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Abstract

Researchers are investing substantial effort in developing powerful general-
purpose agents, wherein Foundation Models are used as modules within agen-
tic systems (e.g. Chain-of-Thought, Self-Reflection, Toolformer). However, the
history of machine learning teaches us that hand-designed solutions are eventu-
ally replaced by learned solutions. We describe a newly forming research area,
Automated Design of Agentic Systems (ADAS), which aims to automatically cre-
ate powerful agentic system designs, including inventing novel building blocks
and/or combining them in new ways. We further demonstrate that there is an un-
explored yet promising approach within ADAS where agents can be defined in
code and new agents can be automatically discovered by a meta agent program-
ming ever better ones in code. Given that programming languages are Turing
Complete, this approach theoretically enables the learning of any possible agentic
system: including novel prompts, tool use, workflows, and combinations thereof.
We present a simple yet effective algorithm named Meta Agent Search to demon-
strate this idea, where a meta agent iteratively programs interesting new agents
based on an ever-growing archive of previous discoveries. Through extensive ex-
periments across multiple domains including coding, science, and math, we show
that our algorithm can progressively invent agents with novel designs that greatly
outperform state-of-the-art hand-designed agents. Importantly, we consistently
observe the surprising result that agents invented by Meta Agent Search maintain
superior performance even when transferred across domains and models, demon-
strating their robustness and generality. Provided we develop it safely, our work
illustrates the potential of an exciting new research direction toward automatically
designing ever-more powerful agentic systems to benefit humanity.

1 Introduction

Foundation Models (FMs) such as GPT [57, 55] and Claude [2] are quickly being adopted as power-
ful general-purpose agents for agentic tasks that need flexible reasoning and planning [80]. Despite
recent advancements in FMs, solving problems reliably often requires an agent to be a compound
agentic system with multiple components instead of a monolithic model query [92, 66]. Addition-
ally, to enable agents to solve complex real-world tasks, they often need access to external tools
such as search engines, code execution, and database queries. As a result, many effective build-
ing blocks of agentic systems have been proposed, such as chain-of-thought planning and reason-
ing [84, 88, 31], memory structures [95, 40], tool use [69, 62], and self-reflection [48, 73]. Although
these agents have already seen significant success across various applications [80], developing these
building blocks and combining them into complex agentic systems often requires domain-specific
manual tuning and substantial effort from both researchers and engineers.
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Figure 1: Overview of the proposed algorithm Meta Agent Search and examples of discovered
agents. In our algorithm, we instruct the “meta” agent to iteratively program new agents, test their
performance on tasks, add them to an archive of discovered agents, and use this archive to inform the
meta agent in subsequent iterations. We show three example agents across our runs, with all names
generated by the meta agent. The detailed code of example agents can be found in Appendix H.

However, the history of machine learning reveals a recurring theme: manually created artifacts be-
come replaced by learned, more efficient solutions over time as we get more compute and data [15].
An early example is from computer vision, where hand-designed features like HOG [18] were
eventually replaced by learned features from Convolutional Neural Networks (CNNs, Krizhevsky
et al. [36]). More recently, AutoML methods [34] and AI-Generating Algorithms (AI-GAs, Clune
[15]) have also demonstrated the superiority of learned AI systems compared to hand-designed AI
systems. For example, the current best-performing CNN models come from Neural Architecture
Search [23, 71] instead of manual design; in LLM alignment, learned loss functions [44] outper-
form most hand-designed ones such as DPO [63]; The AI Scientist [45] demonstrates an automated
research pipeline, including the development of novel ML algorithms; and an endless number of
robotics learning environments can be automatically generated in works like OMNI-EPIC [24],
which demonstrate surprising creativity in generated environments and allow more efficient envi-
ronment creation than the manual approach (see more examples in Section 5). Therefore, in this
paper, we propose a new research question: Can we automate the design of agentic systems rather
than relying on manual efforts?

To explore the above research question, we describe a newly forming research area we call
Automated Design of Agentic Systems (ADAS), which aims to automatically invent novel build-
ing blocks and design powerful agentic systems (Section 2). We argue that ADAS may prove to
be the fastest path to developing powerful agents, and show initial evidence that learned agents can
greatly outperform hand-designed agents. Considering the tremendous number of building blocks
yet to be discovered in agentic systems (Section 5), it would take a long time for our research com-
munity to discover them all. Even if we successfully discover most of the useful building blocks,
combining them into effective agentic systems for massive real-world applications would still be
challenging and time-consuming, given the many different ways the building blocks can combine
and interact with each other. In contrast, with ADAS, the building blocks and agents can be learned
in an automated fashion. ADAS may not only potentially save human effort in developing powerful
agents but also could be a faster path to more effective solutions than manual design.

Although a few existing works can be considered as ADAS methods, most of them focus only
on designing prompts [87, 25], greatly limiting their ability to invent flexible design patterns in
agents (Section 5). In this paper, we show that there is an unexplored yet promising approach to
ADAS where we can define the entire agentic system in code and new agents can be automatically
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discovered by a “meta” agent programming even better ones in code. Given that most programming
languages, such as Python, which we use in this paper, are Turing Complete [6, 37], searching within
a code space theoretically enables a ADAS algorithm to discover any possible agentic systems,
including all components such as prompts, tool use, workflows, and more. Furthermore, with recent
FMs being increasingly proficient in coding, we can use FMs as meta agents to create new agents in
code for ADAS, enabling novel agents to be programmed in an automated manner.

Following the aforementioned ideas, we present Meta Agent Search in this paper as one of the first
algorithms in ADAS that enables complete design in code space (Figure 1). The core concept of
Meta Agent Search is to instruct a meta agent to iteratively create interestingly new agents, eval-
uate them, add them to an archive that stores discovered agents, and use this archive to help the
meta agent in subsequent iterations create yet more interestingly new agents. Similar to existing
open-endedness algorithms that leverage human notions of interestingness [93, 46], we encourage
the meta agent to explore interesting (e.g., novel or worthwhile) agents. To validate the proposed
approach, we evaluate the proposed Meta Agent Search on: (1) the challenging ARC logic puzzle
task [14] that aims to test the general intelligence of an AI system, (2) four popular benchmarks
on reading comprehension, math, science questions, and multi-task problem solving, and (3) the
transferability of discovered agents to held-out domains and models (Section 4).

Our experiments show that the discovered agents substantially outperform state-of-the-art hand-
designed baselines. For instance, our agents improve F1 scores on reading comprehension tasks by
13.6/100 and accuracy rates on math tasks by 14.4%. Additionally, they improve accuracy over
baselines by 25.9% and 13.2% on GSM8K [16] and GSM-Hard [27] math tasks, respectively, after
transferring across domains. The promising performance of our algorithm over hand-designed solu-
tions illustrates the potential of ADAS in automating the design of agentic systems. Furthermore, the
experiments demonstrate that the discovered agents not only perform well when transferring across
similar domains but also exhibit strong performance when transferring across dissimilar domains,
such as from mathematics to reading comprehension. This highlights the robustness and transfer-
ability of the agentic systems discovered by Meta Agent Search. In conclusion, our work opens up
many exciting research directions and encourages further studies (Section 6).

2 Automated Design of Agentic Systems (ADAS)
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Figure 2: The three key components of Automated Design of Agentic Systems (ADAS). The
search space determines which agentic systems can be represented in ADAS. The search algorithm
specifies how the ADAS method explores the search space. The evaluation function defines how to
evaluate a candidate agent on target objectives such as performance.

At the time of writing, the community has not reached a consensus on the definitions or terminolo-
gies of agents. Here, by agents we refer to agentic systems that involve Foundation Models (FMs) as
modules in the workflow to solve tasks by planning, using tools, and carrying out multiple, iterative
steps of processing [8, 54]. In this paper, we describe a newly forming research area Automated De-
sign of Agentic Systems (ADAS). Similar to research areas in AI-GAs [15] and AutoML [34], such
as Neural Architecture Search [23], we formulate ADAS as an optimization process and identify
three key components of ADAS algorithms (Figure 2):

The search space in ADAS defines which agentic systems can be represented and discovered. For
example, PromptBreeder [25] mutates only text prompts, leaving other components, such as work-
flows, unchanged, limiting the discovery of agents with different workflows. Other works explore
search spaces like graph structures [99] and feed-forward networks [42]. The search algorithm
dictates how ADAS explores the search space, balancing the exploration-exploitation trade-off [76]
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to quickly find high-performance systems without getting stuck in local optima. Approaches include
using Reinforcement Learning [99] or iteratively generating solutions via Foundation Models (FMs)
[25]. Finally, the evaluation function assesses candidate agents on objectives like performance,
cost, latency, or safety, with accuracy on validation data being a common metric [99, 25].

Although many search space designs are possible and some have already been explored (Section 5),
there is an unexplored yet promising approach where we can define the entire agentic system in
code and new agents can be automatically discovered by a meta agent programming even better
ones in code. Searching within a code space theoretically enables the ADAS algorithm to discover
any possible building blocks (e.g., prompts, tool use, workflow) and agentic systems that combine
any of these building blocks in any way. This approach also offers better interpretability for agent
design patterns since the program code is often readable, making debugging easier and enhancing
AI safety. Additionally, compared to search spaces using networks [42] or graphs [99], searching in
a code space allows us to more easily build on existing human efforts. For example, it is possible to
search within open-source agent frameworks like LangChain [38] and build upon all existing build-
ing blocks (e.g., RAG, search engine tools). Finally, since FMs are proficient in coding, utilizing
a code search space allows us to leverage existing expertise from FMs during the search process.
In contrast, search algorithms in custom search spaces, such as graphs, may be much less efficient
due to the absence of these priors. Therefore, we argue that the approach of using programming
languages as the search space should be studied more in ADAS.

3 Our Algorithm: Meta Agent Search
In this section, we present Meta Agent Search, a simple yet effective algorithm to demonstrate the
approach of defining and searching for agents in code. The core idea of Meta Agent Search is to
adopt FMs as meta agents to iteratively program interestingly new agents based on an ever-growing
archive of previous discoveries. Although any possible building blocks and agentic systems can
theoretically be programmed by the meta agent from scratch, it is inefficient in practice to avoid
providing the meta agent any basic functions such as FM query APIs or existing tools. Therefore,
in this paper, we define a simple framework (within 100 lines of code) for the meta agent, providing
it with a basic set of essential functions like querying FMs or formatting prompts. As a result, the
meta agent only needs to program a “forward” function to define a new agentic system, similar to
the practice in FunSearch [68]. This function takes in the information of the task and outputs the
agent’s response to the task. Details of the framework codes and examples of the agents defined
with this framework can be found in Appendix D.

As shown in Figure 1, the core idea of Meta Agent Search is to have a meta agent iteratively program
new agents in code. Similar to existing open-endedness algorithms that leverage human notions of
interestingness [93, 46], we encourage the meta agent to explore interestingly new (e.g., novel or
worthwhile) agents based on an ever-growing archive of previous discoveries. We also adopt self-
reflection [73, 48] iterations in our meta agent, where it performs two iterations of refinement on
the novelty and correctness of the proposal and performs up to three refinements when errors occur
while running the code. After a new agent is generated, we evaluate it using the validation data
from the target domain. Here, we calculate the performance (e.g., success rate or F1 score) as the
metrics for the meta agent to maximize. The generated agent is then added to the archive with the
evaluation metrics, and the iteration continues with the updated archive until the maximum number
of iterations is reached. The prompt and more details are presented in Appendix C.

4 Experiments

4.1 Case Study: ARC Challenge

We first demonstrate how Meta Agent Search discovers novel agentic systems and outperforms ex-
isting state-of-the-art hand-designed agents in the Abstraction and Reasoning Corpus (ARC) chal-
lenge [14]. This challenge aims to evaluate the general intelligence of AI systems through their
ability to acquire new skills. Questions in ARC include (1) showing multiple examples of visual
input-output grid patterns, (2) the AI system learning the transformation rule of grid patterns from
examples, and (3) predicting the output grid pattern given a test input grid pattern. Since each ques-
tion in ARC has a unique transformation rule, it requires the AI system to learn efficiently with
few-shot examples, leveraging capabilities in number counting, geometry, and topology.
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Figure 3: The results of Meta Agent Search on the ARC challenge. (a) Meta Agent Search
progressively discovers high-performance agents based on an ever-growing archive of previous dis-
coveries. We report the median accuracy and the 95% bootstrap confidence interval on a held-out test
set by evaluating agents five times. (b) The visualization of the best agent discovered by Meta Agent
Search on the ARC challenge. Detailed implementation of this agent is available in Appendix E.

Setup. Following common practice [28], we require the agent to write code for the transforma-
tion rule instead of answering directly. We provide tool functions in the framework that evaluate
the generated transformation code. Given the significant challenge that ARC poses to current AI
systems, we sample our data from questions with grid dimensions ≤ 5 × 5 in the “Public Training
Set (Easy)”. We sample a validation set and a test set with 20 and 60 questions, respectively, for
searching and testing. We calculate the validation and test accuracy of an agent by assessing it over
the validation and test sets five times to reduce the variance from the stochastic sampling of FMs.
We evaluate all discovered agents on the held-out test set and report the test accuracy in Figure 3.
Meta Agent Search runs for 25 iterations and the meta agent uses GPT-4 [57], while discovered
agents and baselines are evaluated using GPT-3.5 [55] to reduce compute cost. We compare against
five state-of-the-art hand-designed agents, and we also use all baselines as initial seeds in the archive
for Meta Agent Search. More details are listed in Appendices E and G.

Results and Analysis. As shown in Figure 3a, Meta Agent Search effectively and progressively
discovers agents that perform better than state-of-the-art hand-designed baselines. Important break-
throughs are highlighted in the text boxes. As is critical in prior works on open-endedness and
AI-GAs [93, 24, 81, 82, 39], Meta Agent Search innovates based on a growing archive of previous
stepping stones. For example, an important design pattern emerged in iteration 3 where it uses mul-
tiple COTs to generate possible answers, refines them, and finally ensembles the best answers. This
became a crucial stepping stone that subsequent designs tended to utilize. Additionally, the best-
discovered agent is shown in Figure 3b, where a complex feedback mechanism is adopted to refine
answers more effectively. Careful observation of the search progress reveals that this sophisticated
feedback mechanism did not appear suddenly. Instead, the ideas of incorporating diverse feedback,
evaluating for various specific traits (via experts) such as efficiency and simplicity, and simulating
human-like feedback emerged in iterations 5, 11, and 12, respectively. The final mechanism is an
innovation based on these three stepping stones. This illustrates that even though these stepping
stones did not achieve high performance immediately upon emergence, later discoveries benefited
from these innovations by combining different stepping stones, resembling crossover in evolution
via LLMs [50]. Overall, the results showcase the potential of ADAS and the effectiveness of Meta
Agent Search to progressively discover agents that outperform state-of-the-art hand-designed base-
lines and invent novel design patterns through the innovation and combination of various stepping
stones.

4.2 Reasoning and Problem-Solving Domains

Setup. Next, we investigate the potential of our algorithm to improve the capabilities of agents
across math, reading, and reasoning domains. We test Meta Agent Search on four popular bench-
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Table 1: Performance comparison between Meta Agent Search and state-of-the-art hand-
designed agents across multiple domains. Meta Agent Search discovers superior agents compared
to the baselines in every domain. We report the test accuracy and the 95% bootstrap confidence in-
terval on held-out test sets. The search is conducted independently for each domain.

Agent Name F1 Score Accuracy (%)
Reading Comprehension Math Multi-task Science

State-of-the-art Hand-designed Agents
Chain-of-Thought [84] 64.2± 0.9 28.0± 3.1 65.4± 3.3 29.2± 3.1

COT-SC [83] 64.4± 0.8 28.2± 3.1 65.9± 3.2 30.5± 3.2

Self-Refine [48] 59.2± 0.9 27.5± 3.1 63.5± 3.4 31.6± 3.2

LLM Debate [20] 60.6± 0.9 39.0± 3.4 65.6± 3.3 31.4± 3.2

Step-back Abstraction [96] 60.4± 1.0 31.1± 3.2 65.1± 3.3 26.9± 3.0

Quality-Diversity [46] 61.8± 0.9 23.8± 3.0 65.1± 3.3 30.2± 3.1

Role Assignment [86] 65.8± 0.9 30.1± 3.2 64.5± 3.3 31.1± 3.1

Automated Design of Agentic Systems on Different Domains
Best Agents from Meta Agent Search 79.4± 0.8 53.4± 3.5 69.6± 3.2 34.6± 3.2

marks: (1) DROP [21] for evaluating Reading Comprehension; (2) MGSM [72] for evaluating
Math capability under a multi-lingual setting; (3) MMLU [29] for evaluating Multi-task Problem
Solving; and (4) GPQA [64] for evaluating the capability of solving hard (graduate-level) questions
in Science. The search is conducted independently within each domain. Meta Agent Search runs
for 30 iterations. The meta agent uses GPT-4 [57], while the discovered agents and baselines are
evaluated using GPT-3.5 [55]. We adopt all baselines introduced in Section 4.1. Additionally, since
the above domains require strong reasoning skills, we include two additional baselines Step-back
Abstraction [96] and Role Assignment [86] that specifically focus on enhancing the reasoning capa-
bilities of agents for a more thorough comparison. More details are listed in Appendices F and G.

Results and Analysis. The results across multiple domains demonstrate that Meta Agent Search
can discover agents that outperform state-of-the-art hand-designed agents (Table 1). We want to
highlight the substantial gap between the learned agents and hand-designed agents in the Reading
Comprehension and Math domains, with improvements in F1 scores by 13.6/100 and accuracy rates
by 14.4%, respectively. While Meta Agent Search also outperforms baselines in the Multi-task and
Science domains, the gap is smaller. We hypothesize that for challenging questions in the Science
and Multi-task domains, the knowledge in FMs is not sufficient to solve the questions, limiting the
improvement through optimizing agentic systems, which is a problem that will diminish as FMs
improve. In contrast, in the Reading Comprehension and Math domains, FMs possess adequate
knowledge to solve the questions, and errors could mainly be hallucinations or calculation mistakes,
which can be mitigated through well-designed agentic systems, like the ones discovered by Meta
Agent Search. Overall, the results across various domains showcase the effectiveness of Meta Agent
Search in searching for agents tailored to specific domains. This could be increasingly useful for
saving human efforts and developing better task-specific agents as we continue to create agents for
a diverse set of applications [80].

4.3 Generalizability and transferability

In the previous sections, we illustrated that Meta Agent Search can find effective agents for indi-
vidual tasks. In this section, we further demonstrate the transferability and generalizability of the
discovered agents. To demonstrate the generalizability of the invented building blocks and design
patterns, we transfer discovered agents from the MGSM (Math) domain to both math and non-math
domains to test their ability to generalize across different tasks. We evaluate the top 3 agents from
MGSM by transferring them to (1) popular math domains: GSM8K [16], GSM-Hard [27], and (2)
non-math domains: MMLU (Multi-task) and DROP (Reading Comprehension), as detailed in Sec-
tion 4.2. As shown in Table 2, Meta Agent Search consistently outperforms the baselines. Notably,
our agents improve accuracy by 25.9% on GSM8K and 13.2% on GSM-Hard compared to the base-
lines when transferring within math domains. More surprisingly, we find that agents discovered in
the math domain can also be transferred to non-math domains. While their performance does not
fully match agents specifically designed for the target domains, they still outperform state-of-the-
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Table 2: Performance on held-out math and non-math domains when transferring top agents
from MGSM (Math). GSM8K and GSM-Hard are the held-out math domains, while MMLU is for
Multi-task, and DROP is for Reading Comprehension. Agents discovered by Meta Agent Search
consistently outperform the baselines across all domains. We report the test accuracy and the 95%
bootstrap confidence interval. The names of the top agents are generated by Meta Agent Search.

Agent Name Accuracy (%) F1 Score
MGSM GSM8K GSM-Hard MMLU DROP

Manually Designed Agents
Chain-of-Thought [84] 28.0± 3.1 34.9± 3.2 15.0± 2.5 65.4± 3.3 64.2± 0.9

COT-SC [83] 28.2± 3.1 37.8± 3.4 15.5± 2.5 65.9± 3.2 64.4± 0.8

Self-Refine [48] 27.5± 3.1 38.9± 3.4 15.1± 2.4 63.5± 3.4 59.2± 0.9

LLM Debate [20] 39.0± 3.4 43.6± 3.4 17.4± 2.6 65.6± 3.3 60.6± 0.9

Step-back Abstraction [96] 31.1± 3.2 31.5± 3.3 12.2± 2.3 65.1± 3.3 60.4± 1.0

Quality-Diversity [46] 23.8± 3.0 28.0± 3.1 14.1± 2.4 65.1± 3.1 61.8± 0.9

Role Assignment [86] 30.1± 3.2 37.0± 3.4 18.0± 2.7 64.5± 3.3 65.8± 0.9

Top Agents Searched on MGSM (Math) Transferred within
Math Domains

Transferred beyond
Math Domains

Dynamic Role-Playing Architecture 53.4± 3.5 69.5± 3.2 31.2± 3.2 62.4± 3.4 70.4± 0.9

Structured Multimodal Feedback Loop 50.2± 3.5 64.5± 3.4 30.1± 3.2 67.0± 3.2 70.4± 0.9

Interactive Multimodal Feedback Loop 47.4± 3.5 64.9± 3.3 27.6± 3.2 64.8± 3.3 71.9± 0.8

art hand-designed baselines. We also observe similar superiority when transferring agents across
different FMs (see full results of transfers across FMs and domains in Appendix B). These results
highlight Meta Agent Search ’s ability to discover generalizable design patterns and agentic systems.

5 Related Work

Agentic Systems. Researchers develop various building blocks and design patterns for different
applications. Important building blocks for agentic systems includes: prompting techniques [9, 70],
chain-of-thought-based planning and reasoning methods [84, 88, 31], reflection [48, 73], developing
new skills for embodied agents in code [78, 77], external memory and RAG [95, 40], tool use [62,
69, 53], assigning FM modules in the agentic system with different roles and enabling them to
collaborate [30, 85, 60, 86, 61], and enabling the agent to instruct itself for the next action [65],
etc. While the community has invested substantial effort in developing all the above important
techniques, this is only a partial list of the discovered building blocks, and many more remain to be
uncovered. Therefore, in this paper, we describe a newly forming research area, ADAS, which aims
to invent novel building blocks and design powerful agentic systems in an automated manner.

AI-Generating Algorithms and AutoML. Research in AI-Generating Algorithms (AI-GAs) [15]
and AutoML [34] aims to replace handcrafted components in AI systems by learning them. This
field has three key pillars: (1) meta-learning architectures, (2) meta-learning learning algorithms,
and (3) generating learning environments and training data [15]. Neural Architecture Search [23]
exemplifies the first pillar by automating neural network design, while works like MAML [26] and
Meta-RL [79] exemplify the second pillar, focusing on “learning to learn” for improved sample
efficiency and generalizability. The third pillar includes works like POET [81] and OMNI-EPIC
[24], which generate learning environments in an open-ended manner. We position Automated
Design of Agentic Systems in both the first and second pillars: meta-learning agentic architectures
and leveraging in-context learning to “learn to learn,” as shown in the ARC challenge (Section 4.1).
Recent AI-GA and AutoML advances have also integrated Foundation Models (FMs) to write code,
as seen in FunSearch [68] and EoH [41], where FMs discover optimization algorithms. In DiscoPOP
[44], FMs program loss functions for preference learning, and Eureka [47] and language-to-reward
[89] enable FMs to write reward functions for reinforcement learning. OMNI-EPIC [24] allows FMs
to create robotics learning environments. Similarly, we enable FMs to program new agents in code.

Existing Attempts to ADAS. There are two categories of works that attempt ADAS: those focused
on learning better prompts and those that learn more components beyond prompts. Most works fall
into the first category, where FMs are used to automate prompt engineering, primarily enhancing

7



the phrasing of instructions to improve reasoning [87, 25, 97]. However, these prompts are often
domain-specific and difficult to generalize. Some works optimize role definitions within prompts
[90, 12, 10, 85], but other components remain fixed, limiting the space of agents that can be discov-
ered. The second category, which is less explored, involves learning additional components such as
workflows, often representing agents as networks or graphs. For example, DyLAN [42] and DSPy
[35] use FMs to optimize connections between nodes in a network, while GPT-Swarm [99] uses
reinforcement learning to optimize node connections and prompts. Although these approaches opti-
mize workflows, many components like tool usage or node structure remain fixed. AgentOptimizer
[94] and Agent Symbolic Learning [98] attempt to learn prompts, tools, and workflows together,
but often rely on predefined, complex agents. In contrast, our work allows all components to be
represented in code, leveraging existing codebases and FMs’ expertise, which simplifies the search
and enables the emergence of novel design patterns and building blocks from basic agent designs,
showcasing ADAS ’s creative potential.

6 Discussion and Conclusion

Safety Considerations. While it is highly unlikely that model-generated code will perform overtly
malicious actions in our current settings and with the Foundation Models (FMs) we use, such code
may still act destructively due to limitations in model capability or alignment [67, 11]. More broadly,
research on more powerful AI systems raises the question of whether we should be conducting re-
search to advance AI capabilities at all. That topic clearly includes the proposed Automated Design
of Agentic Systems (ADAS) as a new area in AI-GA research, which could potentially contribute
to an even faster way to create Artificial General Intelligence (AGI) than the current manual ap-
proach [15]. The question of whether and why we should pursue AGI and AI-GA has been dis-
cussed in many papers [15, 22, 5, 91, 4], and is beyond the scope of this paper. Specifically as
regards ADAS, we believe it is net beneficial to publish this work. First, this work demonstrates that
with the available API access to powerful FMs, it is easy to program powerful ADAS algorithms,
and do so without any expensive hardware like GPUs. We feel it is beneficial to let the community
know such algorithms are powerful and easy to create, so they can be informed and account for
them. Moreover, by sharing this information, we hope to motivate follow-up work into safe-ADAS,
such as algorithms that conduct ADAS safely during both search itself (e.g. not risking running
any harmful code) and that refuse to create dishonest, unhelpful, and/or harmful agents. Such an
open-source research approach to create safe-ADAS could be a better way to create safer AI sys-
tems [7, 49]. One direction we find particularly promising is to simply ask the Meta Agent Search
algorithm to be safe during training and only create helpful, harmless, honest agents, potentially
incorporating ideas such as Constitutional AI [3].

Future Work. Our work also opens up many future research directions. For example, since the
meta agent used in ADAS to program new agents is also an agent, ADAS can be self-referential,
allowing the meta agent to improve itself through higher-order meta-learning, potentially evolv-
ing into a meta-meta agent [43]. Additionally, as agents are deployed, they will receive feedback
from environments and users, making continuous improvement difficult for human developers. With
ADAS automating the design and enhancement of agents, online continual learning becomes feasi-
ble post-deployment. Furthermore, while this paper focuses on optimizing performance, practical
applications often involve multiple objectives, such as cost, latency, and robustness. Incorporating
multi-objective search algorithms [19] into ADAS could unlock further potential [32, 33]. More
research directions are listed in Appendix A.

Conclusion. In this paper, we propose a new research problem, Automated Design of Agentic
Systems (ADAS), which aims to automatically invent novel building blocks and design powerful
agentic systems. We demonstrated that a promising approach to ADAS is to define agents in code,
allowing new agents to be automatically discovered by a “meta” agent programming them in code.
Following this idea, we propose Meta Agent Search, where the meta agent iteratively builds on
previous discoveries to program interesting new agents. The experiments show that Meta Agent
Search consistently outperforms state-of-the-art hand-designed agents across an extensive number
of domains, and the discovered agents transfer well across models and domains. Overall, our work
illustrates the potential of an exciting new research direction toward full automation in developing
powerful agentic systems from the bottom up.
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[66] Tim Rocktäschel. Artificial Intelligence: 10 Things You Should Know. Seven Dials, September
2024. ISBN 978-1399626521.

12

https://www.deeplearning.ai/the-batch/issue-253/
https://openai.com/index/chatgpt/
https://github.com/openai/simple-evals
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT


[67] Md Omar Faruk Rokon, Risul Islam, Ahmad Darki, Evangelos E Papalexakis, and Michalis
Faloutsos. SourceFinder: Finding malware Source-Code from publicly available repositories
in GitHub. In 23rd International Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2020), pages 149–163, 2020.

[68] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

[69] Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=Yacmpz84TH.

[70] Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei
Si, Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, et al. The prompt report: A
systematic survey of prompting techniques. arXiv preprint arXiv:2406.06608, 2024.

[71] Xuan Shen, Yaohua Wang, Ming Lin, Yilun Huang, Hao Tang, Xiuyu Sun, and Yanzhi Wang.
Deepmad: Mathematical architecture design for deep convolutional neural network. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6163–6173, 2023.

[72] Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei.
Language models are multilingual chain-of-thought reasoners. In The Eleventh International
Conference on Learning Representations, 2023.

[73] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2023.

[74] Kenneth O Stanley and Joel Lehman. Why greatness cannot be planned: The myth of the
objective. Springer, 2015.

[75] Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural net-
works through neuroevolution. Nature Machine Intelligence, 1(1):24–35, 2019.

[76] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[77] Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics:
Design principles and model abilities. Technical Report MSR-TR-2023-8, Microsoft,
February 2023. URL https://www.microsoft.com/en-us/research/publication/
chatgpt-for-robotics-design-principles-and-model-abilities/.

[78] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with large language
models. arXiv preprint arXiv: Arxiv-2305.16291, 2023.

[79] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

[80] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous
agents. Frontiers of Computer Science, 18(6):186345, 2024.

[81] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley. Poet: open-ended coevolution of
environments and their optimized solutions. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’19, page 142–151, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. ISBN 9781450361118. doi: 10.1145/3321707.3321799.

13

https://openreview.net/forum?id=Yacmpz84TH
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/


[82] Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth Stan-
ley. Enhanced poet: Open-ended reinforcement learning through unbounded invention of learn-
ing challenges and their solutions. In International conference on machine learning, pages
9940–9951. PMLR, 2020.

[83] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought rea-
soning in language models. In The Eleventh International Conference on Learning Represen-
tations, 2023.

[84] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[85] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

[86] Benfeng Xu, An Yang, Junyang Lin, Quan Wang, Chang Zhou, Yongdong Zhang, and Zhen-
dong Mao. Expertprompting: Instructing large language models to be distinguished experts.
arXiv preprint arXiv:2305.14688, 2023.

[87] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and
Xinyun Chen. Large language models as optimizers. In The Twelfth International Con-
ference on Learning Representations, 2024. URL https://openreview.net/forum?id=
Bb4VGOWELI.

[88] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=WE_vluYUL-X.

[89] Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gon-
zalez Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al.
Language to rewards for robotic skill synthesis. In Conference on Robot Learning, pages 374–
404. PMLR, 2023.

[90] Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoa-
gent: Towards automatic multi-agent generation via evolutionary algorithms. arXiv preprint
arXiv:2406.14228, 2024.

[91] Eliezer Yudkowsky et al. Artificial Intelligence as a positive and negative factor in global risk.
Global catastrophic risks, 1(303):184, 2008.

[92] Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller, Chris
Potts, James Zou, Michael Carbin, Jonathan Frankle, Naveen Rao, and Ali Ghodsi. The shift
from models to compound ai systems. https://bair.berkeley.edu/blog/2024/02/18/
compound-ai-systems/, 2024.

[93] Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. OMNI: Open-endedness via
models of human notions of interestingness. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=AgM3MzT99c.

[94] Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun
Wu. Offline training of language model agents with functions as learnable weights. In Forty-
first International Conference on Machine Learning, 2024.

[95] Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua
Dong, and Ji-Rong Wen. A survey on the memory mechanism of large language model based
agents. arXiv preprint arXiv:2404.13501, 2024.

[96] Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H Chi, Quoc V
Le, and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language
models. arXiv preprint arXiv:2310.06117, 2023.

14

https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://openreview.net/forum?id=AgM3MzT99c


[97] Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed H Chi,
Denny Zhou, Swaroop Mishra, and Huaixiu Steven Zheng. Self-discover: Large language
models self-compose reasoning structures. arXiv preprint arXiv:2402.03620, 2024.

[98] Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin
Chen, Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving
agents. arXiv preprint arXiv:2406.18532, 2024.

[99] Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and
Jürgen Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first In-
ternational Conference on Machine Learning, 2024.

15



Supplementary Material

Table of Contents

A More Future Work 17

B Generalizability and Transferability 17

C Prompts 19

D Framework Code 21

E Experiment Details for ARC Challenge 24

F Experiment Details for Reasoning and Problem-Solving Domains 27

G Baselines 29

H Example Agents 29

I Cost of Experiments 31

16



A More Future Work

• Seeding ADAS with more existing building blocks. Although we can theoretically allow any
components in agentic systems to be programmed from scratch in the code space, it is not efficient
in practice. Therefore, it would be interesting to explore ADAS by standing on the shoulders of
existing human efforts, such as search engine tools, RAG [40], or functions from existing agent
frameworks like LangChain [38]. Additionally, it is interesting to support multi-modal capabilities
(e.g. vision) in FMs or allow different FMs to be available in agentic systems. This will enable
the meta agent to choose from different FMs flexibly according to the difficulty of the instruction
and whether data privacy is a priority.

• More complex domains. Additionally, we only evaluate Meta Agent Search on single-step QA
tasks in this paper. It would be interesting to extend the method to more complex domians, such
as real-world applications involving multi-step interaction with complex environments.

• Understanding the emergence of complexity from human organizations. Beyond potentially
saving researchers’ efforts and improving upon the manual design of agentic systems, the research
in ADAS is also scientifically intriguing as it sheds light on the origins of complexity emerging
from human organization and society. The agentic system is a machine learning system that
operates primarily over natural language—a representation that is interpretable to humans and
used by humans in constructing our organization and society. Thus, there is a close connection
between agentic systems and human organizations, as shown in works incorporating the organiza-
tional structure for human companies in agents [30] or simulating a human town with agents [58].
Therefore, the study in ADAS may enable us to observe how to create a simple set of conditions
and have an algorithm to bootstrap itself from simplicity to produce complexity in a system akin
to human society.

• Novelty search algorithms. In Meta Agent Search, the design of the search algorithm is rela-
tively simple, focusing solely on exploring interesting new designs. A more careful design of the
search algorithm can be a promising future direction. For example, one could incorporate more
sophisticated ideas from Quality-Diversity [52, 17], AI-generating [15], and Open-ended Algo-
rithms [24, 93, 74, 75]. One could also include more classic approaches to balance exploration
and exploitation [76, 41].

• More intelligent evaluation functions. In this work, we simply evaluate discovered agents on
the evaluation set and use the numerical performance results. However, this approach is both
expensive and misses a lot of information. A promising future direction is to enable the meta
agent to analyze detailed running logs during the evaluation, which contain rich information on
the failure and success modes for better debugging and improving agentic systems [98]. Also,
many tasks involve subjective answer evaluations [13, 45] that do not have ground-truth answers.
It is also important to design novel evaluation functions in ADAS to address these tasks. Finally,
in this work, we targeted only one domain during the search. It would be interesting to explore
whether ADAS algorithms can design even better generalist agents when specifically searching
for agents capable of performing well across multiple domains.

• Towards a Better Understanding of FMs. Works from Neural Architecture Search [33] show
that by observing the emerged architecture, we could gain more insights into Neural Networks.
In this paper, we also gained insights about FMs from the results. For example, the best agent
with GPT-3.5 involves a complex feedback mechanism, but when we transfer to other advanced
models, the agent with a simpler feedback mechanism but more refinement becomes a better agent
(Section 4.3). This shows that GPT-3.5 may have a worse capability in evaluating and refining the
answers, so it needs a complex feedback mechanism for better refinement, while other advanced
models benefit more from a simpler feedback mechanism.

B Generalizability and Transferability

In this section, we present the complete results of transferring agents across different models and
domains.

Transferability Across Foundation Models. We first transfer discovered agents from GPT-
3.5 [55] to other FMs on ARC to test whether agents found when performing Meta Agent Search
with one FM generalize to others. We test the top 3 agents with the best test accuracy evaluated with
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Table 3: Performance on ARC when transferring top agents from GPT-3.5 to other FMs.
Agents discovered by Meta Agent Search consistently outperform the baselines across different
models. We report the test accuracy and the 95% bootstrap confidence interval. The names of top
agents are generated by Meta Agent Search. †We manually changed this name because the original
generated name was confusing.

Agent Name Accuracy on ARC (%)
GPT-3.5 Claude-Haiku GPT-4 Claude-Sonnet

Manually Designed Agents
Chain-of-Thought [84] 6.0± 2.7 4.3± 2.2 17.7± 4.4 25.3± 5.0
COT-SC [83] 8.0± 3.2 5.3± 2.5 19.7± 4.5 26.3± 4.9
LLM Debate [20] 4.0± 2.2 1.7± 1.5 19.0± 4.5 24.7± 4.8
Self-Refine [48] 6.7± 2.7 6.3± 2.8 23.0± 5.2 39.3± 5.5
Quality-Diversity [46] 7.0± 2.9 3.3± 2.2 23.0± 4.7 31.7± 5.3

Top Agents Searched with GPT-3.5 Transferred to Other FMs
Structured Feedback and Ensemble Agent 13.7± 3.9 5.0± 2.5 30.0± 5.2 38.7± 5.5
Hierarchical Committee Reinforcement Agent 13.3± 3.8 8.3± 3.2 32.3± 8.9 39.7± 5.5
Dynamic Memory and Refinement Agent† 12.7± 3.9 9.7± 3.3 37.0± 5.3 48.3± 5.7

GPT-3.5 on ARC and then transfer them to three popular models: Claude-Haiku [1], GPT-4 [57],
and Claude-Sonnet [2]. We adopt the same baselines as those used in ARC (Section 4.1) and MGSM
(Section 4.2). As shown in Table 3, we observe that the searched agents consistently outperform the
hand-designed agents with a substantial gap. Notably, we found that Claude-Sonnet, the most pow-
erful model from Anthropic, performs the best among all tested models, enabling our best agent to
achieve nearly 50% accuracy on ARC.

Table 4: Performance on different math domains when transferring top agents from MGSM to
other math domains. Agents discovered by Meta Agent Search consistently outperform the base-
lines across different math domains. We report the test accuracy and the 95% bootstrap confidence
interval. The names of top agents are generated by Meta Agent Search.

Agent Name Accuracy (%)
MGSM GSM8K GSM-Hard SVAMP ASDiv

Manually Designed Agents
Chain-of-Thought [84] 28.0± 3.1 34.9± 3.2 15.0± 2.5 77.8± 2.8 88.9± 2.2

COT-SC [83] 28.2± 3.1 37.8± 3.4 15.5± 2.5 78.2± 2.8 89.0± 2.1

Self-Refine [48] 27.5± 3.1 38.9± 3.4 15.1± 2.4 78.5± 2.8 89.2± 2.2

LLM Debate [20] 39.0± 3.4 43.6± 3.4 17.4± 2.6 76.0± 3.0 88.9± 2.2

Step-back Abstraction [96] 31.1± 3.2 31.5± 3.3 12.2± 2.3 76.1± 3.0 87.8± 2.3

Quality-Diversity [46] 23.8± 3.0 28.0± 3.1 14.1± 2.4 69.8± 3.2 80.1± 2.8

Role Assignment [86] 30.1± 3.2 37.0± 3.4 18.0± 2.7 73.0± 3.0 83.1± 2.6

Top Agents Searched on MGSM (Math) Transferred within Math Domains
Dynamic Role-Playing Architecture 53.4± 3.5 69.5± 3.2 31.2± 3.2 81.5± 2.6 91.8± 1.8

Structured Multimodal Feedback Loop 50.2± 3.5 64.5± 3.4 30.1± 3.2 82.6± 2.6 89.9± 2.1

Interactive Multimodal Feedback Loop 47.4± 3.5 64.9± 3.3 27.6± 3.2 80.6± 2.8 89.8± 2.1

Transferability Across Domains. Next, we transfer the discovered agent from the MGSM (Math)
domain to other math domains to test whether the invented agents can generalize across different
domains. Similarly, we test the top 3 agents from MGSM and transfer them to (1) four popular
math domains: GSM8K [16], GSM-Hard [27], SVAMP [59], and ASDiv [51] and (2) three domains
beyond math adopted in Section 4.2. As shown in Table 4, we observe a similar superiority in
the performance of Meta Agent Search compared to baselines. More surprisingly, we observe that
agents discovered in the math domain can be transferred to non-math domains (Table 5). While the
performance of agents originally searched in the math domain does not fully match that of agents
specifically designed for the target domains, they still outperform (in Reading Comprehension and
Multi-task) or match (in Science) the state-of-the-art hand-designed agent baselines. These results
illustrate that Meta Agent Search can discover generalizable design patterns and agentic systems.
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Table 5: Performance across multiple domains when transferring top agents from the Math
(MGSM) domain to non-math domains. Agents discovered by Meta Agent Search in the math
domain can outperform or match the performance of baselines after being transferred to domains
beyond math. We report the test accuracy and the 95% bootstrap confidence interval.

Agent Name Accuracy (%) F1 Score Accuracy (%)
Math Reading Comprehension Multi-task Science

Manually Designed Agents
Chain-of-Thought [84] 28.0± 3.1 64.2± 0.9 65.4± 3.3 29.2± 3.1
COT-SC [83] 28.2± 3.1 64.4± 0.8 65.9± 3.2 30.5± 3.2
Self-Refine [48] 27.5± 3.1 59.2± 0.9 63.5± 3.4 31.6± 3.2
LLM Debate [20] 39.0± 3.4 60.6± 0.9 65.6± 3.3 31.4± 3.2
Step-back Abstraction [96] 31.1± 3.2 60.4± 1.0 65.1± 3.3 26.9± 3.0
Quality-Diversity [46] 23.8± 3.0 61.8± 0.9 65.1± 3.1 30.2± 3.1
Role Assignment [86] 30.1± 3.2 65.8± 0.9 64.5± 3.3 31.1± 3.1

Top Agents Searched on Math (MGSM) Transferred beyond Math Domains
Dynamic Role-Playing Architecture 53.4± 3.5 70.4± 0.9 62.4± 3.4 28.6± 3.1

Structured Multimodal Feedback Loop 50.2± 3.5 70.4± 0.9 67.0± 3.2 28.7± 3.1

Interactive Multimodal Feedback Loop 47.4± 3.5 71.9± 0.8 64.8± 3.3 29.9± 3.2

C Prompts

We use the following prompts for the meta agent in Meta Agent Search. Variables in the prompts
that vary depending on domains and iterations are highlighted.

We use the following system prompt for every query in the meta agent.

System prompt for the meta agent.

You are a helpful assistant. Make sure to return in a WELL-FORMED JSON object.

We use the following prompt for the meta agent to design the new agent based on the archive of
previously discovered agents.

Main prompt for the meta agent.

You are an expert machine learning researcher testing various agentic systems. Your objective is to
design building blocks such as prompts and workflows within these systems to solve complex tasks.
Your aim is to design an optimal agent performing well on [Brief Description of the Domain].

[Framework Code]

[Output Instructions and Examples]

[Discovered Agent Archive] (initialized with baselines, updated at every iteration)

# Your task
You are deeply familiar with prompting techniques and the agent works from the literature. Your goal is
to maximize the specified performance metrics by proposing interestingly new agents.
Observe the discovered agents carefully and think about what insights, lessons, or stepping stones can
be learned from them.
Be creative when thinking about the next interesting agent to try. You are encouraged to draw inspiration
from related agent papers or academic papers from other research areas.
Use the knowledge from the archive and inspiration from academic literature to propose the next inter-
esting agentic system design.
THINK OUTSIDE THE BOX.

The domain descriptions are available in Appendices E and F and the framework code is available
in Appendix D. We use the following prompt to instruct and format the output of the meta agent.
Here, we collect and present some common mistakes that the meta agent may make in the prompt.
We found it effective in improving the quality of the generated code.
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Output Instruction and Example.

# Output Instruction and Example:
The first key should be (“thought”), and it should capture your thought process for designing the next
function. In the “thought” section, first reason about what the next interesting agent to try should
be, then describe your reasoning and the overall concept behind the agent design, and finally detail
the implementation steps. The second key (“name”) corresponds to the name of your next agent
architecture. Finally, the last key (“code”) corresponds to the exact “forward()” function in Python code
that you would like to try. You must write COMPLETE CODE in “code”: Your code will be part of the
entire project, so please implement complete, reliable, reusable code snippets.

Here is an example of the output format for the next agent:
{“thought”: “**Insights:** Your insights on what should be the next interesting agent. **Overall
Idea:** your reasoning and the overall concept behind the agent design. **Implementation:** describe
the implementation step by step.”,
“name”: “Name of your proposed agent”,
“code”: “def forward(self, taskInfo): # Your code here”}

## WRONG Implementation examples:
[Examples of potential mistakes the meta agent may make in implementation]

After the first response from the meta agent, we perform two rounds of self-reflection to make the
generated agent novel and error-free [73, 48].

Prompt for self-reflection round 1.

[Generated Agent from Previous Iteration]
Carefully review the proposed new architecture and reflect on the following points:

1. **Interestingness**: Assess whether your proposed architecture is interesting or innovative
compared to existing methods in the archive. If you determine that the proposed architecture is not
interesting, suggest a new architecture that addresses these shortcomings.
- Make sure to check the difference between the proposed architecture and previous attempts.
- Compare the proposal and the architectures in the archive CAREFULLY, including their actual
differences in the implementation.
- Decide whether the current architecture is innovative.
- USE CRITICAL THINKING!

2. **Implementation Mistakes**: Identify any mistakes you may have made in the implementation.
Review the code carefully, debug any issues you find, and provide a corrected version. REMEMBER
checking ”## WRONG Implementation examples” in the prompt.

3. **Improvement**: Based on the proposed architecture, suggest improvements in the detailed
implementation that could increase its performance or effectiveness. In this step, focus on refining and
optimizing the existing implementation without altering the overall design framework, except if you
want to propose a different architecture if the current is not interesting.
- Observe carefully about whether the implementation is actually doing what it is supposed to do.
- Check if there is redundant code or unnecessary steps in the implementation. Replace them with
effective implementation.
- Try to avoid the implementation being too similar to the previous agent.

And then, you need to improve or revise the implementation, or implement the new proposed
architecture based on the reflection.

Your response should be organized as follows:

”reflection”: Provide your thoughts on the interestingness of the architecture, identify any mistakes in
the implementation, and suggest improvements.
”thought”: Revise your previous proposal or propose a new architecture if necessary, using the same
format as the example response.
”name”: Provide a name for the revised or new architecture. (Don’t put words like ”new” or ”improved”
in the name.)
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”code”: Provide the corrected code or an improved implementation. Make sure you actually implement
your fix and improvement in this code.

Prompt for self-reflection round 2.

Using the tips in “## WRONG Implementation examples” section, further revise the code.
Your response should be organized as follows:
Include your updated reflections in the “reflection”. Repeat the previous “thought” and “name”. Update
the corrected version of the code in the “code” section.

When an error is encountered during the execution of the generated code, we conduct a reflection
and re-run the code. This process is repeated up to five times if errors persist. Here is the prompt we
use to self-reflect any runtime error:

Prompt for self-reflection when a runtime error occurs.

Error during evaluation:
[Runtime errors]
Carefully consider where you went wrong in your latest implementation. Using insights from previous
attempts, try to debug the current code to implement the same thought. Repeat your previous thought in
“thought”, and put your thinking for debugging in “debug thought”.

D Framework Code

In this paper, we provide the meta agent with a simple framework to implement basic functions, such
as querying Foundation Models (FMs) and formatting prompts. The framework consists of fewer
than 100 lines of code (excluding comments). In this framework, we encapsulate every piece of
information into a namedtuple Info object, making it easy to combine different types of information
(e.g., FM responses, results from tool function calls, task descriptions) and facilitate communication
between different modules. Additionally, in the FM module, we automatically construct the prompt
by concatenating all input Info objects into a structured format, with each Info titled by its metadata
(e.g., name, author). Throughout the appendix, we renamed some variables in the code to match
the terminologies used in the main text.

Code 1: The simple framework used in Meta-Agent Search.
1 # Named tuple for holding task information
2 Info = namedtuple(’Info’, [’name’, ’author ’, ’content ’, ’iteration_idx

’])
3

4 # Format instructions for FM response
5 FORMAT_INST = lambda request_keys: f"Reply EXACTLY with the following

JSON format .\n{str(request_keys)}\nDO NOT MISS ANY FIELDS AND MAKE
SURE THE JSON FORMAT IS CORRECT !\n"

6

7 # Description of the role of the FM Module
8 ROLE_DESC = lambda role: f"You are a {role}."
9

10 @backoff.on_exception(backoff.expo , openai.RateLimitError)
11 def get_json_response_from_gpt(msg , model , system_message , temperature

):
12 \"""
13 Function to get JSON response from GPT model.
14

15 Args:
16 - msg (str): The user message.
17 - model (str): The model to use.
18 - system_message (str): The system message.
19 - temperature (float): Sampling temperature.
20

21 Returns:
22 - dict: The JSON response.
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23 \"""
24 ...
25 return json_dict
26

27 class FM_Module:
28 \"""
29 Base class for an FM module.
30

31 Attributes:
32 - output_fields (list): Fields expected in the output.
33 - name (str): Name of the FM module.
34 - role (str): Role description for the FM module.
35 - model (str): Model to be used.
36 - temperature (float): Sampling temperature.
37 - id (str): Unique identifier for the FM module instance.
38 \"""
39

40 def __init__(self , output_fields: list , name: str , role=’helpful
assistant ’, model=’gpt -3.5-turbo -0125’, temperature =0.5) ->
None:

41 ...
42

43 def generate_prompt(self , input_infos , instruction) -> str:
44 \"""
45 Generates a prompt for the FM.
46

47 Args:
48 - input_infos (list): List of input information.
49 - instruction (str): Instruction for the task.
50

51 Returns:
52 - tuple: System prompt and user prompt.
53

54 An example of generated prompt:
55 ""
56 You are a helpful assistant.
57

58 # Output Format:
59 Reply EXACTLY with the following JSON format.
60 ...
61

62 # Your Task:
63 You will given some number of paired example inputs and

outputs. The outputs ...
64

65 ### thinking #1 by Chain -of -Thought hkFo (yourself):
66 ...
67

68 # Instruction:
69 Please think step by step and then solve the task by writing

the code.
70 ""
71 \"""
72 ...
73 return system_prompt , prompt
74

75 def query(self , input_infos: list , instruction , iteration_idx =-1)
-> list[Info]:

76 \"""
77 Queries the FM with provided input information and instruction

.
78

79 Args:
80 - input_infos (list): List of input information.
81 - instruction (str): Instruction for the task.
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82 - iteration_idx (int): Iteration index for the task.
83

84 Returns:
85 - output_infos (list[Info]): Output information.
86 \"""
87 ...
88 return output_infos
89

90 def __repr__(self):
91 return f"{self.agent_name} {self.id}"
92

93 def __call__(self , input_infos: list , instruction , iteration_idx
=-1):

94 return self.query(input_infos , instruction , iteration_idx=
iteration_idx)

95

96 class AgentSystem:
97 def forward(self , taskInfo) -> Union[Info , str]:
98 \"""
99 Placeholder method for processing task information.

100

101 Args:
102 - taskInfo (Info): Task information.
103

104 Returns:
105 - Answer (Union[Info , str]): Your FINAL Answer. Return either

a namedtuple Info or a string for the answer.
106 \"""
107 pass

With the provided framework, an agent can be easily defined with a “forward” function. Here we
show an example of implementing self-reflection using the framework.

Code 2: Self-Reflection implementation example
1 def forward(self , taskInfo):
2 # Instruction for initial reasoning
3 cot_initial_instruction = "Please think step by step and then

solve the task."
4

5 # Instruction for reflecting on previous attempts and feedback to
improve

6 cot_reflect_instruction = "Given previous attempts and feedback ,
carefully consider where you could go wrong in your latest
attempt. Using insights from previous attempts , try to solve
the task better."

7 cot_module = FM_Module ([’thinking ’, ’answer ’], ’Chain -of -Thought ’)
8

9 # Instruction for providing feedback and correcting the answer
10 critic_instruction = "Please review the answer above and criticize

on where might be wrong. If you are absolutely sure it is
correct , output ’True’ in ’correct ’."

11 critic_module = FM_Module ([’feedback ’, ’correct ’], ’Critic ’)
12

13 N_max = 5 # Maximum number of attempts
14

15 # Initial attempt
16 cot_inputs = [taskInfo]
17 thinking , answer = cot_module(cot_inputs , cot_initial_instruction ,

0)
18

19 for i in range(N_max):
20 # Get feedback and correct status from the critic
21 feedback , correct = critic_module ([taskInfo , thinking , answer

], critic_instruction , i)
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22 if correct.content == ’True’:
23 break
24

25 # Add feedback to the inputs for the next iteration
26 cot_inputs.extend ([thinking , answer , feedback ])
27

28 # Reflect on previous attemps and refine the answer
29 thinking , answer = cot_module(cot_inputs ,

cot_reflect_instruction , i + 1)
30 return answer

E Experiment Details for ARC Challenge

Example Input-output grid #1

Example Input-output grid #2

Test grid

Answer

Figure 4: An example task from the ARC challenge [14]. Given the input-output grid examples,
the AI system is asked to learn the transformation rules and then apply these learned rules to the test
grid to predict the final answer.

An example task from the ARC challenge is shown in Figure 4. In the ARC challenge experiments
(Section 4.1), we represent the grids as strings of 2-D arrays, where each color is represented by
an integer. We instruct the meta agent to design agents that generate code as solutions rather than
directly outputting answers. Additionally, we provide two tool functions within the framework: (1)
to test whether the generated code can solve the example grids and (2) to obtain the task’s answer
by applying the generated code to the test grid. The accuracy rate is calculated by the Exact Match
between the reference solution and the predicted answer. The meta agent uses “gpt-4o-2024-05-
13” [57], while discovered agents and baselines are evaluated using “gpt-3.5-turbo-0125” [55] to
reduce compute cost.

The domain description of ARC for the meta agent is shown below:

Description of ARC for the meta agent.

Your aim is to find an optimal agent performing well on the ARC (Abstraction and Reasoning Corpus)
challenge.
In this challenge, each task consists of three demonstration examples, and one test example. Each

24



Example consists of an “input grid” and an “output grid”. Test-takers need to use the transformation
rule learned from the examples to predict the output grid for the test example.

# An example task from ARC challenge:

## Task Overview:
You will be given some number of paired example inputs and outputs grids. The outputs were produced
by applying a transformation rule to the input grids. In addition to the paired example inputs and
outputs, there is also one test input without a known output.
The inputs and outputs are each “grids”. A grid is a rectangular matrix of integers between 0 and 9
(inclusive). Each number corresponds to a color. 0 is black.
Your task is to determine the transformation rule from examples and find out the answer, involving
determining the size of the output grid for the test and correctly filling each cell of the grid with the
appropriate color or number.

The transformation only needs to be unambiguous and applicable to the example inputs and the test
input. It doesn’t need to work for all possible inputs. Observe the examples carefully, imagine the grid
visually, and try to find the pattern.

## Examples:
### Example 0:
input = [[0,0,0,0,5,0,0,0,0], [0,0,0,0,5,0,0,0,0], [0,0,0,4,5,0,0,0,0], [0,0,0,4,5,4,4,0,0], [0,0,3,3,5,0,0,0,0],
[0,0,0,3,5,0,0,0,0], [0,0,0,3,5,3,3,3,0], [0,0,0,3,5,0,0,0,0], [0,0,0,0,5,0,0,0,0], [0,0,0,0,5,0,0,0,0]]
output = [[0,0,0,0], [0,0,0,0], [0,0,0,4], [0,0,4,4], [0,0,3,3], [0,0,0,3], [0,3,3,3], [0,0,0,3], [0,0,0,0],
[0,0,0,0]]

### Example 1:
input = [[0,0,0,0,5,0,0,0,0], [0,0,0,2,5,0,0,0,0], [0,0,0,2,5,2,6,0,0], [0,0,0,2,5,0,0,0,0], [0,0,0,2,5,2,2,2,0],
[0,0,6,6,5,6,0,0,0], [0,0,0,2,5,0,0,0,0], [0,2,2,0,5,2,0,0,0], [0,0,0,2,5,0,0,0,0], [0,0,0,0,5,0,0,0,0]]
output = [[0,0,0,0], [0,0,0,2], [0,0,6,2], [0,0,0,2], [0,2,2,2], [0,0,6,6], [0,0,0,2], [0,2,2,2], [0,0,0,2],
[0,0,0,0]]

### Example 2:
input = [[0,0,0,0,5,0,0,0,0], [0,0,0,0,5,7,0,0,0], [0,0,0,8,5,0,0,0,0], [0,0,0,8,5,0,0,0,0], [0,7,8,8,5,0,0,0,0],
[0,0,0,0,5,8,8,0,0], [0,0,0,8,5,0,0,0,0], [0,0,0,8,5,0,0,0,0], [0,0,0,0,5,8,7,0,0], [0,0,0,0,5,0,0,0,0]]
output= [[0,0,0,0], [0,0,0,7], [0,0,0,8], [0,0,0,8], [0,7,8,8], [0,0,8,8], [0,0,0,8], [0,0,0,8], [0,0,7,8],
[0,0,0,0]]

### Test Problem:
input = [[0,0,0,0,5,0,0,0,0], [0,0,0,1,5,0,0,0,0], [0,0,0,1,5,1,0,0,0], [0,1,1,1,5,1,1,1,6], [0,0,0,6,5,6,6,0,0],
[0,0,0,0,5,1,1,1,0], [0,0,0,1,5,0,0,0,0], [0,0,0,1,5,1,6,0,0], [0,0,0,0,5,6,0,0,0], [0,0,0,0,5,0,0,0,0]]

Analyze the transformation rules based on the provided Examples and determine what the output should
be for the Test Problem.

Here we present the best agent on ARC discovered by Meta Agent Search.

Code 3: The best agent on ARC discovered by Meta Agent Search
1 # Structured Feedback and Ensemble Agent
2 def forward(self , taskInfo):
3 # Step 1: Generate initial candidate solutions using multiple FM

Modules
4 initial_instruction = ’Please think step by step and then solve

the task by writing the code.’
5 num_candidates = 5 # Number of initial candidates
6 initial_module = [FM_Module ([’thinking ’, ’code’], ’Initial

Solution ’, temperature =0.8) for _ in range(num_candidates)]
7

8 initial_solutions = []
9 for i in range(num_candidates):

10 thoughts = initial_module[i]([ taskInfo], initial_instruction)
11 thinking , code = thoughts [0], thoughts [1]
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12 feedback , correct_examples , wrong_examples = self.
run_examples_and_get_feedback(code)

13 if len(correct_examples) > 0: # Only consider solutions that
passed at least one example

14 initial_solutions.append ({’thinking ’: thinking , ’code’:
code , ’feedback ’: feedback , ’correct_count ’: len(
correct_examples)})

15

16 # Step 2: Simulate human -like feedback for each candidate solution
17 human_like_feedback_module = FM_Module ([’thinking ’, ’feedback ’], ’

Human -like Feedback ’, temperature =0.5)
18 human_feedback_instruction = ’Please provide human -like feedback

for the code , focusing on common mistakes , heuristic
corrections , and best practices.’

19

20 for sol in initial_solutions:
21 thoughts = human_like_feedback_module ([taskInfo , sol[’thinking

’], sol[’code’]], human_feedback_instruction)
22 human_thinking , human_feedback = thoughts [0], thoughts [1]
23 sol[’human_feedback ’] = human_feedback
24

25 # Step 3: Assign expert advisors to evaluate and provide targeted
feedback

26 expert_roles = [’Efficiency Expert ’, ’Readability Expert ’, ’
Simplicity Expert ’]

27 expert_advisors = [FM_Module ([’thinking ’, ’feedback ’], role ,
temperature =0.6) for role in expert_roles]

28 expert_instruction = ’Please evaluate the given code and provide
targeted feedback for improvement.’

29

30 for sol in initial_solutions:
31 sol_feedback = {}
32 for advisor in expert_advisors:
33 thoughts = advisor ([taskInfo , sol[’thinking ’], sol[’code’

]], expert_instruction)
34 thinking , feedback = thoughts [0], thoughts [1]
35 sol_feedback[advisor.role] = feedback
36 sol[’expert_feedback ’] = sol_feedback
37

38 # Step 4: Parse and structure the feedback to avoid redundancy and
refine the solutions iteratively

39 max_refinement_iterations = 3
40 refinement_module = FM_Module ([’thinking ’, ’code’], ’Refinement

Module ’, temperature =0.5)
41 refined_solutions = []
42

43 for sol in initial_solutions:
44 for i in range(max_refinement_iterations):
45 combined_feedback = sol[’feedback ’]. content + sol[’

human_feedback ’]. content + ’’.join([fb.content for fb
in sol[’expert_feedback ’]. values ()])

46 structured_feedback = ’ ’.join(set(combined_feedback.split
())) # Avoid redundancy

47 refinement_instruction = ’Using the structured feedback ,
refine the solution to improve its performance.’

48 thoughts = refinement_module ([taskInfo , sol[’thinking ’],
sol[’code’], Info(’feedback ’, ’Structured Feedback ’,
structured_feedback , i)], refinement_instruction , i)

49 refinement_thinking , refined_code = thoughts [0], thoughts
[1]

50 feedback , correct_examples , wrong_examples = self.
run_examples_and_get_feedback(refined_code)

51 if len(correct_examples) > 0:
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52 sol.update ({’thinking ’: refinement_thinking , ’code’:
refined_code , ’feedback ’: feedback , ’correct_count
’: len(correct_examples)})

53 refined_solutions.append(sol)
54

55 # Step 5: Select the best -performing solutions and make a final
decision using an ensemble approach

56 sorted_solutions = sorted(refined_solutions , key=lambda x: x[’
correct_count ’], reverse=True)

57 top_solutions = sorted_solutions [:3] # Select the top 3 solutions
58

59 final_decision_instruction = ’Given all the above solutions ,
reason over them carefully and provide a final answer by
writing the code.’

60 final_decision_module = refinement_module ([’thinking ’, ’code’], ’
Final Decision Module ’, temperature =0.1)

61 final_inputs = [taskInfo] + [item for solution in top_solutions
for item in [solution[’thinking ’], solution[’code’], solution[
’feedback ’]]]

62 final_thoughts = final_decision_module(final_inputs ,
final_decision_instruction)

63 final_thinking , final_code = final_thoughts [0], final_thoughts [1]
64 answer = self.get_test_output_from_code(final_code)
65 return answer

F Experiment Details for Reasoning and Problem-Solving Domains

To reduce costs during search and evaluation, we sample subsets of data from each domain. For
GPQA (Science), we use GPQA diamond and the validation set consists of 32 questions, while
the remaining 166 questions form the test set. For the other domains, the validation and test sets are
sampled with 128 and 800 questions, respectively. We evaluate agents five times for GPQA and once
for the other domains to maintain a consistent total number of evaluations. Each domain uses zero-
shot style questions, except DROP (Reading Comprehension), which uses one-shot style questions
following the practice in [56]. The meta agent uses “gpt-4o-2024-05-13” [57], while discovered
agents and baselines are evaluated using “gpt-3.5-turbo-0125” [55] to reduce compute cost.

We present the description of each domain we provide to the meta agent.

Description of DROP (Reading Comprehension).

Your aim is to find an optimal agent performing well on the Reading Comprehension Benchmark
Requiring Discrete Reasoning Over Paragraphs (DROP), which assesses the ability to perform discrete
reasoning and comprehend detailed information across multiple paragraphs.

## An example question from DROP:

You will be asked to read a passage and answer a question.

Passage:
Non-nationals make up more than half of the population of Bahrain, with immigrants making up
about 55% of the overall population. Of those, the vast majority come from South and Southeast
Asia: according to various media reports and government statistics dated between 2005-2009 roughly
290,000 Indians, 125,000 Bangladeshis, 45,000 Pakistanis, 45,000 Filipinos, and 8,000 Indonesians.

Question: What two nationalities had the same number of people living in Bahrain between
2005-2009?
Answer [Not Given]: Pakistanis and Filipinos
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Description of GPQA (Science) for the meta agent.

Your aim is to find an optimal agent performing well on the GPQA (Graduate-Level Google-Proof Q&A
Benchmark). This benchmark consists of challenging multiple-choice questions across the domains of
biology, physics, and chemistry, designed by domain experts to ensure high quality and difficulty.

## An example question from GPQA:

Two quantum states with energies E1 and E2 have a lifetime of 10−9 sec and 10−8 sec, respectively.
We want to clearly distinguish these two energy levels. Which one of the following options could be
their energy difference so that they be clearly resolved?

Answer choices:
10−9 eV
10−8 eV
10−7 eV
10−6 eV

Correct answer [Not provided]:
10−7 eV

Explanation [Not provided]:
According to the uncertainty principle, Delta E* Delta t=hbar/2. Delta t is the lifetime and Delta E is the
width of the energy level. With Delta t=10−9 s==> Delta E1= 3.3 10−7 ev. And Delta t=10−11 s gives
Delta E2=3.310−8 eV. Therefore, the energy difference between the two states must be significantly
greater than 10−7 ev. So the answer is 10−4 ev.

Description of MGSM (Math) for the meta agent.

Your aim is to find an optimal agent performing well on the Multilingual Grade School Math Benchmark
(MGSM) which evaluates mathematical problem-solving abilities across various languages to ensure
broad and effective multilingual performance.

## An example question from MGSM:

**Question**: この数学の問題を解いてください。

近所では、ペットのウサギの数がペットの犬と猫を合わせた数よりも12匹少ない。犬1匹あ
たり2匹の猫がおり、犬の数は60匹だとすると、全部で近所には何匹のペットがいますか？

**Answer (Not Given)**: 348

Description of MMLU (Mult-task) for the meta agent.

Your aim is to find an optimal agent performing well on the MMLU (Massive Multitask Language
Understanding) benchmark, a challenging evaluation that assesses a model’s ability to answer questions
across a wide range of subjects and difficulty levels. It includes subjects from STEM, social sciences,
humanities, and more.

## An example question from MMLU:

Answer the following multiple-choice question.

The constellation ... is a bright W-shaped constellation in the northern sky.

(A) Centaurus
(B) Cygnus
(C) Cassiopeia
(D) Cepheus
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G Baselines

In this paper, we implement five state-of-the-art hand-designed agent baselines for experiments
on ARC (Section 4.1): (1) Chain-of-Thought (COT) [84], which instructs the agent to output the
reasoning before answering to improve complex problem-solving through intermediate steps; (2)
Self-Consistency with Chain-of-Thought (COT-SC) [83], which ensembles multiple parallel an-
swers from COT to produce a more accurate answer; (3) Self-Refine [48, 73], which allows iterative
self-reflection to correct mistakes made in previous attempts; (4) LLM-Debate [20], which enables
different LLMs to debate with each other, leveraging diverse perspectives to find better answers; (5)
Quality-Diversity, a simplified version of Intelligent Go-Explore [46], which produces and ensem-
bles diverse answers to better explore potential solutions.

In addition to these baselines, we implement two more for experiments on Reasoning and Problem-
Solving domains (Section 4.2): (6) Step-back Abstraction [96], which instructs agents to first con-
sider the principles involved in solving the task for better reasoning and (7) Role Assignment [86],
which assigns different roles to FMs to obtain better answers.. An example implementation of Self-
Refine with our simple framework is shown in Appendix D.

In COT, we prompt the FM to think step by step before answering the question. In COT-SC, we
sample N = 5 answers and then perform an ensemble using either majority voting or an FM query.
In Self-Refine, we allow up to five refinement iterations, with an early stop if the critic deems the
answer correct. In LLM-Debate, each debate module is assigned a unique role, such as Physics
Expert or Chemistry Expert, and the debate lasts for two rounds. In Quality-Diversity, we conduct
three iterations to collect diverse answers based on previously proposed ones. In Role Assignment,
we use an FM query to first choose a role from a predefined set, and then use another FM query to
answer the question by acting within the chosen role.

H Example Agents

In this section, we present the detailed implementation of three example discovered agents by Meta
Agent Search shown in Figure 1. The “Multi-Step Peer Review Agent” and “Divide and Con-
quer Agent” were discovered during the search in the Reading Comprehension domain (GPQA)
[64], while the “Verified Multimodal Agent” was discovered during the search in the Math domain
(MGSM) [72].

Code 4: Example discovered agent: Multi-Step Peer Review Agent
1 def forward(self , taskInfo):
2 initial_instruction = "Please think step by step and then solve

the task."
3 critique_instruction = "Please review the answer above and provide

feedback on where it might be wrong. If you are absolutely
sure it is correct , output ’True’ in ’correct ’."

4 refine_instruction = "Given previous attempts and feedback ,
carefully consider where you could go wrong in your latest
attempt. Using insights from previous attempts , try to solve
the task better."

5 final_decision_instruction = "Given all the above thinking and
answers , reason over them carefully and provide a final answer
."

6

7 FM_modules = [FM_module ([’thinking ’, ’answer ’], ’FM Module ’, role=
role) for role in [’Physics Expert ’, ’Chemistry Expert ’, ’
Biology Expert ’, ’Science Generalist ’]]

8 critic_modules = [FM_module ([’feedback ’, ’correct ’], ’Critic ’,
role=role) for role in [’Physics Critic ’, ’Chemistry Critic ’,
’Biology Critic ’, ’General Critic ’]]

9 final_decision_module = FM_module ([’thinking ’, ’answer ’], ’Final
Decision ’, temperature =0.1)

10

11 all_thinking = [[] for _ in range(len(FM_modules))]
12 all_answer = [[] for _ in range(len(FM_modules))]
13 all_feedback = [[] for _ in range(len(FM_modules))]
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14

15 for i in range(len(FM_modules)):
16 thinking , answer = FM_modules[i]([ taskInfo],

initial_instruction)
17 all_thinking[i]. append(thinking)
18 all_answer[i]. append(answer)
19

20 for i in range(len(FM_modules)):
21 for j in range(len(FM_modules)):
22 if i != j:
23 feedback , correct = critic_modules[j]([ taskInfo ,

all_thinking[i][0], all_answer[i][0]],
critique_instruction)

24 all_feedback[i]. append(feedback)
25

26 for i in range(len(FM_modules)):
27 refine_inputs = [taskInfo , all_thinking[i][0], all_answer[i

][0]] + all_feedback[i]
28 thinking , answer = FM_modules[i]( refine_inputs ,

refine_instruction)
29 all_thinking[i]. append(thinking)
30 all_answer[i]. append(answer)
31

32 final_inputs = [taskInfo] + [all_thinking[i][1] for i in range(len
(FM_modules))] + [all_answer[i][1] for i in range(len(
FM_modules))]

33 thinking , answer = final_decision_module(final_inputs ,
final_decision_instruction)

34

35 return answer

Code 5: Example discovered agent: Divide and Conquer Agent
1 def forward(self , taskInfo):
2 # Step 1: Decompose the problem into sub -problems
3 decomposition_instruction = "Please decompose the problem into

smaller , manageable sub -problems. List each sub -problem
clearly."

4 decomposition_module = FM_Module ([’thinking ’, ’sub_problems ’], ’
Decomposition Module ’)

5

6 # Step 2: Assign each sub -problem to a specialized expert
7 sub_problem_instruction = "Please think step by step and then

solve the sub -problem."
8 specialized_experts = [FM_Module ([’thinking ’, ’sub_solution ’], ’

Specialized Expert ’, role=role) for role in [’Physics Expert ’,
’Chemistry Expert ’, ’Biology Expert ’, ’General Expert ’]]

9

10 # Step 3: Integrate the sub -problem solutions into the final
answer

11 integration_instruction = "Given the solutions to the sub -problems
, integrate them to provide a final answer to the original
problem."

12 integration_module = FM_Module ([’thinking ’, ’answer ’], ’
Integration Module ’, temperature =0.1)

13

14 # Decompose the problem
15 thinking , sub_problems = decomposition_module ([ taskInfo],

decomposition_instruction)
16

17 # Ensure sub_problems is a string and split into individual sub -
problems

18 sub_problems_list = sub_problems.content.split(’\n’) if isinstance
(sub_problems.content , str) else []

19
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20 # Solve each sub -problem
21 sub_solutions = []
22 for i, sub_problem in enumerate(sub_problems_list):
23 sub_problem_info = Info(’sub_problem ’, decomposition_module.

__repr__ (), sub_problem , i)
24 sub_thinking , sub_solution = specialized_experts[i % len(

specialized_experts)]([ sub_problem_info],
sub_problem_instruction)

25 sub_solutions.append(sub_solution)
26

27 # Integrate the sub -problem solutions
28 integration_inputs = [taskInfo] + sub_solutions
29 thinking , answer = integration_module(integration_inputs ,

integration_instruction)
30

31 return answer

Code 6: Example discovered agent: Verified Multimodal Agent
1 def forward(self , taskInfo):
2 # Instruction for generating visual representation of the problem
3 visual_instruction = "Please create a visual representation (e.g.,

diagram , graph) of the given problem."
4

5 # Instruction for verifying the visual representation
6 verification_instruction = "Please verify the accuracy and

relevance of the visual representation. Provide feedback and
suggestions for improvement if necessary."

7

8 # Instruction for solving the problem using the verified visual
aid

9 cot_instruction = "Using the provided visual representation , think
step by step and solve the problem."

10

11 # Instantiate the visual representation module , verification
module , and Chain -of -Thought module

12 visual_module = FM_Module ([’visual ’], ’Visual Representation
Module ’)

13 verification_module = FM_Module ([’feedback ’, ’verified_visual ’], ’
Verification Module ’)

14 cot_module = FM_Module ([’thinking ’, ’answer ’], ’Chain -of -Thought
Module ’)

15

16 # Generate the visual representation of the problem
17 visual_output = visual_module ([ taskInfo], visual_instruction)
18 visual_representation = visual_output [0] # Using Info object

directly
19

20 # Verify the visual representation
21 feedback , verified_visual = verification_module ([taskInfo ,

visual_representation], verification_instruction)
22

23 # Use the verified visual representation to solve the problem
24 thinking , answer = cot_module ([taskInfo , verified_visual],

cot_instruction)
25 return answer

I Cost of Experiments

A single run of search and evaluation on ARC (Section 4.1) costs approximately $500 USD in
OpenAI API costs, while a run within the reasoning and problem-solving domains (Section 4.2)
costs about $300 USD.
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The primary expense comes from querying the “gpt-3.5-turbo-0125” model during the evaluation of
discovered agents. Notably, the latest GPT-4 model, “gpt-4o-mini,” is less than one-third the price
of “gpt-3.5-turbo-0125” and offers better performance, suggesting that we could achieve improved
results with Meta Agent Search at just one-third of the cost. Additionally, as discussed in Section 6,
the current naive evaluation function is both expensive and overlooks valuable information. We an-
ticipate that future work adopting more sophisticated evaluation functions could significantly reduce
the cost of ADAS algorithms.
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