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ABSTRACT

The InfoNCE objective, originally introduced for contrastive representation learning, has
become a popular choice for mutual information (MI) estimation, despite its indirect
connection to MI. In this paper, we demonstrate why InfoNCE should not be regarded as a
valid MI estimator, and we introduce a simple modification, which we refer to as InfoNCE-
anchor, for accurate MI estimation. Our modification introduces an auxiliary anchor
class, enabling consistent density ratio estimation and yielding a plug-in MI estimator with
significantly reduced bias. Beyond this, we generalize our framework using proper scoring
rules, which recover InfoNCE-anchor as a special case when the log score is employed. This
formulation unifies a broad spectrum of contrastive objectives, including NCE, InfoNCE,
and f -divergence variants, under a single principled framework. Empirically, we find that
InfoNCE-anchor with the log score achieves the most accurate MI estimates; however,
in self-supervised representation learning experiments, we find that the anchor does not
improve the downstream task performance. These findings corroborate that contrastive
representation learning benefits not from accurate MI estimation per se, but from the
learning of structured density ratios.

1 INTRODUCTION

Contrastive learning has become a cornerstone of modern unsupervised representation learning,
powering advances in computer vision (Chen et al., 2020), natural language processing (Mikolov
et al., 2013; Levy & Goldberg, 2014), and beyond (Jaiswal et al., 2020; Hu et al., 2024). One of the
key ingredients in many contrastive methods is the InfoNCE objective (van den Oord et al., 2018).
While originally proposed as a representation learning framework, van den Oord et al. (2018) noted
that the InfoNCE objective can be used to evaluate mutual information (MI), interpreting the objective
as a variational bound on MI; see (van den Oord et al., 2018, Appendix A). This interpretation has
led to its widespread use for MI estimation, e.g., (Poole et al., 2019; Song & Ermon, 2020a; Gowri
et al., 2024; Lee & Rhee, 2024). It is also widely known, however, that InfoNCE often yields a rather
loose bound on MI (Poole et al., 2019; Tschannen et al., 2020). As a result, the InfoNCE estimator is
generally considered a low-variance but high-bias MI estimator (van den Oord et al., 2018). Although
several proposals have been made to address this issue since its inception, the effectiveness (i.e., the
low-variance property) and the limitation (i.e., the high bias) of InfoNCE remain poorly understood.

In this paper, we clarify the operational meaning of the InfoNCE objective, by showing that the
objective should be understood as a variational lower bound of a statistical divergence different from
the mutual information. Building on this clarification, we establish a sharp characterization of its
relationship to the Kullback–Leibler (KL) divergence, revealing why the InfoNCE objective should
not be regarded as a direct estimate of MI. We further argue that InfoNCE can be viewed as a density
ratio estimation objective, while the critic (or its exponentiated form) estimates the density ratio
p(x,y)

p(x)p(y) only up to an arbitrary function C(y), rendering it unsuitable for use in a plug-in estimator.

To address this limitation, we introduce a simple modification to the variational objective, which
we call InfoNCE-anchor, corresponding to an alternative divergence. In the new framework, the
inclusion of an anchor enables the (exponentiated) critic to estimate the density ratio p(x,y)

p(x)p(y) directly.
This adjustment facilitates consistent density ratio estimation and yields a plug-in MI estimator that
retains the low variance of InfoNCE while significantly reducing its bias. See Figure 1 for a quick
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comparison with existing estimators, where the new plug-in estimator based on InfoNCE-anchor
demonstrates low-bias, low-variance performance.

We generalize our framework using tools from statistical decision theory, showing that InfoNCE-
anchor corresponds to the log score, a canonical example of a proper scoring rule. This insight reveals
that many contrastive objectives, including NCE, InfoNCE, and certain f -divergence variants, can be
unified under a single principled framework of density ratio estimation using proper scoring rules.

Empirically, we show that estimators induced by the log score yields state-of-the-art MI estimates
across a range of settings. In contrastive representation learning tasks, however, we find that multiple
scoring rules yield similar performance, suggesting that MI estimation is not the primary driver
of contrastive learning success. Instead, our results support that contrastive learning benefits from
learning structured density ratios, regardless of whether the objectives are accurate MI estimators.

While InfoNCE has played a canonical role in contrastive representation learning, its rather loose
association to MI estimation has historically fostered the misconception that representation learn-
ing is essentially about maximizing MI; see, e.g., (Bachman et al., 2019; Wu et al., 2020). This
paper clarifies why such an interpretation can be limiting and imprecise, and that contrastive rep-
resentation learning should instead be framed as representation learned to factorize pointwise MI
(PMI) log p(x,y)

p(x)p(y) , or pointwise dependence (PD) p(x,y)
p(x)p(y) . All proofs can be found in Appendix F.

Logarithms in this paper are in base 2 and thus KL divergence and MI are in bit.

2 PRELIMINARIES

In this paper, we first review different types of variational-bounds-based MI estimators in the literature,
and provide a taxonomy. We then delve into the InfoNCE estimator, and show why the InfoNCE
estimator should not be considered as a direct estimate for MI.

2.1 TYPES OF INFORMATION ESTIMATORS

Existing variational-bound-based MI estimators can be categorized into three principal categories as
follows, based on the relationship of their optimization objectives to the final metrics to compute MI.
Table 1 summarizes the representative estimators.

• Type 1: Training and evaluation with a single variational lower bound. These estimators
optimize a tractable lower bound on the MI and use the same bound for evaluation. Examples
include DV (Donsker & Varadhan, 1975), NWJ (Nguyen et al., 2010), and InfoNCE (van den
Oord et al., 2018). While conceptually simple and natural, McAllester & Stratos (2020) showed
that any distribution-free high-probability lower bound of MI is upper bounded by logN , where
N is the sample size. This result implies that variational lower-bound–based sample estimates
of MI suffer from an inherent limitation.

• Type 2: Training with a variational lower bound, evaluation by plugging-in to another
variational lower bound. These estimators optimize a surrogate objective, often smoothed
or stabilized for optimization, and then estimate MI via plug-in to a different bound such as
DV or NWJ. Examples include MINE (Belghazi et al., 2018), JS (Hjelm et al., 2019), and
SMILE (Song & Ermon, 2020a). These methods often improve stability during training, but
introduce additional sources of mismatch between optimization and evaluation. Note that the
critique of McAllester & Stratos (2020) still applies to this type of estimators.

• Type 3: Training with a variational lower bound, evaluation with a plug-in estimator. These
estimators target to learn the density ratio p(x,y)

p(x)p(y) directly and compute MI by plugging the
estimated score function into the definition of MI. This includes recent methods like PCC/D-
RFC (Tsai et al., 2020) and f -DIME (Letizia et al., 2024), as well as our method to be proposed
below. These approaches provide greater flexibility and potentially lower bias, side-stepping
from the issue of the variational lower-bound approach, as they decouple density ratio learning
from specific bounds.
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Table 1: Overview of existing variational-bound-based MI estimators. In this table, we use the
standard critic parametrization, which aims to train c(x, y) ≈ log p(x,y)

p(x)p(y) .

Estimator Optimization objective L(c) (loss) Estimator Î(X;Y )

Ty
pe

1 DV (Donsker & Varadhan, 1975) LDV(c) ≜ −Ep(x,y)[c(x, y)] + logEp(x)p(y)[e
c(x,y)] −LDV(c)

NWJ (Nguyen et al., 2010) LNWJ(c) ≜ −Ep(x,y)[c(x, y)] + Ep(x)p(y)[e
c(x,y)−1] −LNWJ(c)

InfoNCE (van den Oord et al., 2018)
or NT-XEnt (Chen et al., 2020) LInfoNCE(c) ≜ −EpK(x,y)

[
1
K

∑K
i=1 log

c(xi,yi)
1
K

∑K
j=1 c(xi,yj)

]
−LInfoNCE(c)

Ty
pe

2 MINE (Belghazi et al., 2018) LMINE(c) ≜ −Ep(x,y)[c(x, y)] +
Ep(x)p(y)[e

c(x,y)]

EMA(Ep(x)p(y)[ec(x,y)])
−LDV(c)

JS (Poole et al., 2019)
or NT-Logistics (Chen et al., 2020) LJS(c) ≜ Ep(x,y)[sp(−c(x, y))] + Ep(x)p(y)[sp(c(x, y))] −LNWJ(c)

SMILE (Song & Ermon, 2020a) LJS(c) −LclippedDV(c)

Ty
pe

3 PCC / D-RFC (Tsai et al., 2020) LJS(c) / Lχ2(c) ≜ −2Ep(x,y)[e
c(x,y))] + Ep(x)p(y)[e

2c(x,y)] Ep̂(x,y)[c(x, y)]
f -DIME (Letizia et al., 2024) Lf -NWJ(c) Ep̂(x,y)[c(x, y)]
InfoNCE-anchor LΨ

K;ν(c) (see Eq. (4) and Eq. (9)) Ep̂(x,y)[c(x, y)]

2.2 DEMYSTIFYING THE INFONCE ESTIMATOR

Despite its inception as an objective for contrastive representation learning (van den Oord et al.,
2018), InfoNCE has become widely considered as a MI estimator. In this section, we revisit the
analytical foundation of the objective and disentangle what InfoNCE is claimed to measure from what
InfoNCE indeed characterizes. Our goal is two-fold: (1) reveal the divergence that InfoNCE targets,
and (ii) quantify the precise gap between that divergence and the mutual information. Before we
proceed, we remark that the core of InfoNCE can be better described when we contrast two abstract
distributions q1(x) and q0(x), which can be replaced by p(x|y) and p(x), respectively, if we wish to
specialize it for mutual information.

Throughout, let x1 denote a positive example drawn from the data distribution q1, and let x2, . . . , xK

be negative examples drawn i.i.d. from a noise distribution q0. We let xi:j ≜ (xi, . . . , xj) for i ≤ j
as a shorthand. A score network (or critic) rθ : X → R>0 is trained to assign large values to real
samples and small values to negatives, and the InfoNCE loss compares rθ(x1) against the arithmetic
mean of rθ(xz) over the whole batch.

LInfoNCE(θ) ≜ −DInfoNCE(θ) ≜ −Eq1(x1)q0(x2)···q0(xK)

[
log

rθ(x1)
1
K

∑K
z=1 rθ(xz)

]
.

As we alluded to earlier, if we plug-in p(x|y) and p(x) in place of q1(x) and q0(x), respectively, then
Ep(y)[LInfoNCE(θ)] recovers the standard InfoNCE objective for two modalities.

The following statement from (van den Oord et al., 2018; Poole et al., 2019) is a widely known
connection between the InfoNCE objective to the KL divergence, which provides a justification of the
InfoNCE objective as an MI estimator for K sufficiently large. We present its proof in Appendix F.1
for completeness.
Proposition 1. DInfoNCE(θ) ≤ min{logK,D(q1 ∥ q0)}.

Our first contribution is to provide a tight upper bound on DInfoNCE(θ), which yields a much sharper
bound on DInfoNCE(θ) than Proposition 1 as a corollary.

Theorem 2. For z ∈ [K], define p(x1:K |z) as p(x1:K |z) ≜ q1(xz)
∏

i̸=z q0(xi). Then, we have

DInfoNCE(θ) ≤ DK-JS(q1, q0) ≜
1

K

K∑
z=1

D
(
p(x1:K |z)

∥∥∥ 1

K

K∑
z′=1

p(x1:K |z′)
)

≤ min
{
logK,D(q1 ∥ q0)− log

( 1

K
(2D(q1 ∥ q0) − 1) + 1

)}
.

The first inequality becomes equality if and only if rθ(x) ∝ q1(x)
q0(x)

.

This theorem establishes two key theoretical properties of the InfoNCE objective. First, the InfoNCE
objective is a tight variational lower bound of DK-JS(q1, q0), a generalization of Jensen–Shannon
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divergence (JSD) which we call the K-way JSD. The InfoNCE objective becomes equal to the
divergence DK-JS(q1, q0) if and only if rθ(x) ∝ q1(x)/q0(x). Since it only learns the density ratio
up to a multiplicative constant, one cannot use it for a plug-in estimator (i.e., Type 3 in Section 2.1)
with the critic (i.e., the density ratio model) learned by InfoNCE. Second, the InfoNCE objective may
be still far away from D(q1 ∥ q0) even for K such that logK ≥ D(q1 ∥ q0). Concretely, suppose
D(q1 ∥ q0) = 2. Then, the DInfoNCE(θ) ≤ 1.19 . . . when K = 4 even if logK ≥ D(q1 ∥ q0), and
even for K = 64, we have DInfoNCE(θ) ≤ 1.93 . . ., which is strictly smaller than the KL divergence
D(q1 ∥ q0) = 2. This clearly demonstrates that the InfoNCE objective DInfoNCE(θ) can never match
the KL divergence for any finite K and hence is unsuitable as a direct surrogate for MI. This contrasts
with other Type 1 estimators such as DV and NWJ, which provide tight variational representations of
the KL divergence; that is, their bound becomes equal to the KL divergence when the critic function
is equal (or proportional) to the true log-density ratio.

In the next section, we propose a modification of the InfoNCE objective, such that the critic is learned
to exactly estimate the density ratio q1(x)

q0(x)
, and so that it can be used in a plug-in estimator for density

ratio functionals such as mutual information.

3 TENSORIZED DENSITY RATIO ESTIMATION WITH ANCHOR

Consider two distributions q0(x) and q1(x). To estimate the density ratio q1(x)
q0(x)

using samples from
q0(x) and q1(x), we consider the following classification problem over XK (hence tensorization),
where we define the class densities p(x1:K |z) for z = 0, 1, . . . ,K as

class 0 (anchor) : q0(x1)q0(x2) · · · q0(xK)

class 1 : q1(x1)q0(x2) · · · q0(xK)

class 2 : q0(x1)q1(x2) · · · q0(xK)

...
class K : q0(x1)q0(x2) · · · q1(xK)

(1)

and the prior probabilities over the classes as p(z) = ν
K+ν for z = 0, and p(z) = 1

K+ν if z ∈ [K],
for some ν ≥ 0. As highlighted, class 0 plays a special role as an anchor, allowing us to estimate the
density ratio without multiplicative ambiguity as long as ν > 0. By anchor, we mean that class 0 acts
as a fixed reference distribution, eliminating arbitrary scaling and ensuring identifiability, which will
become precise in Theorem 3 below. We can take ν = 0 if K ≥ 2 (recovering InfoNCE), but require
ν > 0 in the K = 1 case to avoid degeneracy. More succinctly, we can write, for z ̸= 0,

p(x1:K |z) =
q1(xz)

q0(xz)
q0(x1)q0(x2) · · · q0(xK) =

q1(xz)

q0(xz)
p(x1:K |z = 0).

In words, for z ̸= 0, the class density is designed such that xz is drawn from q1, and the rest are from
q0. We can write the marginal distribution over x1:K as

p(x1:K) = q0(x1)q0(x2) · · · q0(xK)

(
1

K + ν

K∑
i=1

q1(xi)

q0(xi)
+

ν

K + ν

)
.

By Bayes’ rule, the posterior probability p(z|x1:K) is

p(z |x1:K) =
p(x1:K |z)p(z)

p(x1:K)
=


ν

ν +
∑K

i=1
q1(xi)
q0(xi)

if z = 0

q1(xz)
q0(xz)

ν +
∑K

i=1
q1(xi)
q0(xi)

if z ∈ [K]

. (2)

This motivates us to parameterize our probabilistic classifier pθ(z|x1:K) in the form of

pθ(z |x1:K) =


ν

ν +
∑K

i=1 rθ(xi)
if z = 0

rθ(xz)

ν +
∑K

i=1 rθ(xi)
if z ∈ [K]

. (3)
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Applying the maximum likelihood estimation (MLE) principle, we can derive the population objective

LK;ν(θ) ≜ −
K

K + ν
Eq1(x1)q0(x2)···q0(xK)

[
log

rθ(x1)

ν +
∑K

i=1 rθ(xi)

]

− ν

K + ν
Eq0(x1)q0(x2)···q0(xK)

[
log

ν

ν +
∑K

i=1 rθ(xi)

]
, (4)

since maxθ Ep(z)p(x1:K |z)[log pθ(z|x1:K)] = minθ LK;ν(θ). We call it the InfoNCE-anchor objec-
tive. Suggested by the name, when K ≥ 2 and ν = 0, it boils down to InfoNCE. In another
extreme, when K = 1 and ν = 1, it becomes equivalent to the standard variational lower bound
of Jensen–Shannon divergence (see Table 1). In the language of noise contrastive estimation, this
provides a unification of the standard NCE (Gutmann & Hyvärinen, 2012) (K = 1, ν > 0), and the
so-called ranking NCE objectives (Ma & Collins, 2018) (K = 2, ν = 0).

Fisher Consistency. When ν > 0, it readily follows from the MLE principle that InfoNCE-anchor
characterizes the density ratio q1(x)

q0(x)
as its global minimizer in the population and nonparametric limit.

Theorem 3 (Fisher consistency). Let θ∗ ≜ argminθ LK;ν(θ) denote a global optimizer of the
InfoNCE-anchor objective. Suppose that there exists θ0 such that rθ0(x) =

q1(x)
q0(x)

. If K ≥ 1 and

ν > 0, rθ∗(x) = q1(x)
q0(x)

for almost every x under q0. If K ≥ 2 with ν = 0, there exists some constant

C > 0 such that rθ∗(x) = C q1(x)
q0(x)

for q0-almost every x.

3.1 APPLICATION: DIVERGENCE ESTIMATION AND REPRESENTATION LEARNING

We can apply the InfoNCE-anchor objective to estimate MI or to learn representation when given a
joint distribution p(x, y), in a similar way to InfoNCE (van den Oord et al., 2018). That is, for each
y, we can apply the InfoNCE-anchor for q1(x)← p(x|y) and q0(x)← p(x).1 For the final objective,
we take an expectation over y ∼ p(y):

L(1)
K;ν(θ) ≜ Ep(y)

[
− K

K + ν
Ep(x1|y)p(x2)···p(xK)

[
log

rθ(x1, y)

ν +
∑K

i=1 rθ(xi, y)

]

− ν

K + ν
Ep(x1)p(x2)···p(xK)

[
log

ν

ν +
∑K

i=1 rθ(xi, y)

]]
.

When ν = 0 with K ≥ 2, it boils down to the original InfoNCE, and minimizing L(1)
K;0(θ) can only

guarantee that for some function C(y), rθ∗(x, y) = C(y) p(x,y)
p(x)p(y) . When applied to representation

learning, the vanilla InfoNCE (i.e., with ν = 0) thus may lead to an undesirable behavior due to
uncontrollable C(y), whereas the anchor (i.e., ν > 0) can remove such degeneracy. However, in our
representation learning experiment, we observe that the anchor does not lead to the improvement of
downstream task performance; see Section 4.3.

With a minibatch of size B, we can implement the loss with anchor for K = B − 1 as follows:

− K

K + ν

1

B

B∑
b=1

log
rbb

ν +
∑

j∈[B]\{b−1} rbj
− ν

K + ν

1

B

B∑
b=1

log
ν

ν +
∑

j∈[B]\{b} rbj
.

We provide a pseudocode in Appendix B. The density ratio estimator is typically parameterized as
rθ(x, y)← ecθ(x,y), where cθ(x, y) (the critic) is often a neural network. In representation learning,

common choices are the exponential form rθ(x, y)← e
1
τ

fθ(x)⊺gθ(y)

|fθ(x)|2|gθ(y)|2 (see, e.g., (van den Oord et al.,
2018)) or the direct form rθ(x, y)← 1

τ
fθ(x)

⊺gθ(y)
|fθ(x)|2|gθ(y)|2 (see, e.g., (HaoChen et al., 2021)), such that

fθ(x) and gθ(y) are learned embeddings that approximate PMI or PD, respectively. Here, τ > 0 is a
temperature parameter.

1An alternative approach is to set (q1(x), q0(x))← (p(x, y), p(x)p(y)); see Appendix A.
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3.2 INFONCE-ANCHOR INTERPOLATES DV AND NWJ BOUNDS WHEN K →∞

One may ask about the behavior of InfoNCE-anchor when K → ∞. While we defer a rigorous
statement (Theorem 7) to Appendix C, we remark that InfoNCE-anchor, by setting ν to vary as
K →∞ such that ν/K → β for some β ≥ 0, we can show that InfoNCE-anchor behaves similar to
a generalization of the DV bound, which can be rearranged to yield

Eq1(x)[log rθ(x)]− (β + 1) log

(
β

β + 1
+

1

β + 1
Eq0(x)[rθ(x)]

)
≤ D(q1 ∥ q0). (5)

When β = 0, this boils down to the standard DV bound. When β →∞, the left-hand side becomes
Eq1(x)[log rθ(x)] − Eq0(x)[rθ(x)] + 1 ≤ D(q1 ∥ q0), which is the NWJ bound. Moreover, we can
even show that this bound monotonically interpolates between the DV bound (tightest, β = 0) and
the NWJ bound (loosest, β =∞). A similar asymptotic behavior of InfoNCE (i.e., for ν = 0) was
noted by Wang & Isola (2020), but specifically in the context of contrastive representation learning.

3.3 DISCUSSION ON EXISTING VARIANTS OF INFONCE ESTIMATOR

In this section, we discuss two existing variants of InfoNCE, which were proposed in the effort
of fixing the aforementioned issues of InfoNCE as the MI estimator. We highlight why they are
insufficient as a fundamental fix, and how different from our proposal.

α-InfoNCE. Poole et al. (2019) proposed an alternative estimator called α-InfoNCE, defined as

Dα-InfoNCE(θ) ≜ Eq1(x1)q0(x2)···q0(xK)

[
log

rθ(x1)

αrθ(x1) +
1−α
K−1

∑K
z=2 rθ(xz)

]
for some α ∈ (0, 1

K ]. Note that setting α← 1
K recovers the original InfoNCE bound. For α < 1

K ,
this quantity can neither be understood as a loss for classification nor be a lower bound for D(q1 ∥ q0).
Lee & Shin (2022, Theorem 4.2) claimed that α-InfoNCE is a tight variational lower bound for a
α-skew KL divergence D(q1 ∥ αq1 + (1− α)q0), that is, Dα-InfoNCE(θ) ≤ D(q1 ∥ αq1 + (1− α)q0)
and the equality can be achieved. We find, however, the proof has a flaw and it can be only guaranteed
that Dα-InfoNCE(θ) ≥ DDV(θ; q1, αq1 + (1− α)q0), while the equality condition remains unclear.

MLInfoNCE. Song & Ermon (2020b) introduced the multi-label InfoNCE (MLInfoNCE) estimator
defined as

DMLInfoNCE(θ) ≜ E∏m
w=1 q1(xw1)

∏k
z=2 q0(xwz)

[
m∑

w=1

log
rθ(xw1)∑m

w′=1(rθ(xw′1) +
∑k

z=2 rθ(xw′z))

]
.

Song & Ermon (2020b, Theorem 2) shows that DMLInfoNCE(θ) ≤ D(q1 ∥ q0). However, we note
that this objective cannot be understood as a loss derived from a proper classification setup unlike
InfoNCE-anchor.

3.4 EXTENSION WITH PROPER SCORING RULES

In the classification setup of Eq. (1), density ratio estimation reduces to estimating the class probability
p(z|x1:K) in Eq. (2) via the model pθ(z|x1:K) in Eq. (3). The cross-entropy loss in Eq. (4) is a
proper scoring rule, ensuring that the optimized model recovers the true posterior. More generally,
once density ratio estimation is cast as class probability estimation, any proper scoring rule can be
applied, yielding a broad family of consistent objectives.

Here we start with a general description of the proper scoring rules (Gneiting & Raftery, 2007;
Dawid et al., 2012). Let Z be a discrete alphabet and let A be any alphabet. Suppose that we
have sample access to the underlying distribution p(a, z) over A×Z . The goal of class probability
estimation (CPE) (Garcia-Garcia & Williamson, 2012) is to estimate the underlying class probability
η : A → ∆(Z), where η(a) ≜ (p(z|a))z∈Z , using samples from p(a, z).

To characterize a class probability estimator as the optimizer of an optimization problem, we consider
a tuple of loss functions λ = (λz : ∆(Z)→ R)z∈Z , which we call a scoring rule , whereby an action
η̂ : A → ∆(Z) incurs loss λz(η̂(a)) for a data point (a, z). Then, we measure the performance of
an action η̂ by the expected loss Ep(a,z)[λz(η̂(a))].
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Definition 4 (Proper scoring rules). A scoring rule λ : ∆(Z)→ RZ is a vector-valued loss function.
A scoring rule is said to be proper if η is optimal with respect to λ, i.e., for any distribution p(a, z),

η(·) ∈ arg min
η̂:A→∆(Z)

Ep(a,z)[λz(η̂(a))].

If η is the unique optimal solution with respect to λ, then λ is said to be strictly proper.

We note that most (strictly) proper scoring rules can be induced by a (strictly) differentiable convex
function. For the sake of exposition, let Z = {0, . . . ,M} concretely. Then, for a differentiable
function Ψ: {1} × RM

+ → R, we define the Ψ-induced scoring rule as

λΨ(η) ≜

[
⟨ρ,∇ρΨ(ρ)⟩ −Ψ(ρ)

(−∇ρΨ(ρ))1:M

]∣∣∣∣∣
ρ=(1,

η1
η0

,...,
ηM
η0

)

. (6)

Proposition 5. If Ψ is (strictly) convex and twice differentiable, λΨ is (strictly) proper.

The canonical example is the log score, which results in InfoNCE-anchor in Eq. (4). We present
some examples of proper scoring rules and the generating convex functions in Appendix D.5.

Now, considering the classification setup in Eq. (1), let λ = λΨ be a strictly proper scoring rule over
discrete alphabet Z = {0, . . . ,K}, induced by a strictly convex function Ψ: RK

+ → R. Applying the
scoring rule to evaluate the score of the class probability pθ(z|x1:K) (in Eq. (3)) with respect to the
underlying distribution p(z)p(x1:K |z), we can write the population objective (to be minimized) as

LΨ
K;ν(ηθ) ≜ Ep(x1:K ,z)[λz(ηθ(x1:K))],

where we use ηθ(x1:K) = (pθ(z|x1:K))z∈Z to denote the class probability vector. Let η∗(x1:K) de-
note the underlying class probability (p(z|x1:K))z∈Z . The following statement subsumes Theorem 3.
Theorem 6. For ν > 0,

LΨ
K;ν(ηθ)− LΨ

K;ν(η
∗) =

ν

K + ν
Eq0(x1)q0(x2)···q0(xK)

[
BΨ

(
r∗(x1:K)

ν
,
rθ(x1:K)

ν

)]
,

where r∗(x1:K) ≜
( q1(xz)
q0(xz)

)
z∈[K]

and rθ(x1:K) ≜
(
rθ(xz)

)
z∈[K]

. If Ψ is convex, we have

−LΨ
K;ν(ηθ) ≤ −LΨ

K;ν(η
∗) =

ν

K + ν
Eq0(x1)q0(x2)···q0(xK)

[
Ψ

(
r∗(x1:K)

ν

)]
.

If Ψ is (strictly) convex, the equality is achieved if (and only if) rθ(x) =
q1(x)
q0(x)

.

Beyond the consistency, this corollary shows that the DRE objective (with negation) can be understood
as a variational lower bound of some divergence between q1(x) and q0(x) induced by Ψ, defined as
Eq0(x1)q0(x2)···q0(xK)[Ψ( r

∗(x1:K)
ν )]. This is analogous to that the InfoNCE-anchor objective in Eq. (4)

is a variational lower bound of the K-way JSD DK-JS(q1, q0). We note that this extension can be
viewed as a special application of the more general multi-distribution density ratio estimation studied
by Yu et al. (2021), for the binary density ratio estimation.

Implementation. Similar to InfoNCE-anchor in Eq. (4), this objective function can be simplified
further if the scoring rule satisfies a mild symmetry condition; see Appendix E.2.

Alternative Characterization of Proper Scoring Rule. One minor limitation of the characterization
in Theorem 6 is that ν = 0 is not permitted as a special case, and thus InfoNCE cannot be subsumed.
In Appendix E.1, we provide an alternative characterization of proper scoring rules, which can be
related to the above formulation via the perspective transformation, and admits ν = 0.

Special Cases. For the special case when K = 1 and ν = 1, note that the right hand side becomes the
f -divergence Df (q1 ∥ q0) when f = Ψ. That is, the objective boils down to the standard variational
lower bound on the f -divergence (Nguyen et al., 2010), hence recovering the f -DIME objectives of
Letizia et al. (2024) and f -MICL objectives of Lu et al. (2023). We also note that the GAN-DIME
and HD-DIME estimators in (Letizia et al., 2024) are essentially identical to the estimators proposed
in (Tsai et al., 2020). More examples can be found in Appendix E.3.
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4 EXPERIMENTS

In this section, we show that InfoNCE-anchor outperforms existing estimators in MI estimation
(Section 4.1) and downstream classification task (Section 4.2). We also report a negative result:
anchor variants do not improve the representation quality of InfoNCE in self-supervised representation
learning tasks (Section 4.3). In all experiments we set K = B − 1 and ν = 1 by default.

4.1 MI ESTIMATION

We evaluate various neural MI estimators on structured and unstructured data using the benchmark
suite of Lee & Rhee (2024).2 Experiments cover three domains: multivariate Gaussian data, MNIST
images, and BERT embeddings of IMDB reviews. To control ground truth MI, the benchmark
employs same-class sampling for positive pairs and a binary symmetric channel to inject controlled
noise. This allows systematic variation of MI from 2 to 10 bits in 2-bit increments. Implementation
details such as critic architectures and optimization setups are deferred to Appendix G.
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(a) Gaussian with cubic transformation.
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(b) MNIST.
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(c) Texts.

Figure 1: Summary of MI estimation results on the standard benchmark. All experiments were
done with batch size 64 and averaged over 20 random runs. Across all the cases, the proposed
InfoNCE-anchor estimator (the rightmost column) consistently demonstrates low-bias, low-variance
performance compared to the existing estimators. See Section 4.1 for the experiment setup.

Figure 1 summarizes the results. InfoNCE-anchor tracks ground truth MI most closely across domains.
JSplugin (equivalent to InfoNCE-anchor with K = 1, ν = 1) performs comparably on Gaussians
but deteriorates on higher-dimensional tasks such as MNIST and texts, highlighting the value of
large K. We also evaluate Spherical, an InfoNCE-anchor variant induced by the spherical scoring
rule (Gneiting & Raftery, 2007); see Table 6 in Appendix E.3. Its inferior performance indicates that,
despite the equivalence of strictly proper scoring rules, the log score remains the most effective in
practice. Additional results for Gaussian with varying batch sizes can be found in Appendix G.

4.2 PROTEIN INTERACTION PREDICTION

As a further demonstration of the effectiveness of InfoNCE-anchor, we perform an experiment from
a recent study by Gowri et al. (2024). In the work, the authors examined protein embeddings derived
from a pretrained protein language model (pLM), the ProtTrans5 model (Elnaggar et al., 2021), and
evaluated whether one can predict interactions between protein pairs (x, y), specifically, (K,T ) =
(kinase, target) and (L,R) = (ligand, receptor) pairs in the considered setting. The interaction labels

2GitHub: https://github.com/kyungeun-lee/mibenchmark
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are from the OmniPath database (Türei et al., 2021). We ran the experiment following the same setup,
with estimating the PMI using the JS, InfoNCE-anchor, and a few other variational approaches, and
using them to decide whether interaction exists by thresholding the PMI of a given pair.
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FPR
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R

Kinase
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LMI
JS

2 (DRF)
Spherical
InfoNCE-anchor

(a) ROC curves for each problem instance.

(b) Summary of AUROC performance on the
Kinase and Ligand benchmarks (mean±std
computed over 20 runs).

Objective Kinase Ligand

LMI 0.74±0.08 0.87±0.04

χ2 (DRF) 0.76±0.07 0.92±0.03

JS 0.77±0.08 0.95±0.02

InfoNCE-anchor 0.80±0.06 0.97±0.01

Spherical 0.73±0.07 0.87±0.05

Figure 2: Summary of the protein interaction prediction experiment.

Figure 2a and Figure 2b summarize the results. As shown in Figure 2a, InfoNCE-anchor shows the
best prediction results for both problem instances, while the JS estimator, which is a special case of
InfoNCE-anchor when K = 1 and ν = 1, performs second best. This again demonstrates the practical
benefit of large K for accurate density ratio estimation. We also recall that the standard InfoNCE
objective cannot be even applied to this scenario, as it only estimates PMI up to a multiplication with
an arbitrary function C(y) discussed in Section 3.1. We include the histograms of learned PMI values
(Figure 5) as well as the ROC curves of each estimator for different runs (Figure 4) in Appendix G.

4.3 SELF-SUPERVISED REPRESENTATION LEARNING

In earlier sections we showed that InfoNCE-anchor improves MI estimation and downstream tasks
using the learned density ratio model. A natural question is whether this benefit carries over to
self-supervised learning (SSL), where InfoNCE is the standard objective. We therefore pretrain a
ResNet-18 on CIFAR-100 using the solo-learn framework (da Costa et al., 2022), comparing several
contrastive objectives under identical settings (batch size B = 256, same optimizer), and evaluate
representations via linear probing.

Table 2: Linear probing accuracy (%) after SSL pretraining. We used PD parameterization for
Spherical and χ2. Detailed setups can be found in Appendix G.

Objective InfoNCE InfoNCE-anchor Spherical JS χ2

Top-1 accuracy 65.98 65.74 4.33 61.69 65.59
Top-5 accuracy 89.69 89.24 17.91 87.33 88.4

Table 2 shows that InfoNCE continues to yield the strongest representations. Adding the anchor,
despite improving density ratio estimation, does not translate into better SSL performance. This
suggests that the uncontrollable multiplicative factor C(y) in InfoNCE is either nearly constant or
irrelevant for representation learning. JS performs poorly, highlighting the importance of large K,
while spherical scores collapse entirely, likely due to unfavorable optimization dynamics. Overall,
these findings indicate that neither accurate MI estimation nor exact density ratio recovery is essential
for high-quality representations. What matters in SSL appears to be the factorization of PMI, the
benefit of large K, and the favorable optimization properties with the log score.

5 CONCLUDING REMARKS

We revisited InfoNCE and showed it is not a consistent MI estimator but a variational bound of
some other divergence. We introduce InfoNCE-anchor, a simple fix enabling consistent density
ratio estimation within a unified scoring-rule framework. InfoNCE-anchor sets new state-of-the-art
MI estimation benchmarks and aids predictive tasks, though it does not improve SSL performance,
highlighting that accurately estimating MI is not essential for representation quality (Tschannen et al.,
2020). We hope our work clarifies the role of InfoNCE and MI estimation in contrastive learning.
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A ALTERNATIVE APPROACH TO MI ESTIMATION

As alluded to earlier in Section 3.1, we can construct an alternative consistent objective function for
estimating the pointwise dependence p(x,y)

p(x)p(y) . That is, applying the InfoNCE-anchor framework for
q1(x)← p(x, y) and q0(x, y)← p(x)p(y), we obtain

L(2)
K;ν(θ) ≜ −

K

K + ν
Ep(x1,y1)p(x2)p(y2)···p(xK)p(yK)

[
log

rθ(x1, y1)

ν +
∑K

i=1 rθ(xi, yi)

]

− ν

K + ν
Ep(x1)p(y1)p(x2)p(y2)···p(xK)p(yK)

[
log

ν

ν +
∑K

i=1 rθ(xi, yi)

]
.

While this version results in a different, yet consistent objective function, it is not preferable over the
discussed approach in practice.

With this approach, when ν = 0, minimizing L(2)
K;0(θ) guarantees that for some C > 0,

rθ∗(x, y) = C
p(x, y)

p(x)p(y)
.

This is a guarantee analogous to the MLInfoNCE (Song & Ermon, 2020b).

B PSEUDOCODE FOR INFONCE-ANCHOR

Here, we provide a pseudocode for the PyTorch implementation of the InfoNCE-anchor objective
function.
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1 def infonce_with_anchor(scores, nu=1.0):
2 """
3 scores: [B, B] tensor where scores[i, j] = f(x_i, y_j)
4 nu: prior smoothing hyperparameter
5 """
6 assert nu > 0.
7 device = scores.device
8 B = scores.size(0)
9 K = B - 1

10

11 # joint term
12 mask = torch.zeros(B, B, device=device)
13 i = torch.arange(1, B + 1)
14 mask[i - 1, i - 2] = -torch.inf
15 scores_aug = torch.cat([
16 np.log(nu) * torch.ones(B, 1, device=device),
17 mask + scores], dim=1) # augmented score
18 joint_term = - (scores.diag().mean() - scores_aug.logsumexp(dim=1).mean())
19

20 # independent term
21 neg_inf_diag_mask = torch.zeros(B, B, device=device).fill_diagonal_(-torch.inf)
22 scores_aug_neg = torch.cat([
23 np.log(nu) * torch.ones(B, 1, device=device),
24 neg_inf_diag_mask + scores
25 ], dim=1) # negative augmented score
26 marginal_term = - (np.log(nu) - scores_aug_neg.logsumexp(dim=1).mean())
27

28 return (K / (K + nu)) * joint_term + (nu / (K + nu)) * marginal_term

C ASYMPTOTIC BEHAVIOR OF INFONCE-ANCHOR

Theorem 7. If ν/K → β as K →∞ for some β ≥ 0, then

lim
K→∞

(
−LK;ν(θ) +

K logK

K + ν

)
=

β

β + 1
log β +

1

β + 1
Eq1(x)[log rθ(x)]− log(β + Eq0(x)[rθ(x)])

≤ β

β + 1
log β +

1

β + 1
D(q1 ∥ q0)− log(β + 1).

The equality holds if and only if rθ(x) =
q1(x)
q0(x)

when β > 0, and rθ(x) = C q1(x)
q0(x)

for some C > 0

when β = 0.

Rewriting as a lower bound on the KL divergence, we have Eq. (5).

D DECISION-THEORETIC TREATMENT OF PROPER SCORING RULES

This section serves as a decision-theoretic foundation on proper scoring rules for conditional proba-
bility estimation, which is essential to proving the main statements in Section 3.4, i.e., Proposition 5
and Theorem 6. Appendix D.3 is marked with asterisk, which is included for completeness and can
be safely skipped in the first reading.

D.1 PRELIMINARIES AND DEFINITIONS

We first note that

Ep(a,z)[λz(η̂(a))] = Ep(a)

[ M∑
z=0

η(a)λz(η̂(a))

]
= Ep(a)[⟨η(a),λ(η̂(a))⟩],

which implies that we only need to study the conditional problem for each a, without the expectation
over a ∼ p(a). We define the (conditional) risk of η̂ ∈ ∆(Z) with respect to η∗ ∈ ∆(Z) as

dλ(η̂ ∥ η∗) ≜
∑
z∈Z

(η∗)zλz(η̂) = ⟨η∗,λ(η̂)⟩.

14
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In particular, we denote
fλ(η∗) ≜ dλ(η∗ ∥ η∗)

and call the pointwise Bayes risk with respect to η∗, since we can write the Bayes-optimal risk as

Ep(a,z)[f
λ(η(a))] = Ep(a,z)[d

λ(η(a) ∥ η(a))] = min
η̂:A→∆(Z)

Ep(a,z)[λz(η̂(a))],

given that λ is proper.

Since the propriety of a scoring rule is independent of the distribution p(a) over A as alluded to
earlier, we can restate the definition of propriety as follows. We define and denote the regret of η̂
with respect to η∗ under λ as

Regλ(η̂ ∥ η∗) ≜ dλ(η̂ ∥ η∗)− dλ(η∗ ∥ η∗).

Definition 8. A loss-function tuple λ is said to be proper if Regλ(η̂ ∥ η∗) ≥ 0 for any η̂,η∗ and
Regλ(η∗ ∥ η∗) = 0 for any η∗. A loss-function tuple λ is said to be strictly proper if it is proper
and Regλ(η̂ ∥ η∗) = 0 if and only if η̂ = η∗, for any η∗.

We now state the characterization of differentiable (strictly) proper loss functions. If λ is differentiable,
we let

gλ(η∗) ≜ ∇η̂d
λ(η̂ ∥ η∗)|η̂=η∗ = (⟨∇jλ(η

∗),η∗⟩)j∈Z = Jλ(η∗)η∗, (7)

which is the gradient of the pointwise risk function η̂ 7→ dλ(η̂ ∥ η∗) at η̂ = η∗. Here, Jλ(η∗) ∈
Rm×m denotes the Jacobian of the matrix λ : ∆(Z)→ Rm, i.e.,

(Jλ(η∗))ij ≜
∂λj(η

∗)

∂η∗i
.

Theorem 9. A scoring rule λ = (λz : ∆(Z) → R)z∈Z is (strictly) proper if and only if (1) the
pointwise Bayes risk function η 7→ fλ(η) is (strictly) concave over ∆(Z) and (2) gλ(η∗) = 0 for
any η∗ ∈ ∆(Z).

To prove the theorem, we first state a key technical lemma. Given a differentiable function f : V → R
over a subset V of an Euclidean space, we define the Bregman distortion Bf : V × V → R as

Bf (u, v) ≜ f(u)− f(v)− ⟨∇f(v), u− v⟩.

If f is convex, Bf (x, z) is called the Bregman divergence generated by f . Finally, let f
λ
(η) ≜

−fλ(η) denote the negative pointwise Bayes risk.
Lemma 10. For any η̂,η∗, we have

Regλ(η̂ ∥ η∗) = B
f
λ(η∗, η̂) + ⟨gλ(η̂), η̂ − η∗⟩.

Proof. By chain rule, we have
∇fλ(η̂) = λ(η̂) + gλ(η̂).

Therefore, by the definition of Bregman distortion, we have

B
f
λ(η∗, η̂) = −Bfλ(η∗, η̂)

= −fλ(η∗) + fλ(η̂) + ⟨∇fλ(η̂),η∗ − η̂⟩
= −dλ(η∗ ∥ η∗) + dλ(η̂ ∥ η̂)− ⟨λ(η̂) + gλ(η̂),η∗ − η̂⟩
= −dλ(η∗ ∥ η∗) + dλ(η̂ ∥ η̂) + dλ(η̂ ∥ η∗)− dλ(η̂ ∥ η̂) + ⟨gλ(η̂),η∗ − η̂⟩
= Regλ(η̂ ∥ η∗) + ⟨gλ(η̂),η∗ − η̂⟩,

which concludes the proof.

The first condition (1) imposes that the estimation problem becomes (strictly) not easier as we mix the
class probabilities. The second condition (2) formalizes that if η∗ is the underlying class probability,
then η = η∗ is a local minimizer of the conditional risk function η 7→ dλ(η ∥ η∗).

Now we are ready to prove Theorem 9.
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Proof of Theorem 9. We first prove the only-if direction. If λ is proper, then dλ(η̂ ∥ η∗) ≥
dλ(η∗ ∥ η∗) for any η̂ and η∗ by definition. That is, η̂ 7→ dλ(η̂ ∥ η∗) is stationary at η̂ = η∗, and
thus the gradient gλ(η) = ∇η̂d

λ(η̂ ∥ η)|η̂=η = 0 for any η. Now, by the identity in Lemma 10, we

have B
f
λ(η∗, η̂) = Regλ(η̂ ∥ η∗) ≥ 0 for any η∗, η̂, which implies that the function fλ = −fλ

is concave. Further, if λ is strictly proper, then B
f
λ(η∗, η̂) = Regλ(η̂ ∥ η∗) > 0 for any η̂ ̸= η∗,

which implies that fλ is strictly concave.

For the converse, i.e., the if direction, we can directly apply the identity in Lemma 10 and conclude
Regλ(η̂ ∥ η∗) ≥ B

f
λ(η∗, η̂) ≥ 0 by the convexity of f

λ
. It is clear that λ is strictly proper if f

λ
is

strictly concave.

D.2 FROM LOSS FUNCTION TO GENERATING FUNCTION

Given a loss function λ, we define a corresponding generating function

Ψλ(ρ) ≜ −⟨ρ,λ(η)⟩
for ρ ∈ {1} × RM

+ , so that we can write the pointwise Bayes risk at η∗ as

fλ(η∗) = dλ(η∗ ∥ η∗) = −η∗0Ψλ(ρ∗).

Then, it is easy to check that
Proposition 11. If λ is (strictly) proper, ρ 7→ Ψλ(ρ) is (strictly) convex.

Proof. If λ is (strictly) proper, then the negative pointwise Bayes risk function η∗ 7→ −fλ(η∗) =
η∗0Ψ

λ(ρ∗) is (strictly) convex by Theorem 9. Since the mapping is a perspective function of
ρ 7→ Ψλ(ρ), Ψλ must be (strictly) convex.

Remark 12 (From generating function to loss function). Conversely, we can define a loss function
from a differentiable function Ψ: {1} × RM

+ as follows:

λΨ(η) ≜

[
⟨∇Ψ(ρ),ρ⟩ −Ψ(ρ)
−∇Ψ(ρ)1:M

]
,

so that we can write the pointwise Bayes risk at η∗ as

fλΨ

(η∗) = dλ
Ψ

(η∗ ∥ η∗) = −η∗0Ψ(ρ∗).

D.3 ONE-TO-ONE CORRESPONDENCE∗

A natural question to ask is whether λ 7→ Ψλ and Ψ 7→ λΨ are inverse mappings each other. Indeed,
we have the following propositions.
Proposition 13.

λΨλ

(η) = λ(η)− ⟨η,gλ(η)⟩1+ gλ(η).

Hence, in particular, if λ is proper, it readily follows that λΨλ

(η) ≡ λ(η).

Proof of Proposition 13. First, we consider z ∈ {1, . . . ,M}. Note that
∂λz(η)

∂ρz
=
〈 ∂

∂ρz

(1, ρ1, . . . , ρM )

1 + ρ1 + . . .+ ρM
,∇λz(η)

〉
= η0⟨−η + eY ,∇λz(η)⟩,

for any z = 0, 1, . . . ,M . Thus, we have
M∑
z=0

ρz
∂λz(η)

∂ρz
= η0

∑
z

ρz⟨−η + eY ,∇λz(η)⟩

=
〈
−η + eY ,

∑
z

ηz∇λz(η)
〉

= ⟨−η + eY ,g
λ(η)⟩.
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This implies that

λΨλ

z (η) =
∂Ψλ(η)

∂ρz

= −∂λ0(η)

∂ρz
− λz(η)−

M∑
z=1

ρz
∂λz(η)

∂ρz

= −λz(η)−
M∑
z=0

ρz
∂λz(η)

∂ρz

= −λz(η)− ⟨η + ez,g
λ(η)⟩.

We now consider z = 0. Observe that

⟨∇Ψλ(ρ),ρ⟩ =
M∑
z=1

ρz
∂Ψλ(ρ)

∂ρz

= −
M∑
z=1

ρzλz(η)− ⟨η + e0,g
λ(η)⟩.

Hence, we have

λΨλ

0 (η) = ⟨∇Ψλ(ρ),ρ⟩ −Ψλ(ρ)

= λ0(η) +

M∑
z=1

ρzλz(η)−
M∑
z=1

ρzλz(η)− ⟨η + e0,g
λ(η)⟩

= λ0(η)− ⟨η + e0,g
λ(η)⟩.

This concludes the proof.

The following statement asserts that the generating function induced by the induced loss function of a
generating function corresponds to the original generating function.
Proposition 14.

ΨλΨ

(ρ) ≡ Ψ(ρ).

Proof. By definition, it is easy to check that

ΨλΨ

(ρ) = −⟨ρ,λΨ(ρ)⟩

= −(⟨∇Ψ(ρ),ρ⟩ −Ψ(ρ)) +

M∑
z=1

ρz
∂Ψ(ρ)

∂ρz

= Ψ(ρ).

Therefore, there is a one-to-one correspondence between (strictly) proper loss functions {λ : ∆(Z)→
RZ} and (strictly) convex functions {Ψ: {1} × RM

+ → R}.

D.4 CONNECTION TO BREGMAN DIVERGENCES

Note the following proposition.
Proposition 15.

Bfλ(η∗,η) = −η∗0BΨλ(ρ∗,ρ).

The following corollary reveals that any CPE objective function induced by a proper scoring rule can
be understood as a Bregman divergence minimization.
Corollary 16. If λ is proper, then

Regλ(η ∥ η∗) = η∗0BΨλ(ρ∗,ρ).
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In other words, it shows that a proper loss function λ acts only through the form of the Bregman
divergence BΨλ(·, ·). In other words, λ and λ′ are equivalent CPE loss functions if BΨλ(·, ·) ≡
BΨλ′ (·, ·). This defines an equivalence class in the set of loss functions

Λ(Ψ) ≜ {λ : ∆(Z)→ RZ |BΨλ(·, ·) ≡ BΨ(·, ·)}.

We know that this set is always not empty, since Proposition 14 implies that

λΨ ∈ Λ(Ψ).

Consider a subset
Λo(Ψ) ≜ {λ : ∆(Z)→ RZ |λ ∈ Λ(Ψ),gλ(η) ≡ 0}.

The loss functions in this subset can be thought as canonical functions, as we require gλ(η) ≡ 0 to
check propriety in Theorem 9. Note that

λΨ ∈ Λo(Ψ),

since Lemma 21 establishes that gλΨ

(η) ≡ 0. A small open question is whether λΨ is an unique
element of Λo(Ψ).

Remark 17 (Properization). We remark that for any λ ∈ Λ(Ψ), we can map it to another element
λ′ ∈ Λo(Ψ), by defining it as

λ′(η) ≜ λ(η) + gλ(η)− ⟨η,gλ(η)⟩1.

It is easy to check that λ′ ∈ Λo(Ψ) indeed. One can think of this as a properization of a loss function
λ, since for a convex function Ψ, any loss function λ ∈ Λ(Ψ) can be made into a proper loss
λ′ ∈ Λo(Ψ).

D.5 EXAMPLES OF PROPER SCORING RULES

We first start with proper binary scoring rules; see Table 3. Most of the examples can be found from
(Gneiting & Raftery, 2007). We refer to rules generated from the Ψ-induced scoring rules (Eq. (6))
by asymmetric scoring rules, and the Φ-induced rules (Eq. (8)) by symmetric rules.

Table 3: Examples of strictly proper binary scoring rules.

Asymmetric scoring rule Ψ(ρ) λΨ
0 (η), λ

Ψ
1 (η) (see Eq. 6)

KLIEP (Sugiyama et al., 2008) ρ log ρ 1
η0
,− log η1

η0
Robust DRE (α /∈ {0, 1})

(Sugiyama et al., 2012)
ρα

α(α−1)
or ρα−ρ

α(α−1)
1
α

ηα
0 +ηα

1
ηα
0

+ 1
α(α−1)

, 1
1−α

( η1
η0
)α−1

Inverse log − log ρ log η1
η0
− 1, η0

η1

Symmetric scoring rule Φ(η0, η1) λΨΦ
z (η) (see Eq. 8)

Log (Good, 1952) η0 log η0 + η1 log η1 − log ηz

Power (α /∈ {0, 1})3 ηα
0 +ηα

1 −1

α(α−1)
ηα
0 +ηα

1
α
− ηα−1

z
α−1

Sym. inverse log − log η0 − log η1 log η0 + log η1 +
1
ηz

Pseudo-spherical (α /∈ {0, 1})
(Gneiting & Raftery, 2007)4

1
α−1

(
ηα
0 +ηα

1
2

)
1
α − 2

− 1
α

α−1
( ηz

(ηα
0 +ηα

1 )
1
α
)α−1

Now, by naturally extending the definition of the elementary generating functions for the binary
scoring rules, we can derive their multi-ary counterparts as shown in Table 4. We note that the multi-
ary asymmetric scoring rules, when considered with our binary density ratio estimation framework
below, boil down to the ones induced by the binary scoring rules. Therefore, since the nontrivial
examples are from extending the symmetric scoring rules, we omit the multiary version of asymmetric
rules.

3If α = 2, famously known as the Brier score (Brier, 1950; Gneiting & Raftery, 2007).
4Called the spherical score when α = 2 (Gneiting & Raftery, 2007). When α→ 1, boils down to the log

score.
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Table 4: Examples of symmetric strictly proper (M + 1)-ary scores.

Symmetric scoring rule Φ(η) λΨΦ
z (η) (see Eq. 8) Known as

Log ⟨η, logη⟩ − log ηz

Power (α /∈ {0, 1}) ∥η∥αα
α(α−1)

or ∥η∥αα−1

α(α−1)
∥η∥αα

α
− ηα−1

z
α−1

Tsallis scoring rule
(Dawid & Musio, 2014) .

Sym. inverse log −
∑M

z=0 log ηz
∑M

z=0 log ηz +
1
ηz

Spherical (α /∈ {0, 1}) (M+1)
− 1

α

α−1
∥η∥α − (M+1)

− 1
α

α−1
( ηz
∥η∥α )α−1

E DETAILS ON EXTENSIONS WITH PROPER SCORING RULES

In this section, we provide technical materials deferred from Section 3.4 on the extensions with
proper scoring rules.

E.1 ALTERNATIVE CHARACTERIZATION OF PROPER SCORING RULE

An alternative, yet equivalent representation of a proper scoring rule is based on a convex function
Φ(η) over η ∈ ∆([0 : M ]). One can induce a convex function Ψ(ρ) from a convex function Φ(η)
by the perspective transformation:

ΨΦ(ρ) ≜ (1 + ρ1 + . . .+ ρM )Φ

(
[1;ρ]

1 + ρ1 + . . .+ ρM

)
.

Theorem 18. Given a differentiable function Φ: ∆([0 : M ])→ R,

λΨΦ(η) =
(
⟨η,∇ηΦ(η)⟩ − Φ(η)

)
1−∇ηΦ(η). (8)

Proof. First, we can write

LΨΦ

K;ν(ηθ)− L
ΨΦ

K;ν(η
∗) = Ep(x1:K)

[
⟨η∗(x1:K),λΨΦ(ηθ(x1:K))⟩ − ⟨η∗(x1:K),λΨΦ(η∗(x1:K))⟩

]
.

It is easy to check, from the definition of the ΨΦ-induced scoring rule in Eq. (8),

⟨η∗,λΨΦ(ηθ)⟩ = −Φ(ηθ)− ⟨∇ηΦ(ηθ),η
∗ − ηθ⟩.

In particular,

⟨η∗,λΨΦ(η∗)⟩ = −Φ(η∗).

Hence, we have
⟨η∗,λΨΦ(ηθ)⟩ − ⟨η∗,λΨΦ(η∗)⟩ = BΦ(η

∗,ηθ).

See the proof of Theorem 6 in Appendix F for a comparison.

We remark that, for a (strictly) convex function Φ, Ψ is (strictly) convex since the perspective
transformation preserves the convexity, and thus

⟨η∗,λΨΦ(η)⟩ ≥ ⟨η∗,λΨΦ(η∗)⟩ = −Φ(η∗).

We note that the right hand side is the Bayes optimal risk. In other words, a convex function Φ(·) can
characterize a proper scoring rule as its (negative) Bayes-optimal risk.
Theorem 19. For ν ≥ 0,

LΨΦ

K;ν(ηθ)− L
ΨΦ

K;ν(η
∗) = Ep(x1:K)

[
BΦ

(
η∗(x1:K),ηθ(x1:K)

)]
,

For ν ≥ 0 and a convex function Φ, we have

−LΨΦ

K;ν(ηθ) ≤ −L
ΨΦ

K;ν(η
∗) = Ep(x1:K)

[
Φ
(
η∗(x1:K)

)]
.

If ν > 0, for a strictly convex function Φ, the equality is achieved if and only if rθ(x) =
q1(x)
q0(x)

.

If ν = 0, i.e., if there is no anchor class 0, we can only estimate the density ratio up to a multiplicative
constant, as the original InfoNCE guarantees.
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E.2 ON IMPLEMENTATION

Here, we We say that a scoring rule λ is {y1, y2}-invariant for y1 ̸= y2 ∈ Y if λy1
(η) = λy2

(η′) and
λy2

(η) = λy1
(η′) for any η,η′ such that ηy = η′y for y ̸∈ {y1, y2} and ηy1

= η′y2
and ηy2

= η′y1
.

Proposition 20. If the scoring rule λ is {z1, z2}-invariant for any {z1, z2} ⊆ {1, 2, . . . ,K}, we
have

LΨ
K;ν(ηθ) =

K

K + ν
Eq1(x1)q0(x2)···q0(xK)[λ

Ψ
1 (ηθ(x1:K))]

+
ν

K + ν
Eq0(x1)q0(x2)···q0(xK)[λ

Ψ
0 (ηθ(x1:K))]. (9)

E.3 EXAMPLES OF INFONCE-ANCHOR-TYPE DRE OBJECTIVES

Recall the examples of proper scoring rules in Appendix D.5. In Table 5, we first list the canonical
consistent DRE objectives derived by asymmetric scoring rules (see Table 3). As noted earlier, the
tensorization of InfoNCE-anchor does not have any effect with asymmetric scoring rules, and the
objectives boil down to the standard binary DRE objectives.

Table 5: Examples of consistent DRE objectives derived from asymmetric scoring rules (first half of
Table 3). Note that these objectives induced by asymmetric scoring rules do not depend on K and ν.

Asym. scoring rule LΨ
K;ν(ηθ) (see Eq. (9)) Known as

Log Eq1 [− log rθ(x)] + Eq0 [rθ(x)]
KLIEP (Sugiyama et al., 2008) in DRE.
NWJ (Nguyen et al., 2010) in MI estimation.

Power (α /∈ (0, 1)) Eq1 [
rθ(x)

α−1

1−α
] + Eq0 [

rθ(x)
α

α
]

Robust DRE (Sugiyama et al., 2012),
KLIEP (Sugiyama et al., 2008) when α → 1,
LSIF (Kanamori et al., 2009) when α = 2 in
DRE.

(when α = 2) −Eq1 [rθ(x)] +
1
2
Eq0 [rθ(x)

2]

In MI estimation/DRE, known as χ2 or
DRF (Tsai et al., 2020). In rep. learning, H-
score (Wang et al., 2019), spectral contrastive
loss (HaoChen et al., 2021), CCA (Chapman
et al., 2024), LoRA loss (Ryu et al., 2024).

Inverse log Eq1 [
1

rθ(x)
] + Eq0 [log rθ(x)]

As noted in the last column of the table, these binary DRE objectives have been extensively used and
studied in the various literature on DRE, MI estimation, and representation learning. We mention in
passing that a recent paper (Ryu et al., 2025), building on noise-contrastive estimation (Gutmann &
Hyvärinen, 2012), revealed a connection between these rules and the maximum likelihood estimation
principle.

In Table 6, we list the InfoNCE-anchor-type objectives based on the symmetric scoring rules (see
Table 4). Table 7 lists the corresponding InfoNCE-type objectives (i.e., without anchor). We remark
that the Spherical objective in the main text corresponds to the last row in Table 6.

F DEFERRED PROOFS

F.1 PROOF OF PROPOSITION 1

Proof of Proposition 1. We have an alternative proof for a loose upper bound

−LK;0(θ) + logK ≤ D(q1 ∥ q0).

We first consider the NWJ variational lower bound of the KL divergence:

D(q1 ∥ q0) ≥ Eq1 [log r]− Eq0 [r] + 1.
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Table 6: Examples of InfoNCE-anchor-type DRE objectives (ν > 0), derived from symmetric scoring
rules (Table 4). Here, ρθ(x1:K) ≜ [ν, ρθ(x1), . . . , ρθ(xK)] ∈ RK+1

+ and ρθ(x) ≜ rθ(x)
ν . The

objective in the first row corresponds to our proposal InfoNCE-anchor. When K = 1, ν = 1, it is
also known as JS (Poole et al., 2019) or NT-Logistics (Chen et al., 2020).

Sym. scoring rule LΨΦ
K;ν(ηθ) (see Eq. (9))

Log K
K+ν

Eq1(x1:K)[− log ρθ(x1)
∥ρθ(x1:K)∥1

] + 1
K+ν

Eq0(x1:K)[− log ν
∥ρθ(x1:K)∥1

]

Power
(α /∈ {0, 1})

K
K+ν

Eq1(x1:K)[
1
α
( ∥ρθ(x1:K)∥α
∥ρθ(x1:K)∥1

)α + 1
1−α

( ρθ(x1)
∥ρθ(x1:K)∥1

)α−1]

+ ν
K+ν

Eq0(x1:K)[
1
α
( ∥ρθ(x1:K)∥α
∥ρθ(x1:K)∥1

)α + 1
1−α

( 1
∥ρθ(x1:K)∥1

)α−1]

Sym. inverse log
K

K+ν
Eq1(x1:K)[

∥ log ρθ(x1:K)∥
∥ρθ(x1:K)∥1

+ ∥ρθ(x1:K)∥1
ρθ(x1)

]

+ ν
K+ν

Eq0(x1:K)[
log

∏
ρθ(x1:K)

∥ρθ(x1:K)∥1
+ ∥ρθ(x1:K)∥1]

Pseudo-spherical
(α /∈ {0, 1})

K
K+ν

Eq1(x1:K)[(
ρθ(x1)

∥ρθ(x1:K)∥α )α−1] + ν
K+ν

Eq0(x1:K)[(
1

∥ρθ(x1:K)∥α )α−1]

(α = 2) K
K+ν

Eq1(x1:K)[
ρθ(x1)

∥ρθ(x1:K)∥2
] + ν

K+ν
Eq0(x1:K)[

1
∥ρθ(x1:K)∥2

]

Table 7: Examples of InfoNCE-type DRE objectives, derived from symmetric scoring rules (Table 4).

Sym. scoring rule LΨΦ
K;0(ηθ) (see Eq. (9)) Known as

Log Eq1(x1:K)[− log rθ(x1)
∥rθ(x1:K)∥1

]
InfoNCE (van den
Oord et al., 2018)/NT-
Xent (Chen et al., 2020)

Power
(α /∈ {0, 1}) Eq1(x1:K)[

1
α
( ∥rθ(x1:K)∥α
∥rθ(x1:K)∥1

)α + 1
1−α

( rθ(x1)
∥rθ(x1:K)∥1

)α−1]

Sym. inverse log Eq1(x1:K)[
log

∏
rθ(x1:K)

∥rθ(x1:K)∥1
+ ∥rθ(x1:K)∥1

rθ(x1)
]

Pseudo-spherical
(α /∈ {0, 1}) Eq1(x1:K)[(

rθ(x1)
∥rθ(x1:K)∥α )α−1]

(α = 2) Eq1(x1:K)[
rθ(x1)

∥rθ(x1:K)∥2
]

Here the equality holds if and only if r(x) ≡ q1(x)
q0(x)

. For K ≥ 2, consider two distributions
q1(x1)q0(x2) · · · q0(xK) and q0(x1)q0(x2) · · · q0(xK). Applying the NWJ lower bound, we obtain

D(q1(x) ∥ q0(x))
= D(q1(x1)q0(x2) · · · q0(xK) ∥ q0(x1)q0(x2) · · · q0(xK))

≥ Eq1(x1)q0(x2)···q0(xK)[log r(x1, . . . , xK)]− Eq0(x1)q0(x2)···q0(xK)[r(x1, . . . , xK)] + 1.

Note that, again, the equality is attained if and only if

r(x1, . . . , xK) ≡ q1(x1)

q0(x1)
.

Now, we consider a specific (suboptimal) parameterization of r(x1, . . . , xK) in the following form:

r(x1, . . . , xK)← log
rθ(x1)

1
K

∑K
k=1 rθ(xk)

for some nonnegative-valued function rθ : X → R≥0. By symmetry, it is easy to show that

Eq0(x1)q0(x2)···q0(xK)[r(x1, . . . , xK)] = 1.

Hence, the NWJ lower bound simplifies to

D(q1(x) ∥ q0(x)) ≥ Eq1(x1)q0(x2)···q0(xK)

[
log

rθ(x1)
1
K

∑K
k=1 rθ(xk)

]
= −LK;0(θ), (10)

which concludes the proof.
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F.2 PROOF OF THEOREM 2

Proof of Theorem 2. We start with the following upper bound

−LK;ν(θ) = Ep(z)p(x1:K |z)[log pθ(z |x1:K)]

≤ Ep(z)p(x1:K |z)[log p(z |x1:K)],

where the upper bound is achieved when pθ(z|x1:K) = p(z|x1:K). This is by the Gibbs inequality,
or equivalently

Ep(x1:K)

[
D(p(z |x1:K) ∥ pθ(z |x1:K))

]
≥ 0.

We note that for ν = 0, we have

−LK;0(θ) + logK ≤ Ep(z)p(x1:K |z)[log p(z |x1:K)] + logK

= Eq1(x1)q0(x2)···q0(xK)

[
log

q1(x1)
q0(x1)

1
K

∑K
z=1

q1(xz)
q0(xz)

]
(11)

= DJS

(
p(x1:K |z = 1), . . . , p(x1:K |z = K)

)
.

The equality condition follows from the Gibbs inequality. This proves the first inequality.

To prove the upper bound logK, continuing from Eq. (11), we have

−LK;0(θ) + logK ≤ Eq1(x1)q0(x2)···q0(xK)

[
log

q1(x1)
q0(x1)

1
K

∑K
z=1

q1(xz)
q0(xz)

]

≤ Eq1(x1)q0(x2)···q0(xK)

[
log

q1(x1)
q0(x1)

1
K

q1(x1)
q0(x1)

]
= logK.

For the second upper bound, we apply Jensen’s inequality with the concavity of the logarithmic
function and obtain

Eq1(x1)q0(x2)···q0(xK)

[
log

1

K

K∑
z=1

q1(xz)

q0(xz)

]
≥ log

(
Eq1(x1)q0(x2)···q0(xK)

[
1

K

K∑
z=1

q1(xz)

q0(xz)

])

= log
( 1

K
χ2(q1 ∥ q0) + 1

)
≥ log

( 1

K
(eD(q1 ∥ q0) − 1) + 1

)
.

Here, χ2(p ∥ q) ≜ Ep[
p
q ]− 1 denotes the chi-squared divergence between distributions p and q. The

last inequality follows since χ2(q1 ∥ q0) ≥ eD(q1 ∥ q0) − 1. Rearranging the inequality proves the
desired bound.

F.3 PROOF OF PROPOSITION 5

To prove this proposition, we need the following lemma. The definition of the generating function gλ

of a differentiable loss function λ is given in Eq. (7) in Appendix D.1. Recall that the definition of
the induced loss function λΨ for a convex function Ψ is in Eq. 6.

Lemma 21. If Ψ is twice differentiable, gλΨ

(η) ≡ 0.

Proof of Proposition 5. By Lemma 21, we have gλΨ

(η) ≡ 0. Further, since η 7→ −fλΨ

(η) =

η0Ψ(ρ) is a perspective of the function ρ 7→ Ψ(ρ), fλΨ

must be (strictly) concave if Ψ is (strictly)
convex. Hence, by Theorem 9, we conclude that λΨ is (strictly) proper.

We now prove Lemma 21.
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Proof of Lemma 21. Consider

gλ
Ψ

z (η) =

M∑
z=0

ηz
∂λΨ

z (η)

∂ηz
.

Note that ρz′ = ηz′/η0 for z′ = 1, . . . ,M , we have

∂ρz′

∂ηz
=

{
−ρz′

η0
z = 0

1{z=z′}
η0

z = 1, . . . ,M.

Case 1: z = 0. If z = 0, λΨ
0 (η) = ⟨∇Ψ(ρ),ρ⟩ −Ψ(ρ). Hence, we have

∂λΨ
0 (η)

∂η0
=

M∑
z′=1

∂ρz′

∂ηz

∂

∂ρz′
(⟨∇Ψ(ρ),ρ⟩ −Ψ(ρ))

=

M∑
z′=1

−ρz′

η0
(∇2Ψ(ρ)ρ)z′

= − 1

η0
(⟨ρ,∇2Ψ(ρ)ρ)⟩ − (∇2Ψ(ρ)ρ)0). (12)

If 1 ≤ z ≤M , λΨ
z (η) = −(∇Ψ(ρ))z , and thus

∂λΨ
z (η)

∂η0
=

M∑
z′=1

∂ρz′

∂ηz

∂

∂ρz′

(
−∂Ψ(ρ)

∂ρz

)
=

1

η0

M∑
z′=1

ρz′
∂2Ψ(ρ)

∂ρz ∂ρz′

=
1

η0
(∇2Ψ(ρ)ρ)z. (13)

From (12) and (13), we have

gλ
Ψ

0 (η) =

M∑
z=0

ηz
∂λΨ

z (η)

∂η0

= −(⟨ρ,∇2Ψ(ρ)ρ)⟩ − (∇2Ψ(ρ)ρ)0) +

M∑
z=1

ηz
η0

(∇2Ψ(ρ)ρ)z

= −⟨ρ,∇2Ψ(ρ)ρ)⟩+
M∑
z=0

ρz(∇2Ψ(ρ)ρ)z

= 0.

Case 2: 1 ≤ z ≤M . If z = 0, we have

∂λΨ
0 (η)

∂ηz
=

1

η0
(∇2Ψ(ρ)ρ)z. (14)

If 1 ≤ z ≤M ,

∂λΨ
z (η)

∂ηz
= − ∂

∂ηz

∂Ψ(ρ)

∂ρz

= −∂ρz
∂ηz

∂2Ψ(ρ)

∂ρz ∂ρz

= − 1

η0

∂2Ψ(ρ)

∂ρz ∂ρz
. (15)
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Therefore, from (14) and (15), we have

gλ
Ψ

z (η) =

M∑
z=0

ηz
∂λΨ

z (η)

∂ηz

= (∇2Ψ(ρ)ρ)z −
M∑
z=1

ρz
∂2Ψ(ρ)

∂ρz ∂ρz

= (∇2Ψ(ρ)ρ)z − (∇2Ψ(ρ)ρ)z

= 0.

Hence, we conclude that gλΨ

(η) ≡ 0.

F.4 PROOF OF THEOREM 6

We note that, while the following proof is self-contained, a more detailed technical discussion
on the general relationship between proper scoring rule and Bregman divergence minimization in
Appendix D.4.

Proof of Theorem 6. Note that we can write

LΨ
K;ν(ηθ)− LΨ

K;ν(η
∗) = Ep(x1:K)

[
⟨η∗(x1:K),λΨ(ηθ(x1:K))⟩ − ⟨η∗(x1:K),λΨ(η∗(x1:K))⟩

]
.

Now, it is easy to check that, we have

⟨η∗,λΨ(ηθ)⟩ = η∗0

(
−Ψ(ρθ)− ⟨∇ρΨ(ρθ),ρ

∗ − ρθ⟩
)
.

In particular,

⟨η∗,λΨ(η∗)⟩ = −η∗0Ψ(ρ∗).

Hence, we have

⟨η∗,λΨ(ηθ)⟩ − ⟨η∗,λΨ(η∗)⟩ = η∗0BΨ(ρ
∗,ρθ).

From this expression, we have

LΨ
K;ν(ηθ)− LΨ

K;ν(η
∗) = Ep(x1:K)

[
η∗0BΨ(ρ

∗,ρθ)
]

= Ep(x1:K)

[
p(z = 0|x1:K)BΨ(ρ

∗,ρθ)
]

= p(z = 0)Ep(x1:K |z=0)

[
BΨ(ρ

∗,ρθ)
]
.

Since p(z = 0) = ν
K+ν and p(x1:K |z = 0) = q0(x1)q0(x2) · · · q0(xK) by definition, this concludes

the proof.

G EXPERIMENT DETAILS

This section provides the details on the experiments in the main text. All implementations are based
on PyTorch and all experiments were performed on a single NVIDIA GeForce RTX 3090. All codes
to reproduce the results will be made publicly available upon acceptance.

G.1 MI ESTIMATION

We conducted a series of mutual information (MI) estimation experiments across three distinct
data modalities: synthetic Gaussian variables, image-based representations from MNIST, and text
embeddings derived from the IMDB dataset, using the standardized mibenchmark framework (Lee &
Rhee, 2024). Each experiment paired a 10-dimensional synthetic source variable X ∈ R10 with a
modality-specific target variable Y , varying in dimensionality depending on the data type. Across all
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experiments, we used a consistent training configuration: models were optimized using Adam with a
learning rate of 1e-4, trained in stepwise mode for 20,000 iterations.

Across all setups, we evaluated a fixed set of mutual information estimators, including NWJ, NWJ-
Plugin, JS, JS-Plugin, InfoNCE, InfoNCE-Anchor, Density Ratio Fitting, and Spherical, with both
joint and separable critic types. The critic network in all cases was an MLP composed of two hidden
layers with 512 units, ReLU activations, and no normalization or dropout layers. Critic architectures
projected inputs into a shared 16-dimensional embedding space. For joint critics, X and Y pairs
were concatenated and passed through a single encoder, whereas for separable critics, independent
encoders g(x) and h(y) were used. Batch size varied by dataset: 16 for Gaussian data and 64 for
MNIST and IMDB. We refer the readers to (Lee & Rhee, 2024) and their codebase for the rest of the
details including the data generation mechanism.

Figure 3 summarizes the result of MI estimation for the Gaussian experiment with cubic transforma-
tion with varying batch sizes. It clearly shows that InfoNCE-anchor exhibits a consistent performance,
but we note that JSplugin also performs remarkably well in this simple benchmark.
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(a) Gaussian (cubic) with batch size 16.
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(b) Gaussian (cubic) with batch size 64.
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(c) Gaussian (cubic) with batch size 256.

Figure 3: Summary of MI estimation results on the standard benchmark on the Gaussian cubic data,
with different batch sizes.

G.2 PROTEIN INTERACTION PREDICTION

We followed the same setup of Gowri et al. (2024), and here we briefly overview the essential part.
We conducted experiments on two datasets derived from ProtTrans5-encoded protein embeddings:
one composed of 22,229 kinase–target pairs and another with 1,702 ligand–receptor pairs. Each
protein is represented by a 1,024-dimensional vector, and all embeddings were whitened and clipped
to the range [−10, 10]. Across 20 trials, 170 proteins were randomly selected and held out per trial,
ensuring that no interaction in the training set included any of the held-out proteins. The remaining
interactions were used for training a mutual information estimator.

Our approach trains a separable critic network to estimate the density ratio via the InfoNCE-anchor
objective. The critic architecture is a MLP with 4 hidden layers, each containing 256 units, and
outputs 32-dimensional embeddings for each input protein, separate encoders f(x) and g(y) for each
side of the pair. ReLU activation was used, and no normalization layers were applied by default. We
used the Adam optimizer with a learning rate of 1e-4, batch size of 64, and 10,000 training steps. We
implement early stopping with a patience of 500 steps, based on validation loss, which is monitored
every 500 iterations. The final model is selected based on the best validation performance and is then
used to estimate pointwise mutual information (PMI) for held-out protein pairs.
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We present ROC curves (Figure 4) and histograms of learned PMI values (Figure 5) for each estimator.
These two figures clearly demonstrate that InfoNCE-anchor exhibit the best discriminative power.
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Figure 4: ROC curves from different estimators.
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(a) Kinase–target pair prediction.
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Figure 5: Histograms of pointwise MI (log p(x,y)
p(x)p(y) ) from different estimators.

G.3 SELF-SUPERVISED REPRESENTATION LEARNING

Here, we provide details on the objective functions we considered in the experiment. We used the
temperature parameter τ = 0.2 throughout, unless stated otherwise.

• InfoNCE: Log score, K = B − 1, ν = 0, PMI factorization.
• InfoNCE-anchor: Log score, K = B − 1, ν = 1, PMI factorization.
• JS: Log score, K = 1, ν = 1, PMI factorization.
• Spherical: Spherical score, K = B − 1, ν = 1, PD factorization.
• χ2: Asymmetric power score with α = 2, K = 1, ν = 1. In this case, τ = 0.1 was used.

We found that the PMI factorization was not effective for all scoring rules other than the log score.
The rest of the experimental details can be found from the codebase of da Costa et al. (2022).
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H ON THE USE OF LARGE LANGUAGE MODELS

During manuscript preparation, the authors employed large language models (LLMs) solely for
polishing the writing. All initial drafts were written by the authors themselves, and any LLM-polished
text was subsequently reviewed and revised by the authors. LLMs were not used for generating
research ideas, conducting literature review, or contributing to research ideation.
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