

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONTRASTIVE PREDICTIVE CODING DONE RIGHT FOR MUTUAL INFORMATION ESTIMATION

Anonymous authors

Paper under double-blind review

ABSTRACT

The InfoNCE objective, originally introduced for contrastive representation learning, has become a popular choice for mutual information (MI) estimation, despite its indirect connection to MI. In this paper, we demonstrate why InfoNCE should not be regarded as a valid MI estimator, and we introduce a simple modification, which we refer to as *InfoNCE-anchor*, for accurate MI estimation. Our modification introduces an auxiliary *anchor* class, enabling consistent density ratio estimation and yielding a plug-in MI estimator with significantly reduced bias. Beyond this, we generalize our framework using proper scoring rules, which recover InfoNCE-anchor as a special case when the log score is employed. This formulation unifies a broad spectrum of contrastive objectives, including NCE, InfoNCE, and f -divergence variants, under a single principled framework. Empirically, we find that InfoNCE-anchor with the log score achieves the most accurate MI estimates; however, in self-supervised representation learning experiments, we find that the anchor does not improve the downstream task performance. These findings corroborate that contrastive representation learning benefits not from accurate MI estimation *per se*, but from the learning of structured density ratios.

1 INTRODUCTION

Contrastive learning has become a cornerstone of modern unsupervised representation learning, powering advances in computer vision (Chen et al., 2020), natural language processing (Mikolov et al., 2013; Levy & Goldberg, 2014), and beyond (Jaiswal et al., 2020; Hu et al., 2024). One of the key ingredients in many contrastive methods is the *InfoNCE* objective (van den Oord et al., 2018). While originally proposed as a representation learning framework, van den Oord et al. (2018) noted that the InfoNCE objective can be used to evaluate mutual information (MI), interpreting the objective as a variational bound on MI; see (van den Oord et al., 2018, Appendix A). This interpretation has led to its widespread use for MI estimation, e.g., (Poole et al., 2019; Song & Ermon, 2020a; Gowri et al., 2024; Lee & Rhee, 2024). It is also widely known, however, that InfoNCE often yields a rather loose bound on MI (Poole et al., 2019; Tschannen et al., 2020). As a result, the InfoNCE estimator is generally considered a low-variance but high-bias MI estimator (van den Oord et al., 2018). Although several proposals have been made to address this issue since its inception, the effectiveness (i.e., the low-variance property) and the limitation (i.e., the high bias) of InfoNCE remain poorly understood.

In this paper, we clarify the operational meaning of the InfoNCE objective, by showing that the objective should be understood as a variational lower bound of a statistical divergence different from the mutual information. Building on this clarification, we establish a sharp characterization of its relationship to the Kullback–Leibler (KL) divergence, revealing why the InfoNCE objective should not be regarded as a direct estimate of MI. We further argue that InfoNCE can be viewed as a density ratio estimation objective, while the critic (or its exponentiated form) estimates the density ratio $\frac{p(x,y)}{p(x)p(y)}$ only up to an arbitrary function $C(y)$, rendering it unsuitable for use in a plug-in estimator.

To address this limitation, we introduce a simple modification to the variational objective, which we call *InfoNCE-anchor*, corresponding to an alternative divergence. In the new framework, the inclusion of an *anchor* enables the (exponentiated) critic to estimate the density ratio $\frac{p(x,y)}{p(x)p(y)}$ directly. This adjustment facilitates consistent density ratio estimation and yields a plug-in MI estimator that retains the low variance of InfoNCE while significantly reducing its bias. See Figure 1 for a quick

054 comparison with existing estimators, where the new plug-in estimator based on InfoNCE-anchor
 055 demonstrates low-bias, low-variance performance.

056 We generalize our framework using tools from statistical decision theory, showing that InfoNCE-
 057 anchor corresponds to the *log score*, a canonical example of a proper scoring rule. This insight reveals
 058 that many contrastive objectives, including NCE, InfoNCE, and certain f -divergence variants, can be
 059 unified under a single principled framework of density ratio estimation using proper scoring rules.
 060

061 Empirically, we show that estimators induced by the log score yields state-of-the-art MI estimates
 062 across a range of settings. In contrastive representation learning tasks, however, we find that multiple
 063 scoring rules yield similar performance, suggesting that MI estimation is not the primary driver
 064 of contrastive learning success. Instead, our results support that contrastive learning benefits from
 065 learning structured density ratios, regardless of whether the objectives are accurate MI estimators.
 066

067 While InfoNCE has played a canonical role in contrastive representation learning, its rather loose
 068 association to MI estimation has historically fostered the misconception that representation learning
 069 is essentially about maximizing MI; see, e.g., (Bachman et al., 2019; Wu et al., 2020). This
 070 paper clarifies why such an interpretation can be limiting and imprecise, and that contrastive rep-
 071 resentation learning should instead be framed as representation learned to factorize pointwise MI
 072 (PMI) $\log \frac{p(x,y)}{p(x)p(y)}$, or pointwise dependence (PD) $\frac{p(x,y)}{p(x)p(y)}$. All proofs can be found in Appendix G.
 073 Logarithms in this paper are in base 2 and thus KL divergence and MI are in bit.
 074

2 PRELIMINARIES

075 In this paper, we first review different types of variational-bounds-based MI estimators in the literature,
 076 and provide a taxonomy. We then delve into the InfoNCE estimator, and show why the InfoNCE
 077 estimator should not be considered as a direct estimate for MI.
 078

2.1 TYPES OF INFORMATION ESTIMATORS

080 Existing variational-bound-based MI estimators can be categorized into three principal categories as
 081 follows, based on the relationship of their optimization objectives to the final metrics to compute MI.
 082 Table 1 summarizes the representative estimators.
 083

- 084 **• Type 1: Training and evaluation with a single variational lower bound.** These estimators
 085 optimize a tractable lower bound on the MI and use the same bound for evaluation. Examples
 086 include DV (Donsker & Varadhan, 1975), NWJ (Nguyen et al., 2010), and InfoNCE (van den
 087 Oord et al., 2018). While conceptually simple and natural, McAllester & Stratos (2020) showed
 088 that any distribution-free high-probability lower bound of MI is upper bounded by $\log N$, where
 089 N is the sample size. This result implies that variational lower-bound-based sample estimates
 090 of MI suffer from an inherent limitation.
 091
- 092 **• Type 2: Training with a variational lower bound, evaluation by plugging-in to another
 093 variational lower bound.** These estimators optimize a surrogate objective, often smoothed
 094 or stabilized for optimization, and then estimate MI via plug-in to a different bound such as
 095 DV or NWJ. Examples include MINE (Belghazi et al., 2018), JS (Hjelm et al., 2019), and
 096 SMILE (Song & Ermon, 2020a). These methods often improve stability during training, but
 097 introduce additional sources of mismatch between optimization and evaluation. Note that the
 098 critique of McAllester & Stratos (2020) still applies to this type of estimators.
 099
- 100 **• Type 3: Training with a variational lower bound, evaluation with a plug-in estimator.** These
 101 estimators target to learn the density ratio $\frac{p(x,y)}{p(x)p(y)}$ directly and compute MI by plugging the
 102 estimated score function into the definition of MI. This includes recent methods like PCC/D-
 103 RFC (Tsai et al., 2020) and f -DIME (Letizia et al., 2024), as well as our method to be proposed
 104 below. These approaches provide greater flexibility and potentially lower bias, side-stepping
 105 from the issue of the variational lower-bound approach, as they decouple density ratio learning
 106 from specific bounds.
 107

Table 1: Overview of existing variational-bound-based MI estimators. In this table, we use the standard critic parametrization, which aims to train $c(x, y) \approx \log \frac{p(x, y)}{p(x)p(y)}$.

Estimator	Optimization objective $\mathcal{L}(c)$ (loss)	Estimator $\hat{I}(X; Y)$
Type 1	$\mathcal{L}_{\text{DV}}(c) \triangleq -\mathbb{E}_{p(x,y)}[c(x,y)] + \log \mathbb{E}_{p(x)p(y)}[e^{c(x,y)}]$	$-\mathcal{L}_{\text{DV}}(c)$
	$\mathcal{L}_{\text{NWJ}}(c) \triangleq -\mathbb{E}_{p(x,y)}[c(x,y)] + \mathbb{E}_{p(x)p(y)}[e^{c(x,y)}] - 1$	$-\mathcal{L}_{\text{NWJ}}(c)$
	$\mathcal{L}_{\text{InfoNCE}}(c) \triangleq -\mathbb{E}_{p^K(x,y)}\left[\frac{1}{K} \sum_{i=1}^K \log \frac{c(x_i, y_i)}{\frac{1}{K} \sum_{j=1}^K c(x_i, y_j)}\right]$	$-\mathcal{L}_{\text{InfoNCE}}(c)$
	$\mathcal{L}_{\text{MLInfoNCE}}(\theta) \text{ (see Eq. (7))}$	$-\mathcal{L}_{\text{MLInfoNCE}}(\theta)$
Type 2	$\mathcal{L}_{\text{MINE}}(c) \triangleq -\mathbb{E}_{p(x,y)}[c(x,y)] + \frac{\mathbb{E}_{p(x)p(y)}[e^{c(x,y)}]}{\text{EMA}(\mathbb{E}_{p(x)p(y)}[e^{c(x,y)}])}$	$-\mathcal{L}_{\text{DV}}(c)$
	$\mathcal{L}_{\text{JS}}(c) \triangleq \mathbb{E}_{p(x,y)}[\text{sp}(-c(x,y))] + \mathbb{E}_{p(x)p(y)}[\text{sp}(c(x,y))]$	$-\mathcal{L}_{\text{NWJ}}(c)$
	$\mathcal{L}_{\text{JS}}(c)$	$-\mathcal{L}_{\text{clippedDV}}(c)$
Type 3	$\mathcal{L}_{\text{JS}}(c) / \mathcal{L}_{\chi^2}(c) \triangleq -2\mathbb{E}_{p(x,y)}[e^{c(x,y)}] + \mathbb{E}_{p(x)p(y)}[e^{2c(x,y)}]$	$\mathbb{E}_{\hat{p}(x,y)}[c(x,y)]$
	$\mathcal{L}_{f\text{-NWJ}}(c)$	$\mathbb{E}_{\hat{p}(x,y)}[c(x,y)]$
	$\mathcal{L}_{\hat{K};\nu}^{\psi}(c) \text{ (see Eq. (4) and Eq. (11))}$	$\mathbb{E}_{\hat{p}(x,y)}[c(x,y)]$

2.2 DEMYSTIFYING THE INFOENCE ESTIMATOR

Despite its inception as an objective for contrastive representation learning (van den Oord et al., 2018), InfoNCE has become widely considered as a MI estimator. In this section, we revisit the analytical foundation of the objective and disentangle what InfoNCE is *claimed* to measure from what InfoNCE indeed characterizes. Our goal is two-fold: (1) reveal the divergence that InfoNCE targets, and (ii) quantify the precise gap between that divergence and the mutual information. Before we proceed, we remark that the core of InfoNCE can be better described when we contrast two abstract distributions $q_1(x)$ and $q_0(x)$, which can be replaced by $p(x|y)$ and $p(x)$, respectively, if we wish to specialize it for mutual information.

Throughout, let x_1 denote a *positive* example drawn from the data distribution q_1 , and let x_2, \dots, x_K be *negative* examples drawn i.i.d. from a noise distribution q_0 . We let $x_{i:j} \triangleq (x_i, \dots, x_j)$ for $i \leq j$ as a shorthand. A score network (or critic) $r_\theta: \mathcal{X} \rightarrow \mathbb{R}_{>0}$ is trained to assign large values to real samples and small values to negatives, and the InfoNCE loss compares $r_\theta(x_1)$ against the arithmetic mean of $r_\theta(x_z)$ over the whole batch.

$$\mathcal{L}_{\text{InfoNCE}}(\theta) \triangleq -\mathcal{D}_{\text{InfoNCE}}(\theta) \triangleq -\mathbb{E}_{\textcolor{orange}{q_1}(x_1)q_0(x_2)\dots q_0(x_K)} \left[\log \frac{r_\theta(x_1)}{\frac{1}{K} \sum_{z=1}^K r_\theta(x_z)} \right].$$

As we alluded to earlier, if we plug-in $p(x|y)$ and $p(x)$ in place of $q_1(x)$ and $q_0(x)$, respectively, then $\mathbb{E}_{p(y)}[\mathcal{L}_{\text{InfoNCE}}(\theta)]$ recovers the standard InfoNCE objective for two modalities.

The following statement from (van den Oord et al., 2018; Poole et al., 2019) is a widely known connection between the InfoNCE objective to the KL divergence, which provides a justification of the InfoNCE objective as an MI estimator for K sufficiently large. We present its proof in Appendix G.1 for completeness.

Proposition 1. $\mathcal{D}_{InfoNCE}(\theta) < \min\{\log K, D(\textcolor{blue}{q}_1 \parallel \textcolor{blue}{q}_0)\}$.

Our first contribution is to provide a *tight* upper bound on $\mathcal{D}_{\text{InfoNCE}}(\theta)$, which yields a much sharper bound on $\mathcal{D}_{\text{InfoNCE}}(\theta)$ than Proposition 1 as a corollary.

Theorem 2. For $z \in [K]$, define $p(x_{1:K}|z)$ as $p(x_{1:K}|z) \triangleq q_1(x_z) \prod_{i \neq z} q_0(x_i)$. Then, we have

$$\begin{aligned} \mathcal{D}_{InfoNCE}(\theta) &\leq D_{K\text{-}JS}(\textcolor{brown}{q}_1, \textcolor{blue}{q}_0) \triangleq \frac{1}{K} \sum_{z=1}^K D\left(p(x_{1:K}|z) \parallel \frac{1}{K} \sum_{z'=1}^K p(x_{1:K}|z')\right) \\ &\leq \min\left\{\log K, D(\textcolor{brown}{q}_1 \parallel \textcolor{blue}{q}_0) - \log\left(\frac{1}{K'}(2^{D(\textcolor{brown}{q}_1 \parallel \textcolor{blue}{q}_0)} - 1) + 1\right)\right\}. \end{aligned}$$

The first inequality becomes equality if and only if $r_\theta(x) \propto \frac{q_1(x)}{q_0(x)}$.

This theorem establishes two key theoretical properties of the InfoNCE objective. **First**, the InfoNCE objective is a *tight* variational lower bound of D_K is $(\mathfrak{g}_1, \mathfrak{g}_0)$, a generalization of Jensen–Shannon

162 divergence (JSD) which we call the *K-way JSD*. The InfoNCE objective becomes equal to the
 163 divergence $D_{K\text{-JS}}(\mathbf{q}_1, \mathbf{q}_0)$ if and only if $r_\theta(x) \propto \mathbf{q}_1(x)/\mathbf{q}_0(x)$. Since it only learns the density ratio
 164 up to a multiplicative constant, one *cannot* use it for a plug-in estimator (i.e., Type 3 in Section 2.1)
 165 with the critic (i.e., the density ratio model) learned by InfoNCE. **Second**, the InfoNCE objective may
 166 be still far away from $D(\mathbf{q}_1 \parallel \mathbf{q}_0)$ even for K such that $\log K \geq D(\mathbf{q}_1 \parallel \mathbf{q}_0)$. Concretely, suppose
 167 $D(\mathbf{q}_1 \parallel \mathbf{q}_0) = 2$. Then, the $\mathcal{D}_{\text{InfoNCE}}(\theta) \leq 1.19\dots$ when $K = 4$ even if $\log K \geq D(\mathbf{q}_1 \parallel \mathbf{q}_0)$, and
 168 even for $K = 64$, we have $\mathcal{D}_{\text{InfoNCE}}(\theta) \leq 1.93\dots$, which is strictly smaller than the KL divergence
 169 $D(\mathbf{q}_1 \parallel \mathbf{q}_0) = 2$. This clearly demonstrates that the InfoNCE objective $\mathcal{D}_{\text{InfoNCE}}(\theta)$ can never match
 170 the KL divergence for any finite K and hence is unsuitable as a direct surrogate for MI. This contrasts
 171 with other Type 1 estimators such as DV and NWJ, which provide *tight* variational representations of
 172 the KL divergence; that is, their bound becomes equal to the KL divergence when the critic function
 173 is equal (or proportional) to the true log-density ratio.
 174

175 In the next section, we propose a modification of the InfoNCE objective, such that the critic is learned
 176 to exactly estimate the density ratio $\frac{\mathbf{q}_1(x)}{\mathbf{q}_0(x)}$, and so that it can be used in a plug-in estimator for density
 177 ratio functionals such as mutual information.

3 TENSORIZED DENSITY RATIO ESTIMATION WITH ANCHOR

180 Consider two distributions $\mathbf{q}_0(x)$ and $\mathbf{q}_1(x)$. To estimate the density ratio $\frac{\mathbf{q}_1(x)}{\mathbf{q}_0(x)}$ using samples from
 181 $\mathbf{q}_0(x)$ and $\mathbf{q}_1(x)$, we consider the following classification problem over \mathcal{X}^K (hence *tensorization*),
 182 where we define the class densities $p(x_{1:K}|z)$ for $z = 0, 1, \dots, K$ as
 183

$$\begin{aligned} \text{class 0 (anchor)} : & \mathbf{q}_0(x_1)\mathbf{q}_0(x_2)\cdots\mathbf{q}_0(x_K) \\ \text{class 1} : & \mathbf{q}_1(x_1)\mathbf{q}_0(x_2)\cdots\mathbf{q}_0(x_K) \\ \text{class 2} : & \mathbf{q}_0(x_1)\mathbf{q}_1(x_2)\cdots\mathbf{q}_0(x_K) \\ & \vdots \\ \text{class } K : & \mathbf{q}_0(x_1)\mathbf{q}_0(x_2)\cdots\mathbf{q}_1(x_K) \end{aligned} \tag{1}$$

184 and the prior probabilities over the classes as $p(z) = \frac{\nu}{K+\nu}$ for $z = 0$, and $p(z) = \frac{1}{K+\nu}$ if $z \in [K]$,
 185 for some $\nu \geq 0$. As highlighted, class 0 plays a special role as an *anchor*, allowing us to estimate the
 186 density ratio without multiplicative ambiguity as long as $\nu > 0$. By *anchor*, we mean that class 0 acts
 187 as a fixed reference distribution, eliminating arbitrary scaling and ensuring *identifiability*, which will
 188 become precise in Theorem 3 below. We can take $\nu = 0$ if $K \geq 2$ (recovering InfoNCE), but require
 189 $\nu > 0$ in the $K = 1$ case to avoid degeneracy. More succinctly, we can write, for $z \neq 0$,
 190

$$p(x_{1:K}|z) = \frac{\mathbf{q}_1(x_z)}{\mathbf{q}_0(x_z)} \mathbf{q}_0(x_1)\mathbf{q}_0(x_2)\cdots\mathbf{q}_0(x_K) = \frac{\mathbf{q}_1(x_z)}{\mathbf{q}_0(x_z)} p(x_{1:K}|z=0).$$

191 In words, for $z \neq 0$, the class density is designed such that x_z is drawn from \mathbf{q}_1 , and the rest are from
 192 \mathbf{q}_0 . We can write the marginal distribution over $x_{1:K}$ as
 193

$$p(x_{1:K}) = \mathbf{q}_0(x_1)\mathbf{q}_0(x_2)\cdots\mathbf{q}_0(x_K) \left(\frac{1}{K+\nu} \sum_{i=1}^K \frac{\mathbf{q}_1(x_i)}{\mathbf{q}_0(x_i)} + \frac{\nu}{K+\nu} \right).$$

194 By Bayes' rule, the posterior probability $p(z|x_{1:K})$ is
 195

$$p(z|x_{1:K}) = \frac{p(x_{1:K}|z)p(z)}{p(x_{1:K})} = \begin{cases} \frac{\nu}{\nu + \sum_{i=1}^K \frac{\mathbf{q}_1(x_i)}{\mathbf{q}_0(x_i)}} & \text{if } z = 0 \\ \frac{\frac{\mathbf{q}_1(x_z)}{\mathbf{q}_0(x_z)}}{\nu + \sum_{i=1}^K \frac{\mathbf{q}_1(x_i)}{\mathbf{q}_0(x_i)}} & \text{if } z \in [K] \end{cases}. \tag{2}$$

196 This motivates us to parameterize our probabilistic classifier $p_\theta(z|x_{1:K})$ in the form of
 197

$$p_\theta(z|x_{1:K}) = \begin{cases} \frac{\nu}{\nu + \sum_{i=1}^K r_\theta(x_i)} & \text{if } z = 0 \\ \frac{r_\theta(x_z)}{\nu + \sum_{i=1}^K r_\theta(x_i)} & \text{if } z \in [K] \end{cases}. \tag{3}$$

216 Applying the maximum likelihood estimation (MLE) principle, we can derive the population objective
 217

$$\begin{aligned} 218 \quad \mathcal{L}_{K;\nu}(\theta) &\triangleq -\frac{K}{K+\nu} \mathbb{E}_{\textcolor{orange}{q}_1(x_1) \textcolor{blue}{q}_0(x_2) \cdots \textcolor{blue}{q}_0(x_K)} \left[\log \frac{r_\theta(x_1)}{\nu + \sum_{i=1}^K r_\theta(x_i)} \right] \\ 219 \quad &\quad - \frac{\nu}{K+\nu} \mathbb{E}_{\textcolor{blue}{q}_0(x_1) \textcolor{blue}{q}_0(x_2) \cdots \textcolor{blue}{q}_0(x_K)} \left[\log \frac{\nu}{\nu + \sum_{i=1}^K r_\theta(x_i)} \right], \end{aligned} \quad (4)$$

220
 221 since $\max_\theta \mathbb{E}_{p(z)p(x_{1:K}|z)} [\log p_\theta(z|x_{1:K})] = \min_\theta \mathcal{L}_{K;\nu}(\theta)$. We call it the *InfoNCE-anchor* objective.
 222 Suggested by the name, when $K \geq 2$ and $\nu = 0$, it boils down to InfoNCE. In another
 223 extreme, when $K = 1$ and $\nu = 1$, it becomes equivalent to the standard variational lower bound
 224 of Jensen–Shannon divergence (see Table 1). In the language of *noise contrastive estimation*, this
 225 provides a unification of the standard NCE (Gutmann & Hyvärinen, 2012) ($K = 1, \nu > 0$), and the
 226 so-called *ranking NCE* objectives (Ma & Collins, 2018) ($K = 2, \nu = 0$).
 227

228 **Fisher Consistency.** When $\nu > 0$, it readily follows from the MLE principle that InfoNCE-anchor
 229 characterizes the density ratio $\frac{\textcolor{orange}{q}_1(x)}{\textcolor{blue}{q}_0(x)}$ as its global minimizer in the population and nonparametric limit.
 230

231 **Theorem 3** (Fisher consistency). *Let $\theta^* \triangleq \arg \min_\theta \mathcal{L}_{K;\nu}(\theta)$ denote a global optimizer of the
 232 InfoNCE-anchor objective. Suppose that there exists θ_0 such that $r_{\theta_0}(x) = \frac{\textcolor{orange}{q}_1(x)}{\textcolor{blue}{q}_0(x)}$. If $K \geq 1$ and
 233 $\nu > 0$, $r_{\theta^*}(x) = \frac{\textcolor{orange}{q}_1(x)}{\textcolor{blue}{q}_0(x)}$ for almost every x under $\textcolor{blue}{q}_0$. If $K \geq 2$ with $\nu = 0$, there exists some constant
 234 $C > 0$ such that $r_{\theta^*}(x) = C \frac{\textcolor{orange}{q}_1(x)}{\textcolor{blue}{q}_0(x)}$ for $\textcolor{blue}{q}_0$ -almost every x .*
 235

236 3.1 APPLICATION: DIVERGENCE ESTIMATION AND REPRESENTATION LEARNING

237 We can apply the InfoNCE-anchor objective to estimate MI or to learn representation when given a
 238 joint distribution $p(x, y)$, in a similar way to InfoNCE (van den Oord et al., 2018). That is, for each
 239 y , we can apply the InfoNCE-anchor for $\textcolor{orange}{q}_1(x) \leftarrow p(x|y)$ and $\textcolor{blue}{q}_0(x) \leftarrow p(x)$.¹ For the final objective,
 240 we take an expectation over $y \sim p(y)$:
 241

$$\begin{aligned} 242 \quad \mathcal{L}_{K;\nu}^{(1)}(\theta) &\triangleq \mathbb{E}_{p(y)} \left[-\frac{K}{K+\nu} \mathbb{E}_{p(x_1|y)p(x_2) \cdots p(x_K)} \left[\log \frac{r_\theta(x_1, y)}{\nu + \sum_{i=1}^K r_\theta(x_i, y)} \right] \right. \\ 243 \quad &\quad \left. - \frac{\nu}{K+\nu} \mathbb{E}_{p(x_1)p(x_2) \cdots p(x_K)} \left[\log \frac{\nu}{\nu + \sum_{i=1}^K r_\theta(x_i, y)} \right] \right]. \end{aligned}$$

244 When $\nu = 0$ with $K \geq 2$, it boils down to the original InfoNCE, and minimizing $\mathcal{L}_{K;0}^{(1)}(\theta)$ can only
 245 guarantee that for some function $C(y)$, $r_{\theta^*}(x, y) = C(y) \frac{p(x,y)}{p(x)p(y)}$. When applied to representation
 246 learning, the vanilla InfoNCE (i.e., with $\nu = 0$) thus may lead to an undesirable behavior due to
 247 uncontrollable $C(y)$, whereas the anchor (i.e., $\nu > 0$) can remove such degeneracy. However, in our
 248 representation learning experiment, we observe that the anchor does not lead to the improvement of
 249 downstream task performance; see Section 4.3.
 250

251 With a minibatch of size B , we can implement the loss with anchor for $K = B - 1$ as follows:
 252

$$253 \quad -\frac{K}{K+\nu} \frac{1}{B} \sum_{b=1}^B \log \frac{r_{bb}}{\nu + \sum_{j \in [B] \setminus \{b-1\}} r_{bj}} - \frac{\nu}{K+\nu} \frac{1}{B} \sum_{b=1}^B \log \frac{\nu}{\nu + \sum_{j \in [B] \setminus \{b\}} r_{bj}}.$$

254 We provide a pseudocode in Appendix C. The density ratio estimator is typically parameterized as
 255 $r_\theta(x, y) \leftarrow e^{c_\theta(x, y)}$, where $c_\theta(x, y)$ (the *critic*) is often a neural network. In representation learning,
 256 common choices are the exponential form $r_\theta(x, y) \leftarrow e^{\frac{1}{\tau} \frac{\mathbf{f}_\theta(x)^\top \mathbf{g}_\theta(y)}{\|\mathbf{f}_\theta(x)\|^2 \|\mathbf{g}_\theta(y)\|^2}}$ (see, e.g., (van den Oord
 257 et al., 2018)) or the direct form $r_\theta(x, y) \leftarrow \frac{1}{\tau} \frac{\mathbf{f}_\theta(x)^\top \mathbf{g}_\theta(y)}{\|\mathbf{f}_\theta(x)\|^2 \|\mathbf{g}_\theta(y)\|^2}$ (see, e.g., (HaoChen et al., 2021)),
 258 such that $\mathbf{f}_\theta(x)$ and $\mathbf{g}_\theta(y)$ are learned embeddings that approximate PMI or PD, respectively. Here,
 259 $\tau > 0$ is a *temperature* parameter.
 260

¹An alternative approach is to set $(\textcolor{orange}{q}_1(x), \textcolor{blue}{q}_0(x)) \leftarrow (p(x, y), p(x)p(y))$; see Appendix B.

270 3.2 INFONCE-ANCHOR INTERPOLATES DV AND NWJ BOUNDS WHEN $K \rightarrow \infty$
271272 One may ask about the behavior of InfoNCE-anchor when $K \rightarrow \infty$. While we defer a rigorous
273 statement (Theorem 10) to Appendix D, we remark that InfoNCE-anchor, by setting ν to vary as
274 $K \rightarrow \infty$ such that $\nu/K \rightarrow \beta$ for some $\beta \geq 0$, we can show that InfoNCE-anchor behaves similar to
275 a generalization of the DV bound, which can be rearranged to yield

276
$$\mathbb{E}_{q_1(x)}[\log r_\theta(x)] - (\beta + 1) \log \left(\frac{\beta}{\beta + 1} + \frac{1}{\beta + 1} \mathbb{E}_{q_0(x)}[r_\theta(x)] \right) \leq D(q_1 \parallel q_0). \quad (5)$$

277

278 When $\beta = 0$, this boils down to the standard DV bound. When $\beta \rightarrow \infty$, the left-hand side becomes
279 $\mathbb{E}_{q_1(x)}[\log r_\theta(x)] - \mathbb{E}_{q_0(x)}[r_\theta(x)] + 1 \leq D(q_1 \parallel q_0)$, which is the NWJ bound. Moreover, we can
280 even show that this bound *monotonically* interpolates between the DV bound (tightest, $\beta = 0$) and
281 the NWJ bound (loosest, $\beta = \infty$). A similar asymptotic behavior of InfoNCE (i.e., for $\nu = 0$) was
282 noted by Wang & Isola (2020), but specifically in the context of contrastive representation learning.
283284 3.3 DISCUSSION ON EXISTING VARIANTS OF INFONCE ESTIMATOR
285286 In this section, we discuss two existing variants of InfoNCE, which were proposed in the effort
287 of fixing the aforementioned issues of InfoNCE as the MI estimator. We highlight why they are
288 insufficient as a fundamental fix, and how different from our proposal.289 **α -InfoNCE.** Poole et al. (2019) proposed an alternative estimator called α -InfoNCE, defined as
290

291
$$\mathcal{D}_{\alpha\text{-InfoNCE}}(\theta) \triangleq \mathbb{E}_{q_1(x_1)q_0(x_2)\dots q_0(x_K)} \left[\log \frac{r_\theta(x_1)}{\alpha r_\theta(x_1) + \frac{1-\alpha}{K-1} \sum_{z=2}^K r_\theta(x_z)} \right]$$

292

293 for some $\alpha \in (0, \frac{1}{K}]$. Note that setting $\alpha \leftarrow \frac{1}{K}$ recovers the original InfoNCE bound. For
294 $\alpha < \frac{1}{K}$, this quantity can neither be understood as a loss for classification nor be a *variational* lower
295 bound for $D(q_1 \parallel q_0)$. Lee & Shin (2022, Theorem 4.2) claimed that the *α -InfoNCE objective*
296 is a *tight* variational lower bound for a α -skew KL divergence $D(q_1 \parallel \alpha q_1 + (1-\alpha)q_0)$, that is,
297 $\mathcal{D}_{\alpha\text{-InfoNCE}}(\theta) \leq D(q_1 \parallel \alpha q_1 + (1-\alpha)q_0)$ for $\alpha \in [0, \frac{1}{2}]$, and the equality can be achieved. We find,
298 however, the proof has a flaw and we can indeed show that, unless $q_1 = q_0$, we have
299

300
$$\sup_{\theta} \mathcal{D}_{\alpha\text{-InfoNCE}}(\theta) > D(q_1 \parallel \alpha q_1 + (1-\alpha)q_0) \quad (6)$$

301

302 in the nonparametric limit. We defer their flaw and the proof of Eq. (6) to Appendix A.
303304 **MLInfoNCE.** Song & Ermon (2020b) introduced the *multi-label InfoNCE (MLInfoNCE)* estimator
305 defined as

306
$$\mathcal{D}_{\text{MLInfoNCE}}(\theta) \triangleq \mathbb{E}_{\prod_{w=1}^m q_1(x_{w1}) \prod_{z=2}^k q_0(x_{wz})} \left[\sum_{w=1}^m \log \frac{r_\theta(x_{w1})}{\sum_{w'=1}^m (r_\theta(x_{w'1}) + \sum_{z=2}^k r_\theta(x_{w'z}))} \right]. \quad (7)$$

307

308 Song & Ermon (2020b, Theorem 2) shows that $\mathcal{D}_{\text{MLInfoNCE}}(\theta) \leq D(q_1 \parallel q_0)$. However, we note
309 that this objective cannot be understood as a loss derived from a proper classification setup unlike
310 InfoNCE-anchor.
311312 3.4 EXTENSION WITH PROPER SCORING RULES
313314 In the classification setup of Eq. (1), density ratio estimation reduces to estimating the class probability
315 $p(z|x_{1:K})$ in Eq. (2) via the model $p_\theta(z|x_{1:K})$ in Eq. (3). The cross-entropy loss in Eq. (4) is a
316 *proper* scoring rule, ensuring that the optimized model recovers the true posterior. More generally,
317 once density ratio estimation is cast as class probability estimation, *any proper scoring rule* can be
318 applied, yielding a broad family of consistent objectives.
319320 Here we start with a general description of the proper scoring rules (Gneiting & Raftery, 2007;
321 Dawid et al., 2012). Let \mathcal{Z} be a discrete alphabet and let \mathcal{A} be any alphabet. Suppose that we
322 have sample access to the underlying distribution $p(a, z)$ over $\mathcal{A} \times \mathcal{Z}$. The goal of class probability
323 estimation (CPE) (Garcia-Garcia & Williamson, 2012) is to estimate the underlying class probability
 $\eta: \mathcal{A} \rightarrow \Delta(\mathcal{Z})$, where $\eta(a) \triangleq (p(z|a))_{z \in \mathcal{Z}}$, using samples from $p(a, z)$.

To characterize a class probability estimator as the optimizer of an optimization problem, we consider a tuple of loss functions $\lambda = (\lambda_z: \Delta(\mathcal{Z}) \rightarrow \mathbb{R})_{z \in \mathcal{Z}}$, which we call a *scoring rule*, whereby an *action* $\hat{\eta}: \mathcal{A} \rightarrow \Delta(\mathcal{Z})$ incurs loss $\lambda_z(\hat{\eta}(a))$ for a data point (a, z) . Then, we measure the performance of an action $\hat{\eta}$ by the expected loss $\mathbb{E}_{p(a,z)}[\lambda_z(\hat{\eta}(a))]$.

Definition 4 (Proper scoring rules). A scoring rule $\lambda: \Delta(\mathcal{Z}) \rightarrow \mathbb{R}^{\mathcal{Z}}$ is a vector-valued loss function. A scoring rule is said to be *proper* if η is optimal with respect to λ , i.e., for any distribution $p(a, z)$,

$$\eta(\cdot) \in \arg \min_{\hat{\eta}: \mathcal{A} \rightarrow \Delta(\mathcal{Z})} \mathbb{E}_{p(a,z)}[\lambda_z(\hat{\eta}(a))].$$

If η is the *unique* optimal solution with respect to λ , then λ is said to be *strictly proper*.

We note that most (strictly) proper scoring rules can be induced by a (strictly) differentiable convex function. For the sake of exposition, let $\mathcal{Z} = \{0, \dots, M\}$ concretely. Then, for a differentiable function $\Psi: \{1\} \times \mathbb{R}_+^M \rightarrow \mathbb{R}$, we define the Ψ -induced scoring rule as

$$\lambda^\Psi(\eta) \triangleq \left[\begin{array}{c} \langle \rho, \nabla_\rho \Psi(\rho) \rangle - \Psi(\rho) \\ (-\nabla_\rho \Psi(\rho))_{1:M} \end{array} \right] \Bigg|_{\rho=(1, \frac{\eta_1}{\eta_0}, \dots, \frac{\eta_M}{\eta_0})}. \quad (8)$$

Proposition 5. *If Ψ is (strictly) convex and twice differentiable, λ^Ψ is (strictly) proper.*

The canonical example is the log score, which results in InfoNCE-anchor in Eq. (4). We present some examples of proper scoring rules and the generating convex functions in Appendix E.5.

Now, considering the classification setup in Eq. (1), let $\lambda = \lambda^\Psi$ be a strictly proper scoring rule over discrete alphabet $\mathcal{Z} = \{0, \dots, K\}$, induced by a strictly convex function $\Psi: \mathbb{R}_+^K \rightarrow \mathbb{R}$. Applying the scoring rule to evaluate the score of the class probability $p_\theta(z|x_{1:K})$ (in Eq. (3)) with respect to the underlying distribution $p(z)p(x_{1:K}|z)$, we can write the population objective (to be minimized) as

$$\mathcal{L}_{K;\nu}^\Psi(\eta_\theta) \triangleq \mathbb{E}_{p(x_{1:K}, z)}[\lambda_z(\eta_\theta(x_{1:K}))],$$

where we use $\eta_\theta(x_{1:K}) = (p_\theta(z|x_{1:K}))_{z \in \mathcal{Z}}$ to denote the class probability vector. Let $\eta^*(x_{1:K})$ denote the underlying class probability $(p(z|x_{1:K}))_{z \in \mathcal{Z}}$. The following statement subsumes Theorem 3.

Theorem 6. *For $\nu > 0$,*

$$\mathcal{L}_{K;\nu}^\Psi(\eta_\theta) - \mathcal{L}_{K;\nu}^\Psi(\eta^*) = \frac{\nu}{K + \nu} \mathbb{E}_{q_0(x_1)q_0(x_2)\dots q_0(x_K)} \left[B_\Psi \left(\frac{\mathbf{r}^*(x_{1:K})}{\nu}, \frac{\mathbf{r}_\theta(x_{1:K})}{\nu} \right) \right],$$

where $\mathbf{r}^*(x_{1:K}) \triangleq (\frac{q_1(x_z)}{q_0(x_z)})_{z \in [K]}$ and $\mathbf{r}_\theta(x_{1:K}) \triangleq (r_\theta(x_z))_{z \in [K]}$. If Ψ is convex, we have

$$-\mathcal{L}_{K;\nu}^\Psi(\eta_\theta) \leq -\mathcal{L}_{K;\nu}^\Psi(\eta^*) = \frac{\nu}{K + \nu} \mathbb{E}_{q_0(x_1)q_0(x_2)\dots q_0(x_K)} \left[\Psi \left(\frac{\mathbf{r}^*(x_{1:K})}{\nu} \right) \right].$$

If Ψ is (strictly) convex, the equality is achieved if (and only if) $r_\theta(x) = \frac{q_1(x)}{q_0(x)}$.

Beyond the consistency, this corollary shows that the DRE objective (with negation) can be understood as a variational lower bound of some divergence between $q_1(x)$ and $q_0(x)$ induced by Ψ , defined as $\mathbb{E}_{q_0(x_1)q_0(x_2)\dots q_0(x_K)}[\Psi(\frac{\mathbf{r}^*(x_{1:K})}{\nu})]$. This is analogous to that the InfoNCE-anchor objective in Eq. (4) is a variational lower bound of the K -way JSD $D_{K\text{-JS}}(q_1, q_0)$. We note that this extension can be viewed as a special application of the more general multi-distribution density ratio estimation studied by Yu et al. (2021), for the binary density ratio estimation.

Implementation. Similar to InfoNCE-anchor in Eq. (4), this objective function can be simplified further if the scoring rule satisfies a mild symmetry condition; see Appendix F.2.

Alternative Characterization of Proper Scoring Rule. One minor limitation of the characterization in Theorem 6 is that $\nu = 0$ is not permitted as a special case, and thus InfoNCE cannot be subsumed. In Appendix F.1, we provide an alternative characterization of proper scoring rules, which can be related to the above formulation via the *perspective transformation*, and admits $\nu = 0$.

Special Cases. For the special case when $K = 1$ and $\nu = 1$, note that the right hand side becomes the f -divergence $D_f(q_1 \parallel q_0)$ when $f = \Psi$. That is, the objective boils down to the standard variational lower bound on the f -divergence (Nguyen et al., 2010), hence recovering the f -DIME objectives of Letizia et al. (2024) and f -MICL objectives of Lu et al. (2023). We also note that the GAN-DIME and HD-DIME estimators in (Letizia et al., 2024) are essentially identical to the estimators proposed in (Tsai et al., 2020). More examples can be found in Appendix F.3.

378 4 EXPERIMENTS

380 In this section, we show that InfoNCE-anchor outperforms existing estimators in MI estimation
 381 (Section 4.1) and downstream classification task (Section 4.2). We also report a negative result:
 382 anchor variants do not improve the representation quality of InfoNCE in self-supervised representation
 383 learning tasks (Section 4.3). In all experiments we set $K = B - 1$ and $\nu = 1$ by default.

385 4.1 MI ESTIMATION

387 We evaluate various neural MI estimators on structured and unstructured data using the benchmark
 388 suite of Lee & Rhee (2024).² Experiments cover three domains: multivariate Gaussian data, MNIST
 389 images, and BERT embeddings of IMDB reviews. To control ground truth MI, the benchmark
 390 employs same-class sampling for positive pairs and a binary symmetric channel to inject controlled
 391 noise. This allows systematic variation of MI from 2 to 10 bits in 2-bit increments. Implementation
 392 details such as critic architectures and optimization setups are deferred to Appendix H.

410 Figure 1: Summary of MI estimation results on the standard benchmark. All experiments were
 411 done with batch size 64 and averaged over 20 random runs. Across all the cases, the proposed
 412 InfoNCE-anchor estimator (the rightmost column) consistently demonstrates low-bias, low-variance
 413 performance compared to the existing estimators. See Section 4.1 for the experiment setup.

414 Figure 1 summarizes the results. InfoNCE-anchor tracks ground truth MI most closely across domains.
 415 JS_{plugin} (equivalent to InfoNCE-anchor with $K = 1, \nu = 1$) performs comparably on Gaussians
 416 but deteriorates on higher-dimensional tasks such as MNIST and texts, highlighting the value of
 417 large K . We also evaluate Spherical, an InfoNCE-anchor variant induced by the spherical scoring
 418 rule (Gneiting & Raftery, 2007); see Table 6 in Appendix F.3. Its inferior performance indicates that,
 419 despite the equivalence of strictly proper scoring rules, the log score remains the most effective in
 420 practice. Additional results for Gaussian with varying batch sizes can be found in Appendix H.

422 4.2 PROTEIN INTERACTION PREDICTION

424 As a further demonstration of the effectiveness of InfoNCE-anchor, we perform an experiment from
 425 a recent study by Gowri et al. (2024). In the work, the authors examined protein embeddings derived
 426 from a pretrained protein language model (pLM), the *ProtTrans5* model (Elnaggar et al., 2021), and
 427 evaluated whether one can predict interactions between protein pairs (x, y) , specifically, $(K, T) =$
 428 (kinase, target) and $(L, R) =$ (ligand, receptor) pairs in the considered setting. The interaction labels
 429 are from the *OmniPath* database (Türei et al., 2021). We ran the experiment following the same setup,
 430 with estimating the PMI using the JS, InfoNCE-anchor, and a few other variational approaches, and
 431 using them to decide whether interaction exists by thresholding the PMI of a given pair.

²GitHub: <https://github.com/kyungeun-lee/mibenchmark>

Figure 2: Summary of the protein interaction prediction experiment.

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 2a and Figure 2b summarize the results. As shown in Figure 2a, InfoNCE-anchor shows the best prediction results for both problem instances, while the JS estimator, which is a special case of InfoNCE-anchor when $K = 1$ and $\nu = 1$, performs second best. This again demonstrates the practical benefit of large K for accurate density ratio estimation. We also recall that the standard InfoNCE objective cannot be even applied to this scenario, as it only estimates PMI up to a multiplication with an arbitrary function $C(y)$ discussed in Section 3.1. We include the histograms of learned PMI values (Figure 5) as well as the ROC curves of each estimator for different runs (Figure 4) in Appendix H.

4.3 SELF-SUPERVISED REPRESENTATION LEARNING

In earlier sections we showed that InfoNCE-anchor improves MI estimation and downstream tasks using the learned density ratio model. A natural question is whether this benefit carries over to self-supervised learning (SSL), where InfoNCE is the standard objective. We therefore pretrain a ResNet-18 on CIFAR-100 using the solo-learn framework (da Costa et al., 2022), comparing several contrastive objectives under identical settings (batch size $B = 256$, same optimizer), and evaluate representations via linear probing.

Table 2: Linear probing accuracy (%) after SSL pretraining. We used PD parameterization for Spherical and χ^2 . Detailed setups can be found in Appendix H.

Objective	InfoNCE	InfoNCE-anchor	Spherical	JS	χ^2
Top-1 accuracy	65.98	65.74	4.33	61.69	65.59
Top-5 accuracy	89.69	89.24	17.91	87.33	88.4

Table 2 shows that InfoNCE continues to yield the strongest representations. Adding the anchor, despite improving density ratio estimation, does not translate into better SSL performance. This suggests that the uncontrollable multiplicative factor $C(y)$ in InfoNCE is either nearly constant or irrelevant for representation learning. JS performs poorly, highlighting the importance of large K , while spherical scores collapse entirely, likely due to unfavorable optimization dynamics. Overall, these findings indicate that neither accurate MI estimation nor exact density ratio recovery is essential for high-quality representations. What matters in SSL appears to be the factorization of PMI, the benefit of large K , and the favorable optimization properties with the log score.

5 CONCLUDING REMARKS

We revisited InfoNCE and showed it is not a consistent MI estimator but a variational bound of some other divergence. We introduce InfoNCE-anchor, a simple fix enabling consistent density ratio estimation within a unified scoring-rule framework. InfoNCE-anchor sets new state-of-the-art MI estimation benchmarks and aids predictive tasks, though it does not improve SSL performance, highlighting that accurately estimating MI is not essential for representation quality (Tschannen et al., 2020). We hope our work clarifies the role of InfoNCE and MI estimation in contrastive learning.

486 REFERENCES
487

488 Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
489 mutual information across views. In *Adv. Neural Inf. Proc. Syst.*, volume 32, 2019. 2

490 Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
491 Courville, and Devon Hjelm. Mutual information neural estimation. In *Proc. Int. Conf. Mach.
492 Learn.*, pp. 531–540. PMLR, 2018. 2, 3

493 Glenn W Brier. Verification of forecasts expressed in terms of probability. *Monthly Weather Review*,
494 78(1):1–3, 1950. 20

495 James Chapman, Lennie Wells, and Ana Lawry Aguila. Unconstrained stochastic CCA: Unifying
496 multiview and self-supervised learning. In *Int. Conf. Learn. Repr.*, 2024. URL <https://openreview.net/forum?id=PHLVmV88Zy>. 23

497 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
498 contrastive learning of visual representations. In *Proc. Int. Conf. Mach. Learn.*, pp. 1597–1607.
499 PMLR, 2020. 1, 3, 23, 24

500 T.M. Cover and J.A. Thomas. *Elements of Information Theory*. Number v. 1 in A Wiley-Interscience
501 publication. Wiley, 2006. ISBN 9780471241959. URL <https://books.google.com/books?id=j0DBDwAAQBAJ>. 14

502 Victor Guilherme Turrisi da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, and Elisa Ricci. solo-learn: A
503 library of self-supervised methods for visual representation learning. *J. Mach. Learn. Res.*, 23(56):
504 1–6, 2022. URL <http://jmlr.org/papers/v23/21-1155.html>. 9, 28

505 A Philip Dawid, Steffen Lauritzen, and Matthew Parry. Proper local scoring rules on discrete sample
506 spaces. *Ann. Statist.*, pp. 593–608, 2012. 6

507 Alexander Philip Dawid and Monica Musio. Theory and applications of proper scoring rules. *Metron*,
508 72(2):169–183, 2014. 21

509 Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain Markov process
510 expectations for large time, i. *Commun. Pure Appl. Math.*, 28(1):1–47, 1975. 2, 3

511 Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones, Tom
512 Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and Burkhard
513 Rost. ProtTrans: Towards cracking the language of life’s code through self-supervised learning.
514 *IEEE Trans. Pattern Anal. Mach. Intell.*, 44:7112–7127, 2021. 8

515 Dario Garcia-Garcia and Robert C Williamson. Divergences and risks for multiclass experiments. In
516 *Conf. Learn. Theory*, pp. 28–1. JMLR Workshop and Conference Proceedings, 2012. 6

517 Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation. *J.
518 Am. Statist. Assoc.*, 102(477):359–378, 2007. 6, 8, 20, 21

519 I. J. Good. Rational decisions. *J. R. Stat. Soc. B*, 14(1):107–114, 1952. 21

520 Gokul Gowri, Xiaokang Lun, Allon Klein, and Peng Yin. Approximating mutual information of high-
521 dimensional variables using learned representations. In *Adv. Neural Inf. Proc. Syst.*, volume 37, pp.
522 132843–132875, 2024. 1, 8, 27

523 Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized statistical
524 models, with applications to natural image statistics. *J. Mach. Learn. Res.*, 13(2), 2012. 5, 22

525 Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
526 deep learning with spectral contrastive loss. In *Adv. Neural Inf. Proc. Syst.*, volume 34, pp.
527 5000–5011, 2021. 5, 23

528 R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
529 Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
530 and maximization. In *Int. Conf. Learn. Repr.*, 2019. URL <https://openreview.net/forum?id=Bklr3jocKX>. 2

540 Haigen Hu, Xiaoyuan Wang, Yan Zhang, Qi Chen, and Qiu Guan. A comprehensive survey on
 541 contrastive learning. *Neurocomputing*, pp. 128645, 2024. 1
 542

543 Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
 544 Makedon. A survey on contrastive self-supervised learning. *Technologies*, 9(1):2, 2020. 1
 545

546 Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares approach to direct
 547 importance estimation. *J. Mach. Learn. Res.*, 10:1391–1445, 2009. 23
 548

549 Kyungeun Lee and Wonjong Rhee. A benchmark suite for evaluating neural mutual information
 550 estimators on unstructured datasets. In *Adv. Neural Inf. Process. Syst., Datasets Benchmarks Track*,
 551 2024. URL <https://openreview.net/forum?id=xT5pmUju8w>. 1, 8, 27
 552

553 Kyungmin Lee and Jinwoo Shin. RényiCL: Contrastive representation learning with skew Rényi
 554 divergence. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Adv.
 555 Neural Inf. Proc. Syst.*, 2022. URL <https://openreview.net/forum?id=73h4EZytSht>. 6, 13, 15
 556

557 Nunzio Alexandro Letizia, Nicola Novello, and Andrea M Tonello. Mutual information estimation
 558 via f -divergence and data derangements. In *Adv. Neural Inf. Proc. Syst.*, 2024. URL <https://openreview.net/forum?id=PThighf9UT>. 2, 3, 7
 559

560 Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In *Adv.
 561 Neural Inf. Proc. Syst.*, volume 27, 2014. 1
 562

563 Yiwei Lu, Guojun Zhang, Sun Sun, Hongyu Guo, and Yaoliang Yu. \$f\$-MICL: Understanding
 564 and generalizing infoNCE-based contrastive learning. *Trans. Mach. Learn. Res.*, 2023. ISSN
 565 2835-8856. URL <https://openreview.net/forum?id=ZD03VUZmRx>. 7
 566

567 Zhuang Ma and Michael Collins. Noise contrastive estimation and negative sampling for conditional
 568 models: Consistency and statistical efficiency. In *Proc. Conf. Empir. Methods Nat. Lang. Process.*,
 569 pp. 3698–3707, 2018. 5
 570

571 David McAllester and Karl Stratos. Formal limitations on the measurement of mutual information.
 572 In *Int. Conf. Artif. Int. Statist.*, pp. 875–884. PMLR, 2020. 2
 573

574 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
 575 tions in vector space. In *Int. Conf. Learn. Repr.*, 2013. 1
 576

577 XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals
 578 and the likelihood ratio by convex risk minimization. *IEEE Trans. Inf. Theory*, 56(11):5847–5861,
 579 2010. 2, 3, 7, 23
 580

581 Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
 582 bounds of mutual information. In *Proc. Int. Conf. Mach. Learn.*, pp. 5171–5180. PMLR, 2019. 1,
 583 3, 6, 23
 584

585 Jongha Jon Ryu, Xiangxiang Xu, Hasan Sabri Melihcan Erol, Yuheng Bu, Lizhong Zheng, and
 586 Gregory W. Wornell. Operator SVD with neural networks via nested low-rank approximation. In
 587 *Proc. Int. Conf. Mach. Learn.*, 2024. URL <https://openreview.net/forum?id=qESG5Haa0j>. 23
 588

589 Jongha Jon Ryu, Abhin Shah, and Gregory W. Wornell. A unified view on learning unnormalized
 590 distributions via noise-contrastive estimation. In *Proc. Int. Conf. Mach. Learn.*, 2025. URL
 591 <https://openreview.net/forum?id=Wwj6jjxZet>. 22
 592

593 Jiaming Song and Stefano Ermon. Understanding the limitations of variational mutual information
 594 estimators. In *Int. Conf. Learn. Repr.*, 2020a. URL <https://openreview.net/forum?id=B1x62TNtDS>.
 595 1, 2, 3
 596

597 Jiaming Song and Stefano Ermon. Multi-label contrastive predictive coding. In *Adv. Neural Inf. Proc.
 598 Syst.*, volume 33, pp. 8161–8173, 2020b. 3, 6, 15, 16
 599

600 Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul von Bünau, and Motoaki
 601 Kawanabe. Direct importance estimation for covariate shift adaptation. *Ann. Inst. Stat. Math.*, 60
 602 (4):699–746, 2008. 21, 23

594 Masashi Sugiyama, Tippi Suzuki, and Takafumi Kanamori. Density-ratio matching under the Bregman
 595 divergence: a unified framework of density-ratio estimation. *Ann. Inst. Stat. Math.*, 64(5):1009–
 596 1044, 2012. 21, 23

597

598 Yao-Hung Hubert Tsai, Han Zhao, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhutdinov.
 599 Neural methods for point-wise dependency estimation. In *Adv. Neural Inf. Proc. Syst.*, 2020.
 600 2, 3, 7, 23

601 Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, and Mario Lucic. On mutual
 602 information maximization for representation learning. In *Int. Conf. Learn. Repr.*, 2020. URL
 603 <https://openreview.net/forum?id=rkxoh24FPH>. 1, 9

604

605 Dénes Türei, Alberto Valdeolivas, Lejla Gul, Nicolàs Palacio-Escat, Michal Klein, Olga Ivanova,
 606 Márton Ölbei, Attila Gábor, Fabian Theis, Dezső Módos, Tamás Korcsmáros, and Julio Saez-
 607 Rodriguez. Integrated intra-and intercellular signaling knowledge for multicellular omics analysis.
 608 *Mol. Syst. Biol.*, 17(3):e9923, 2021. 8

609 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 610 coding. *arXiv preprint arXiv:1807.03748*, 2018. 1, 2, 3, 5, 24

611 Lichen Wang, Jiaxiang Wu, Shao-Lun Huang, Lizhong Zheng, Xiangxiang Xu, Lin Zhang, and
 612 Junzhou Huang. An efficient approach to informative feature extraction from multimodal data. In
 613 *Proc. AAAI Conf. Artif. Intell.*, volume 33, pp. 5281–5288, 2019. 23

614

615 Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
 616 ment and uniformity on the hypersphere. In *Proc. Int. Conf. Mach. Learn.*, pp. 9929–9939. PMLR,
 617 2020. 6

618 Mike Wu, Chengxu Zhuang, Milan Mosse, Daniel Yamins, and Noah Goodman. On mutual infor-
 619 mation in contrastive learning for visual representations. *arXiv preprint arXiv:2005.13149*, 2020.
 620 2

621 Lantao Yu, Yujia Jin, and Stefano Ermon. A unified framework for multi-distribution density ratio
 622 estimation. *arXiv preprint arXiv:2112.03440*, 2021. 7

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648	APPENDIX	
649		
650	A Clarification on α-InfoNCE	13
651	A.1 Corrected Statement	13
652	A.2 Issue in the Original Proof	15
653		
654	B Alternative Approach to MI Estimation	15
655		
656	C Pseudocode for InfoNCE-anchor	16
657		
658	D Asymptotic Behavior of InfoNCE-Anchor	16
659		
660	E Decision-Theoretic Treatment of Proper Scoring Rules	16
661	E.1 Preliminaries and Definitions	17
662	E.2 From Loss Function to Generating Function	18
663	E.3 One-to-One Correspondence*	19
664	E.4 Connection to Bregman Divergences	20
665	E.5 Examples of Proper Scoring Rules	20
666	F Details on Extensions with Proper Scoring Rules	21
667	F.1 Alternative Characterization of Proper Scoring Rule	21
668	F.2 On Implementation	22
669	F.3 Examples of InfoNCE-anchor-Type DRE Objectives	22
670		
671	G Deferred Proofs	23
672	G.1 Proof of Proposition 1	23
673	G.2 Proof of Theorem 2	24
674	G.3 Proof of Proposition 5	25
675	G.4 Proof of Theorem 6	26
676	H Experiment Details	27
677	H.1 MI Estimation	27
678	H.2 Protein Interaction Prediction	27
679	H.3 Self-supervised Representation Learning	28
680		
681		
682		
683	A CLARIFICATION ON α-INFONCE	
684		

685 In Section 3.3, we noted that Lee & Shin (2022, Theorem 4.2) is not valid as stated in the nonpara-
 686 metric limit. Here, we present a corrected statement and explain why the argument in their proof does
 687 not establish the claimed identity.

688 We first restate their statement.

689 **Theorem 7** (Lee & Shin, 2022, Theorem 4.2). *Let $\alpha \in (0, \frac{1}{2}]$. In the nonparametric limit,*

$$690 \quad \sup_{\theta} \mathcal{D}_{\alpha\text{-InfoNCE}}(\theta) = D(\mathbf{q}_1 \parallel \alpha \mathbf{q}_1 + (1 - \alpha) \mathbf{q}_0).$$

691 They also state an analogous result for the α -skewed version of MLInfoNCE; for brevity, we focus
 692 on α -InfoNCE, since the same issue arises there.

693 Below, we give the correct characterization, which shows that the equality in Theorem 7 fails in
 694 general. We then identify the precise step where the original proof breaks down.

695 **A.1 CORRECTED STATEMENT**

696 We can prove the following:

702 **Proposition 8.** For any $\alpha \in [0, 1]$, in the nonparametric limit,

$$704 \quad \sup_{\theta} \mathcal{D}_{\alpha\text{-InfoNCE}}(\theta) \geq D(\mathbf{q}_1 \parallel \alpha \mathbf{q}_1 + (1 - \alpha) \mathbf{q}_0),$$

706 where the equality holds if and only if $\mathbf{q}_1 = \mathbf{q}_0$.

708 That is, if $\mathbf{q}_1 \neq \mathbf{q}_0$, then we have a strict inequality

$$710 \quad \sup_{\theta} \mathcal{D}_{\alpha\text{-InfoNCE}}(\theta) > D(\mathbf{q}_1 \parallel \alpha \mathbf{q}_1 + (1 - \alpha) \mathbf{q}_0),$$

712 which invalidates Theorem 7.

713 We now prove the proposition.

716 *Proof of Proposition 8.* In the nonparametric limit, we can consider θ_o which satisfies $r_{\theta}(x) = \frac{\mathbf{q}_1(x)}{\mathbf{q}_0(x)}$.
717 Let $p_z(x_{1:K}) \triangleq \frac{\mathbf{q}_1(x_z)}{\mathbf{q}_0(x_z)} \mathbf{q}_0(x_1) \mathbf{q}_0(x_2) \cdots \mathbf{q}_0(x_K)$ denote the class density for class $z \in [K]$ as defined
718 in Eq. (1). Then, for such θ_o , the α -InfoNCE objective can be written as

$$720 \quad \mathcal{D}_{\alpha\text{-InfoNCE}}(\theta_o) = \mathbb{E}_{p_1(x_{1:K})} \left[\log \frac{p_1(x_{1:K})}{\alpha p_1(x_{1:K}) + \frac{1-\alpha}{K-1} \sum_{z=2}^K p_z(x_{1:K})} \right] \\ 722 \\ 723 \quad = D \left(p_1(x_{1:K}) \parallel \alpha p_1(x_{1:K}) + \frac{1-\alpha}{K-1} \sum_{z=2}^K p_z(x_{1:K}) \right).$$

726 Here, we invoke the monotonicity of the KL divergence (Cover & Thomas, 2006): for any joint
727 distributions $p(x, y)$ and $q(x, y)$, if $p(x)$ and $q(x)$ are the marginal distributions, respectively, we
728 have

$$730 \quad D(p(x, y) \parallel q(x, y)) = D(p(x) \parallel q(x)) + \mathbb{E}_{p(x)} [D(p(y|x) \parallel q(y|x))] \\ 731 \quad \geq D(p(x) \parallel q(x)),$$

733 where the equality holds if and only if $\mathbb{E}_{p(x)} [D(p(y|x) \parallel q(y|x))] = 0$, or equivalently
734 $p(y|x) = q(y|x)$ for $p(x)$ -almost everywhere (a.e.). Since the marginal distribution of the two
735 distributions $p_1(x_{1:K})$ and $\alpha p_1(x_{1:K}) + \frac{1-\alpha}{K-1} \sum_{z=2}^K p_z(x_{1:K})$ over x_1 are $\mathbf{q}_1(x_1)$ and $\mathbf{q}_1(x_1) +$
736 $\frac{1-\alpha}{K-1} \sum_{z=2}^K \mathbf{q}_0(x_1) = \alpha \mathbf{q}_1(x_1) + (1 - \alpha) \mathbf{q}_0(x_1)$, respectively, we have the following chain of in-
737 equalities:

$$739 \quad \sup_{\theta} \mathcal{D}_{\alpha\text{-InfoNCE}}(\theta) \geq \mathcal{D}_{\alpha\text{-InfoNCE}}(\theta_o) \\ 740 \\ 741 \quad = D \left(p_1(x_{1:K}) \parallel \alpha p_1(x_{1:K}) + \frac{1-\alpha}{K-1} \sum_{z=2}^K p_z(x_{1:K}) \right) \\ 742 \\ 743 \quad \geq D \left(\mathbf{q}_1(x_1) \parallel \alpha \mathbf{q}_1(x_1) + (1 - \alpha) \mathbf{q}_0(x_1) \right).$$

746 It remains to characterize the equality condition. From the monotonicity lemma, the last equality
747 holds if and only if the following holds for $\mathbf{q}_1(x_1)$ -a.e.:

$$749 \quad \frac{p_1(x_{1:K})}{\mathbf{q}_1(x_1)} = \frac{\alpha p_1(x_{1:K}) + \frac{1-\alpha}{K-1} \sum_{z=2}^K p_z(x_{1:K})}{\mathbf{q}_0(x_1)} \\ 750 \\ 751 \quad \iff \alpha \frac{\mathbf{q}_1(x_1)}{\mathbf{q}_0(x_1)} + \frac{1-\alpha}{K-1} \sum_{z=2}^K \frac{\mathbf{q}_1(x_z)}{\mathbf{q}_0(x_z)} = 1.$$

754 The only way the above equality can hold almost surely is that $\mathbf{q}_1(x)/\mathbf{q}_0(x)$ is constant almost
755 everywhere, which implies $\mathbf{q}_1 = \mathbf{q}_0$. \square

756 A.2 ISSUE IN THE ORIGINAL PROOF
757

758 To prove this statement, Lee & Shin (2022) used the sandwich argument:

759
$$\mathcal{D}_{DV}(\theta; \alpha\mathbf{q}_1 + (1 - \alpha)\mathbf{q}_0) \stackrel{(a)}{\leq} \mathcal{D}_{\alpha\text{-InfoNCE}}(\theta) \stackrel{(b)}{\leq} D(\mathbf{q}_1 \parallel \alpha\mathbf{q}_1 + (1 - \alpha)\mathbf{q}_0).$$

760 If both inequalities held, since the DV bound is the tight lower bound on the KL divergence which
761 becomes tight in the nonparametric limit, we can conclude equality in Theorem 7. However, Proposition
762 8 states a stronger inequality than (a), and implies that (b) cannot hold.763 Since (a) follows as a corollary of Proposition 8, we now detail the specific flaw in their proof for
764 (b). To argue (b), they invoke the NWJ bound. That is,

765
$$D(p \parallel q) \geq \mathcal{D}_{\text{NWJ}}(\theta; p, q) \triangleq \mathbb{E}_{p(x)}[\log \tilde{r}_\theta(x)] - \mathbb{E}_{q(x)}[\tilde{r}_\theta(x)] + 1,$$

766 where the equality holds if and only if $\tilde{r}_\theta(x) = \frac{p(x)}{q(x)}$ q -almost everywhere. For fixed x_2, \dots, x_K ,
767 they plug in a test function

768
$$\tilde{r}_\theta(x_1) \leftarrow \frac{r_\theta(x_1)}{\alpha r_\theta(x_1) + \frac{1-\alpha}{K-1} \sum_{z=2}^K r_\theta(x_z)}$$

769 to $\mathcal{D}_{\text{NWJ}}(\theta; \mathbf{q}_1, \alpha\mathbf{q}_1 + (1 - \alpha)\mathbf{q}_0)$, which yields

770
$$\begin{aligned} D(\mathbf{q}_1 \parallel \alpha\mathbf{q}_1 + (1 - \alpha)\mathbf{q}_0) &\geq \mathbb{E}_{\mathbf{q}_1(x_1)} \left[\log \frac{r_\theta(x_1)}{\alpha r_\theta(x_1) + \frac{1-\alpha}{K-1} \sum_{z=2}^K r_\theta(x_z)} \right] \\ &\quad + 1 - \mathbb{E}_{\alpha\mathbf{q}_1(x_1) + (1 - \alpha)\mathbf{q}_0(x_1)} \left[\frac{r_\theta(x_1)}{\alpha r_\theta(x_1) + \frac{1-\alpha}{K-1} \sum_{z=2}^K r_\theta(x_z)} \right]. \end{aligned}$$

771 Taking expectation over $\mathbf{q}_0(x_2) \dots \mathbf{q}_0(x_K)$, we have

772
$$\begin{aligned} D(\mathbf{q}_1 \parallel \alpha\mathbf{q}_1 + (1 - \alpha)\mathbf{q}_0) &\geq \mathcal{D}_{\alpha\text{-InfoNCE}}(\theta) + 1 - \mathbb{E}_{\mathbf{q}_0(x_2) \dots \mathbf{q}_0(x_K)} \left[\mathbb{E}_{\alpha\mathbf{q}_1(x_1) + (1 - \alpha)\mathbf{q}_0(x_1)} \left[\frac{r_\theta(x_1)}{\alpha r_\theta(x_1) + \frac{1-\alpha}{K-1} \sum_{z=2}^K r_\theta(x_z)} \right] \right]. \end{aligned}$$

773 To conclude $D(\mathbf{q}_1 \parallel \alpha\mathbf{q}_1 + (1 - \alpha)\mathbf{q}_0) \geq \mathcal{D}_{\alpha\text{-InfoNCE}}(\theta)$, then claim that

774
$$\mathbb{E}_{\mathbf{q}_0(x_2) \dots \mathbf{q}_0(x_K)} \left[\mathbb{E}_{\alpha\mathbf{q}_1(x_1) + (1 - \alpha)\mathbf{q}_0(x_1)} \left[\frac{r_\theta(x_1)}{\alpha r_\theta(x_1) + \frac{1-\alpha}{K-1} \sum_{z=2}^K r_\theta(x_z)} \right] \right] \stackrel{(c)}{\leq} 1$$

775 for $\alpha \in (0, \frac{1}{2}]$. This is argued based on the following propositions from (Song & Ermon, 2020b),
776 which we rephrase for simplicity:777 **Proposition 9** (Song & Ermon, 2020b, Propositions 1 and 2). *If Z_1, Z_2, \dots, Z_K are exchangeable,
778 then*

779
$$\mathbb{E} \left[\frac{Z_1}{\alpha Z_1 + \frac{1-\alpha}{K-1} \sum_{j=2}^K Z_j} \right] \leq \begin{cases} \frac{1}{\alpha K} & \text{if } \alpha \in (0, \frac{2}{K}], \\ 1 & \text{if } \alpha \in [\frac{1}{K}, \frac{1}{2}]. \end{cases}$$

780 That is, Lee & Shin (2022) apply this proposition to argue (c), by letting $(Z_1, \dots, Z_K) \leftarrow (r_\theta(x_1), \dots, r_\theta(x_K))$. Note, however, that we cannot apply the proposition here, as the random
781 variables are *not exchangeable* under $(x_1, \dots, x_K) \sim (\alpha\mathbf{q}_1(x_1) + (1 - \alpha)\mathbf{q}_0(x_1))\mathbf{q}_0(x_2) \dots \mathbf{q}_0(x_K)$.782 B ALTERNATIVE APPROACH TO MI ESTIMATION
783784 As alluded to earlier in Section 3.1, we can construct an alternative consistent objective function for
785 estimating the pointwise dependence $\frac{p(x,y)}{p(x)p(y)}$. That is, applying the InfoNCE-anchor framework for
786 $\mathbf{q}_1(x) \leftarrow p(x, y)$ and $\mathbf{q}_0(x, y) \leftarrow p(x)p(y)$, we obtain

787
$$\begin{aligned} \mathcal{L}_{K;\nu}^{(2)}(\theta) &\triangleq -\frac{K}{K + \nu} \mathbb{E}_{p(x_1, y_1)p(x_2)p(y_2) \dots p(x_K)p(y_K)} \left[\log \frac{r_\theta(x_1, y_1)}{\nu + \sum_{i=1}^K r_\theta(x_i, y_i)} \right] \\ &\quad - \frac{\nu}{K + \nu} \mathbb{E}_{p(x_1)p(y_1)p(x_2)p(y_2) \dots p(x_K)p(y_K)} \left[\log \frac{\nu}{\nu + \sum_{i=1}^K r_\theta(x_i, y_i)} \right]. \end{aligned}$$

810 While this version results in a different, yet consistent objective function, it is not preferable over the
 811 discussed approach in practice.
 812

813 With this approach, when $\nu = 0$, minimizing $\mathcal{L}_{K;0}^{(2)}(\theta)$ guarantees that for some $C > 0$,

$$814 \quad 815 \quad r_{\theta^*}(x, y) = C \frac{p(x, y)}{p(x)p(y)}.$$

816 This is a guarantee analogous to the MLInfoNCE (Song & Ermon, 2020b).
 817

818 C PSEUDOCODE FOR INFONCE-ANCHOR

820 Here, we provide a pseudocode for the PyTorch implementation of the InfoNCE-anchor objective
 821 function.
 822

```
823 1 def infonce_with_anchor(scores, nu=1.0):
824 2     """
825 3     scores: [B, B] tensor where scores[i, j] = f(x_i, y_j)
826 4     nu: prior smoothing hyperparameter
827 5     """
828 6     assert nu > 0.
829 7     device = scores.device
830 8     B = scores.size(0)
831 9     K = B - 1
832 10
833 11     # joint term
834 12     mask = torch.zeros(B, B, device=device)
835 13     i = torch.arange(1, B + 1)
836 14     mask[i - 1, i - 2] = -torch.inf
837 15     scores_aug = torch.cat([
838 16         np.log(nu) * torch.ones(B, 1, device=device),
839 17         mask + scores], dim=1)  # augmented score
840 18     joint_term = - (scores.diag().mean() - scores_aug.logsumexp(dim=1).mean())
841 19
842 20     # independent term
843 21     neg_inf_diag_mask = torch.zeros(B, B, device=device).fill_diagonal_(-torch.inf)
844 22     scores_aug_neg = torch.cat([
845 23         np.log(nu) * torch.ones(B, 1, device=device),
846 24         neg_inf_diag_mask + scores
847 25     ], dim=1)  # negative augmented score
848 26     marginal_term = - (np.log(nu) - scores_aug_neg.logsumexp(dim=1).mean())
849 27
850 28     return (K / (K + nu)) * joint_term + (nu / (K + nu)) * marginal_term
```

848 D ASYMPTOTIC BEHAVIOR OF INFONCE-ANCHOR

849 **Theorem 10.** *If $\nu/K \rightarrow \beta$ as $K \rightarrow \infty$ for some $\beta \geq 0$, then*

$$850 \quad \lim_{K \rightarrow \infty} \left(-\mathcal{L}_{K;\nu}(\theta) + \frac{K \log K}{K + \nu} \right) = \frac{\beta}{\beta + 1} \log \beta + \frac{1}{\beta + 1} \mathbb{E}_{q_1(x)}[\log r_\theta(x)] - \log(\beta + \mathbb{E}_{q_0(x)}[r_\theta(x)]) \\ 851 \quad \leq \frac{\beta}{\beta + 1} \log \beta + \frac{1}{\beta + 1} D(q_1 \parallel q_0) - \log(\beta + 1).$$

852 *The equality holds if and only if $r_\theta(x) = \frac{q_1(x)}{q_0(x)}$ when $\beta > 0$, and $r_\theta(x) = C \frac{q_1(x)}{q_0(x)}$ for some $C > 0$ when $\beta = 0$.*

853 Rewriting as a lower bound on the KL divergence, we have Eq. (5).

861 E DECISION-THEORETIC TREATMENT OF PROPER SCORING RULES

862 This section serves as a decision-theoretic foundation on proper scoring rules for conditional probability estimation, which is essential to proving the main statements in Section 3.4, i.e., Proposition 5

864 and Theorem 6. Appendix E.3 is marked with asterisk, which is included for completeness and can
 865 be safely skipped in the first reading.
 866

867 **E.1 PRELIMINARIES AND DEFINITIONS**
 868

869 We first note that
 870

$$871 \mathbb{E}_{p(a,z)}[\lambda_z(\hat{\eta}(a))] = \mathbb{E}_{p(a)} \left[\sum_{z=0}^M \eta(a) \lambda_z(\hat{\eta}(a)) \right] = \mathbb{E}_{p(a)}[\langle \eta(a), \lambda(\hat{\eta}(a)) \rangle],$$

$$872$$

$$873$$

874 which implies that we only need to study the *conditional* problem for each a , without the expectation
 875 over $a \sim p(a)$. We define the *(conditional) risk* of $\hat{\eta} \in \Delta(\mathcal{Z})$ with respect to $\eta^* \in \Delta(\mathcal{Z})$ as
 876

$$877 d^\lambda(\hat{\eta} \parallel \eta^*) \triangleq \sum_{z \in \mathcal{Z}} (\eta^*)_z \lambda_z(\hat{\eta}) = \langle \eta^*, \lambda(\hat{\eta}) \rangle.$$

$$878$$

879 In particular, we denote
 880

$$f^\lambda(\eta^*) \triangleq d^\lambda(\eta^* \parallel \eta^*)$$

881 and call the *pointwise Bayes risk* with respect to η^* , since we can write the Bayes-optimal risk as
 882

$$883 \mathbb{E}_{p(a,z)}[f^\lambda(\eta(a))] = \mathbb{E}_{p(a,z)}[d^\lambda(\eta(a) \parallel \eta(a))] = \min_{\hat{\eta}: \mathcal{A} \rightarrow \Delta(\mathcal{Z})} \mathbb{E}_{p(a,z)}[\lambda_z(\hat{\eta}(a))],$$

$$884$$

885 given that λ is proper.
 886

887 Since the propriety of a scoring rule is independent of the distribution $p(a)$ over \mathcal{A} as alluded to
 888 earlier, we can restate the definition of propriety as follows. We define and denote the *regret* of $\hat{\eta}$
 889 with respect to η^* under λ as
 890

$$891 \text{Reg}^\lambda(\hat{\eta} \parallel \eta^*) \triangleq d^\lambda(\hat{\eta} \parallel \eta^*) - d^\lambda(\eta^* \parallel \eta^*).$$

892 **Definition 11.** A loss-function tuple λ is said to be *proper* if $\text{Reg}^\lambda(\hat{\eta} \parallel \eta^*) \geq 0$ for any $\hat{\eta}, \eta^*$ and
 893 $\text{Reg}^\lambda(\eta^* \parallel \eta^*) = 0$ for any η^* . A loss-function tuple λ is said to be *strictly proper* if it is proper
 894 and $\text{Reg}^\lambda(\hat{\eta} \parallel \eta^*) = 0$ if and only if $\hat{\eta} = \eta^*$, for any η^* .
 895

896 We now state the characterization of differentiable (strictly) proper loss functions. If λ is differentiable,
 897 we let
 898

$$g^\lambda(\eta^*) \triangleq \nabla_{\hat{\eta}} d^\lambda(\hat{\eta} \parallel \eta^*)|_{\hat{\eta}=\eta^*} = (\langle \nabla_j \lambda(\eta^*), \eta^* \rangle)_{j \in \mathcal{Z}} = \mathbf{J}\lambda(\eta^*)\eta^*, \quad (9)$$

900 which is the gradient of the pointwise risk function $\hat{\eta} \mapsto d^\lambda(\hat{\eta} \parallel \eta^*)$ at $\hat{\eta} = \eta^*$. Here, $\mathbf{J}\lambda(\eta^*) \in$
 901 $\mathbb{R}^{m \times m}$ denotes the Jacobian of the matrix $\lambda: \Delta(\mathcal{Z}) \rightarrow \mathbb{R}^m$, i.e.,
 902

$$903 (\mathbf{J}\lambda(\eta^*))_{ij} \triangleq \frac{\partial \lambda_j(\eta^*)}{\partial \eta_i^*}.$$

$$904$$

905 **Theorem 12.** A scoring rule $\lambda = (\lambda_z: \Delta(\mathcal{Z}) \rightarrow \mathbb{R})_{z \in \mathcal{Z}}$ is (strictly) proper if and only if (1) the
 906 pointwise Bayes risk function $\eta \mapsto f^\lambda(\eta)$ is (strictly) concave over $\Delta(\mathcal{Z})$ and (2) $\mathbf{g}^\lambda(\eta^*) = \mathbf{0}$ for
 907 any $\eta^* \in \Delta(\mathcal{Z})$.
 908

909 To prove the theorem, we first state a key technical lemma. Given a differentiable function $f: V \rightarrow \mathbb{R}$
 910 over a subset V of an Euclidean space, we define the *Bregman distortion* $B_f: V \times V \rightarrow \mathbb{R}$ as
 911

$$912 B_f(u, v) \triangleq f(u) - f(v) - \langle \nabla f(v), u - v \rangle.$$

913 If f is convex, $B_f(x, z)$ is called the *Bregman divergence* generated by f . Finally, let $\bar{f}^\lambda(\eta) \triangleq$
 914 $-f^\lambda(\eta)$ denote the negative pointwise Bayes risk.
 915

916 **Lemma 13.** For any $\hat{\eta}, \eta^*$, we have
 917

$$\text{Reg}^\lambda(\hat{\eta} \parallel \eta^*) = B_{\bar{f}^\lambda}(\eta^*, \hat{\eta}) + \langle \mathbf{g}^\lambda(\hat{\eta}), \hat{\eta} - \eta^* \rangle.$$

918 *Proof.* By chain rule, we have

$$919 \quad 920 \quad 921 \quad 922 \quad 923 \quad 924 \quad 925 \quad 926 \quad 927 \quad 928 \quad 929 \quad 930 \quad 931 \quad 932 \quad 933 \quad 934 \quad 935 \quad 936 \quad 937 \quad 938 \quad 939 \quad 940 \quad 941 \quad 942 \quad 943 \quad 944 \quad 945 \quad 946 \quad 947 \quad 948 \quad 949 \quad 950 \quad 951 \quad 952 \quad 953 \quad 954 \quad 955 \quad 956 \quad 957 \quad 958 \quad 959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971$$

$$\nabla f^\lambda(\hat{\eta}) = \lambda(\hat{\eta}) + g^\lambda(\hat{\eta}).$$

Therefore, by the definition of Bregman distortion, we have

$$\begin{aligned} B_{\bar{f}^\lambda}(\eta^*, \hat{\eta}) &= -B_{f^\lambda}(\eta^*, \hat{\eta}) \\ &= -f^\lambda(\eta^*) + f^\lambda(\hat{\eta}) + \langle \nabla f^\lambda(\hat{\eta}), \eta^* - \hat{\eta} \rangle \\ &= -d^\lambda(\eta^* \parallel \eta^*) + d^\lambda(\hat{\eta} \parallel \hat{\eta}) - \langle \lambda(\hat{\eta}) + g^\lambda(\hat{\eta}), \eta^* - \hat{\eta} \rangle \\ &= -d^\lambda(\eta^* \parallel \eta^*) + d^\lambda(\hat{\eta} \parallel \hat{\eta}) + d^\lambda(\hat{\eta} \parallel \eta^*) - d^\lambda(\hat{\eta} \parallel \hat{\eta}) + \langle g^\lambda(\hat{\eta}), \eta^* - \hat{\eta} \rangle \\ &= \text{Reg}^\lambda(\hat{\eta} \parallel \eta^*) + \langle g^\lambda(\hat{\eta}), \eta^* - \hat{\eta} \rangle, \end{aligned}$$

which concludes the proof. \square

The first condition (1) imposes that the estimation problem becomes (strictly) not easier as we *mix* the class probabilities. The second condition (2) formalizes that if η^* is the underlying class probability, then $\eta = \eta^*$ is a local minimizer of the conditional risk function $\eta \mapsto d^\lambda(\eta \parallel \eta^*)$.

Now we are ready to prove Theorem 12.

Proof of Theorem 12. We first prove the only-if direction. If λ is proper, then $d^\lambda(\hat{\eta} \parallel \eta^*) \geq d^\lambda(\eta^* \parallel \eta^*)$ for any $\hat{\eta}$ and η^* by definition. That is, $\hat{\eta} \mapsto d^\lambda(\hat{\eta} \parallel \eta^*)$ is stationary at $\hat{\eta} = \eta^*$, and thus the gradient $g^\lambda(\eta) = \nabla_{\hat{\eta}} d^\lambda(\hat{\eta} \parallel \eta)|_{\hat{\eta}=\eta} = 0$ for any η . Now, by the identity in Lemma 13, we have $B_{\bar{f}^\lambda}(\eta^*, \hat{\eta}) = \text{Reg}^\lambda(\hat{\eta} \parallel \eta^*) \geq 0$ for any $\eta^*, \hat{\eta}$, which implies that the function $f^\lambda = -\bar{f}^\lambda$ is concave. Further, if λ is strictly proper, then $B_{\bar{f}^\lambda}(\eta^*, \hat{\eta}) = \text{Reg}^\lambda(\hat{\eta} \parallel \eta^*) > 0$ for any $\hat{\eta} \neq \eta^*$, which implies that f^λ is strictly concave.

For the converse, i.e., the if direction, we can directly apply the identity in Lemma 13 and conclude $\text{Reg}^\lambda(\hat{\eta} \parallel \eta^*) \geq B_{\bar{f}^\lambda}(\eta^*, \hat{\eta}) \geq 0$ by the convexity of \bar{f}^λ . It is clear that λ is strictly proper if \bar{f}^λ is strictly concave. \square

E.2 FROM LOSS FUNCTION TO GENERATING FUNCTION

Given a loss function λ , we define a corresponding *generating function*

$$\Psi^\lambda(\rho) \triangleq -\langle \rho, \lambda(\eta) \rangle$$

for $\rho \in \{1\} \times \mathbb{R}_+^M$, so that we can write the pointwise Bayes risk at η^* as

$$f^\lambda(\eta^*) = d^\lambda(\eta^* \parallel \eta^*) = -\eta_0^* \Psi^\lambda(\rho^*).$$

Then, it is easy to check that

Proposition 14. *If λ is (strictly) proper, $\rho \mapsto \Psi^\lambda(\rho)$ is (strictly) convex.*

Proof. If λ is (strictly) proper, then the negative pointwise Bayes risk function $\eta^* \mapsto -f^\lambda(\eta^*) = \eta_0^* \Psi^\lambda(\rho^*)$ is (strictly) convex by Theorem 12. Since the mapping is a perspective function of $\rho \mapsto \Psi^\lambda(\rho)$, Ψ^λ must be (strictly) convex. \square

Remark 15 (From generating function to loss function). Conversely, we can define a loss function from a differentiable function $\Psi: \{1\} \times \mathbb{R}_+^M$ as follows:

$$\lambda^\Psi(\eta) \triangleq \begin{bmatrix} \langle \nabla \Psi(\rho), \rho \rangle - \Psi(\rho) \\ -\nabla \Psi(\rho)_{1:M} \end{bmatrix},$$

so that we can write the pointwise Bayes risk at η^* as

$$f^{\lambda^\Psi}(\eta^*) = d^{\lambda^\Psi}(\eta^* \parallel \eta^*) = -\eta_0^* \Psi(\rho^*).$$

972 E.3 ONE-TO-ONE CORRESPONDENCE*

973

974 A natural question to ask is whether $\lambda \mapsto \Psi^\lambda$ and $\Psi \mapsto \lambda^\Psi$ are inverse mappings each other. Indeed,
975 we have the following propositions.976 **Proposition 16.**

977

978
$$\lambda^{\Psi^\lambda}(\eta) = \lambda(\eta) - \langle \eta, g^\lambda(\eta) \rangle \mathbb{1} + g^\lambda(\eta).$$

979 Hence, in particular, if λ is proper, it readily follows that $\lambda^{\Psi^\lambda}(\eta) \equiv \lambda(\eta)$.
980981 *Proof of Proposition 16.* First, we consider $z \in \{1, \dots, M\}$. Note that
982

983
$$\begin{aligned} \frac{\partial \lambda_z(\eta)}{\partial \rho_z} &= \left\langle \frac{\partial}{\partial \rho_z} \frac{(1, \rho_1, \dots, \rho_M)}{1 + \rho_1 + \dots + \rho_M}, \nabla \lambda_z(\eta) \right\rangle \\ &= \eta_0 \langle -\eta + \mathbf{e}_Y, \nabla \lambda_z(\eta) \rangle, \end{aligned}$$

984 for any $z = 0, 1, \dots, M$. Thus, we have
985

986
$$\begin{aligned} \sum_{z=0}^M \rho_z \frac{\partial \lambda_z(\eta)}{\partial \rho_z} &= \eta_0 \sum_z \rho_z \langle -\eta + \mathbf{e}_Y, \nabla \lambda_z(\eta) \rangle \\ &= \left\langle -\eta + \mathbf{e}_Y, \sum_z \eta_z \nabla \lambda_z(\eta) \right\rangle \\ &= \langle -\eta + \mathbf{e}_Y, g^\lambda(\eta) \rangle. \end{aligned}$$

987 This implies that
988

989
$$\begin{aligned} \lambda_z^{\Psi^\lambda}(\eta) &= \frac{\partial \Psi^\lambda(\eta)}{\partial \rho_z} \\ &= -\frac{\partial \lambda_0(\eta)}{\partial \rho_z} - \lambda_z(\eta) - \sum_{z=1}^M \rho_z \frac{\partial \lambda_z(\eta)}{\partial \rho_z} \\ &= -\lambda_z(\eta) - \sum_{z=0}^M \rho_z \frac{\partial \lambda_z(\eta)}{\partial \rho_z} \\ &= -\lambda_z(\eta) - \langle \eta + \mathbf{e}_z, g^\lambda(\eta) \rangle. \end{aligned}$$

990 We now consider $z = 0$. Observe that
991

992
$$\begin{aligned} \langle \nabla \Psi^\lambda(\rho), \rho \rangle &= \sum_{z=1}^M \rho_z \frac{\partial \Psi^\lambda(\rho)}{\partial \rho_z} \\ &= - \sum_{z=1}^M \rho_z \lambda_z(\eta) - \langle \eta + \mathbf{e}_0, g^\lambda(\eta) \rangle. \end{aligned}$$

993 Hence, we have
994

995
$$\begin{aligned} \lambda_0^{\Psi^\lambda}(\eta) &= \langle \nabla \Psi^\lambda(\rho), \rho \rangle - \Psi^\lambda(\rho) \\ &= \lambda_0(\eta) + \sum_{z=1}^M \rho_z \lambda_z(\eta) - \sum_{z=1}^M \rho_z \lambda_z(\eta) - \langle \eta + \mathbf{e}_0, g^\lambda(\eta) \rangle \\ &= \lambda_0(\eta) - \langle \eta + \mathbf{e}_0, g^\lambda(\eta) \rangle. \end{aligned}$$

996 This concludes the proof. □
997998 The following statement asserts that the generating function induced by the induced loss function of a
999 generating function corresponds to the original generating function.
10001001 **Proposition 17.**

1002

1003
$$\Psi^{\lambda^\Psi}(\rho) \equiv \Psi(\rho).$$

1026 *Proof.* By definition, it is easy to check that
 1027

$$\begin{aligned} 1028 \quad \Psi^{\lambda^\Psi}(\rho) &= -\langle \rho, \lambda^\Psi(\rho) \rangle \\ 1029 \quad &= -(\langle \nabla \Psi(\rho), \rho \rangle - \Psi(\rho)) + \sum_{z=1}^M \rho_z \frac{\partial \Psi(\rho)}{\partial \rho_z} \\ 1030 \quad &= \Psi(\rho). \end{aligned}$$

□

1034 Therefore, there is a one-to-one correspondence between (strictly) proper loss functions $\{\lambda: \Delta(\mathcal{Z}) \rightarrow$
 1035 $\mathbb{R}^{\mathcal{Z}}\}$ and (strictly) convex functions $\{\Psi: \{1\} \times \mathbb{R}_+^M \rightarrow \mathbb{R}\}$.
 1036

1037 E.4 CONNECTION TO BREGMAN DIVERGENCES

1039 Note the following proposition.

1040 **Proposition 18.**

$$1041 \quad B_{f^\lambda}(\eta^*, \eta) = -\eta_0^* B_{\Psi^\lambda}(\rho^*, \rho).$$

1042 The following corollary reveals that any CPE objective function induced by a proper scoring rule can
 1043 be understood as a Bregman divergence minimization.
 1044

1045 **Corollary 19.** *If λ is proper, then*

$$1046 \quad \text{Reg}^\lambda(\eta \parallel \eta^*) = \eta_0^* B_{\Psi^\lambda}(\rho^*, \rho).$$

1047 In other words, it shows that a proper loss function λ acts only through the form of the Bregman
 1048 divergence $B_{\Psi^\lambda}(\cdot, \cdot)$. In other words, λ and λ' are equivalent CPE loss functions if $B_{\Psi^\lambda}(\cdot, \cdot) \equiv$
 1049 $B_{\Psi^{\lambda'}}(\cdot, \cdot)$. This defines an equivalence class in the set of loss functions
 1050

$$1052 \quad \Lambda(\Psi) \triangleq \{\lambda: \Delta(\mathcal{Z}) \rightarrow \mathbb{R}^{\mathcal{Z}} \mid B_{\Psi^\lambda}(\cdot, \cdot) \equiv B_\Psi(\cdot, \cdot)\}.$$

1053 We know that this set is always not empty, since Proposition 17 implies that
 1054

$$1055 \quad \lambda^\Psi \in \Lambda(\Psi).$$

1056 Consider a subset

$$1058 \quad \Lambda_o(\Psi) \triangleq \{\lambda: \Delta(\mathcal{Z}) \rightarrow \mathbb{R}^{\mathcal{Z}} \mid \lambda \in \Lambda(\Psi), \mathbf{g}^\lambda(\eta) \equiv \mathbf{0}\}.$$

1059 The loss functions in this subset can be thought as *canonical* functions, as we require $\mathbf{g}^\lambda(\eta) \equiv \mathbf{0}$ to
 1060 check propriety in Theorem 12. Note that

$$1061 \quad \lambda^\Psi \in \Lambda_o(\Psi),$$

1062 since Lemma 24 establishes that $\mathbf{g}^{\lambda^\Psi}(\eta) \equiv \mathbf{0}$. A small open question is whether λ^Ψ is an unique
 1063 element of $\Lambda_o(\Psi)$.
 1064

1065 **Remark 20** (Properization). We remark that for any $\lambda \in \Lambda(\Psi)$, we can map it to another element
 1066 $\lambda' \in \Lambda_o(\Psi)$, by defining it as

$$1067 \quad \lambda'(\eta) \triangleq \lambda(\eta) + \mathbf{g}^\lambda(\eta) - \langle \eta, \mathbf{g}^\lambda(\eta) \rangle \mathbf{1}.$$

1069 It is easy to check that $\lambda' \in \Lambda_o(\Psi)$ indeed. One can think of this as a *properization* of a loss function
 1070 λ , since for a convex function Ψ , any loss function $\lambda \in \Lambda(\Psi)$ can be made into a proper loss
 1071 $\lambda' \in \Lambda_o(\Psi)$.
 1072

1073 E.5 EXAMPLES OF PROPER SCORING RULES

1074 We first start with proper *binary* scoring rules; see Table 3. Most of the examples can be found from
 1075 (Gneiting & Raftery, 2007). We refer to rules generated from the Ψ -induced scoring rules (Eq. (8))
 1076 by *asymmetric* scoring rules, and the Φ -induced rules (Eq. (10)) by *symmetric* rules.
 1077

1078 ³If $\alpha = 2$, famously known as the Brier score (Brier, 1950; Gneiting & Raftery, 2007).

1079 ⁴Called the spherical score when $\alpha = 2$ (Gneiting & Raftery, 2007). When $\alpha \rightarrow 1$, boils down to the log
 score.

Table 3: Examples of strictly proper binary scoring rules.

Asymmetric scoring rule	$\Psi(\rho)$	$\lambda_0^\Psi(\boldsymbol{\eta}), \lambda_1^\Psi(\boldsymbol{\eta})$ (see Eq. (8))
KLIEP (Sugiyama et al., 2008)	$\rho \log \rho$	$\frac{1}{\eta_0}, -\log \frac{\eta_1}{\eta_0}$
Robust DRE ($\alpha \notin \{0, 1\}$) (Sugiyama et al., 2012)	$\frac{\rho^\alpha}{\alpha(\alpha-1)}$ or $\frac{\rho^\alpha - \rho}{\alpha(\alpha-1)}$	$\frac{1}{\alpha} \frac{\eta_0^\alpha + \eta_1^\alpha}{\eta_0^\alpha} + \frac{1}{\alpha(\alpha-1)}, \frac{1}{1-\alpha} \left(\frac{\eta_1}{\eta_0}\right)^{\alpha-1}$
Inverse log	$-\log \rho$	$\log \frac{\eta_1}{\eta_0} - 1, \frac{\eta_0}{\eta_1}$
Symmetric scoring rule	$\Phi(\eta_0, \eta_1)$	$\lambda_z^{\Psi_\Phi}(\boldsymbol{\eta})$ (see Eq. (10))
Log (Good, 1952)	$\eta_0 \log \eta_0 + \eta_1 \log \eta_1$	$-\log \eta_z$
Power ($\alpha \notin \{0, 1\}$) ³	$\frac{\eta_0^\alpha + \eta_1^\alpha - 1}{\alpha(\alpha-1)}$	$\frac{\eta_0^\alpha + \eta_1^\alpha}{\alpha} - \frac{\eta_z^{\alpha-1}}{\alpha-1}$
Sym. inverse log	$-\log \eta_0 - \log \eta_1$	$\log \eta_0 + \log \eta_1 + \frac{1}{\eta_z}$
Pseudo-spherical ($\alpha \notin \{0, 1\}$) (Gneiting & Raftery, 2007) ⁴	$\frac{1}{\alpha-1} \left(\frac{\eta_0^\alpha + \eta_1^\alpha}{2}\right)^{\frac{1}{\alpha}}$	$-\frac{2^{-\frac{1}{\alpha}}}{\alpha-1} \left(\frac{\eta_z}{(\eta_0^\alpha + \eta_1^\alpha)^{\frac{1}{\alpha}}}\right)^{\alpha-1}$

Now, by naturally extending the definition of the elementary generating functions for the binary scoring rules, we can derive their multi-ary counterparts as shown in Table 4. We note that the multi-ary asymmetric scoring rules, when considered with our binary density ratio estimation framework below, boil down to the ones induced by the binary scoring rules. Therefore, since the nontrivial examples are from extending the symmetric scoring rules, we omit the multiary version of asymmetric rules.

Table 4: Examples of *symmetric* strictly proper $(M + 1)$ -ary scores.

Symmetric scoring rule	$\Phi(\boldsymbol{\eta})$	$\lambda_z^{\Psi_\Phi}(\boldsymbol{\eta})$ (see Eq. (10))	Known as
Log	$\langle \boldsymbol{\eta}, \log \boldsymbol{\eta} \rangle$	$-\log \eta_z$	
Power ($\alpha \notin \{0, 1\}$)	$\frac{\ \boldsymbol{\eta}\ _\alpha^\alpha}{\alpha(\alpha-1)}$ or $\frac{\ \boldsymbol{\eta}\ _\alpha^{\alpha-1}}{\alpha(\alpha-1)}$	$\frac{\ \boldsymbol{\eta}\ _\alpha^\alpha}{\alpha} - \frac{\eta_z^{\alpha-1}}{\alpha-1}$	Tsallis scoring rule (Dawid & Musio, 2014)
Sym. inverse log	$-\sum_{z=0}^M \log \eta_z$	$\sum_{z=0}^M \log \eta_z + \frac{1}{\eta_z}$	
Spherical ($\alpha \notin \{0, 1\}$)	$\frac{(M+1)^{-\frac{1}{\alpha}}}{\alpha-1} \ \boldsymbol{\eta}\ _\alpha$	$-\frac{(M+1)^{-\frac{1}{\alpha}}}{\alpha-1} \left(\frac{\eta_z}{\ \boldsymbol{\eta}\ _\alpha}\right)^{\alpha-1}$	

F DETAILS ON EXTENSIONS WITH PROPER SCORING RULES

In this section, we provide technical materials deferred from Section 3.4 on the extensions with proper scoring rules.

F.1 ALTERNATIVE CHARACTERIZATION OF PROPER SCORING RULE

An alternative, yet equivalent representation of a proper scoring rule is based on a convex function $\Phi(\boldsymbol{\eta})$ over $\boldsymbol{\eta} \in \Delta([0 : M])$. One can induce a convex function $\Psi(\rho)$ from a convex function $\Phi(\boldsymbol{\eta})$ by the perspective transformation:

$$\Psi_\Phi(\rho) \triangleq (1 + \rho_1 + \dots + \rho_M) \Phi\left(\frac{[1; \rho]}{1 + \rho_1 + \dots + \rho_M}\right).$$

Theorem 21. *Given a differentiable function $\Phi: \Delta([0 : M]) \rightarrow \mathbb{R}$,*

$$\boldsymbol{\lambda}^{\Psi_\Phi}(\boldsymbol{\eta}) = \left(\langle \boldsymbol{\eta}, \nabla_{\boldsymbol{\eta}} \Phi(\boldsymbol{\eta}) \rangle - \Phi(\boldsymbol{\eta}) \right) \mathbf{1} - \nabla_{\boldsymbol{\eta}} \Phi(\boldsymbol{\eta}). \quad (10)$$

Proof. First, we can write

$$\mathcal{L}_{K;\nu}^{\Psi_\Phi}(\boldsymbol{\eta}_\theta) - \mathcal{L}_{K;\nu}^{\Psi_\Phi}(\boldsymbol{\eta}^*) = \mathbb{E}_{p(x_{1:K})} \left[\langle \boldsymbol{\eta}^*(x_{1:K}), \boldsymbol{\lambda}^{\Psi_\Phi}(\boldsymbol{\eta}_\theta(x_{1:K})) \rangle - \langle \boldsymbol{\eta}^*(x_{1:K}), \boldsymbol{\lambda}^{\Psi_\Phi}(\boldsymbol{\eta}^*(x_{1:K})) \rangle \right].$$

1134 It is easy to check, from the definition of the Ψ_Φ -induced scoring rule in Eq. (10),
 1135

$$1136 \langle \boldsymbol{\eta}^*, \boldsymbol{\lambda}^{\Psi_\Phi}(\boldsymbol{\eta}_\theta) \rangle = -\Phi(\boldsymbol{\eta}_\theta) - \langle \nabla_{\boldsymbol{\eta}} \Phi(\boldsymbol{\eta}_\theta), \boldsymbol{\eta}^* - \boldsymbol{\eta}_\theta \rangle.$$

1137 In particular,

$$1139 \langle \boldsymbol{\eta}^*, \boldsymbol{\lambda}^{\Psi_\Phi}(\boldsymbol{\eta}^*) \rangle = -\Phi(\boldsymbol{\eta}^*).$$

1140 Hence, we have

$$1142 \langle \boldsymbol{\eta}^*, \boldsymbol{\lambda}^{\Psi_\Phi}(\boldsymbol{\eta}_\theta) \rangle - \langle \boldsymbol{\eta}^*, \boldsymbol{\lambda}^{\Psi_\Phi}(\boldsymbol{\eta}^*) \rangle = B_\Phi(\boldsymbol{\eta}^*, \boldsymbol{\eta}_\theta). \quad \square$$

1144 See the proof of Theorem 6 in Appendix G for a comparison.

1145 We remark that, for a (strictly) convex function Φ , Ψ is (strictly) convex since the perspective
 1146 transformation preserves the convexity, and thus

$$1148 \langle \boldsymbol{\eta}^*, \boldsymbol{\lambda}^{\Psi_\Phi}(\boldsymbol{\eta}) \rangle \geq \langle \boldsymbol{\eta}^*, \boldsymbol{\lambda}^{\Psi_\Phi}(\boldsymbol{\eta}^*) \rangle = -\Phi(\boldsymbol{\eta}^*).$$

1149 We note that the right hand side is the *Bayes optimal risk*. In other words, a convex function $\Phi(\cdot)$ can
 1150 characterize a proper scoring rule as its (negative) Bayes-optimal risk.

1151 **Theorem 22.** *For $\nu \geq 0$,*

$$1153 \mathcal{L}_{K;\nu}^{\Psi_\Phi}(\boldsymbol{\eta}_\theta) - \mathcal{L}_{K;\nu}^{\Psi_\Phi}(\boldsymbol{\eta}^*) = \mathbb{E}_{p(x_{1:K})} \left[B_\Phi(\boldsymbol{\eta}^*(x_{1:K}), \boldsymbol{\eta}_\theta(x_{1:K})) \right],$$

1155 For $\nu \geq 0$ and a convex function Φ , we have

$$1157 -\mathcal{L}_{K;\nu}^{\Psi_\Phi}(\boldsymbol{\eta}_\theta) \leq -\mathcal{L}_{K;\nu}^{\Psi_\Phi}(\boldsymbol{\eta}^*) = \mathbb{E}_{p(x_{1:K})} \left[\Phi(\boldsymbol{\eta}^*(x_{1:K})) \right].$$

1159 If $\nu > 0$, for a strictly convex function Φ , the equality is achieved if and only if $r_\theta(x) = \frac{q_1(x)}{q_0(x)}$.

1160 If $\nu = 0$, i.e., if there is no anchor class 0, we can only estimate the density ratio up to a multiplicative
 1162 constant, as the original InfoNCE guarantees.

1163 F.2 ON IMPLEMENTATION

1165 Here, we say that a scoring rule $\boldsymbol{\lambda}$ is $\{y_1, y_2\}$ -invariant for $y_1 \neq y_2 \in \mathcal{Y}$ if $\lambda_{y_1}(\boldsymbol{\eta}) = \lambda_{y_2}(\boldsymbol{\eta}')$ and
 1166 $\lambda_{y_2}(\boldsymbol{\eta}) = \lambda_{y_1}(\boldsymbol{\eta}')$ for any $\boldsymbol{\eta}, \boldsymbol{\eta}'$ such that $\eta_y = \eta'_y$ for $y \notin \{y_1, y_2\}$ and $\eta_{y_1} = \eta'_{y_2}$ and $\eta_{y_2} = \eta'_{y_1}$.

1168 **Proposition 23.** *If the scoring rule $\boldsymbol{\lambda}$ is $\{z_1, z_2\}$ -invariant for any $\{z_1, z_2\} \subseteq \{1, 2, \dots, K\}$, we
 1169 have*

$$1170 \mathcal{L}_{K;\nu}^{\Psi}(\boldsymbol{\eta}_\theta) = \frac{K}{K + \nu} \mathbb{E}_{q_1(x_1)q_0(x_2) \dots q_0(x_K)} [\lambda_1^\Psi(\boldsymbol{\eta}_\theta(x_{1:K}))] \\ 1171 + \frac{\nu}{K + \nu} \mathbb{E}_{q_0(x_1)q_0(x_2) \dots q_0(x_K)} [\lambda_0^\Psi(\boldsymbol{\eta}_\theta(x_{1:K}))]. \quad (11)$$

1174 F.3 EXAMPLES OF INFONCE-ANCHOR-TYPE DRE OBJECTIVES

1176 Recall the examples of proper scoring rules in Appendix E.5. In Table 5, we first list the canonical
 1177 consistent DRE objectives derived by asymmetric scoring rules (see Table 3). As noted earlier, the
 1178 tensorization of InfoNCE-anchor does not have any effect with asymmetric scoring rules, and the
 1179 objectives boil down to the standard binary DRE objectives.

1181 As noted in the last column of the table, these binary DRE objectives have been extensively used and
 1182 studied in the various literature on DRE, MI estimation, and representation learning. We mention in
 1183 passing that a recent paper (Ryu et al., 2025), building on noise-contrastive estimation (Gutmann &
 1184 Hyvärinen, 2012), revealed a connection between these rules and the maximum likelihood estimation
 1185 principle.

1186 In Table 6, we list the InfoNCE-anchor-type objectives based on the symmetric scoring rules (see
 1187 Table 4). Table 7 lists the corresponding InfoNCE-type objectives (i.e., without anchor). We remark
 1188 that the Spherical objective in the main text corresponds to the last row in Table 6.

1188 Table 5: Examples of consistent DRE objectives derived from *asymmetric* scoring rules (first half of
 1189 Table 3). Note that these objectives induced by asymmetric scoring rules do not depend on K and ν .
 1190

1191 Asym. scoring rule	1192 $\mathcal{L}_{K;\nu}^{\Psi}(\eta_{\theta})$ (see Eq. (11))	1193 Known as
1194 Log	1195 $\mathbb{E}_{q_1}[-\log r_{\theta}(x)] + \mathbb{E}_{q_0}[r_{\theta}(x)]$	1196 KLIEP (Sugiyama et al., 2008) in DRE. 1197 NWJ (Nguyen et al., 2010) in MI estimation.
1198 Power ($\alpha \notin (0, 1)$)	1199 $\mathbb{E}_{q_1}[\frac{r_{\theta}(x)^{\alpha-1}}{1-\alpha}] + \mathbb{E}_{q_0}[\frac{r_{\theta}(x)^{\alpha}}{\alpha}]$	1200 Robust DRE (Sugiyama et al., 2012), 1201 KLIIEP (Sugiyama et al., 2008) when $\alpha \rightarrow 1$, 1202 LSIF (Kanamori et al., 2009) when $\alpha = 2$ in 1203 DRE.
1204 (when $\alpha = 2$)	1205 $-\mathbb{E}_{q_1}[r_{\theta}(x)] + \frac{1}{2}\mathbb{E}_{q_0}[r_{\theta}(x)^2]$	1206 In MI estimation/DRE, known as χ^2 or 1207 DRF (Tsai et al., 2020). In rep. learning, H- 1208 score (Wang et al., 2019), spectral contrastive 1209 loss (HaoChen et al., 2021), CCA (Chapman 1210 et al., 2024), LoRA loss (Ryu et al., 2024).
1211 Inverse log	1212 $\mathbb{E}_{q_1}[\frac{1}{r_{\theta}(x)}] + \mathbb{E}_{q_0}[\log r_{\theta}(x)]$	1213

1204 Table 6: Examples of InfoNCE-anchor-type DRE objectives ($\nu > 0$), derived from *symmetric* scoring
 1205 rules (Table 4). Here, $\rho_{\theta}(x_{1:K}) \triangleq [1, \rho_{\theta}(x_1), \dots, \rho_{\theta}(x_K)] \in \mathbb{R}_{+}^{K+1}$ and $\rho_{\theta}(x) \triangleq \frac{r_{\theta}(x)}{\nu}$. The
 1206 objective in the first row corresponds to our proposal InfoNCE-anchor. When $K = 1, \nu = 1$, it is
 1207 also known as JS (Poole et al., 2019) or NT-Logistics (Chen et al., 2020).
 1208

1209 Sym. scoring rule	1210 $\mathcal{L}_{K;\nu}^{\Psi\Phi}(\eta_{\theta})$ (see Eq. (11))
1211 Log	1212 $\frac{K}{K+\nu} \mathbb{E}_{q_1(x_{1:K})}[-\log \frac{\rho_{\theta}(x_1)}{\ \rho_{\theta}(x_{1:K})\ _1}] + \frac{1}{K+\nu} \mathbb{E}_{q_0(x_{1:K})}[-\log \frac{\nu}{\ \rho_{\theta}(x_{1:K})\ _1}]$
1213 Power	1214 $\frac{K}{K+\nu} \mathbb{E}_{q_1(x_{1:K})}[\frac{1}{\alpha}(\frac{\ \rho_{\theta}(x_{1:K})\ _{\alpha}}{\ \rho_{\theta}(x_{1:K})\ _1})^{\alpha} + \frac{1}{1-\alpha}(\frac{\rho_{\theta}(x_1)}{\ \rho_{\theta}(x_{1:K})\ _1})^{\alpha-1}]$ $+ \frac{\nu}{K+\nu} \mathbb{E}_{q_0(x_{1:K})}[\frac{1}{\alpha}(\frac{\ \rho_{\theta}(x_{1:K})\ _{\alpha}}{\ \rho_{\theta}(x_{1:K})\ _1})^{\alpha} + \frac{1}{1-\alpha}(\frac{1}{\ \rho_{\theta}(x_{1:K})\ _1})^{\alpha-1}]$
1215 Sym. inverse log	1216 $\frac{K}{K+\nu} \mathbb{E}_{q_1(x_{1:K})}[\frac{\ \log \rho_{\theta}(x_{1:K})\ + \ \rho_{\theta}(x_{1:K})\ _1}{\ \rho_{\theta}(x_{1:K})\ _1}]$ $+ \frac{\nu}{K+\nu} \mathbb{E}_{q_0(x_{1:K})}[\frac{\log \ \rho_{\theta}(x_{1:K})\ + \ \rho_{\theta}(x_{1:K})\ _1}{\ \rho_{\theta}(x_{1:K})\ _1}]$
1217 Pseudo-spherical	1218 $\frac{K}{K+\nu} \mathbb{E}_{q_1(x_{1:K})}[(\frac{\rho_{\theta}(x_1)}{\ \rho_{\theta}(x_{1:K})\ _{\alpha}})^{\alpha-1}] + \frac{\nu}{K+\nu} \mathbb{E}_{q_0(x_{1:K})}[(\frac{1}{\ \rho_{\theta}(x_{1:K})\ _{\alpha}})^{\alpha-1}]$ $- \frac{K}{K+\nu} \mathbb{E}_{q_1(x_{1:K})}[\frac{\rho_{\theta}(x_1)}{\ \rho_{\theta}(x_{1:K})\ _2}] + \frac{\nu}{K+\nu} \mathbb{E}_{q_0(x_{1:K})}[\frac{1}{\ \rho_{\theta}(x_{1:K})\ _2}]$

1222 G DEFERRED PROOFS

1223 G.1 PROOF OF PROPOSITION 1

1224 *Proof of Proposition 1.* We have an alternative proof for a loose upper bound

$$1225 -\mathcal{L}_{K;0}(\theta) + \log K \leq D(q_1 \parallel q_0).$$

1226 We first consider the NWJ variational lower bound of the KL divergence:

$$1227 D(q_1 \parallel q_0) \geq \mathbb{E}_{q_1}[\log r] - \mathbb{E}_{q_0}[r] + 1.$$

1228 Here the equality holds if and only if $r(x) \equiv \frac{q_1(x)}{q_0(x)}$. For $K \geq 2$, consider two distributions
 1229 $q_1(x_1)q_0(x_2) \cdots q_0(x_K)$ and $q_0(x_1)q_0(x_2) \cdots q_0(x_K)$. Applying the NWJ lower bound, we obtain

$$1230 \begin{aligned} 1231 D(q_1(x) \parallel q_0(x)) \\ 1232 &= D(q_1(x_1)q_0(x_2) \cdots q_0(x_K) \parallel q_0(x_1)q_0(x_2) \cdots q_0(x_K)) \\ 1233 &\geq \mathbb{E}_{q_1(x_1)q_0(x_2) \cdots q_0(x_K)}[\log r(x_1, \dots, x_K)] - \mathbb{E}_{q_0(x_1)q_0(x_2) \cdots q_0(x_K)}[r(x_1, \dots, x_K)] + 1. \end{aligned}$$

1234 Note that, again, the equality is attained if and only if

$$1235 r(x_1, \dots, x_K) \equiv \frac{q_1(x_1)}{q_0(x_1)}.$$

Table 7: Examples of InfoNCE-type DRE objectives, derived from *symmetric* scoring rules (Table 4).

Sym. scoring rule	$\mathcal{L}_{K;0}^{\Psi_{\Phi}}(\boldsymbol{\eta}_{\theta})$ (see Eq. (11))	Known as
Log	$\mathbb{E}_{\mathbf{q}_1(x_{1:K})}[-\log \frac{r_{\theta}(x_1)}{\ \mathbf{r}_{\theta}(x_{1:K})\ _1}]$	InfoNCE (van den Oord et al., 2018)/NT-Xent (Chen et al., 2020)
Power ($\alpha \notin \{0, 1\}$)	$\mathbb{E}_{\mathbf{q}_1(x_{1:K})}[\frac{1}{\alpha}(\frac{\ \mathbf{r}_{\theta}(x_{1:K})\ _{\alpha}}{\ \mathbf{r}_{\theta}(x_{1:K})\ _1})^{\alpha} + \frac{1}{1-\alpha}(\frac{r_{\theta}(x_1)}{\ \mathbf{r}_{\theta}(x_{1:K})\ _1})^{\alpha-1}]$	
Sym. inverse log	$\mathbb{E}_{\mathbf{q}_1(x_{1:K})}[\frac{\log \prod r_{\theta}(x_{1:K})}{\ \mathbf{r}_{\theta}(x_{1:K})\ _1} + \frac{\ \mathbf{r}_{\theta}(x_{1:K})\ _1}{r_{\theta}(x_1)}]$	
Pseudo-spherical ($\alpha \notin \{0, 1\}$)	$\mathbb{E}_{\mathbf{q}_1(x_{1:K})}[(\frac{r_{\theta}(x_1)}{\ \mathbf{r}_{\theta}(x_{1:K})\ _{\alpha}})^{\alpha-1}]$	
($\alpha = 2$)	$\mathbb{E}_{\mathbf{q}_1(x_{1:K})}[\frac{r_{\theta}(x_1)}{\ \mathbf{r}_{\theta}(x_{1:K})\ _2}]$	

Now, we consider a specific (suboptimal) parameterization of $r(x_1, \dots, x_K)$ in the following form:

$$r(x_1, \dots, x_K) \leftarrow \log \frac{r_{\theta}(x_1)}{\frac{1}{K} \sum_{k=1}^K r_{\theta}(x_k)}$$

for some nonnegative-valued function $r_{\theta}: \mathcal{X} \rightarrow \mathbb{R}_{\geq 0}$. By symmetry, it is easy to show that

$$\mathbb{E}_{\mathbf{q}_0(x_1)\mathbf{q}_0(x_2)\dots\mathbf{q}_0(x_K)}[r(x_1, \dots, x_K)] = 1.$$

Hence, the NWJ lower bound simplifies to

$$D(\mathbf{q}_1(x) \parallel \mathbf{q}_0(x)) \geq \mathbb{E}_{\mathbf{q}_1(x_1)\mathbf{q}_0(x_2)\dots\mathbf{q}_0(x_K)} \left[\log \frac{r_{\theta}(x_1)}{\frac{1}{K} \sum_{k=1}^K r_{\theta}(x_k)} \right] = -\mathcal{L}_{K;0}(\theta), \quad (12)$$

which concludes the proof. \square

G.2 PROOF OF THEOREM 2

Proof of Theorem 2. We start with the following upper bound

$$\begin{aligned} -\mathcal{L}_{K;\nu}(\theta) &= \mathbb{E}_{p(z)p(x_{1:K}|z)}[\log p_{\theta}(z|x_{1:K})] \\ &\leq \mathbb{E}_{p(z)p(x_{1:K}|z)}[\log p(z|x_{1:K})], \end{aligned}$$

where the upper bound is achieved when $p_{\theta}(z|x_{1:K}) = p(z|x_{1:K})$. This is by the Gibbs inequality, or equivalently

$$\mathbb{E}_{p(x_{1:K})} \left[D(p(z|x_{1:K}) \parallel p_{\theta}(z|x_{1:K})) \right] \geq 0.$$

We note that for $\nu = 0$, we have

$$\begin{aligned} -\mathcal{L}_{K;0}(\theta) + \log K &\leq \mathbb{E}_{p(z)p(x_{1:K}|z)}[\log p(z|x_{1:K})] + \log K \\ &= \mathbb{E}_{\mathbf{q}_1(x_1)\mathbf{q}_0(x_2)\dots\mathbf{q}_0(x_K)} \left[\log \frac{\frac{\mathbf{q}_1(x_1)}{\mathbf{q}_0(x_1)}}{\frac{1}{K} \sum_{z=1}^K \frac{\mathbf{q}_1(x_z)}{\mathbf{q}_0(x_z)}} \right] \\ &= D_{\text{JS}} \left(p(x_{1:K}|z=1), \dots, p(x_{1:K}|z=K) \right). \end{aligned} \quad (13)$$

The equality condition follows from the Gibbs inequality. This proves the first inequality.

To prove the upper bound $\log K$, continuing from Eq. (13), we have

$$\begin{aligned} -\mathcal{L}_{K;0}(\theta) + \log K &\leq \mathbb{E}_{\mathbf{q}_1(x_1)\mathbf{q}_0(x_2)\dots\mathbf{q}_0(x_K)} \left[\log \frac{\frac{\mathbf{q}_1(x_1)}{\mathbf{q}_0(x_1)}}{\frac{1}{K} \sum_{z=1}^K \frac{\mathbf{q}_1(x_z)}{\mathbf{q}_0(x_z)}} \right] \\ &\leq \mathbb{E}_{\mathbf{q}_1(x_1)\mathbf{q}_0(x_2)\dots\mathbf{q}_0(x_K)} \left[\log \frac{\frac{\mathbf{q}_1(x_1)}{\mathbf{q}_0(x_1)}}{\frac{1}{K} \frac{\mathbf{q}_1(x_1)}{\mathbf{q}_0(x_1)}} \right] = \log K. \end{aligned}$$

1296 For the second upper bound, we apply Jensen’s inequality with the concavity of the logarithmic
 1297 function and obtain

$$\begin{aligned} \mathbb{E}_{q_1(x_1)q_0(x_2)\dots q_0(x_K)} \left[\log \frac{1}{K} \sum_{z=1}^K \frac{q_1(x_z)}{q_0(x_z)} \right] &\geq \log \left(\mathbb{E}_{q_1(x_1)q_0(x_2)\dots q_0(x_K)} \left[\frac{1}{K} \sum_{z=1}^K \frac{q_1(x_z)}{q_0(x_z)} \right] \right) \\ &= \log \left(\frac{1}{K} \chi^2(q_1 \parallel q_0) + 1 \right) \\ &\geq \log \left(\frac{1}{K} (e^{D(q_1 \parallel q_0)} - 1) + 1 \right). \end{aligned}$$

1305 Here, $\chi^2(p \parallel q) \triangleq \mathbb{E}_p[\frac{p}{q}] - 1$ denotes the *chi-squared divergence* between distributions p and q . The
 1306 last inequality follows since $\chi^2(q_1 \parallel q_0) \geq e^{D(q_1 \parallel q_0)} - 1$. Rearranging the inequality proves the
 1307 desired bound. \square

1309 G.3 PROOF OF PROPOSITION 5

1311 To prove this proposition, we need the following lemma. The definition of the generating function g^λ
 1312 of a differentiable loss function λ is given in Eq. (9) in Appendix E.1. Recall that the definition of
 1313 the induced loss function λ^Ψ for a convex function Ψ is in Eq. (8).

1314 **Lemma 24.** *If Ψ is twice differentiable, $g^{\lambda^\Psi}(\eta) \equiv 0$.*

1317 *Proof of Proposition 5.* By Lemma 24, we have $g^{\lambda^\Psi}(\eta) \equiv 0$. Further, since $\eta \mapsto -f^{\lambda^\Psi}(\eta) =$
 1318 $\eta_0 \Psi(\rho)$ is a perspective of the function $\rho \mapsto \Psi(\rho)$, f^{λ^Ψ} must be (strictly) concave if Ψ is (strictly)
 1319 convex. Hence, by Theorem 12, we conclude that λ^Ψ is (strictly) proper. \square

1321 We now prove Lemma 24.

1323 *Proof of Lemma 24.* Consider

$$g_z^{\lambda^\Psi}(\eta) = \sum_{z=0}^M \eta_z \frac{\partial \lambda_z^\Psi(\eta)}{\partial \eta_z}.$$

1327 Note that $\rho_{z'} = \eta_{z'}/\eta_0$ for $z' = 1, \dots, M$, we have

$$\frac{\partial \rho_{z'}}{\partial \eta_z} = \begin{cases} -\frac{\rho_{z'}}{\eta_0} & z = 0 \\ \frac{1\{z=z'\}}{\eta_0} & z = 1, \dots, M. \end{cases}$$

1332 **Case 1:** $z = 0$. If $z = 0$, $\lambda_0^\Psi(\eta) = \langle \nabla \Psi(\rho), \rho \rangle - \Psi(\rho)$. Hence, we have

$$\begin{aligned} \frac{\partial \lambda_0^\Psi(\eta)}{\partial \eta_0} &= \sum_{z'=1}^M \frac{\partial \rho_{z'}}{\partial \eta_z} \frac{\partial}{\partial \rho_{z'}} (\langle \nabla \Psi(\rho), \rho \rangle - \Psi(\rho)) \\ &= \sum_{z'=1}^M -\frac{\rho_{z'}}{\eta_0} (\nabla^2 \Psi(\rho) \rho)_{z'} \\ &= -\frac{1}{\eta_0} (\langle \rho, \nabla^2 \Psi(\rho) \rho \rangle - (\nabla^2 \Psi(\rho) \rho)_0). \end{aligned} \tag{14}$$

1341 If $1 \leq z \leq M$, $\lambda_z^\Psi(\eta) = -(\nabla \Psi(\rho))_z$, and thus

$$\begin{aligned} \frac{\partial \lambda_z^\Psi(\eta)}{\partial \eta_0} &= \sum_{z'=1}^M \frac{\partial \rho_{z'}}{\partial \eta_z} \frac{\partial}{\partial \rho_{z'}} \left(-\frac{\partial \Psi(\rho)}{\partial \rho_z} \right) \\ &= \frac{1}{\eta_0} \sum_{z'=1}^M \rho_{z'} \frac{\partial^2 \Psi(\rho)}{\partial \rho_z \partial \rho_{z'}} \\ &= \frac{1}{\eta_0} (\nabla^2 \Psi(\rho) \rho)_z. \end{aligned} \tag{15}$$

1350 From (14) and (15), we have
 1351

$$\begin{aligned}
 1352 \quad g_0^{\lambda^\Psi}(\boldsymbol{\eta}) &= \sum_{z=0}^M \eta_z \frac{\partial \lambda_z^\Psi(\boldsymbol{\eta})}{\partial \eta_0} \\
 1353 &= -(\langle \boldsymbol{\rho}, \nabla^2 \Psi(\boldsymbol{\rho}) \boldsymbol{\rho} \rangle - (\nabla^2 \Psi(\boldsymbol{\rho}) \boldsymbol{\rho})_0) + \sum_{z=1}^M \frac{\eta_z}{\eta_0} (\nabla^2 \Psi(\boldsymbol{\rho}) \boldsymbol{\rho})_z \\
 1354 &= -\langle \boldsymbol{\rho}, \nabla^2 \Psi(\boldsymbol{\rho}) \boldsymbol{\rho} \rangle + \sum_{z=0}^M \rho_z (\nabla^2 \Psi(\boldsymbol{\rho}) \boldsymbol{\rho})_z \\
 1355 &= 0.
 \end{aligned}$$

1362 **Case 2:** $1 \leq z \leq M$. If $z = 0$, we have
 1363

$$\frac{\partial \lambda_0^\Psi(\boldsymbol{\eta})}{\partial \eta_z} = \frac{1}{\eta_0} (\nabla^2 \Psi(\boldsymbol{\rho}) \boldsymbol{\rho})_z. \quad (16)$$

1366 If $1 \leq z \leq M$,

$$\begin{aligned}
 1367 \quad \frac{\partial \lambda_z^\Psi(\boldsymbol{\eta})}{\partial \eta_z} &= -\frac{\partial}{\partial \eta_z} \frac{\partial \Psi(\boldsymbol{\rho})}{\partial \rho_z} \\
 1368 &= -\frac{\partial \rho_z}{\partial \eta_z} \frac{\partial^2 \Psi(\boldsymbol{\rho})}{\partial \rho_z \partial \rho_z} \\
 1369 &= -\frac{1}{\eta_0} \frac{\partial^2 \Psi(\boldsymbol{\rho})}{\partial \rho_z \partial \rho_z}.
 \end{aligned} \quad (17)$$

1374 Therefore, from (16) and (17), we have
 1375

$$\begin{aligned}
 1376 \quad g_z^{\lambda^\Psi}(\boldsymbol{\eta}) &= \sum_{z=0}^M \eta_z \frac{\partial \lambda_z^\Psi(\boldsymbol{\eta})}{\partial \eta_z} \\
 1377 &= (\nabla^2 \Psi(\boldsymbol{\rho}) \boldsymbol{\rho})_z - \sum_{z=1}^M \rho_z \frac{\partial^2 \Psi(\boldsymbol{\rho})}{\partial \rho_z \partial \rho_z} \\
 1378 &= (\nabla^2 \Psi(\boldsymbol{\rho}) \boldsymbol{\rho})_z - (\nabla^2 \Psi(\boldsymbol{\rho}) \boldsymbol{\rho})_z \\
 1379 &= 0.
 \end{aligned}$$

1384 Hence, we conclude that $g^{\lambda^\Psi}(\boldsymbol{\eta}) \equiv 0$. □
 1385

1386 G.4 PROOF OF THEOREM 6

1388 We note that, while the following proof is self-contained, a more detailed technical discussion
 1389 on the general relationship between proper scoring rule and Bregman divergence minimization in
 1390 Appendix E.4.
 1391

1392 *Proof of Theorem 6.* Note that we can write
 1393

$$\mathcal{L}_{K;\nu}^\Psi(\boldsymbol{\eta}_\theta) - \mathcal{L}_{K;\nu}^\Psi(\boldsymbol{\eta}^*) = \mathbb{E}_{p(x_{1:K})} \left[\langle \boldsymbol{\eta}^*(x_{1:K}), \boldsymbol{\lambda}^\Psi(\boldsymbol{\eta}_\theta(x_{1:K})) \rangle - \langle \boldsymbol{\eta}^*(x_{1:K}), \boldsymbol{\lambda}^\Psi(\boldsymbol{\eta}^*(x_{1:K})) \rangle \right].$$

1395 Now, it is easy to check that, we have
 1396

$$\langle \boldsymbol{\eta}^*, \boldsymbol{\lambda}^\Psi(\boldsymbol{\eta}_\theta) \rangle = \eta_0^* \left(-\Psi(\boldsymbol{\rho}_\theta) - \langle \nabla_{\boldsymbol{\rho}} \Psi(\boldsymbol{\rho}_\theta), \boldsymbol{\rho}^* - \boldsymbol{\rho}_\theta \rangle \right).$$

1399 In particular,
 1400

$$\langle \boldsymbol{\eta}^*, \boldsymbol{\lambda}^\Psi(\boldsymbol{\eta}^*) \rangle = -\eta_0^* \Psi(\boldsymbol{\rho}^*).$$

1402 Hence, we have
 1403

$$\langle \boldsymbol{\eta}^*, \boldsymbol{\lambda}^\Psi(\boldsymbol{\eta}_\theta) \rangle - \langle \boldsymbol{\eta}^*, \boldsymbol{\lambda}^\Psi(\boldsymbol{\eta}^*) \rangle = \eta_0^* B_\Psi(\boldsymbol{\rho}^*, \boldsymbol{\rho}_\theta).$$

1404 From this expression, we have

$$\begin{aligned} \mathcal{L}_{K;\nu}^{\Psi}(\boldsymbol{\eta}_{\theta}) - \mathcal{L}_{K;\nu}^{\Psi}(\boldsymbol{\eta}^*) &= \mathbb{E}_{p(x_{1:K})} \left[\eta_0^* B_{\Psi}(\boldsymbol{\rho}^*, \boldsymbol{\rho}_{\theta}) \right] \\ &= \mathbb{E}_{p(x_{1:K})} \left[p(z=0|x_{1:K}) B_{\Psi}(\boldsymbol{\rho}^*, \boldsymbol{\rho}_{\theta}) \right] \\ &= p(z=0) \mathbb{E}_{p(x_{1:K}|z=0)} \left[B_{\Psi}(\boldsymbol{\rho}^*, \boldsymbol{\rho}_{\theta}) \right]. \end{aligned}$$

1411 Since $p(z=0) = \frac{\nu}{K+\nu}$ and $p(x_{1:K}|z=0) = \mathbf{q}_0(x_1) \mathbf{q}_0(x_2) \cdots \mathbf{q}_0(x_K)$ by definition, this concludes
1412 the proof. \square

1414 H EXPERIMENT DETAILS

1416 This section provides the details on the experiments in the main text. All implementations are based
1417 on PyTorch and all experiments were performed on a single NVIDIA GeForce RTX 3090.

1419 H.1 MI ESTIMATION

1421 We conducted a series of mutual information (MI) estimation experiments across three distinct
1422 data modalities: synthetic Gaussian variables, image-based representations from MNIST, and text
1423 embeddings derived from the IMDB dataset, using the standardized mibenchmark framework (Lee &
1424 Rhee, 2024). Each experiment paired a 10-dimensional synthetic source variable $X \in \mathbb{R}^{10}$ with a
1425 modality-specific target variable Y , varying in dimensionality depending on the data type. Across all
1426 experiments, we used a consistent training configuration: models were optimized using Adam with a
1427 learning rate of 1e-4, trained in stepwise mode for 20,000 iterations.

1428 Across all setups, we evaluated a fixed set of mutual information estimators, including NWJ, NWJ-
1429 Plugin, JS, JS-Plugin, InfoNCE, InfoNCE-Anchor, Density Ratio Fitting, and Spherical, with both
1430 joint and separable critic types. The critic network in all cases was an MLP composed of two hidden
1431 layers with 512 units, ReLU activations, and no normalization or dropout layers. Critic architectures
1432 projected inputs into a shared 16-dimensional embedding space. For joint critics, X and Y pairs
1433 were concatenated and passed through a single encoder, whereas for separable critics, independent
1434 encoders $g(x)$ and $h(y)$ were used. We used batch size 64 for all experiments except the ones in Figure 3. We refer the readers to (Lee & Rhee, 2024) and their codebase for the rest of the details
1435 including the data generation mechanism.

1436 Figure 3 summarizes the result of MI estimation for the Gaussian experiment with cubic transforma-
1437 tion with varying batch sizes. It clearly shows that InfoNCE-anchor exhibits a consistent performance,
1438 but we note that JS_{plugin} also performs remarkably well in this simple benchmark.

1440 H.2 PROTEIN INTERACTION PREDICTION

1442 We followed the same setup of Gowri et al. (2024), and here we briefly overview the essential part.
1443 We conducted experiments on two datasets derived from ProtTrans5-encoded protein embeddings:
1444 one composed of 22,229 kinase–target pairs and another with 1,702 ligand–receptor pairs. Each
1445 protein is represented by a 1,024-dimensional vector, and all embeddings were whitened and clipped
1446 to the range $[-10, 10]$. Across 20 trials, 170 proteins were randomly selected and held out per trial,
1447 ensuring that no interaction in the training set included any of the held-out proteins. The remaining
1448 interactions were used for training a mutual information estimator.

1449 Our approach trains a separable critic network to estimate the density ratio via the InfoNCE-anchor
1450 objective. The critic architecture is a MLP with 4 hidden layers, each containing 256 units, and
1451 outputs 32-dimensional embeddings for each input protein, separate encoders $f(x)$ and $g(y)$ for each
1452 side of the pair. ReLU activation was used, and no normalization layers were applied by default. We
1453 used the Adam optimizer with a learning rate of 1e-4, batch size of 64, and 10,000 training steps. We
1454 implement early stopping with a patience of 500 steps, based on validation loss, which is monitored
1455 every 500 iterations. The final model is selected based on the best validation performance and is then
1456 used to estimate pointwise mutual information (PMI) for held-out protein pairs.

1457 We present ROC curves (Figure 4) and histograms of learned PMI values (Figure 5) for each estimator.
1458 These two figures clearly demonstrate that InfoNCE-anchor exhibit the best discriminative power.

Figure 3: Summary of MI estimation results on the standard benchmark on the Gaussian cubic data, with different batch sizes.

Figure 4: ROC curves from different estimators.

H.3 SELF-SUPERVISED REPRESENTATION LEARNING

Here, we provide details on the objective functions we considered in the experiment. We used the temperature parameter $\tau = 0.2$ throughout, unless stated otherwise.

- InfoNCE: Log score, $K = B - 1$, $\nu = 0$, PMI factorization.
- InfoNCE-anchor: Log score, $K = B - 1$, $\nu = 1$, PMI factorization.
- JS: Log score, $K = 1$, $\nu = 1$, PMI factorization.
- Spherical: Spherical score, $K = B - 1$, $\nu = 1$, PD factorization.
- χ^2 : Asymmetric power score with $\alpha = 2$, $K = 1$, $\nu = 1$. In this case, $\tau = 0.1$ was used.

We found that the PMI factorization was not effective for all scoring rules other than the log score. The rest of the experimental details can be found from the codebase of da Costa et al. (2022).

Figure 5: Histograms of pointwise MI ($\log \frac{p(x,y)}{p(x)p(y)}$) from different estimators.

1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565