formalized as a
directed graph G = (V, E) with V = {1, . . . , N}. Each vertex i corresponds to an agent and each directed
edge (or arc) defines connectivity amongst neighbors. To be more precise, we say agent j is a neighbor of
agent i if (j, i) is an arc in E , and similarly, agent k is an out-neighbor of agent i if (i, k) ∈ E . Each agent
may receive information only from its neighbors with an inward bound arc, meaning that the directions of
arcs represent the directions of information flow. We use Ni and N −

i to respectively denote the neighbor set
and out-neighbor set of agent i, i.e., Ni = {j ∈ V : (j, i) ∈ E} and N −

i = {k ∈ V : (i, k) ∈ E}.

All agents face the same set of M > 1 arms (or options) denoted as M = {1, . . . , M}. At each discrete
time t ∈ {0, 1, . . . , T}, agent i ∈ V must select an arm ai(t) ∈ M from the M options. If agent i selects
an arm k ∈ M, it will receive a random reward Xi,k(t). For any i ∈ V and k ∈ M, {Xi,k(t)}T

t=0 is an
unknown independent and identically distributed (i.i.d.) stochastic process. For each arm k ∈ M, all its
reward variables over the network Xi,k(t), i ∈ V share the same mean µk while their distributions may be
different. Without loss of generality, we assume that all Xi,k(t), i ∈ V, k ∈ M have bounded support [0, 1]
and that µ1 ≥ µ2 ≥ · · · ≥ µM , which implies that arm 1 has the largest reward mean and thus is always an
optimal option.

There exist agents in the network which are able to transmit arbitrary values to their out-neighbors and
capable of sending conflicting values to different neighbors strategically, which we refer to as Byzantine agents
(Fischer et al., 1986). The set of Byzantine agents is denoted by F and the set of normal (non-Byzantine)
agents is denoted by H, whereby V = H ∪ F . Which agents are Byzantine is unknown to normal agents;
however, we assume that each agent has at most f Byzantine neighbors, and knows the number f . Knowing
the number f can be viewed as a limitation of this work, though it is a widely adopted assumption in the
existing Byzantine-resilient algorithms in the literature.

The canonical performance measure in the multi-agent MAB setting may be formalized through the concept
of regret among the non-Byzantine agents. That is, each normal agent i seeks to select its sequence of arms
{ai(t)}T

t=1 so as to minimize its contribution to a network-wide cumulative regret

R(T ) =
∑
i∈H

Ri(T ) =
∑
i∈H

(
Tµ1 −

T∑
t=1

E
[
Xai(t)

])
, (1)

where the sum is over all non-Byzantine agents though in the presence of Byzantine agents. Moreover, Ri(T )
quantifies the difference in the cumulative return

∑T
t=1 E

[
Xai(t)

]
as compared with the best-in-hindsight up

to horizon T , which by our assumption on the ordering of µi, is simply Tµ1.

In the case when each agent does not have any neighbors, the aforementioned resilient multi-agent multi-
armed bandit problem reduces to the conventional single-agent multi-armed bandit problem for each normal
agent. It is well known that each normal agent can appeal to the classic UCB1 algorithm and achieve an
O(log T ) regret (Auer et al., 2002a). Subsequently, we develop a Byzantine-resilient decentralized multi-agent
UCB1 algorithm which guarantees that all normal agents collectively outperform the scenario had they each
adopted the classic single-agent UCB1 algorithm. Before continuing, we introduce an example to clarify the
problem setting.

Example 1 (Recommender Systems) In personalized recommender systems in web services (Sankarara-
man et al., 2019), an application interface is charged with the task of presenting one of several advertising
options to an end-user, and receives a reward any time the selection receives a click. This click-through-rate
(CTR) paradigm of recommendation systems is standard. However, one challenge with obtaining good per-
formance in this setting is that there are many more options than arm pulls. Therefore, there is incentive for
one advertising firm to exchange information with another in order to gain a better understanding of CTR
(Elena et al., 2021). In this case, one may pose the resulting ad targeting problem as a multi-agent MAB
problem. Here, the existence of Byzantine agents may come by the presence of firms that seek to introduce
offensive or divisive content into web services for non-economic incentives (Hinds et al., 2020). This issue
has occurred several times in the past decade.
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Example 2 (Computer Networks) In this setting, each agent in the network is a device or computer
(Xiong & Jamieson, 2013; Ferdowsi et al., 2019), the arm selection specifies a non-local node in the network
as a candidate which a data packet could be sent, meaning that the arm set is a subset of the node set.
Reward is the outcome of a simple synchronize-acknowledge protocol (Syn-Ack), which is a binary indicator
of whether a data packet was successfully received. The collaborative multi-agent aspect of this problem
permits one to allow uploads within a Local Area Network (LAN), as in file-sharing protocols. It is natural to
consider that a random subset of nodes could be Byzantine in this context, as malicious code or devices may
attempt to deny the regular operation of a network. In this case, their presence would model a Distributed
Denial of Service (DDOS) attack, or other similar cyber-attacks – see Gollmann (2010).

Example 3 (Financial Markets) Suppose a central treasury of a national government wants to stabilize
its country’s financial market. In this case, the arm pulled is an interest rate on treasury bonds which
are typically held by large financial intuitions. The reward is the rate of increase/decrease in inflation,
or another indicator of national economic health (such as labor force participation rate). In this context,
there is an incentive to cooperate with the treasuries of other governments in order to achieve increased
economic stability(Benigno & Benigno, 2002). The presence of Byzantine agents in this context manifests
because not all governing bodies are interested in the economic stability of another. Indeed, in the presence
of a geopolitical rival, decreasing economic performance may motivate communicating spurious or incorrect
information to others (Macekura, 2020).

With the setting clarified, next we introduce our main algorithmic framework based upon UCB.

3 Byzantine-Resilient Collaborative UCB

To present our algorithm, we first need to introduce some notation. For each i ∈ V and k ∈ M, we use
ni,k(t) to denote the number of times agent i has selected arm k prior to time t. Moreover, denote x̄i,k(t) as
sample mean of arm k reward tracked by i at time t, i.e., x̄i,k(t) = 1

ni,k(t)
∑t

τ=0 1(ai(τ) = k)Xi,k(τ), where
1(·) is the indicator function which is 1 if the event in its argument is true and 0 otherwise.

We propose a protocol such that each agent i ∈ V transmits two scalars for each arm k ∈ M to all its out-
neighbors: ni,k(t) and x̄i,k(t). Due to the existence of Byzantine agents, we use nij,k(t) and x̄ij,k(t), k ∈ M
to denote the possibly contaminated number of arm pulls and reward mean-estimates agent i transmits to
its out-neighbor j. If agent i is normal, nij,k(t) = ni,k(t) and x̄ij,k(t) = x̄i,k(t) for all k ∈ M and j ∈ N −

i .
If agent i is Byzantine, nij,k(t) and x̄ij,k(t) may be arbitrary for all k ∈ M.

Before formalizing the procedure, we describe the key concepts behind its execution. The main idea is to use
UCB as the decision-making policy. The key point of departure compared with single-agent UCB or non-
Byzantine multi-agent UCB is that we have a filtering process to down-weight the effect of Byzantine agents.
Recall that our goal is to design an algorithm that achieves full resilience and ensures no worse performance
than the single-agent (non-cooperative) UCB. To this end, we construct a reward mean estimate zi,k(t) to
be more accurate than the sample mean x̄i,k(t) (the corresponding reward mean estimate in single-agent
UCB). For resilient bandit, there are two factors that can affect the accuracy of zi,k(t): (i) the consistency
of sample counts of agents in the neighborhood and (ii) the role of Byzantine agents.

(i) Consistency Filter. While UCB provides an effective solution for exploration in the single-agent
case, the multi-agent case mandates that each agent not only explores each arm sufficiently itself but also
requires certain local “consistency” conditions, i.e., the number of times an arm has previously been pulled is
sufficient to construct a valid confidence set. To address this, a method to encourage a version of persistent
exploration by forcing agents to select an insufficiently-explored arm if its corresponding sample count falls
too much behind the network maximal sample count has been developed (Zhu & Liu, 2021). The upshot
of this adjusted exploration scheme is that it can be shown to satisfy said consistency condition. However,
it is inoperable in the Byzantine setting due to potentially spurious information. To alleviate this issue,
we propose threshold-consistency, which instead of actively balancing the sample counts over the network,
directly thresholds the number of neighbors an agent may employ to update the reward mean estimate by
removing all the neighbors that have not explored sufficiently compared with itself. To be more precise, agents
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may ensure local consistency in their confidence sets through a proper re-weighting of standard deviation
in terms of Ai,k(t) neighbors that are considered post-winnowing. In particular, we introduce a truncation
parameter κi, which parameterizes the “consistency level” (addressing issue (i)). If κi is too large, then the
consistency is insufficient, see equation 19; if κi is set to be too small, then the restriction omits too many
agents to obtain valid reward mean estimates. This tension may be formalized by restricting its viable range
as 1 ≤ κi < 2. For effect on regret for different κi ∈ [1, 2), see Figures 1 and 2.

(ii) Trimmed Mean. To achieve the nullification of Byzantine effect, we further propose a winnowing
procedure on the reward mean-estimates in terms of an upper-bound on the number of Byzantine agents
(addressing issue (ii)). That this is necessary may be observed by noting that even with the restricted
construction of confidence sets, reward information from neighbors can be arbitrarily wrong. Therefore, no
concentration bound may be employed to limit its impact. In this sense, to achieve resilience, normal agents
need to negate the Byzantine effect, which may be achieved through the trimmed-mean. This procedure,
similar to hard-thresholding, truncates the received sample means from other agents by omitting the f
largest and f smallest values. This technique has found success in related resilient multi-agent consensus
methods (Vaidya et al., 2012; Leblance et al., 2013; Saldaña et al., 2017; Saulnier et al., 2017). Through a
re-parameterization (Lemma 2) and the threshold consistency previously mentioned, we can establish that
the reward mean estimate is actually superior to its single-agent counterpart. It is worth emphasizing that
the trimmed-mean idea has to be incorporated with a suitably chosen consensus variable for resilient reward
mean estimation; see Remark 2 and Example 4 in the Appendix.

With these elements properly motivated, we are ready to present the main algorithm for decentralized UCB
with Byzantine agents.

Algorithm 1: Filter(i, k, t): Consistency and trimmed mean filters of agent i on arm k at time t

Input: agent i, κi, arm k, time t
1 Set Ãi,k(t) = Ni

2 for j ∈ Ni do
3 if κinij,k(t) < ni,k(t) then
4 Remove j from Ãi,k(t) // Consistency-Filter
5 end
6 end
7 Set Ai,k(t) = Ãi,k(t)
8 if |Ai,k(t)| ≤ 2f then
9 zi,k(t) = x̄i,k(t)

10 else
11 Set B̃i,k(t) = Ai,k(t)
12 Sort x̄ji,k(t) in descending order for j ∈ B̃i,k(t) and removes the indices corresponding to the
13 f largest and f smallest values from B̃i,k(t) // Trimmed-Mean

14 Set Bi,k(t) = B̃i,k(t)
15 zi,k(t) = 1

|Bi,k(t)|+1
(
x̄i,k(t) +

∑
j∈Bi,k(t) x̄ji,k(t)

)
16 end

Initialization: At initial time t = 0, each normal agent i ∈ H samples each arm k exactly once and then
sets ni,k(0) = 1 and x̄i,k(0) = Xi,k(0).

Between clock times t and t + 1, with t ∈ {0, 1, . . . , T}, each normal agent i ∈ H performs the steps
enumerated below in the order indicated.

Transmitting: Agent i transmits the possibly contaminated number of arm pulls nij,k(t) and reward mean-
estimate x̄ij,k(t), k ∈ M to each of its out-neighbors j ∈ N −

i and meanwhile receives nhi,k(t) and x̄hi,k(t),
k ∈ M from each of its neighbors h ∈ Ni.

Filtering: Agent i performs two steps to possibly filter out the malefactors in its neighbor set Ni.

5



Published in Transactions on Machine Learning Research (08/2024)

Step A [Consistency Filter]: For each arm k ∈ M, agent i filters out those neighbors’ indices j from Ni for
which κinji,k(t) < ni,k(t), where κi ∈ [1, 2) is a constant, and sets the remaining index set as Ai,k(t), i.e.,

Ai,k(t) =
{

j ∈ Ni : κinji,k(t) ≥ ni,k(t)
}

.

Step B [Trimmed Mean Filter]: For each arm k ∈ M, if |Ai,k(t)| > 2f , agent i filters out those neighbors’
indices h from Ai,k(t) whose x̄hi,k(t) are the f largest and f smallest among x̄ji,k(t), j ∈ Ai,k(t), with ties
broken arbitrarily, and then sets the remaining index set as Bi,k(t), otherwise agent i sets Bi,k(t) = ∅. To be
more precise, let π be any non-decreasing permutation of Ai,k(t) for which x̄π(h)i,k(t) ≤ x̄π(h+1)i,k(t) for all
h ∈ {1, . . . , |Ai,k(t)| − 1}. Then,

Bi,k(t) =
{

∅, if |Ai,k(t)| ≤ 2f,{
x̄π(h)i,k(t) : f + 1 ≤ h ≤ |Ai,k(t)| − f

}
, else.

(2)

Decision Making: Agent i calculates its current estimate of reward mean µk for each arm k ∈ M as

zi,k(t) = 1
|Bi,k(t)| + 1

(
x̄i,k(t) +

∑
j∈Bi,k(t)

x̄ji,k(t)
)

, (3)

and based upon this information, computes its exploration bonus (derived from Hoeffding in Lemma 3 in
the Appendix) from each arm k as

C
(
t, ni,k(t)

)
=

√
2gi,k(t) log t

ni,k(t) ,

where the variance term is defined in terms of the proportion of arm pulls remaining post-filtering |Bi,k(t)| as

gi,k(t) =


1, if Bi,k(t) = ∅,

κi

4 + κi

4(|Bi,k(t)| + 1) + 1
(|Bi,k(t)| + 1)2 , else.

(4)

Then, the arm ai(t + 1) that maximizes the Byzantine-filtered upper-confidence bound for agent i at time
t + 1 is selected

ai(t + 1) = arg max
k∈M

(
zi,k(t) + C(t, ni,k(t))

)
.

Updating: Agent i updates its variables as

ni,k(t + 1) =
{

ni,k(t) + 1 if k = ai(t + 1),
ni,k(t) if k ̸= ai(t + 1),

x̄i,k(t + 1) = 1
ni,k(t + 1)

t+1∑
τ=0

1(ai(τ) = k)Xi,k(τ).

These steps are summarized as Algorithm 2 in the Appendix.

Remark 1 (Communication Cost) Each agent to broadcast two variables: one real number and one
integer for each arm at each time step. The communication cost is comparable to many existing decentralized
cooperative MAB algorithms (Landgren et al., 2016; Landgrena et al., 2021; Zhu & Liu, 2021). A simple
way to reduce the communication cost of Algorithm 1 is to allow agents to pick a subset of neighbors with
which to communicate. Observe from Theorem 3 that no network connectivity requirement is needed to
ensure performance comparable to the single-agent counterpart. Using communication epochs with a fixed
constant length is an alternative approach (Martínez-Rubio et al., 2019; Dubey & Pentland, 2020)), where
each agent only communicates and makes arm decisions at the start of the epoch, and keeps selecting the
arm until the end of the phase. Doing so yields a larger constant in the regret analysis of Theorem 2.
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Remark 2 (On the insufficiency of consensus and its variants) Consider related algorithms under
“full arm observability” setting in Landgren et al. (2016); Landgrena et al. (2021); Martínez-Rubio et al.
(2019); Zhu & Liu (2021): each agent explores the entire arm set and then decides which arm to select.
In this setting, agents arm selection strategies exhibit incompatibility with Byzantine filtering such as the
trimmed-mean method. These methods build upon the consensus protocol, which incorporates the weighted
average of neighbors’ reward mean estimates in the previous step with reward information at current step
in the updating of the reward mean estimate. For the non-Byzantine setting, such a technique propagates
information over the network and ensures the reward mean estimate tends towards consistency as time pro-
gresses. In the presence of Byzantine agents, if one employs a running consensus on zi,k(t), it forms one
component of zi,k(t + 1), which causes each step to accumulate the bias from the previous (which can be
shown in equation 9 in Lemma 1). We note that the trimmed mean does not directly cancel out the Byzantine
effect, that is, zi,k(t) can still be biased. Algorithm 1 achieves resilience in that when zi,k(t + 1) is updated,
zi,k(t) is not used. Then, the bias of zi,k(t) due to Byzantine agents does not accumulate across time. Thus,
as normal agents have increasingly more accurate sample means as they accumulate samples, the potential
effect of Byzantine attacks shrinks, eventuating in the bias converging to null. Detailed discussion can be
found in Appendix E.

4 Sublinear Regret in Presence of Byzantine Agents

This section presents our key theoretical results, which establish the sublinear regret of the algorithm pre-
sented above. We begin with lower and upper bounds of each normal agent’s regret.

Theorem 1 (Lower Bound) The expected cumulative regret of any normal agent i ∈ H satisfies

lim inf
T →∞

Ri(T )
log T

≥ O
( 1

max{|Ni| − 2f + 1, 1}

)
.

Observe from the above theorem that when a normal agent has at least 2f + 1 neighbors, the lower bound
on its regret is actually better than the single-agent UCB1 algorithm (Auer et al., 2002a). We clarify the
form of this gap next. To do so, denote as ∆k

∆= µ1 − µk the gap between the largest mean and the mean
for each arm k ∈ M.

Theorem 2 (Upper Bound) The expected cumulative regret of any normal agent i ∈ H satisfies

Ri(T ) ≤ min
τ∈{1,...,T }

( ∑
k: ∆k>0

(
max

t∈{1,...,τ}

8gi,k(t) log t

∆k
+
(

1 + π2

3

)
∆k

)
+ (T − τ)∆M

)

≤
∑

k: ∆k>0

(
max

t∈{1,...,T }

8gi,k(t) log t

∆k
+
(

1 + π2

3

)
∆k

)
. (5)

Note that the regret upper bound in Theorem 2 depends on gi,k(t) whose definition equation 4 is influenced
by Bi,k(t) and κi. The construction of set Bi,k(t) in equation 2 implies that, in general, a larger f and a
smaller |Ni| correspond to a larger regret bound. The influence of κi on gi,k(t) is not monotone; see Figures
1–2 and its discussion in (i) Consistency Filter in the preceding section. The following results are the
performance comparisons with the single-agent (non-cooperative) UCB1 (Auer et al., 2002a, Theorem 1),
where the upper bound of each agent’s regret was establised as

∑
k: ∆k>0

( 8 log T
∆k

+ (1 + π2

3 )∆k

)
.

Theorem 3 (Per-agent Outperformance) The regret upper bound for each normal agent i ∈ H is always
no worse than that of the single-agent UCB1, i.e.,

Ri(T ) ≤
∑

k: ∆k>0

(
8 log T

∆k
+
(

1 + π2

3

)
∆k

)
.
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Note that Theorems 1–3 do not rely on any graphical conditions like connectivity and local degrees, which
is a departure from prior results (Vial et al., 2021; 2022; Mitra et al., 2022). The following theorem shows
that if certain local degree condition is satisfied, all the normal agents can collectively outperform the non-
cooperative case, which is still independent of global connectivity.

Theorem 4 (Network Outperformance) If each agent has at least 3f +1 neighbors, then the cumulative
regret upper bound of all normal agents is strictly better than that of the non-cooperative counterpart:

R(T ) =
∑
i∈H

Ri(T ) < |H|
∑

k: ∆k>0

(
8 log T

∆k
+
(

1 + π2

3

)
∆k

)
. (6)

The comparison of the above results with the existing literature can be found in Appendix C. The proofs of
the above theorems are given in Appendix F. Here we provide a sketch of the proofs.

Sketch of Proofs: To show the two outperformance results in Theorem 3 and Theorem 4, we first detail
the regret upper bound in Theorem 2. To begin with, we estimate the value of E(ni,k(T )) as each agent’s
regret satisfies Ri(T ) =

∑
k:∆k>0 E(ni,k(T ))∆k. Towards this end, we first follow the logic flow of the

standard single-agent UCB1 algorithm (Auer et al., 2002a, Proof of Theorem 1), which makes use of the
decision-making step in equation 11 and turns the problem into estimating the concentration bounds of the
reward mean estimate equation 13. That is where we depart from the single-agent analysis, as we have a more
complicated design of the reward mean estimate. We proceed by dividing the analysis into two cases based on
the number of neighbors retained after the filtering steps to estimate the concentration bound, which utilizes
the Hoeffding’s inequality (Lemma 3). To make Hoeffding’s inequality apply, there are two important steps:
we slice the random sample count to all possible values (see e.g., equation 14), the other is using Lemma 2
to restrict the Byzantine behavior with the help of Trimmed Mean Filter (Step B). In addition, to obtain a
tight concentration bound, we make use of the local exploration consistency assured by Consistency Filter
(Step A) in the computation of Hoeffding’s inequality, see equation 16. In this way, our analysis contains
fundamental steps that are not present in prior analyses of UCB, and addresses fundamental challenges
associated with the Byzantine effect. Therefore, we can obtain equation 5, which implies Theorem 3, by
showing the adjusted variance [cf. equation 4] gi,k(t) ≤ 1 for all i ∈ H, k ∈ M and t = 1, . . . , T. Then, it
suffices to show there exists at least one agent have strictly better performance on each arm at each time for
Theorem 4.

4.1 Time-varying Random Graphs

This subsection extends theoretical results to the cases when neighbor graph G(t) changes over time. Define
Ni(t) as N −

i (t) as the corresponding neighbor set and out-neighbor set of agent i at time t. Replacing Ni

and N −
i by Ni(t) and N −

i (t), respectively, in Algorithm 2, yields a Byzantine-resilient decentralized bandit
algorithm for time-varying graphs. Specifically, the results of per-agent regret stated in Theorems 1–3 still
hold with exactly the same analyses. This is because when we estimate the reward mean estimate zi,k(t),
we only make use of x̄j,k(t) where j ∈ Ni(t), which is one-time local information, and thus its consequences
do not rely on graph topology variation over time. Formal definitions regarding time-varying graphs are
provided in Appendix D. The following theorem shows that Algorithm 2 possesses collective outperformance
over the non-cooperative case for time-varying random graphs, provided a probabilistic local degree condition
is satisfied.

Theorem 5 (Network Outperformance) If the probability that every agent in the network has at least
3f + 1 neighbors is p ∈ (0, 1] at each time t, then the network total regret upper bound is strictly better than
the non-cooperative counterpart, i.e., equation 6 holds.

We note that this is the first sublinear regret result for MAB in the decentralized setting in the presence of
Byzantine ageants, to the best of our knowledge.

Remark 3 From the proof of Theorem 4 in Appendix F, the outperformance over the single-agent counter-
part over fixed graphs when the 3f + 1 degree requirement is logarithmic, i.e., we have a smaller coefficient
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Figure 1: Per-agent regret for each normal agent
with heterogeneous κi

Figure 2: Network averaged regret for normal
agents with homogeneous κ

of the log T term. The same holds for Theorem 5 with p = 1 because the analysis for Theorem 4 can be
directly applied to this case. Yet for random graphs with p ∈ (0, 1), the outperformance is of order O(1)
from the proof of Theorem 5.

5 Numerical Evaluation

We conduct experiments – additional studies are in Appendix G. We consider a four-arm bandit problem
whose arm distributions are Bernoulli with mean 0.5, 0.45, 0.4, 0.3, respectively. The Byzantine agent broad-
casts 0.4, 0.5, 0.4, 0.3 as the corresponding reward information of the four arms to all the normal agents,
and sample count n1,k(t) = ni,k(t) to all normal agents j with i being randomly selected in {2, 3, 4, 5}. It
can be shown in Appendix E that the same or similar Byzantine policy is sufficient to make the existing
decentralized bandit algorithms not suitable to find an optimal arm. The graph in our experiments follows a
random structure where the probability each directed edge is activated is a common value q. The total time
T is set as T = 10000. Figure present sample means and standard shaded deviations over 50 runs.

We first conduct two simulations to illustrate the effect of threshold-consistency parameter κi under a five-
agent network with only agent 1 being Byzantine over a random graph generated with q = 0.8. Figure 1
shows the comparison of per-agent regret of each normal agent i with a different κi and the non-cooperative
counterpart (Auer et al., 2002a) and Figure 2 presents the network total performance of all normal agents
when they use a same κ together with the non-cooperative counterpart (Auer et al., 2002a). Observe that
our algorithm outperforms the non-cooperative counterpart in terms of both the network regret and the
individual regret of each normal agent, which corroborates Theorems 3 and 4. Moreover, it appears that the
3f +1 degree requirement (which requires the graph to be complete for a five-agent network) is not necessary
for superior performance in practice. In addition, the regret does not appear to be monotone in terms of κi,
which is consistent with the discussion of κi in Section 3.

We next test the network performance over a ten-agent network with two Byzantine agents to study the
effect of q, which is related to the expected degree of the network. The simulation result over a fixed graph is
shown in Figure 3. For time-varying graphs, note that when q = 1, the graphs are (fixed) complete graphs,
and when 0 < q < 1, there is a relationship between q and p, the probability of the degree requirement is
met, which is defined in Theorem 5, p = [

∑9
i=7
(9

i

)
qi(1 − q)9−i]10. The simulation result is shown in Fig-

ure 4. Observe that larger q results in better performance. Moreover, the normal agents’ performance using
Algorithm 1 is no worse than that of the single-agent counterpart, even with a small q, which substantiates
Theorem 3. However, although for time-varying random graphs, Theorem 5 holds a positive result in terms
of comparison with the non-cooperative counterpart for all 0 < p ≤ 1, experimentally we see that in some
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Figure 3: Network averaged regret for normal
agents under fixed random graphs with various val-
ues of q

Figure 4: Network averaged regret for normal
agents under time-varying random graphs with
various values of q

Figure 5: Network averaged regret for normal
agents with various values of N

Figure 6: Network averaged regret for normal
agents with various values of f

cases our algorithm returns a worse performance in experiments, illuminating a possibly theory-practice gap.
Furthermore, unlike the fixed graph setting, the regret appears to be not decreasing in terms of q.

We then compare the algorithm performance of multi-agent networks with distinct network size N or the
number of Byzantine agents f . Consider neighbor graphs, which are random graphs with a common q = 0.8,
and set all κi to a common value of 1.3. We first fix f = 2 and test the performance of the agents for
N = 10, 15, 20 respectively; the simulation results are shown in Figure 5. Then, we fix N = 15 and test the
performance of the agents for f = 1, 2, 3 respectively, as illustrated in Figure 6. It can be seen that the regret
increases with f and decreases with N . Since, in a random graph scenario, the average/expected number of
an agent’s neighbors increases with N , these observations are consistent with the theoretical results discussed
immediately after Theorem 2.

Finally, we compare the actual regret with the theoretical upper bound. We set κi to a uniform value of 1.3,
N = 10, f = 2, and q = 0.8; the simulation results are presented in Figure 7. Although there appears to be a
nontrivial gap between the regret upper bound and the actual regret observed with our algorithm, this is not
surprising. Our algorithm is a decentralized multi-agent generalization of the single-agent UCB1 algorithm,
which exhibits similar performance. The gap likely arises because the theoretical analysis considers the
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Figure 7: Network averaged regret v.s. network averaged regret upper bound

“worst-case” performance, which rarely occurs in practice and is difficult to identify and evaluate due to the
complex statistical processes involved.

6 Conclusion

We considered cooperative multi-armed bandit problems in the presence of Byzantine agents. To solve
this problem, we developed a consensus-type information mixing strategy that operates in tandem with a
filtering scheme that contains two stages: limit the number of possible neighbors with which to exchange
information, and threshold extreme values of the reward mean estimate. The result achieves regret that is
certifiably better than an individual agent. Numerical experiments demonstrate the merits of this approach
in practice. Limitations of this framework include: (1) it is not yet capable of incorporating contextual
information into arm selection, (2) the obtained regret upper bound is not monotone with respect to κi,
requiring extra effort to tune this parameter, and (3) there is a potential gap between theoretical and practical
results in the time-varying random graphs scenario.
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A Pseudocode

Algorithm 2: Resilient Decentralized UCB
Input: G, T, κi

1 Initialization Each agent samples each arm exactly once. Initialize zi,k(0) = x̄i,k(0) = Xi,k(0),
mi,k(0) = ni,k(0) = 1

2 for t = 0, . . . , T do
3 for k = 1, . . . , M do
4 Agent i runs Filter(i, k, t)
5 end
6 ai(t + 1) = arg maxk∈M

(
zi,k(t) + C(t, ni,k(t))

)
// decision making

7 ni,k(t + 1) = ni,k(t), ∀k ∈ [M ]
8 ni,ai(t+1)(t + 1) = ni,ai(t+1)(t) + 1 // information updating

9 x̄i,k(t + 1) = 1
ni,k(t+1)

∑t+1
τ=0 1(ai(τ) = k)Xi,k(τ)

10 Agent i sends nij,k(t + 1) = ni,k(t) and x̄ij,k(t) = x̄i,k(t), ∀k ∈ [M ] to j ∈ N −
i

11 Agent i receives nji,k(t), x̄ji,k(t), ∀k ∈ [M ] from j ∈ Ni // information propagation

12 end

B Related Work

Resilience in multi-agent optimization dates at least back to Su & Vaidya (2016). Many prior works in this
area formalize tradeoffs between resilience and accuracy (Kuwaranancharoen et al., 2020; Yang & Bajwa,
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2019; Fang et al., 2022; He et al., 2022; Wu et al., 2023; Su & Vaidya, 2016; Sundaram & Gharesifard, 2018; Su
& Vaidya, 2020; Zhao et al., 2020), i.e., the limit point exhibits bias with respect to the optimizer dependent
on the extent of adversarial manipulation. To refine this dependence, assumptions that there is “objective
function redundancy” have been considered (Gupta et al., 2021; Gupta & Vaidya, 2021; Kaheni et al., 2022)
for the special case of a complete graph. Extensions to tree graphs (federated setting) have also been studied
(Liu et al., 2021b; Gupta et al., 2023). Significant attention has been paid to designing Byzantine-resilient
variants of stochastic gradient iteration (Chen et al., 2017; Blanchard et al., 2017; Alistarh et al., 2018; Su
& Xu, 2019; Chen et al., 2018) – see Yang et al. (2020) for a review.

Designing resilient bandit algorithms may be traced back to a single-agent setting in Auer et al. (2002b),
where an EXP3 with O(

√
T ) regret was established. Follow-on work (Bubeck & Cesa-Bianchi, 2012; Audibert

& Bubeck, 2009; Auer & Chiang, 2016) refined the regret constants. Subsequent work (Jun et al., 2018;
Liu & Shroff, 2019) established that with O(log T ) attack cost, UCB and greedy algorithms can suffer linear
regret O(T ). Guan et al. (2020) established that a O(log T ) regret can be achieved under certain assumption
on reward distributions with a median-based technique. Subsequent extensions of adversarial models to
contextual bandits have been studied Slivkins (2011); Wang et al. (2022b); Kwon et al. (2022). In recent
years, Byzantine robust reinforcement learning for federated setting is also developed Chen et al. (2023);
Jadbabaie et al. (2022); Fan et al. (2021).

Most similar to the setting studied here are models of adversarial manipulation of MAB methods in the
multi-agent setting. Dubey & Pentland (2022) discussed a Byzantine setting where at each time agents
observe a true reward with probability 1 − ϵ and observes a reward from an unknown but fixed distribution
with probability ϵ. Madhushani et al. (2021); Wang et al. (2022a); Liu et al. (2021a) considered an adaptive
Byzantine corruption where any reward when transmitted can be corrupted the adversary. The setting
we study is similar to Vial et al. (2021; 2022); Mitra et al. (2022), Mitra et al. (2022) is specialized for
linear bandit problems and it discussed a solution methodology that requires centralization, whereas Vial
et al. (2021; 2022) partition the set of arms into distinct subsets that are assigned among the agents. To
achieve robustness, a connected and undirected normal network is required, in contrast to our setting. These
methods mandate that the proportion of Byzantine agents relative to normal agents is sufficiently small, in
order to outperform a single-agent bandit method. In particular, (Vial et al., 2022, Theorem 2) contains the
possibility that performance can be worse than the single-agent counterpart, and always exhibits degradation
in regret bound under our arm aligning setting which is widely considered in multi-armed bandits literature
(e.g. Landgren et al. (2016); Landgrena et al. (2021); Martínez-Rubio et al. (2019); Zhu et al. (2021); Zhu
& Liu (2021)). A more rigorous contrast of the regret results in these works may be found in the succeeding
section.

C Comparison With Existing Literature

C.1 Comparison with decentralized stochastic bandit algorithms

In the context of decentralized algorithms within a stochastic bandit setting, as described in prior works such
as Landgren et al. (2016); Landgrena et al. (2021); Martínez-Rubio et al. (2019); Zhu et al. (2021); Zhu & Liu
(2021), it is observed that most of these algorithms impose specific network connectivity requirements even
in the absence of Byzantine attacks. Furthermore, the majority of these algorithms do not guarantee superior
individual performance compared to their non-cooperative counterparts, with the exception of Zhu & Liu
(2021). In contrast, our proposed algorithm eliminates the need for any network connectivity prerequisites
while ensuring individual performance that is at least as good as that of the non-cooperative counterpart.

C.2 Comparison with resilient algorithms

In this subsection, we give a detailed comparison with the existing resilient bandit algorithms Mitra et al.
(2022); Vial et al. (2021; 2022), which are under the similar Byzantine setting with ours.

In the work of Mitra et al. (2022), the authors investigate a robust linear bandit problem within the context
of federated learning. This scenario necessitates the presence of a central server capable of managing all
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the communications. The study presents a regret bound of O(
√

T ), and this regret can be further improved
when the proportion of Byzantine agents decreases or when the overall number of agents increases. In
contrast, our algorithm is designed for a decentralized communication scenario, which is more versatile in
terms of the types of communication graphs it can accommodate. It is worth noting that considering the
federated setting effectively implies an assumption that the underlying communication graph takes on either
a complete graph or a star graph configuration, with the central node (or root) being consistently reliable.
These configurations are considered special because they entail the presence of at least one normal agent
capable of establishing communication with all other agents. Consequently, the methodology proposed by
Mitra et al. (2022) finds limited applicability in our context. Nevertheless, like Mitra et al. (2022), our
algorithm also affords agents the opportunity to enhance their performance in response to specific changes in
the network structure. As detailed in Equation equation 5, each normal agent generally experiences a lower
regret when it possesses a larger number of neighbors or when f decreases. This property is also explained in
the subsequent paragraph following Theorem 2. Furthermore, in the overlapping scenario analyzed in both
Mitra et al. (2022) and our paper, where agents engage in federated/centralized communication to address
a stochastic bandit problem, our algorithm achieves a superior asymptotic regret bound. Specifically, the
regret bound in Mitra et al. (2022) is at least O(

√
T ), which is higher than our regret bound of O(log T ).

In the work of Vial et al. (2021; 2022), the authors explore a scenario where each agent is exclusively
responsible for exploring a subset of arms. While this setting may initially appear to encompass a more
generalized arm alignment setup compared to ours, it imposes a requirement for a connected and undirected
network among normal agents within the communication graph. This particular requirement diminishes its
practicality from a design perspective. Furthermore, if we examine the specific case where both papers allow
each agent to explore the entire set of arms, it becomes evident that both Vial et al. (2021) and Vial et al.
(2022) present regret bounds that are inferior to those of the non-cooperative counterparts. To elaborate,
both (Vial et al., 2021, Theorem 2) and (Vial et al., 2022, Theorem 2) reveal that the coefficient associated
with the log T term in their respective regret upper bounds is given by

∑
k:∆k>0

4α
∆k

with a parameter α

strictly greater than 2. In contrast, the single-agent UCB algorithm achieves a coefficient of
∑

k:∆k>0
8

∆k
for

the same term. Consequently, it becomes evident that the algorithms proposed by Vial et al. (2021; 2022)
fail to surpass the performance of the classic single-agent counterpart within the studied setting.

D Time-varying Graphs

Theorem 6 (Lower Bound) For any time-varying neighbor graph sequence {G(t)}, the expected cumula-
tive regret of any normal agent i ∈ H satisfies

lim inf
T →∞

Ri(T )
log T

≥ O
( 1

max{maxt∈{1,...,T } |Ni(t)| − 2f + 1, 1}

)
.

Theorem 7 (Upper Bound) For any time-varying neighbor graph sequence {G(t)}, the expected cumula-
tive regret of any normal agent i ∈ H satisfies

Ri(T ) ≤ min
τ∈{1,...,T }

( ∑
k: ∆k>0

(
max

t∈{1,...,τ}

8gi,k(t) log t

∆k
+
(

1 + π2

3

)
∆k

)
+ (T − τ)∆M

)

≤
∑

k: ∆k>0

(
max

t∈{1,...,T }

8gi,k(t) log t

∆k
+
(

1 + π2

3

)
∆k

)
.

Theorem 8 (Per-agent Outperformance) For any time-varying neighbor graph sequence {G(t)}, the
regret upper bound for each normal agent i ∈ H is always no worse than that of the single-agent UCB1, i.e.,

Ri(T ) ≤
∑

k: ∆k>0

(
8 log T

∆k
+
(

1 + π2

3

)
∆k

)
.

The above three theorems can be proved using the same argument as in the proofs of Theorems 1–3,
respectively.
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E Counterexample

In this appendix, we will take the updating policy in Zhu & Liu (2021) as an example to show that using
running consensus, a commonly used updating policy in the literature, cannot nullify the Byzantine effect
even with a filtering process, rather, it makes the reward mean estimate inaccurate.

We begin with introducing the algorithm in Zhu & Liu (2021). Denote the reward mean estimate as z̃i,k(t),
which is updated as follows:

z̃i,k(t + 1) = 1
|Ni|

∑
j∈Ni

z̃j,k(t) + x̄i,k(t + 1) − x̄i,k(t), (7)

where x̄i,k(t) denotes the sample mean, i.e.,

x̄i,k(t) = 1
ni,k(t)

t∑
τ=0

1(ai(τ) = k)Xi,k(τ).

Initial z̃i,k(0) is set equal to Xi,k(0). We omit the decision-making process studied in Zhu & Liu (2021)
here. This is because, as we will show in later discussions, under the resilient setting, using such an updating
policy at agent i cannot even ensure an accurate z̃i,k(t). Thus, regardless of the decision-making policy, the
algorithm results in linearly escalating regret.

Under the resilient setting studied in this paper, for a fair comparison, we add a trimmed-mean filtering
process before equation 7 to enable the algorithm to handle certain Byzantine effects. Let z̃ij,k(t) = z̃i,k(t)
if i ∈ H and be an arbitrary value if i ∈ F . At each time step, each agent i ∈ H transmits z̃ij,k(t) to each of
its out-neighbors j ∈ N −

i and simultaneously receives z̃hi,k(t) from each of its neighbors h ∈ Ni; the agent
then sorts all received z̃hi,k(t), h ∈ Ni in descending order and filters out the largest f and the smallest f
values. Let Mi,k(t) be the retained neighbor set of agent i after filtering at time t. Then, agent i updates
its reward mean estimate z̃i,k(t) as

z̃i,k(t + 1) = 1
|Mi,k(t)|

∑
j∈Mi,k(t)

z̃ji,k(t) + x̄i,k(t + 1) − x̄i,k(t). (8)

Here equation 8 serves as the modified updating policy in Zhu & Liu (2021) under the resilient bandit setting.
We will show in the following example that it results in |E(z̃i,k(t)) − µk| being always bounded below by
a strictly positive constant for any ni,k(t) ∈ {1, . . . , t}. This fact implies that the reward mean estimate is
always biased. With a biased reward mean estimate, no matter what the decision-making policy is, normal
agents can never find an optimal arm.

Example 4 Consider a 4-agent complete graph, with agent 1 being a Byzantine agent and agents 2–4 being
normal agents. Let one arm k be of Bernoulli distribution with mean 1

2 . At each time, agent 1 sends 1
3 to

all three normal agents as its reward mean estimate on arm k.

Lemma 1 With Example 4, there holds |E(z̃i,k(t)) − µk| ≥ 1
24 for any i ∈ {2, 3, 4} and t ∈ {1, 2, . . .}.

Proof of Lemma 1: Since the neighbor graph is complete and z̃1i,k(t) = 1
3 for all i ∈ {2, 3, 4}, it is easy to

see that
E(z̃2,k(t)) = E(z̃3,k(t)) = E(z̃4,k(t)).

Take agent 2 as an example, at each time t, it receives three pieces of reward information and only retains
one of them for update. Let p(t) be the probability that agent 2 retains the Byzantine value at time t. Then,
we have

E(z̃2,k(t + 1)) = 1
2E(z̃2,k(t)) + 1

2

(
1
3p(t) +

(E(z̃3,k(t))
2 + E(z̃4,k(t))

2

)
(1 − p(t))

)
=
(

1 − p(t)
2

)
E(z̃2,k(t)) + 1

6p(t).
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If E(z̃2,k(t)) ≤ 1
3 , then there holds

E(z̃2,k(t + 1)) ≤ 1
3

(
1 − p(t)

2

)
+ 1

6p(t) = 1
3 ,

and if E(z̃2,k(t)) > 1
3 , then

E(z̃2,k(t + 1)) ≤ E(z̃2,k(t)) − 1
3

p(t)
2 + p(t)

6 = E(z̃2,k(t)).

Together we have

E(z̃2,k(t + 1)) ≤ max
{

E(z̃i,k(t)), 1
3

}
. (9)

Now consider t = 0. It is easy to see that E(z̃i,k(0)) = E(Xi,k(0)) = 1
2 for i ∈ {2, 3, 4} and that p(0) = 1

2 .
Thus,

E(z̃2,k(1)) = 11
24 .

Then, from equation 9, we obtain that for any t ∈ {1, . . . , T},

E(z̃2,k(t)) ≤ 11
24 ,

since µk = 1
2 , |E(z̃i,k(t)) − µk| ≥ 1

24 , which completes the proof.

The above Example 4 can be straightforwardly generalized to any size complete graphs using similar argu-
ments to those in the proof of Lemma 1.

Proposition 1 Consider an n-agent complete neighbor graph with f agents being Byzantine. Set one arm
k’s reward to be of Bernoulli distribution with mean µk and let all f Byzantine agents always transmit a
contant value ϑk ̸= µk to their out-neighbors at each time. If n ≥ 4 and f ≤ ⌊ n−1

2 ⌋, then |E(z̃i,k(t)) − µk| is
uniformly bounded below by a strictly positive constant for all normal agent i and time t.

Proposition 1 shows that running consensus can lead to biased reward mean estimates. With a biased reward
mean, normal agents will possibly misidentify an optimal arm, and as a result, no matter what decision-
making policy normal agents use, it may yield a linear regret. We will run experiments in Appendix G to
visually demonstrate this result; see Figure 9 and its discussion.

F Analysis

This section provides the analysis of the algorithm and proofs of the main results in the paper.

Lemma 2 If |Ai,k(t)| > 2f , then zi,k(t) in equation 3 can be expressed as a convex combination of x̄i,k(t)
and all x̄j,k(t), j ∈ Ai,k(t) ∩ H in that

zi,k(t) = wii,k(t)x̄i,k(t) +
∑

j∈Ai,k(t)∩H

wij,k(t)x̄j,k(t), (10)

where wii,k(t) and wij,k(t) are non-negative numbers satisfying wii,k(t) +
∑

j∈Ni∩H wij,k(t) = 1, and there
exists a positive constant ηi,k(t) = 1

|Bi,k(t)|+1 such that for all i ∈ H and t, wii,k(t) ≥ ηi,k(t) and among all
wij,k(t), k ∈ Ai,k(t) ∩ H, at least |Bi,k(t)| of them are bounded below by ηi,k(t)/2.

Proof of Lemma 2: From definition, |Bi,k(t) ∩ F| means the number of Byzantine agents being retained
by agent i for arm k after the two filtering steps. From Trimmed Mean Filter, having |Bi,k(t) ∩ F| Byzantine
agents being retained indicates that there are |Bi,k(t) ∩ F| normal agents who are retained after Consistency
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Filter are filtered out in Trimmed Mean Filter due to having a small sample mean and |Bi,k(t) ∩ F| are
filtered out due to having a large sample mean. In this sense, for any j ∈ Bi,k(t) ∩ F , there exists a distinct
pair of normal agent j−, j+ ∈ Ai,k(t) \ Bi,k(t) ∩ H, such that x̄j−,k(t) ≤ x̄j,k(t) ≤ x̄j+,k(t). Then, x̄j,k(t) can
be expressed as a convex combination of x̄j−,k(t) and x̄j+,k(t), i.e., there exists a βj , such that

x̄j,k(t) = βj x̄j−,k(t) + (1 − βj)x̄j+,k(t).

Then, equation 3 can be rewritten as

zi,k(t) = 1
|Bi,k(t)| + 1

(
x̄i,k(t) +

∑
h∈Bi,k(t)∩H

x̄h,k(t) +
∑

j∈Bi,k(t)∩F

(βj x̄j−,k(t) + (1 − βj)x̄j+,k(t))
)

.

Since Bi,k(t) ∩ H ⊂ Ai,k(t) ∩ H and j−, j+ ∈ Ai,k(t) ∩ H for all j ∈ Bi,k(t) ∩ F , the above equation
is exactly in the form of equation 10. Besides, for each j ∈ Bi,k(t) ∩ F , at least one of βj and 1 − βj

are lower bounded by 1
2 . Then, the number of wij,k(t) that are lower bounded by 1

2(|Bi,k(t)|+1) is at least
|Bi,k(t) ∩ H| + |Bi,k(t) ∩ F| = |Bi,k(t)|, which completes the proof.

Lemma 3 (Hoeffding’s inequality (Hoeffding, 1963, Theorem 2)) If X1, . . . , Xn are independent random
variables and ai ≤ Xi ≤ bi for i = 1, . . . , n, let X̄ =

∑n

i=1
Xi

n and µ be the expectation of X̄; then for any
ϵ > 0, it holds that

P(X̄ − µ ≥ ϵ) ≤ exp
(

− 2n2ϵ2∑n
i=1(bi − ai)2

)
.

Now we are in a position to prove the theorems.

Proof of Theorem 1: The lower bound for single-agent algorithm is Ω(log T ) (Lai & Robbins, 1985,
Theorem 1). For all network structure, a complete graph leads to best performance as each agent has full
knowledge of the reward information over the network. For each agent, this is equivalent to a single-agent
setting where it selects one arm and receives N pieces of reward information at each time instance. From
Filtering step B, at least 2f pieces of information are filtered out if Bi,k(t) is nonempty. This is to say, each
agent at most retains max{|Ni| − 2f, 0} neighbors after the whole filtering process and thus is able to make
use of at most max{|Ni| − 2f, 1} pieces of reward information in the updates, which leads to a lower bound
of order Ω( log T

max{|Ni|−2f+1,1} ).

Proof of Theorem 2: Since Ri(T ) =
∑

k:∆k>0 E(ni,k(T ))∆k, we can convert the problem into finding an
estimate of E(ni,k(T )). Let

L =
⌈

max
t∈{1,...,T }

8gi,k(t) log t

∆2
k

⌉
for any i ∈ H, if ni,k(T ) ≥ L, let ti ≤ T be the time such that ni,k(ti) = L; then we have

ni,k(T ) = L +
T∑

t=ti+1
1(ai(t) = k).

Based on this fact, we obtain that

ni,k(T ) ≤ L +
T∑

t=1
1(ai(t) = k, ni,k(t − 1) ≥ L).

Since ni,k(t − 1) ≤ ni,k(t), we immediately obtain from the above inequality that

ni,k(T ) ≤ L +
T∑

t=1
1(ai(t) = k, ni,k(t) ≥ L),
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from the decision-making step, if agent i selects arm k at time t, then zi,k(t) + C(t, ni,k(t)) ≥ zi,1(t) +
C(t, ni,1(t)). Thus,

ni,k(T ) ≤ L +
T∑

t=1
1
(

zi,k(t) + C(t, ni,k(t)) ≥ zi,1(t) + C(t, ni,1(t)), ni,k(t) ≥ L
)

.

Since for any t ∈ {1, . . . , T}, we have 1 ≤ ni,k(t) ≤ t for all i ∈ H and k ∈ M, considering all possible values
of ni,k(t) and ni,1(t) for a given t in the above inequality, we obtain that

ni,k(T ) ≤ L +
T∑

t=1

t∑
Nik=L

t∑
Ni1=1

1
(

zi,k(t) + C(t, ni,k(t)) ≥ zi,1(t) + C(t, ni,1(t)),

ni,k(t) = Nik, ni,1(t) = Ni1

)
. (11)

Applying the expectation operation on both sides of the above inequality, it holds that

E(ni,k(T )) ≤ L +
T∑

t=1

t∑
Nik=L

t∑
Ni1=1

P
(

zi,k(t) + C(t, ni,k(t)) ≥ zi,1(t) + C(t, ni,1(t)),

ni,k(t) = Nik, ni,1(t) = Ni1

)
≤ L +

T∑
t=1

t∑
Nik=L

t∑
Ni1=1

(
P
(
zi,k(t) − µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
+ P

(
µ1 − zi,1(t) ≥ C(t, ni,1(t)), ni,1(t) = Ni1

)
+ P

(
2C(t, ni,k(t)) > µ1 − µk), ni,k(t) = Nik

))
. (12)

It is easy to verify that when ni,k(t) ≥ L, for any t ∈ {1, . . . , T}, it always holds true that 2C(t, ni,k(t)) ≤
µ1 − µk, which is to say,

P
(
2C(t, ni,k(t)) ≥ µ1 − µk), ni,k(t) = Nik

)
= 0.

Substituting the result to equation 12, we obtain that

E(ni,k(T )) ≤ L +
T∑

t=1

t∑
Nik=L

t∑
Ni1=1

(
P
(
zi,k(t) − µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
+ P

(
µ1 − zi,1(t) ≥ C(t, ni,1(t)), ni,1(t) = Ni1

))
. (13)

The two probabilities in equation 13 can be viewed as concentration bounds of the reward mean estimates.
Without loss of generality, we only provide detailed estimation for P

(
zi,k(t)−µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
in the following context, the analysis for P

(
µ1 − zi,1(t) ≥ C(t, ni,1(t)), ni,1(t) = Ni1

)
is exactly the same.

And to this end, we need to consider the following two cases based on the number of neighbors that are
retained after two filters.

Case A: If Bi,k(t) is empty, then zi,k(t) = x̄i,k(t), and the decision-making is exactly the same as that of
single-agent UCB1 in Auer et al. (2002a). From the analysis in (Auer et al., 2002a, Theorem 1), it holds
that

t∑
Nik=L

t∑
Ni1=1

(
P
(
zi,k(t) − µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
+ P

(
µ1 − zi,1(t) ≥ C(t, ni,1(t)), ni,1(t) = Ni1

))
≤ 2

t2 .
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Case B: If Bi,k(t) is nonempty, let Ãi,k(t) = Ai,k(t) ∩ H ∪ {i}. from Lemma 2; we can write zi,k(t) as the
convex combination of the sample mean of agents in Ãi,k(t). Then,

P
(
zi,k(t) − µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
= P

( ∑
j∈Ãi,k(t)

wij,k(t)x̄j,k(t) − µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
.

From Consistency Filter, for any j ∈ Ãi,k(t), we have κinj,k(t) ≥ ni,k(t), consider all possible values of
nj,k(t) for j ∈ Ãi,k(t), we obtain that

P
(
zi,k(t) − µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
=

∑
Nj1k≥ Nik

κi

· · ·
∑

Nj|Ãi,k(t)|k≥ Nik
κi

P
( ∑

j∈Ãi,k(t)

wij,k(t)x̄j,k(t) − µk ≥ C(t, ni,k(t)),

nj,k(t) = Njk
for all j ∈ Ãi,k(t)

)
, (14)

where j1, . . . , jÃi,k(t) are the labels of all the agents in Ai,k(t) ∩ H. Let C(t) be the collection of {Njk : j ∈
Ãi,k(t)} such that Njk ≥ Nik/κi for all j ∈ Ãi,k(t). Then,

P
(
zi,k(t) − µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
≤ max

C(t)
P
( ∑

j∈Ãi,k(t)

wij,k(t)x̄j,k(t) − µk ≥ C(t, ni,k(t)), nj,k(t) = Njk for all j ∈ Ãi,k(t)
)

.

Let X̄i,k(s) denote the averaged reward of agent i on arm k for a fixed sampling times s, it is clear that
X̄i,k(·) for all i ∈ H are independent. In this sense, we have

P
(
zi,k(t) − µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
≤ max

C(t)
P
( ∑

j∈Ãi,k(t)

wij,k(t)X̄j,k(Njk) − µk ≥ C(t, Nik)
)

.

Then, using Lemma 3,

P
(
zi,k(t) − µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
≤ max

C(t)
exp

(
− C2(t, Nik)∑

j∈Ãi,k(t)(wij,k(t))2 1
2Njk

)
(15)

Since Njk ≥ Nik/κi for all j ∈ Ai,k(t) ∩ H, we have

P
(
zi,k(t) − µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
≤ exp

(
− 2C2(t, Nik)Nik

(wii,k(t))2 + κi

∑
j∈Ai,k(t)∩H(wij,k(t))2

)
. (16)

From Lemma 2, at least |Bi,k(t)| of wij,k(t) for j ∈ Ai,k(t) ∩ H are lower bounded by ηi,k(t)/2 and that
wii,k(t) +

∑
j∈Ai,k(t)∩H wij,k(t) = 1. Thus,

(wii,k(t))2 + κi

∑
j∈Ai,k(t)∩H

(wij,k(t))2

≤ η2
i,k(t) + κi

(
(|Bi,k(t)| − 1)(ηi,k(t)/2)2 + (1 − ηi,k(t) − (|Bi,k(t)| − 1)ηi,k(t)/2)2

)
≤ η2

i,k(t) + κi

(ηi,k(t)
4 + 1

4

)
= gi,k(t). (17)
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Substituting equation 17 to equation 16, we obtain that

P
(
zi,k(t) − µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
≤ 1

t4 .

Similarly,
P
(
µ1 − zi,1(t) ≥ C(t, ni,1(t)), ni,1(t) = Ni1

)
≤ 1

t4.

Then, combining the above two inequalities together,
t∑

Nik=L

t∑
Ni1=1

(
P
(
zi,k(t) − µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
+ P

(
µ1 − zi,1(t) ≥ C(t, ni,1(t)), ni,1(t) = Ni1

))
≤ 2

t2 .

Combining the results of both Case A and Case B with equation 13, we obtain that

E(ni,k(T )) ≤ L +
T∑

t=1

2
t2 ≤ L + π2

3 , (18)

and further

Ri(T ) =
∑

k:∆k>0

E(ni,k(T ))∆k ≤
∑

k:∆k>0

(
max

t∈{1,...,T }

8gi,k(t) log t

∆k
+
(π2

3 + 1
)

∆k

)
.

It is easy to see that τ = 1, . . . , T, it holds that

Ri(T ) ≤ Ri(τ) + (T − τ) max
k∈M

∆k,

where Ri(τ) denotes the expected cumulative regret at time τ , and (T − τ) maxk∈M ∆k is the maximal
reward loss gained after τ by keeping selecting the arm with the lowest reward mean. In this sense, we can
obtain the following tighter upper bound for the reward mean estimate,

Ri(T ) ≤ min
τ∈{1,...,T }

(
Ri(τ) + (T − τ) max

k∈M
∆k

)
≤ min

τ∈{1,...,T }

( ∑
k: ∆k>0

(
max

t∈{1,...,τ}

8gi,k(t) log t

∆k
+
(

1 + π2

3

)
∆k

)
+ (T − τ)∆M

)
,

which completes the proof as maxk∈M ∆k = ∆M .

Proof of Theorem 3: We only need to show for any t ∈ {1, . . . , T}, i ∈ H and k ∈ M, it holds that
gi,k(t) ≤ 1. Consider the case when Bi,k(t) is nonempty, i.e., |Bi,k(t)| ≥ 1. Then,

gi,k(t) = κi|Bi,k(t)|2 + 3κi|Bi,k(t)| + 2κi + 4
4(|Bi,k(t)| + 1)2

=
κi + κi

|Bi,k(t)|+1 + 4
(|Bi,k(t)|+1)2

4

≤
κi + κi

2 + 1
4 < 1. (19)

Note that gi,k(t) = 1 when Bi,k(t) is empty. We thus can conclude that gi,k(t) ≤ 1, which completes the
proof.

Proof of Theorem 4: We only need to show that for any t > 0 and k ∈ M, there exists an agent ik(t)
such that its regret at time t is strictly lower than that of the single-agent case, i.e.,

Rik(t)(t) <
∑

k: ∆k>0

(
8 log T

∆k
+
(

1 + π2

3

)
∆k

)
,
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and to this end, from Theorem 2, we only need to show that gik(t),k(t) < 1.

For any k ∈ M, let ik(t) = arg mini∈H ni,k(t). From the algorithm, agent ik(t) does not filter out any normal
neighbor in Filtering Step A, as for all j ∈ Nik(t) ∩ H, it holds that κinj,k(t) ≥ nj,k(t) ≥ ni,k(t). Then,
agent ik(t) at most filter out f (Byzantine) agents at time t in Filtering Step A. As a result, there holds
|Aik(t),k(t)| ≥ 2f + 1 and thus |Bik(t),k(t)| ≥ 1. Then, from equation 19,

gik(t),k(t) < 1.

From Theorem 3, we have gik(t),k(t) ≤ 1 for all i ∈ H. Then, it holds for any t > 0 that∑
i∈H

gi,k(t) < |H|. (20)

From Theorem 2, R(T ) satisfies

R(T ) ≤
∑
i∈H

∑
k: ∆k>0

(
max

t∈{1,...,T }

8gi,k(t) log t

∆k
+
(π2

3 + 1
)

∆k

)

=
∑

k: ∆k>0

(
max

t∈{1,...,T }

8
∑

i∈H gi,k(t) log t

∆k
+
(π2

3 + 1
)

|H|∆k

)
.

Then, using equation 20, there holds

R(T ) < |H|
∑

k: ∆k>0

(
max

t∈{1,...,T }

8 log t

∆k
+
(π2

3 + 1
)

∆k

)

= |H|
∑

k: ∆k>0

(
8 log T

∆k
+
(π2

3 + 1
)

∆k

)
,

which completes the proof.

Proof of Theorem 5: From Theorem 2, the network total regret R(T ) satisfies

R(T ) ≤
∑

k: ∆k>0

(
max

t∈{1,...,T }

8
∑

i∈H gi,k(t) log t

∆k
+
(π2

3 + 1
)

|H|∆k

)
. (21)

From equation 19, when the 3f + 1 degree requirement is satisfied at time t for any t = 1, . . . , T ,∑
i∈H

gi,k(t) < |H|,

and when it is not satisfied, we have a weaker result∑
i∈H

gi,k(t) ≤ |H|.

We discuss in the following analysis all the possibilities of the “last” time that the 3f + 1 degree requirement
is not satisfied.

If the last time that the degree requirement is not met is T, then gi,k(T ) = 1 and we have

max
t∈{1,...,T }

∑
i∈H

gi,k(t) log t ≤ |H| log T.

From the random graph structure, this situation happens with probability 1 − p. If the last time that the
degree requirement is not met is T − 1, then we have

max
t∈{1,...,T }

∑
i∈H

gi,k(t) log t ≤ max
{

|H| log(T − 1),
∑
i∈H

gi,k(T ) log T

}
,
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and this happens with probability (1 − p)p. Continuing this process, If the last time that the degree require-
ment is not met is T − τ, where 0 ≤ τ < T, then we have

max
t∈{1,...,T }

∑
i∈H

gi,k(t) log t

≤ max
{

|H| log(T − τ),
∑
i∈H

gi,k(t) log t for t = T − τ + 1, . . . , T

}
,

and this happens with probability (1 − p)pτ . And if the degree requirement is always met, then

max
t∈{1,...,T }

∑
i∈H

gi,k(t) log t ≤ max
{∑

i∈H
gi,k(t) log t for t = 1, . . . , T

}
,

and this happens with probability pT . For 0 ≤ τ ≤ T, let

h(τ, T ) = max
{

|H| log(max{1, T − τ}),
∑
i∈H

gi,k(t) log t for t = T − τ + 1, . . . , T

}
.

Then, from equation 21,

R(T ) ≤
∑

k: ∆k>0

(
8
∑T −1

τ=0 (1 − p)pτ E(h(τ, T )) + 8pT E(h(T, T ))
∆k

+
(π2

3 + 1
)

|H|∆k

)
. (22)

Since from the proof of Theorem 3,

h(T, T ) = max
{∑

i∈H
gi,k(t) log t for t = 1, . . . , T

}
<
∑
i∈H

max
t∈{1,...,T }

log t = |H| log T,

and h(τ, T ) ≤ |H| log T for 0 ≤ τ ≤ T − 1, then using equation 22,

R(T ) <
∑

k: ∆k>0

(
8
∑T −1

τ=0 (1 − p)pτ + 8pT

∆k
|H| log T +

(π2

3 + 1
)

|H|∆k

)

= |H|
∑

k: ∆k>0

(
8 log T

∆k
+
(π2

3 + 1
)

∆k

)
.

The right hand side is the network total regret bound of the non-cooperative counterpart. Thus, we conclude
that our regret bound is always strictly better than the non-cooperative counterpart. Moreover, let Φ(T ) be
the difference in upper bound between the two algorithms, i.e.,

Φ(T ) =
∑

k: ∆k>0

(
8|H| log T

∆k
−

8
∑T −1

τ=0 (1 − p)pτ E(h(τ, T )) + 8pT E(h(T, T ))
∆k

)

= 8
∑

k: ∆k>0

∑T −1
τ=1 (1 − p)pτ (|H| log T − E(h(τ, T ))) + pT (|H| log T − E(h(T, T )))

∆k
.

Since for any τ = 1, . . . , T, we have

E(h(τ, T )) = E
(

max
{

|H| log(max{1, T − τ}),
∑
i∈H

gi,k(t) log t for t = T − τ + 1, . . . , T

})
≥ E(|H| log(max{1, T − τ})) = |H| log(max{1, T − τ}),
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substituting it to the definition of Φ(T ), we obtain that

Φ(T ) ≤ 8|H|
∑

k: ∆k>0

∑T −1
τ=1 (1 − p)pτ log T

T −τ + pT log T

∆k

= 8|H|
∑

k: ∆k>0

(∑T/2
τ=1 +

∑T −1
τ=T/2+1

)
(1 − p)pτ log T

T −τ + pT log T

∆k

≤ 8|H|
∑

k: ∆k>0

∑T/2
τ=1(1 − p)pτ log 2 +

∑T −1
τ=T/2+1(1 − p)pτ log T + pT log T

∆k

≤ 8|H|
∑

k: ∆k>0

p log 2 + (1 − p)p T
2 T log T/2 + pT log T

∆k
,

since for p ∈ (0, 1), both (1 − p)p T
2 T log T and pT log T are of order o(1), we conclude that Φ(T ) ≤ O(1),

which completes the proof.

G Additional Simulations

We begin with the simulation with the same arm setting and Byzantine policy as in Section 5 to further
validate the theoretical results. For all simulations in this section, the total time T is chosen to be 10000,
and the figures are the averaged result of 50 runs.

We first consider a ten-agent network with two of the agents being Byzantine. The graphs change over time
but always satisfies that f = 1. We consider two cases: (1) Each normal agent has at least 4 = 3f + 1
neighbors and the average number of neighbor of each normal agent equals 4.5. (2) Each directed edge
is activated with a common probability q = 1/2. For both cases, the average in-degree for each normal
agent equals 4.5. The simulation result for the two-case comparison is given in Figure 8. Observe that the
performance of the two cases differs significantly despite having a same average in-degree for each normal
agent. This is because case (1) guarantees the 3f + 1 degree requirement be satisfied at each time whereas
case (2) does not. This observation is consistent with Remark 3.

Next we consider a ten-agent complete network with one agent being Byzantine. Since the updating processes
in Landgrena et al. (2021); Landgren et al. (2016); Martínez-Rubio et al. (2019) are alike, we only take
Landgrena et al. (2021) as an example. We compare the performance of our algorithm with Zhu & Liu
(2021) with a trimmed mean filter (denoted as Algorithm 3 in Figure 9) and Landgrena et al. (2021) with
a trimmed mean filter (denoted as Algorithm 4 in Figure 9) . For Zhu & Liu (2021), we use the same
Byzantine policy as ours, and for Landgrena et al. (2021), the Byzantine agent follows a similar rule: it sets
[0.4, 0.5, 0.4, 0.3] as r information for each arm, randomly copies one normal neighbor’s n̂, and sets ŝ = n̂ ∗ r,
and then broadcasts these variables to its neighbors. The definition of r, n̂, ŝ can be found in Landgrena
et al. (2021). The simulation result is shown in Figure 9. It is clearly shown that the algorithms in Zhu &
Liu (2021); Landgrena et al. (2021) are not resilient even with a Byzantine filter and over a complete graph,
as their corresponding regret curves appear to be linear, this observation is consistent with Lemma 1.

G.1 Application in Recommender Systems

In this appendix, we consider the application in the recommender systems, where an advertising firm is
charged with the task of presenting one type of advertisement to a user. If the user clicks the ad, the firm
receives 1 as a reward, and 0-reward otherwise. Each user has individual preference and thus has different
probabilities to make a click on different types of ads. Consider that ten advertising firms are seeking to
present the optimal option to a user over twenty different types of ads. Each firm has connections with
some others so that they can cooperate with each other for better performance. The connections form an
undirected graph shown in Figure 10, with the white nodes representing for the firms that transmit honest
information, and the grey nodes representing for the “evil” firms that transmit misleading information for
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Figure 8: Simulation result of the average regret of
normal agents

Figure 9: Simulation result of the average regret of
normal agents

Figure 10: Connections of the ten firms
Figure 11: Simulation result of the average regret
of normal agents

malicious competition. The honest firms perceive that something is amiss but cannot identify the adversarial
firms so they decide to defend with a resilient decision-making. For the adversarial firms, we consider the
following two Byzantine attack models.

Gaussian Attack: Let each adversarial firm i randomly generate a bias value βi,k ∈ (0, 1) for each arm k.
For each neighbor j and time t, it generates a cj(t) from N(βk, 0.01)1 and truncates
x̄i,k(t) + cj(t) to the range [0, 1], then transmits the value to its neighbors. For sample
count information at time t, let each adversarial firm copy nj,k(t − 1) from a neighbor
j.

Adaptive Attack: Here we assume the adversarial firms literally know everything, e.g., the arm informa-
tion, the communication activities and even the Byzantine-defending algorithm. This is
possible via illegitimately monitoring other firms and when they already have the user’s
information in their database. For each normal neighbor i and an arm k, let an adver-
sarial firm transmit a value slightly larger than ni,k(t) as the sample count information;
if the arm is the optimal arm 1, let the adversarial firm transmit the second smallest

1We use N(s, d) to denote the Gaussian distribution with mean s and variance d.
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x̄j,1(t) for j ∈ Ai,1(t) (they are able to accurately predict Ai,k(t) via monitoring) and
otherwise transmit the second largest x̄j,k(t) for j ∈ Ai,k(t). In this sense, the adver-
sarial firms are able to down-weight the optimal arm and up-weight the sub-optimal
arms in the decision-making of each normal neighbor to the maximum extent.

For the simulation under the above application model, the reward distribution of each arm is set to be a
Bernoulli distribution with a randomly generated mean. Each honest firm i sets a κi that is randomly picked
from [1, 2). The simulation result is shown in Figure 11. We observe that for both Byzantine attacking
strategies, our algorithm ensures good performance. Besides, the performance appears to be not sensitive to
different Byzantine policies as the difference of performance under the two types of attack is negligible.

Considering that the recent study Bayati et al. (2020) shows that the greedy algorithm performs extremely
well when the number of arms are large, we also test on greedy algorithm incorporating Filter(i, k, t),
where each normal agent i always selects the arm with largest zi,k(t) in the decision-making step, i.e.,
ai(t+1) = arg maxk∈M zi,k(t), after executing Filter(i, k, t). We compare its performance under the adaptive
Byzantine attack with algorithms (a) each normal agent i runs Filter(i, k, t), then executes softmax on the
arms corresponding to the three largest zi,k(t) and samples one of them according to the probabilities softmax
returns; (b) Resilient Decentralized UCB; (c) Resilient Decentralized UCB with a tuned parameter: similar
to what the single-agent UCB Auer et al. (2002a) does in simulation, we tune the confidence parameter
C(t, ni,k(t)) to

C(t, ni,k(t)) =

√
gi,k(t) log t

4ni,k(t) . (23)

The simulation results are shown in Figures 12 and 13. We observe that while softmax generally provides
a linear regret possibly because agents have a probability of order O(1) to select a sub-optimal arm at each
time, greedy algorithm works well with Filter(i, k, t) in resilient setting. This indicates that our filtering and
updating steps (i.e. Algorithm 2) may be compatible to various classic bandit algorithms and thus have great
potentials in solving bandit problems, which deserves further investigation in the future. Moreover, when
k = 20, i.e., the arm number is large, resilient greedy algorithm has a substantial advantage over Resilient
Decentralized UCB while has a notable disadvantage when dealing with a relatively small arm number, which
is consistent with the observations in the non-resilient setting Bayati et al. (2020). Besides, we find that the
tuned Resilient Decentralized UCB always performs significantly better than Resilient Decentralized UCB
(and in fact better than the resilient greedy algorithm for both arm settings), which is consistent with the
observations for single-agent UCB under the non-resilient setting Auer et al. (2002a). However, like Auer
et al. (2002a), we are not able to provide a theoretical prove for the regret bound. To help see the difference
of exploration procedure of the two UCB algorithms, we further divide the total time T into three stages with
equal length and provide the simulation of the frequency of arm selecting for normal agents when k = 20;
see Figures 14 and 15.
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Figure 12: Simulation result of the average regret
of normal agents for different resilient algorithms
when k = 20

Figure 13: Simulation result of the average regret
of normal agents for different resilient algorithms
when k = 4

Figure 14: Simulation result of the average ex-
plorations of normal agents under Resilient De-
centralized UCB

Figure 15: Simulation result of the average explo-
rations of normal agents under tuned Resilient
Decentralized UCB equation 23
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