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Abstract

Finding an optimal individualized treatment regimen is considered one of the most
challenging precision medicine problems. Various patient characteristics influence
the response to the treatment, and hence, there is no one-size-fits-all regimen.
Moreover, the administration of an unsafe dose during the treatment can have
adverse effects on health. Therefore, a treatment model must ensure patient safety
while efficiently optimizing the course of therapy. We study a prevalent medical
problem where the treatment aims to keep a physiological variable in a safe range
and preferably close to a target level, which we refer to as leveling. Such a task
may be relevant in numerous other domains as well. We propose ESCADA, a
novel and generic multi-armed bandit (MAB) algorithm tailored for the leveling
task, to make safe, personalized, and context-aware dose recommendations. We
derive high probability upper bounds on its cumulative regret and safety guarantees.
Following ESCADA’s design, we also describe its Thompson sampling-based
counterpart. We discuss why the straightforward adaptations of the classical MAB
algorithms such as GP-UCB may not be a good fit for the leveling task. Finally, we
make in silico experiments on the bolus-insulin dose allocation problem in type-1
diabetes mellitus disease and compare our algorithms against the famous GP-UCB
algorithm, the rule-based dose calculators, and a clinician.

1 Introduction

Precision medicine aims to provide the best possible treatment on an individual level by considering
patient characteristics’ variability [3, 30]. Many healthcare problems require keeping a physiological
variable (e.g., blood glucose level) in a safe range and preferably close to a target level. One such
example is electrolyte disorders, common among intensive care unit patients. When the blood sodium
level falls below 135 milliequivalents per liter (mEq/L) or goes beyond 145 mEq/L, the patient
experiences hypo-/hyper-natremia with adverse effects on health [24]. Therefore, correct dosing of
electrolytes is crucial to ensure patient safety, and there is no consensus on how to assess the correct
dosage for different patient characteristics. Another critical problem is blood pressure disorder. These
are hypo-/hyper-tension events where the blood pressure deviates from its standard value and needs to
be corrected. Patient characteristics play an essential role in determining the blood pressure response
to the therapeutic agent, and they should be taken into account in the dosing process [33].

Related work and background A fair amount of research is dedicated to adaptive clinical trials
which aim to identify a drug’s effectiveness within a group, including a tradeoff between efficacy and
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toxicity [26, 27, 40, 53]. The algorithms proposed in these works are not applicable to the problem
structure considered here for two main reasons. First, the therapeutic agent is not necessarily toxic,
and our aim is not to maximize the response to the agent but to keep it close to a target level. Therefore,
classical upper confidence bound (UCB) based algorithms such as UCB1 [4] or GP-UCB [41] are not
applicable for our objective. That is simply because the UCB-based algorithms leverage the optimism
in the face of uncertainty (OFU) principle to form optimistic estimates of arm outcomes and pick the
arm with the highest estimated outcome. However, in our case, optimism refers to the proximity of an
arm’s outcome to the target. This fundamental difference in our task necessitates a novel acquisition
strategy. One could simply form pseudo-rewards to maximize, such as r(n) = −|o(n)−K|, where
o(n) is the outcome at the end of round n and K is the target level. We particularly refrain from
doing so as different reasonable choices for the pseudo-reward will lead the algorithm to operate
differently in practice. Therefore, we keep the objective (i.e., minimize |o(n) − K|) in the most
generic form and propose a suitable acquisition strategy instead. We provide more details on our
objective and motivation behind designing a new acquisition strategy in §2. Secondly, our goal is to
provide personalized recommendations rather than for a group of patients. We approach the safe dose
allocation problem from a contextual multi-armed bandit (MAB) [29] perspective with additional
safety constraints and propose a novel acquisition function tailored for this problem structure in §3.

To render our acquisition method safe, we propose a safe exploration strategy. There is a surge
of interest in safe exploration for Bayesian optimization (BO), Markov decision processes, MABs,
and reinforcement learning in general. [15, 17, 31, 54]. [1] propose the linear Thompson sampling
(LTS) algorithm for the linear stochastic bandit (LSB) setting by adding a random perturbation to the
regularized least-squares estimates of the parameters in a way that the OFU principle can be used.
[32] modifies the LTS’ randomization procedure to continue leveraging the OFU principle in the face
of additional safety constraints and matches LTS’ order of regret. [21] proposes a safe algorithm
incurring a near-optimal expected regret for the LSB problem as well, which uses the arm outcomes’
lower confidence bounds to guarantee the safety of exploration and greedily exploit when it is safe.

There is a strand of literature on “risk-averse” MABs, where the learner is concerned not only with
maximizing long-term earnings but also with reducing a certain measure of risk [9, 37]. [37, 49,
50] investigate the MAB problem using two risk measures, Mean-Variance and Value-at-Risk, which
are widely adopted in financial portfolio management [42]. [8, 14, 20] study the Conditional-Value-
at-Risk measure, which captures the tail-risk better compared to the Value-at-Risk measure. Another
related area is the “conservative” bandits, where the learner’s cumulative reward must always exceed a
predetermined fraction of a baseline’s [19, 56]. These works, however, do not address stagewise safety
constraints on instantaneous arm outcomes, which must be explicitly satisfied at any given time.

We operate in a BO framework where we model the objective function as a sample from a Gaussian
process (GP). [15, 17] consider BO with stagewise safety constraints. However, they aim to find
optimal safe solutions and allow unsafe evaluations during exploration. [2] propose a safe variant of
GP-UCB, which employs a pure exploration phase at the beginning and provides upper bounds on
its cumulative regret. SafeOPT and StageOPT algorithms provide guarantees on the safety of the
exploration process [44, 45]. However, they model the exploration of the safe set as a proxy objective
which leads to unnecessary suboptimal evaluations at the boundaries of the safe set [48]. Moreover,
they do not provide formal regret bounds. Goal-oriented Safe Expansion (GoOSE) algorithm works
with any acquisition function as a plug-in safety mechanism and encourages the expansion of the
safe set only when necessary [48]. When the query is not guaranteed to be safe, only then GoOSE
expands the safe set by evaluating the function at safe points to learn more about the initial query’s
safety. However, such re-evaluations are not possible within the framework of dynamic treatment
regimes since this setup does not allow the administration of multiple doses. Moreover, all the works
above consider a one-sided safety constraint (f(x) ≥ c), whereas we consider a two-sided one as the
aim is to keep f(x) in a range (c1 ≤ f(x) ≤ c2). We provide a table comparing our work to some
existing literature on safe exploration with GPs in Appendix A. Our key contributions are as follows.

We study an important and overlooked problem in medicine that which is relevant in other domains
as well, such as demand-side management [7]. We formalize the problem from a contextual MAB
perspective via a suitable definition of regret as the proxy performance metric in §2. Since our
objective is to keep the outcomes close to a target rather than maximize them as in the usual MAB
setting, we propose a novel acquisition method in §3. We design a safe exploration scheme for
our acquisition function in §3 and derive high probability upper bounds on its regret with safety
guarantees in §4. We make in silico experiments on type-1 diabetes mellitus (T1DM) disease in
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§5. T1DM is characterized by insulin deficiency due to pancreatic β-cell loss, and it can have
adverse effects which might result in hospitalization and death [6]. Therefore, T1DM patients must
regulate their blood glucose by administering bolus insulin doses before meals. We optimize the dose
recommendation process via safely and efficiently learning to recommend better doses.

2 Problem statement

We denote by [N ] the set {1, . . . , N}, z ∈ Z a context, and d ∈ D a dose, where both Z and D are
compact and convex, and D = [0, D]. Let f : Z × D → Ω be the unknown function that maps
(z, d) pairs to the physiological variable of interest, where Ω = [0, T ]. At round n ∈ [N ], the learner
observes a context, zn, and recommends a dose, dn, to obtain a noisy evaluation of f at (zn, dn),
given as yn = f(zn, dn) + νn, where νn are zero-mean i.i.d. Gaussian with known variance σ2. The
learner’s objective is to keep the physiological variable, f(zn, dn), within a safe range and close to
the target level. We formalize this objective as a contextual MAB problem with safety constraints as,

minimize RN =
∑N

n=1
|f(zn, dn)− T | (1)

subject to Tmin ≤ f(zn, dn) ≤ Tmax, ∀n ∈ [N ] , (2)

where Tmin and Tmax denote the lower and upper safety thresholds for f , respectively, and
T ∈ (Tmin + α, Tmax − α) is the target value, where α > 0. We introduce the non-zero
α term to ensure that the target level is not exactly equal to the safety thresholds, which is required
later in the analyses. We assume ∀z ∈ Z , there exists d∗z ∈ D such that f(z, d∗z) = T .
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Figure 1: A hypothetical objec-
tive function f(x), and three can-
didate reward functions.

Regularity assumptions Our safe exploration strategy relies
on expanding around an initial safe set by exploiting the smooth-
ness properties of the objective function f(x). Without an ini-
tial safe set, and some regularity assumptions on f(x), it is not
possible to make inferences on the safety of the prospective rec-
ommendations [44]. Let X = Z × D denote the space of
all context-dose pairs. Let k(·, ·) be a positive definite kernel
function on X . We assume that f(x) is a function from the
Reproducing Kernel Hilbert Space (RKHS) corresponding to
k(·, ·). In addition, we assume that f(x) has bounded norm in
this particular RKHS, i.e., ∥f∥k < Bf [39]. This mild assump-
tion makes f(x) smooth enough to be efficiently learnable by a
GP. More precisely, f(x) is L-Lipschitz continuous w.r.t. kernel

metric q(x,x′) =
√

k(x,x)− 2k(x,x′) + k(x′,x′), where L = Bf [43]. Also, we denote by
qz(d, d

′) := q((z, d), (z, d′)). At this point, we define a discretization of D for every z ∈ Z as,

Dz := {di(z) ∈ D | i ∈ {1, . . . , k}} ,

where d1(z) = 0, di(z) > dj(z) for i > j, qz(di, di+1) = λ/2L, qz(dk, D) < λ/2L, and λ > 0 is
the discretization parameter. We assume that an initial safe set of discretized doses S0(z) is available
for each z ∈ Z . These assumptions allow us to use Gaussian processes (GP) to design our algorithm,
and analyze its regret and safety guarantees [36]. A GP is a distribution over functions which is
characterized by its mean, µ(·), and covariance, k(·, ·), functions. Once we assume a GP prior over
f(x), after observing a set of noisy evaluations yN = [y1 . . . yN ]T at AN = {x1, . . . ,xN}, the
posterior over f(x) is a GP again with the following mean and covariance functions,

kN (x,x′) = k(x,x′)− kN (x)T
(
KN + σ2I

)−1
kN (x′)

σ2
N (x) = kN (x,x)

µN (x) = kN (x)T
(
KN + σ2I

)−1
yN ,

where kN (x) = [k(x1,x), . . . , k(xN ,x)]T and KN is the positive definite kernel matrix
[k(x,x′)]x,x′∈AN

.

Comparison with GP-UCB Our objective is to keep f(x) close to a target level T . As we discussed
in §1, one could use the GP-UCB algorithm in [41] if the objective was to maximize f(x). In our case,
however, we have to define pseudo-rewards to maximize such as−|f(zn, dn)−T | that are decreasing
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Figure 2: ESCADA Algorithm Description (left). Upon observing a context zn in round n, TACO
forms the set Cn(zn) ⊆ Sn(zn) after eliminating the doses that are suboptimal with high probability
(TACO uses Dn = Sn(zn) in Algorithm 1 to ensure safety with high probability). If Cn(zn) ̸= ∅, it
recommends the dose whose mean response is closest to the target T . If Cn(zn) = ∅, it recommends
the dose with the widest confidence interval in Sn(zn) ∩ Dzn

. Flowchart (right). A simple
interpretation of the dose allocation process intended for domain experts.

with |f(zn, dn)− T | to capture the “leveling" task in (1). We present three such reward functions in
Figure 1. However, f(x) being smooth and efficiently learnable by a GP does not imply that a reward
functional defined on f(x) will be as well. Figure 1 shows that different reward functions can have
significantly different landscapes. For instance, it is almost impossible to achieve our task efficiently
by using the so-called “plausible” Reward 1. In §5, we compare our algorithms’ performances against
the GP-UCB’s for three reward functions in Figure 1. Also, when T ̸= (Tmin + Tmax)/2 (which may
well be the case, see §5), the reward-based GP-UCB method needs another GP to directly learn f(x)
to efficiently satisfy the safety requirements, doubling the computational complexity compared to
our algorithms which use a single GP for everything. Finally, by learning f(x) with a GP, we can
provide interpretations for our model’s recommendations (see Figure 2).

3 ESCADA algorithm

Algorithm 1 ESCADA algorithm

for n = 1, 2, . . . do
Observe zn and form Cn(zn)
Update Sn(zn) via (3)
dn ← TACO(Cn(zn), Sn(zn))
Observe yn = f(zn, dn) + νn
Update GP posterior

Subroutine: TACO
Inputs: Cn(zn);Dn

Cn = {d ∈ Dn | T ∈ Cn(zn, d)}
if Cn ̸= ∅ then

d← argmin
d′∈Cn

|µn−1(zn, d
′)− T |

else
d← argmax

d′∈Dn∩Dzn

wn(zn, d
′)

return d

We propose ESCADA: Efficient Safety and Context Aware
Dose Allocation algorithm. It consists of two blocks: (i) an
acquisition function, which we call TACO: TArget-based
COnfident-acquisition, (ii) a safety mechanism to render
TACO safe. Algorithm 1 and Figure 2 summarize ES-
CADA’s design. ESCADA’s recommendation procedure
can be interpreted to domain experts via the flowchart in
Figure 2 as opposed to black-box models [58].2

Acquisition strategy We propose TACO, a novel acqui-
sition method specifically tailored for the “leveling” task
described in §2. At each round n, TACO uses the confi-
dence bounds of doses d ∈ D for zn derived from the GP
prior as ln(zn, d) = µn−1(zn, d)−β1/2

n σn−1(zn, d), and
un(zn, d) = µn−1(zn, d) + β

1/2
n σn−1(zn, d). We define

βn later in a way that the confidence intervals contain the
true value of f with high probability (see Lemma 1). Then,
using Lipschitz continuity of f , we form the final lower
and upper confidence bounds for every d ∈ D as,

l̄n(zn, d) = max{ln(zn, d), ln(zn, d′)− Lqzn
(d, d′)}

ūn(zn, d) = min{un(zn, d), un(zn, d
′) + Lqzn

(d, d′)} ,

where d′ = argmind̂∈Dzn
qzn

(d, d̂). We denote by Cn(zn, d) = [l̄n(zn, d), ūn(zn, d)] the confi-
dence interval of a dose d ∈ D in round n, and by Cn(zn) = {Cn(zn, d)}d∈D. Finally, we form the
confidence widths for each dose d ∈ D as wn(zn, d) = ūn(zn, d)− l̄n(zn, d).

TACO queries a recommendation from a dose set Dn at each round n upon observing the context
zn in three steps: (i): Identify the dose set Cn ⊆ Dn whose elements’ confidence intervals contain

2Flowchart assumes that GP-induced confidence intervals are correct, i.e., the event E in Lemma 1 holds.
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the target value, T . (ii) If Cn ̸= ∅, recommend the dose in Cn with the closest mean response to the
target value T . (iii) If Cn = ∅, recommend the dose in Dn ∩ Dzn

with the widest confidence interval.
In the first step, TACO eliminates the doses which are suboptimal with high probability. This step
includes elements of both exploration and exploitation. A dose whose mean response is close to the
target value can be selected (exploitation). On the other hand, if a dose is under-explored, it will
have a wider confidence interval which may contain the target, and it stands a chance to be selected
(exploration). In the third step, TACO focuses on pure exploration to identify the doses that may be
optimal. TACO is efficient in the sense that it treats exploration as a proxy objective –in the third step–
only when all the feasible doses (i.e., safe) are suboptimal with high probability.

Safety awareness We design a safe exploration scheme inspired from the previous works on safe
GP optimization [44, 45]. We denote the safe set at round n for the context zn by Sn(zn). Let us
denote by l̂n(zn, d, d

′) := l̄n(zn, d) − Lqzn(d, d
′), and ûn(zn, d, d

′) := ūn(zn, d) + Lqzn(d, d
′).

We implement the following expansion rule to derive Sn(zn) each round,

Sn(zn) = Sn−1(zn) ∪
( ⋃

d∈Sn−1(zn)

{d′ ∈ D | l̂n(zn, d, d′) ≥ Tmin ∧ ûn(zn, d, d
′) ≤ Tmax}

)
, (3)

To satisfy the safety requirements, TACO recommends a dose from Dn = Sn(zn) at each round
n. Sn(zn) only contains the doses for which f resides in the target interval almost certainly (see
Theorem 1). We also define the ϵ-reachability operatorRϵ, where ϵ > 0 accounts for the uncertainty
in measurements as in [44],

Rϵ(S0(z)) := S0(z) ∪
{
d ∈ D | ∃d′ ∈ S0(z), f(z, d

′)− Lqz(d, d
′)− ϵ ≥ Tmin

∧ f(z, d′) + Lqz(d, d
′) + ϵ ≤ Tmax

}
. (4)

We denote byRn
ϵ the n-time reachability operator, which callsRϵ n times using the previous step’s

output. Then, limn→+∞Rn
ϵ (S0(z)) represents the subset of D that can be identified as safe for the

context z using the initial safe set S0(z), by observing f up to a statistical certainty restricted by ϵ.

4 Theoretical analyses

Consider a sequence of patient contexts z̄ = [z1 . . . zN ]. Let XN = X1 × . . . XN denote the
space of all context-admissible recommendation pairs, where Xn = zn × Dn, and Dn ⊆ D is the
admissible dose space for zn. For a given sequence of context-recommendation set A, let yA denote
the |A|-dimensional vector containing corresponding noisy evaluations of f . The quantity governing
our regret bounds after N rounds in this scenario is a volatility-adapted maximum information gain
term, γvol

N = maxA⊂XN
I(yyyA;fffA), where fffA = [f(xxx)]xxx∈A and I(yyyA;fffA) is the mutual information

between f and observations at points in A. In the general setting where there is not a fixed context
sequence, we have γN = maxA⊂XN I(yyyA;fffA). Note that since XN ⊆ XN , we have γvol

N ≤ γN .
Explicit bounds on γN depending on N are studied in the literature [41, 51]. In this section, we first
derive a high probability upper bound on the cumulative regret of TACO for a fixed context sequence
without safety constraints. Then, we bound the regret of ESCADA in a single context scenario with
safety constraints. For the former, we have z̄1 = [z1 . . . zN ], and Dn = D, and we denote the upper
bound on the information gain term (see Lemma 2) by γvol1

N . For the latter, we have z̄2 = [z . . . z],
Dn = Sn(z), and we denote the upper bound on the information gain term by γvol2

N . We also prove
that every dose recommended by ESCADA is safe with high probability (w.h.p.). Detailed proofs for
each result can be found in Appendix D.

First, we mention two standard results. Lemma 1 shows that f(x) is contained in the GP-induced con-
fidence intervals w.h.p. and Lemma 2 expresses the information gain in terms of predictive variances.

Lemma 1. (Theorem 1 in [25]) Pick δ ∈ (0, 1), and define βn = 2L2 + 300γn log
3(n/δ), where L

is the Lipschitz constant. Let E = {|µn−1(xxx)− f(xxx)| ≤ β
1/2
n σn−1(xxx),∀n ∈ N,∀xxx ∈ X}. We have

P
{
E
}
≥ 1− δ.

Lemma 2. (Lemma 5.3 in [41]) The information gain for the points selected can be expressed in
terms of the predictive variances. If fN = (f(xn)), I(yN ;fN ) = 1

2

∑N
n=1 log(1 + σ−2σ2

n−1(xn)).

The following theorem provides a safety guarantee for ESCADA under the event E in Lemma 1. The
proof depends on an inductive argument on the safe sets constructed by ESCADA.
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Theorem 1. Given that an initial safe dose set S0(z) is available ∀z ∈ Z , all doses recommended
by ESCADA are safe, that is, Tmin ≤ f(zn, dn) ≤ Tmax ∀n ∈ [N ], with at least 1− δ probability.

We proposed a novel acquisition function, TACO, for the leveling problem described in §2. Theorem 2
provides an upper bound on the regret of TACO without any safety constraints in place.
Theorem 2. Define βn as in Lemma 1 and let C := 8/ log(1 + σ−2). Cumulative regret of TACO
for a fixed context sequence is upper-bounded as follows,

P
{
RN ≤

√
CNβNγvol1

N

}
≥ 1− δ .

Next, we introduce a new concept, safe path.
Definition 1. (Safe Path) For a fixed context z ∈ Z , we say that there exists a safe path between two
doses d1, d2 ∈ D if the following is satisfied,

η(d1, d2) = min

(
min

d∈[d1,d2]

(
Tmax − ϵ− f(z, d)

)
, min
d∈[d1,d2]

(
f(z, d)− Tmin − ϵ

))
> 0 , (5)

where ϵ > 0 is same as in (4). Definition 1 states that if there exists a safe path between two doses
d1 and d2, then there is no dose violating or exactly at the safety constraints between them. That is,
f(d) ∈ (Tmin + ϵ + η(d1, d2), Tmax − ϵ − η(d1, d2)) for all d ∈ [d1, d2]. Next, we give the
regret bound for ESCADA, which uses TACO with the safe sets Sn(zn) in (3). We assume a fixed
context scenario and show that the safety constraints result in at most a constant addition to the regret.
Theorem 3. If there exists a safe path between at least one dose d ∈ S0(z) and d∗z , and we have
qz(d1, d2) = K(|d1 − d2|) for some monotonically increasing mapping K : R+ → R+and for all
d1, d2 ∈ D, then the cumulative regret of ESCADA in a safety constrained single context (z) scenario
can be upper-bounded by setting the discretization parameter λ < ϵ as follows,

P
{
RN ≤

√
CNβNγvol2

N + TNz

}
≥ 1− δ ,

where Nz ∈ N is a constant independent of N .

Note that since f(z, d∗z) = T and T ∈ (Tmin + α, Tmax − α), one must ensure that α > ϵ for the
possibility of a safe path between some d ∈ S0(z) and d∗z at the first place.

The assumption that qz(d1, d2) = K(|d1 − d2|) for a monotonically increasing mapping K holds
in our working example where the blood glucose response to insulin dose can be characterized
by the carbohydrate factor (CF) [38, 55]. That is, if we let L ≫ CF, then we have f(z, d1) −
f(z, d2) ≤ L|d1 − d2| for d1, d2 ∈ D, and qz(d1, d2) = |d1 − d2|. Moreover, this is the case
for a variety of widely used kernel induced distance metrics. For the squared exponential kernel
k(α, β) = exp

(
−∥α− β∥2 /2σ2

)
, we have (see §2),

qz(d1, d2) =
√

2− 2 exp (−|d1 − d2|2/σ2) (6)

Similar observations follow for other radial-basis function kernels (e.g., Laplacian kernel). The-
orems 2 and 3 constitute the non-incremental parts in our analysis as they provide explicit regret
guarantees for a novel problem structure and acquisition strategy, both with and without safety
constraints for a compact and convex action set. To generalize the bound in Theorem 3 to mixed
context scenarios, one needs to impose further assumptions on the regularity of context arrivals
over time. We provide experimental results on mixed context scenarios in §5 and show that the
inter-contextual information transfer actually improves the performance as expected.

5 Experiments

5.1 Experimental setup

Online experimentation in the clinical setting is hazardous and it faces ethical challenges [12, 34, 35,
52]. Previous works on dose-finding clinical trials validate their methods either through synthetic
experiments or by using external algorithms to fit a dose-response model to real-world data when
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the patient group is homogeneous [5, 26, 40]. Such algorithms are not applicable in our case as they
assume a shared dose-response model among patients, whereas we aim to learn personalized models.
We make in silico experiments using the open-source implementation [57] of the U.S. FDA approved
University of Virginia (UVA)/PADOVA T1DM simulator [23], which is the most frequently used
framework in blood glucose control studies [10, 11, 13, 18, 28, 46, 59, 60]. It comes with 30 virtual
patients with different individual characteristics: 10 adults, 10 adolescents, and 10 children. The
simulator calculates the postprandial blood glucose (PPBG) response of a patient for (meal event,
bolus insulin dose) pairs using differential equations and patient characteristics [23]. In our best effort
to evaluate the success and potential of ESCADA as a supplementary tool in the clinical setting and
to provide external validation, we also compare its performance against a clinician for five virtual
adult patients. Our code is available at https://github.com/Bilkent-CYBORG/ESCADA.

Performance metrics When the PPBG level drops below 70 mg/dl (or exceeds 180 mg/dl), hypo-
glycemia (hyperglycemia) events occur. Both events may lead to life-threatening conditions [6]. Our
primary objective is to recommend insulin doses that keep the patients’ PPBG level close to the target
BG level (see (1)) while not recommending any insulin dose that triggers hypoglycemia or hyper-
glycemia events (see (2)). We set the target blood glucose (BG) level to 112.5 mg/dl [22]. We gauge an
algorithm’s performance by combining its regret, hypoglycemia/hyperglycemia frequencies (error fre-
quencies), and glycemic risk indices. Glycemic risk indices are low blood glycemic index (LBGI) and
high blood glycemic index (HBGI), and they characterize the risk of hypoglycemia and hyperglycemia
events in the long term, respectively [22]. A well-rounded algorithm should have a low cumulative re-
gret together with small risk index values by safely and efficiently learning to recommend better insulin
doses. Besides, we discuss the competing algorithms’ consistency since inexplicable variations in
medical therapy are undesirable [47]. Precisely speaking, for a fixed history, when we query a recom-
mendation from a consistent algorithm multiple times for the same meal event, it should not change.
A meal event is a two-element tuple: (carbohydrate intake, fasting blood glucose). We create different
meal events via uniform sampling to create an ensemble of different scenarios. We sample carbohy-
drate intake for each meal event from [20, 80] g, and fasting blood glucose from [100, 150] mg/dl.

Single meal event (SME) scenario In this part, we recommend insulin doses to a patient for the
same meal event, assuming that the patient takes the insulin dose directly before the meal. Simulating
this setup is helpful for two reasons: (i) it tests the performance of the algorithms in the classical
non-contextual MAB setting, (ii) it provides a simple benchmark to understand the performance
metrics and to compare them with the contextual setup later. Our objective is to optimize the PPBG
150 minutes after the meal. We make 15 consecutive dose recommendations for a meal event in a
single run. We repeat this experiment with 30 different meal events for all 30 patients.

Multiple meal events (MME) scenario In this part, we recommend insulin doses to a single
patient for a sequence of different meal events and use the same 30 meal events created in the SME
scenario. We make consecutive recommendations for different meal events in a round-robin fashion
and recommend a total of 15 doses for each meal event. Precisely speaking, after making a dose
recommendation for a meal event, we make recommendations for the other 29 meal events and observe
the PPBGs before making the next recommendation for the same meal event. This setup illustrates that
the information gained from a context can assist in making decisions for different contexts. Contextual
knowledge transfer enables our algorithm to adapt to intra- and inter-daily variability in meal events.

Algorithms We simulate ESCADA and TACO (i.e., without the safety mechanism). Besides, we
propose a Thompson sampling (TS)-based algorithm and its safe version (STS), which operate as
follows: TS samples a PPBG function from the posterior GP in each round and recommends the dose
that achieves the PPBG closest to the target BG. STS implements the safe exploration strategy in §3
and uses TS as the acquisition function. In the final part, we implement the GP-UCB algorithm in
[41] using three different “reward” functions in Figure 1 and compare it to our acquisition functions
TACO and TS. We use two versions of dose calculators as baselines, whose details are given below.

Dose calculators Dose calculators are commonly used in diabetes care, as they are transparent and
interpretable [55]. We use them to initialize the safe dose set for patient and meal event pairs. A
calculator recommends an insulin dose via a simple equation, including carbohydrate intake, fasting
blood glucose, and patient-specific parameters. They must be fine-tuned to ensure safety which may be
challenging. Even when fine-tuned, they may not include some patient characteristics which can affect
PPBG in the calculation rule. Correction doses constitute 9% of the patients’ daily insulin dose intake
due to the calculator’s failure [55]. More details about bolus calculators are available in Appendix C.
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Table 1: “-TC" indicates that tuned calculator was used. Target PPBG level is T = 112.5 mg/dl.
“PPBG" column is averaged over observations for all 30 patients, 30 meal events per patient, and
15 recommendations per meal event. “Hyper" and “Hypo" columns denote the hyperglycemia and
hypoglycemia event frequencies, respectively, averaged over all 30 patients. Similarly, HBGI and
LBGI risk indices are averaged over all 30 patients. We report (mean ± standard deviation).

Algorithm PPBG Hyper Hypo HBGI LBGI
Calc. 144.0± 39.5 .143± .217 .0614± .189 3.84± 3.41 1.37± 3.95
Tuned Calc. 123.7± 18.1 0 .0021± .010 0.83± 0.66 0.24± 0.47

SM
E

TS 119.8± 42.2 .046± .029 .0216± .028 1.52± 1.25 1.01± 2.31
TACO 121.7± 50.4 .049± .032 .0175± .019 1.89± 1.63 0.52± 0.46
STS 121.6± 24.8 .031± .063 .0029± .010 1.07± 1.33 0.15± 0.23
ESCADA 122.2± 20.0 .015± .030 .0031± .008 0.77± 0.82 0.11± 0.24
STS-TC 117.1 ± 11.9 .002 ± .004 .0004 ± .001 0.28 ± 0.24 0.05 ± 0.05
ESCADA-TC 116.1 ± 12.5 .002 ± .004 .0007 ± .003 0.26 ± 0.21 0.07 ± 0.09

M
M

E

GP-UCB-1 124.1± 87.0 .179± .050 .2618± .202 5.43± 2.26 15.4± 22.5
GP-UCB-2 103.7± 59.4 .080± .060 .2873± .254 2.21± 1.58 16.0± 27.0
GP-UCB-3 111.0± 32.6 .022± .010 .0648± .076 0.73± 0.33 3.45± 5.17
TS 112.4 ± 14.4 .003 ± .003 .0107± .011 0.16 ± 0.18 0.53± 0.95
TACO 113.7 ± 19.2 .006 ± .031 .0010 ± .002 0.29 ± 1.18 0.07 ± 0.04
STS 116.5± 12.5 .004 ± .015 .0007 ± .002 0.32 ± 0.49 0.05 ± 0.05
ESCADA 116.9± 13.1 .006 ± .017 .0005 ± .002 0.34 ± 0.55 0.04 ± 0.04

We consider two setups. First, we use a calculator setting that occasionally fails to provide safe dose
recommendations and sacrifice the assumption that an initial safe set, S0(z), is always available.
Then, we use tuned calculators for each patient and ensure that S0(z) is almost always available.

5.2 Discussion of results

Safety Ensuring patient safety is pivotal. Theorem 1 shows that ESCADA recommends safe doses
with high probability when an initial safe dose set is available. However, the initially provided set may
not always be safe in reality due to calculator or clinician mistakes. We simulate two scenarios when
an initial safe set is almost always available and not. For the latter, Table 1 shows that the error frequen-
cies of ESCADA are not zero. We expect that error since the calculator fails to consistently provide
safe doses in the beginning. However, ESCADA yields significantly lower error frequencies and
risk index values than the calculator. That improvement stems from ESCADA’s ability to gradually
identify and recommend safe doses, even when initially misdirected. We plot consecutive dose rec-
ommendations by ESCADA in SME scenario for three different meal events in Figure 4. For each of
these meal events, rule-based calculator fails to provide safe doses in the beginning. Notwithstanding,
ESCADA expands its safe set in the right direction and eventually recommends safe doses. Figure 3
and Table 1 confirm the safety mechanism’s effectiveness as ESCADA and STS yield significantly
better safety metrics than the unsafe algorithms, TACO and TS, especially for hypoglycemia. Next,
we manually tune the calculator parameters for each patient separately so that it successfully provides
an initial safe set almost always (Tuned Calc., Table 1). Table 1 shows that ESCADA-TC and STS-TC
yield remarkably lower error frequencies and risk indices, along with better PPBG distributions.

Regret Minimizing the regret is equivalent to recommending doses that lead to PPBG values close to
the target BG by (1). We observe from Figures 3 and 5, and Table 1 that ESCADA(-TC) and STS(-TC)
significantly outperforms the (tuned) calculator. Figure 5 shows that TACO and TS incur lower cumu-
lative regrets than ESCADA and STS in the MME scenario. That is a natural trade-off between safety
and regret since the safety mechanism restricts the allocation of a dose before it is identified as safe.
Therefore, a safe algorithm yields higher regret when the initial safe set is far from the optimal dose.

Inter-contextual information transfer We investigate the efficiency of GP-induced smoothness
in transferring information between different contexts. We mark an evident advancement in PPBG
distributions and safety metrics in the MME scenario compared to the SME scenario in Table 1.
Examining Figure 6, we observe that ESCADA expands the safe dose set and identifies the optimal
dose faster in the MME scenario. Remember that ESCADA recommends doses for different meal
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Figure 3: PPBG distribution boxplots in SME
scenario. “-TC" suffix indicates that the tuned
calculator is used.
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Figure 4: Consecutive dose recommendations
to three different meal events with unsafe
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Figure 6: Consecutive dose recommendations
for three different meal events (ME) in SME
and MME scenarios.

events between two consecutive recommendations for the same meal event in the MME scenario.
That is, the information gained from a context improves the performance for other contexts. Besides,
we observe significant advances in the safety metrics of TACO and TS in the MME scenario as well.

Comparison with GP-UCB We compare our acquisition functions, TACO and TS, against the
adaptations of the GP-UCB algorithm as described in §2 for three different reward functions in
Figure 1. “GP-UCB-X" uses “Reward X" in Figure 1, which are defined as follows at each round n,

r1(n) = − log(|yn − T |+ 1) r2(n) = 1− exp(|yn − T |/20) r3(n) = −|yn − T |

We have yn instead of f(zn, dn) as the observations are noisy. Figures 7, 8, and 9 show that GP-UCB’s
performance varies wildly for different rewards, and it is outperformed by TACO and TS. The practi-
tioner needs to choose a “good" reward function for each problem. Our algorithms do not require that.

Consistency Figures 3 and 5, and Table 1 reveal that ESCADA and STS yield similar results. Both
algorithms use GPs and have O(n3) time and O(n2) memory complexities where n is the number of
observations. The key difference between them is that STS strikes the balance between exploration
and exploitation through intrinsic randomization. That is, for a fixed patient history, STS can make
different recommendations for the same meal event in test time, damaging its interpretability and
leading to undesired inexplicable variations in the treatment [47]. On the other hand, ESCADA trades-
off the exploration and exploitation through the explicit and deterministic machinery described in §3
which makes it a fairly interpretable model. Moreover, even though we design and test STS, we do
not provide an upper bound on its regret as opposed to ESCADA, which is an interesting future work.

Clinician comparison We compare ESCADA’s performance against a clinician’s for five virtual
patients. For each patient, we provided the clinician with 20 samples in the form of (meal event,
insulin dose, PPBG) and asked her to make recommendations for 20 unseen meal events. We provided
ESCADA with the same 20 samples for each patient and queried recommendations for the same
20 test meal events. Figure 10 shows that the clinician performs slightly worse than the calculator,
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and ESCADA outperforms both significantly. These results suggest that making inferences about
a patient’s dose response is not trivial, and ESCADA is promising supplementary tool in clinical
setting. Moreover, ESCADA can provide the clinicians with various useful statistics regarding dose
responses, such as the confidence region of the response, hypo-/hyper-glycemia probabilities, or
probability of response residing in a specific interval for a given patient, meal event, and insulin dose.
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Figure 7: PPBG distribution boxplots for
TACO, TS, GP-UCB, and the calculator in
MME scenario.
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Figure 8: Cumulative regrets for TACO, TS,
GP-UCB, and calculator in MME scenario
(± 0.25 standard deviation)
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Figure 10: PPBG distribution boxplots for
five virtual patients in the clinician compari-
son experiment.

6 Concluding remarks

We formalized and studied a prevalent problem in medicine, safe leveling, and proposed TACO, a
novel acquisition function tailored for this problem structure. As safety is crucial in healthcare, we
proposed a safe exploration strategy to render TACO safe. Combining these two blocks, we proposed
ESCADA, a safe and efficient learning algorithm, and provided safety guarantees and upper bounds
on its cumulative regret. Through extensive in silico experiments on the bolus-insulin dose allocation
problem for type-1 diabetes disease, we showed our algorithms’ effectiveness over the rule-based
dose calculators and straightforward adaptations of the GP-UCB algorithm for the safe leveling task.
We also compared ESCADA’s performance against a clinician’s to provide external validation and
discussed its potential as a complementary instrument in clinical settings. ESCADA can also be used
in other safety-critical decision-making problems where the goal is to safely control a target variable.
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