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Abstract

We introduce a novel class of score-based diffusion processes that operate directly
in the representation space of Lie groups. Leveraging the framework of Generalized
Score Matching, we derive a class of Langevin dynamics that decomposes as a
direct sum of Lie algebra representations, enabling the modeling of any target
distribution on any (non-Abelian) Lie group. Standard score-matching emerges as
a special case of our framework when the Lie group is the translation group. We
prove that our generalized generative processes arise as solutions to a new class of
paired stochastic differential equations (SDEs), introduced here for the first time.
We validate our approach through experiments on diverse data types, demonstrating
its effectiveness in real-world applications such as SO(3)-guided molecular con-
former generation and modeling ligand-specific global SE(3) transformations for
molecular docking, showing improvement in comparison to Riemannian diffusion
on the group itself. We show that an appropriate choice of Lie group enhances
learning efficiency by reducing the effective dimensionality of the trajectory space
and enables the modeling of transitions between complex data distributions.

1 Introduction

Deep probabilistic generative modeling amounts to creating data from a known tractable prior
distribution. Score-based models (Hyvärinen & Dayan, 2005; Sohl-Dickstein et al., 2015; Ho et al.,
2020; Huang et al., 2021; Song et al., 2021, 2020b) achieve this by learning to reverse a corruption
process of the data. Most algorithms assume an Euclidean data space X , yet many scientific
applications (Brehmer & Cranmer, 2020; Zhang et al., 2024; Klimovskaia et al., 2020; Karpatne
et al., 2018) involve distributions on curved manifolds M. While significant progress has been
made in developing the theory of diffusion in curved spaces (De Bortoli et al., 2022; Huang et al.,
2022), key challenges remain: parametrizing vector fields on general M is unsolved, and Langevin
updates require projection to preserve the manifold structure. Even when M = G is a Lie group,
denoising score-matching remains a challenge for general non-Abelian groups, thus necessitating
explicit trajectory simulation. Recent findings (Abramson et al., 2024) highlight this complexity, as
diffusion was performed in raw Cartesian coordinates rather than explicitly modeling the torsion
space, given its representational difficulty and lack of performance gain.

An appropriate representation that leverages the symmetry property of the data should, however,
enable models to better capture the underlying physical laws. The limited performance of manifold-
based diffusion must thus stem from technical and computational difficulties rather than fundamental
principles. This work seeks to reconcile this expectation with the empirical findings by addressing
the question: Given a Lie group G acting on Euclidean space X through a map (representation)
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Figure 1: Comparison of strategies between Lie
group (top) diffusion and our proposed Lie group
representation diffusion (bottom).

ρX : G → GL(X), can we construct a gen-
erative process on X that models any distri-
bution on G, thus retaining the advantages of
flat-space diffusion while capturing non-trivial
manifold structures? We address this question
by constructing the diffusion process directly in
the representation space, defined as the image
of the group action map, Im(ρX) ⊆ GL(X).
This yields a matrix-valued diffusion process
in GL(X) which, when applied to elements
of X , induces a stochastic flow corresponding
to infinitesimal Lie group transformations, i.e.,
Lie algebra elements. In this way, the process
preserves the geometric inductive bias of the
(curved) Lie group while remaining entirely
within the flat vector space X . Our construc-
tion builds on the framework of Generalized
Score Matching (GSM) (Lyu, 2009; Lin et al., 2016), which estimates probability densities via the
generalized score function L log p(x) for a suitable linear operator L. We show that the G-induced
generative process satisfies a continuous-time stochastic differential equation (SDE) involving this
generalized score. As illustrated in Figure 1, our approach differs to diffusion processes directly on
the Lie group: rather than mapping data to the group and back via the representation map, we remain
in X throughout, using the differential of the representation dρX : TG → TX to guide the Langevin
dynamics.

In short, we propose an exact SDE-based diffusion framework that enables general generative
modeling on Lie group representations, thus combining the advantages of curved dynamics with
the theoretical and practical effectiveness of Euclidean diffusion. Our method realizes simulation-
free training of Lie group-like diffusion models, and it provides a novel approach to denoising
score-matching for general non-Abelian groups. Our main contributions can be summarized as
follows:

Generalized score matching via Lie algebras: We extend generalized score matching on X to
estimate the score of any distribution on a Lie group G acting on X . We elucidate the conditions
for a suitable G (valid for any differentiable manifold X). We recover standard score-matching as a
specific case of our framework, corresponding to the group G = T (n) of translations on X = Rn.

Lie group representation diffusion processes as exact solution of a novel class of SDEs: We
introduce a new class of solvable SDEs that govern Lie group diffusion via Euclidean coordinates,
significantly expanding the range of processes that can be addressed using score-based modeling
techniques. We also show that our approach extends naturally to flow matching (Appendix F).

Dimensionality reduction, bridging non-trivial distributions and trajectory disentanglement:
Through extensive experiments, we demonstrate that: (1) our approach can estimate, regardless of the
choice of G, any probability density (Sections 5 (2,3,4d distributions) and (QM9); (2) by appropriately
selecting G to align with the data structure, the learning process is significantly simplified, effectively
reducing its dimensionality (Section 5(MNIST)) (3) our framework enables solutions to processes
that are challenging or unfeasible with standard score matching, such as bridging between complex
data-driven distributions (Section 5 (MNIST) and (CrossDocked)).

2 Diffusion dynamics through Lie algebras

We start this section by setting up notation and review the connection between vector fields and Lie
algebra actions on manifolds. A Lie group G is a group that is also a finite-dimensional differentiable
manifold, such that the group operations of multiplication · : G × G → G and inversion are
C∞-functions†. A Lie algebra g is a vector space equipped with an operation, the Lie bracket,
[, ] : g × g → g, satisfying the Jacobi identity. Every Lie group gives rise to a Lie algebra as its
tangent space at the identity, g = TeG, and the Lie bracket is the commutator of tangent vectors,

†We restrict ourselves to real Lie groups. It would be interesting to extend our analysis to the complex case
(Le et al., 2021).
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Figure 2: (a) Depiction of the fundamental vector field definition (1). Flow coordinates for a pair of
commuting (b) and not-commuting ones vector fields (c).

[A,B] = AB−BA. In this work, we are interested in how Lie groups and Lie algebras act on spaces.
Given a manifold X , a (left) group action of G on X is an associative map† ρX : G×X → X such
that ρX(e, x) = x,∀x ∈ X . Fundamental concepts associated with a group action are the ones of
orbits and stabilizers. The orbit of x ∈ X is the set of elements in X which can be reached from x
through the action of G, i.e., G ·x = {ρX(g)(x), g ∈ G}. The stabilizer subgroup of G with respect
to x is the set of group elements that fix x, Gx = {g ∈ G|ρX(g)(x) = x}. The action of a Lie
algebra on X , A : g → Vect(X) is a Lie algebra homomorphism and maps elements of g to vector
fields on X such that the map g×X → TX, (A,x) 7→ A(A)(x) is smooth. Given A ∈ g and a group
action ρX , the flow on X induced by ρX is given by ξA : X ×R → X, (x, τ) → ρX (exp(τA)) (x),
where the map exp : g → G is defined by exp(A) = γA(1), where γA : R → G is the unique
one-parameter subgroup of G whose tangent vector at the identity is A. The infinitesimal action of
g on X , dρX : g → Vect(X), is defined as the differential of the map ρX , that is,

dρX : A 7→ d

dτ

∣∣∣∣
τ=0

ρX(exp(τA))(x) ≡ ΠA(x) . (1)

ΠA is called the fundamental vector field corresponding to A ∈ g. Given a fixed point x0 ∈ X ,
we denote τ = ξA(x0)

−1(x) the fundamental flow coordinate, which is the parameter such that
applying the flow to x0 gives x. Central to our discussion is the fact that any smooth vector field
V : X → TX on X can be interpreted as a differential operator acting on smooth functions
f : X → R. The operator V (f) represents the directional derivative of f at x ∈ X in the direction
of V (x). We denote LA = ΠA · ∇ the differential operator corresponding to ΠA. In the following
we will use both Πτ and ΠA interchangeably, when no potential confusion arises. When dim g > 1
we indicate as Π(x) = (ΠA1 ΠA2 · · ·) the matrix of the collection of fundamental vector fields.

Let us work out the example for X = R2 and G = SO(2), the group of rotations in the plane.

The Lie algebra so(2) consists of all matrices of the form Aα =

(
0 −α
α 0

)
, where α ∈ R, and

the Lie bracket is identically zero. The flow on X induced by ρX is given by the exponential map

ρR2(exp(τAα))(x) =

(
cos(ατ) − sin(ατ)
sin(ατ) cos(ατ)

)
x, and without loss of generality we can set α = 1. The

infinitesimal action is computed as

dρR2(A) =
d

dτ

∣∣∣∣
τ=0

(
cos τ − sin τ
sin τ cos τ

)(
x1

x2

)
=

(
−x2

x1

)
.

and thus the fundamental vector field defines the derivation LA(x) = −x2
∂

∂x1
+x1

∂
∂x2

. Let x0 ∈ R2

be a fixed point, then the flow equation x(τ) ≡ ξA(x0, τ) = ρR2(exp(τA),x0) gives a system of
two equations, which we can solve to find the expression of the fundamental flow coordinate{

x · x0 = |x0|2 cos τ ,

x× x0 = |x0|2 sin τ ,
⇒ τ = arctan

x× x0

x · x0
, where x× y = y2x1 − x1y2 . (2)

Note that ∂
∂τ = ∂x1

∂τ
∂

∂x1
+ ∂x2

∂τ
∂

∂x2
= −x2

∂
∂x1

+ x1
∂

∂x2
= ΠA(x)

⊤∇ = LA .

†In the manuscript we adopt both notations ρX(g)(x), derived from defining ρX : G → GL(X), and
ρX(g,x), derived from the definition ρX : G×X → X , which are obviously equivalent.
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2.1 Intuition behind Lie group-induced generalized score matching

Score matching aims at estimating a (log) probability density p(x) by learning to match its score
function, i.e., its gradient in data space. Generalized score matching replaces the gradient operator
with a general linear operator L (Lyu, 2009). The learning objective is given by minimizing the
generalized Fisher divergence

DL(p||qθ) =
∫
X

p(x) |L log p(x)− sθ(x)|2 dx , (3)

where sθ = L log qθ. The requirement on the choice of L is that it preserves all the information
about the original density. Formally, we require L to be complete, that is, given two densities p(x)
and q(x), Lp(x) = Lq(x) (almost everywhere ‡) implies that p(x) = q(x) (almost everywhere).

Given a Lie group G acting on X , the collection of fundamental fields Π corresponding to a choice
of basis A = (A1, A2, . . . ) of g is a linear operator, thus potentially suitable for score-matching. It is
then natural to set L to the derivation associated with the fundamental fields Π, i.e., L = Π(x)⊤∇.
It then follows that L log p(x) computes the directional derivatives of log p(x) with respect to the
fundamental flow coordinates τ , and provided that Π meets some consistency conditions (which
we will address in the next section), we can employ L log p(x) to sample from p(x) using Langevin
dynamics:

xt+1 = xt − sθ(xt)dρX(exp(τA))(xt) = xt −
∑
i

Li log pt(xt)︸ ︷︷ ︸
generalized scores

ΠAi
(xt)︸ ︷︷ ︸

Ai directions

∆t , (4)

where ∆t is the step size and we have temporarily set aside stochasticity and denoising aspects. This
process mirrors the intuition depicted in Figure 1: each infinitesimal step of the dynamics corresponds
to infinitesimal transformations along the flow on X induces by the G-action, and each component of
the generalized score is learned through maximum likelihood over the orbits ξAi of the corresponding
transformations.

2.2 Sufficient conditions for Lie group-induced generalized score matching

We now address the properties our setup (X , G, g, Π) must satisfy to meet the sufficient conditions
for score-matching and Langevin dynamics. We note that these results hold for any differentiable
manifold X . Proofs for these results can be found in Appendix C.

Condition 1: Completeness of Π. We start by establishing an algebraic-geometric condition for
Π’s completeness:
Proposition 2.1. The linear operator Π(x) is complete if Π is the local frame of a vector bundle E
over X whose rank is n ≥ dimX almost everywhere. If rank E = n everywhere, then E = TX ,
the tangent bundle of X .

The following result specifies which Lie groups yield operators Π satisfying the above proposition:
Proposition 2.2. The operator Π induced by g is complete if and only if the subspace U ⊆ X such
that dim G

Gx
< n for x ∈ U , where n = dimX , has measure zero in X .

As an example, consider standard score-matching on mass-centered point clouds. Here X = R3N−3,
since the points’ coordinates satisfy

∑N
i=1 xi = 0. Without loss of generality, X can be parametrized

by x1,...,N−1, with xN determined by the center of mass condition. The group G = T (3N) acts
transitively on X , with a 3-dimensional stabilizer subgroup GX = {(0, . . . , 0,a)⊤ ∈ R3N} fixing
the space. Thus, dimG/GX = n for all x ∈ X , satisfying Proposition 2.2.

Condition 2: Homogeneity of X . While the completeness of the operators is necessary for
estimating the target density, it is not sufficient to ensure that the Langevin dynamics (4) will behave
appropriately, as the following example illustrates. Let X = R, and G = R∗

+, the multiplicative group
of non-zero positive real numbers. The orbits under the action ρX(a, x) = ax are O+ = (0,∞),

‡Almost everywhere means everywhere except for a set of measure zero, where we assume the standard
Lebesgue measure.
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O− = (−∞, 0), and O0 = {0}. If the dynamics begins within O+, it will be never be able to reach
values in O−, as G-transformations cannot move the system outside its initial orbit. We therefore
ask that each pair of points of X is connected through the G action. This amounts to require that
X is homogeneous for G, that is, ∀x,y ∈ X there exists a g ∈ G such that ρX(g)x = y. We note
that this condition solely ensures that the generation outcome is independent of the initial sampling
condition, that is, that Langevin dynamics can generate any point of the target distribution from any
point of the prior. Beyond this, the formalism remains fully applicable in the non-homogeneous case,
where the dynamic is restricted to orbits of the group, effectively partitioning the distribution. Though
the formalism still applies within each orbit, global generation across X would not be supported
without homogeneity.

Condition 3: Commutativity of Π. The final requirement is that Π forms a (locally) commuting
frame of vector fields, [LA,LB ]f(x) = 0 ∀A,B and ∀f ∈ C∞(X). In this case, the coordinates
τi’s are orthogonal, and their flows commute, meaning the orbits parametrized by τi correspond
to {τj = 0}j ̸=i. For non-commuting flows this is not the case, as Figure 2b-c illustrates: (b)
V1 = x1∂x1 + x2∂x2 , V2 = x1∂x2 − x2∂x1 satisfy [V1, V2] = 0, and the orbits parametrized by
τ1 = r correspond to subspaces with constant τ2 = θ; (c) W1,2 = V1,2/|x| do not commute, and
the loci θ = const no longer coincide with the r-orbits, causing θ to vary along these, despite the
fact that r, θ are still orthogonal at each point. This last condition ensures that the updates governed
by the different elements Ai of g in (4) remain independent of one another. Notably, this does not
exclude non-Abelian groups; even if A1,2 ∈ g do not commute in the Lie algebra, their flows on X
can, as shown in the g = so(3) example in Appendix B.3.

3 Lie algebra score-based generative modeling via SDEs

In this section, we formalize the framework we developed above from the point of view of SDEs.
Namely, we show that there exists a class of SDEs, which, when reversed, can generate data according
to dynamics similar to (4), guided by the generalized score of the fundamental vector fields of the Lie
algebra g. Our main result is the following.
Theorem 3.1. Let G be a Lie group acting on X satisfying the conditions of Section 2.2, and let g be
its Lie algebra. The pair of SDEs

dx =

[
β(t)Π(x)f(x) +

γ(t)2

2
ρX(Ω)

]
dt+ γ(t)Π(x)dW , (5)

dx =

[
β(t)Π(x)f(x)− γ2(t)

2
ρX(Ω)− γ2(t)Π(x)∇⊤ ·Π(x)

−γ(t)2Π(x)L log pt(x)
]
dt+ γ(t)Π(x)dW , (6)

where β, γ : R → R are time-dependent functions, Π : Rn → Rn×n the fundamental vector
fields, f : Rn → Rn the drift, Ω =

∑
i A

2
i is known as the quadratic Casimir element of g, and

L = Π(x)⊤∇, is such that

1. The forward-time SDE (5) is exactly solvable:

x(t) =

(∏
i

Oi(τi(t))

)
x(0) =

(
n∏

i=1

eτi(t)Ai

)
x(0) , (7)

where Oi = eτi(t)Ai is the finite group action and τ (t) is the solution to the SDE

dτ (x) = β(t)f(x)dt+ γ(t)dW . (8)

2. The SDE (6) is the reverse-time process of (5).

3. The Langevin dynamic of the above SDEs decomposes as a direct sum of g infinitesimal
actions (1), defining an infinitesimal transformation along the flows ξτ .

We refer to Appendix D for the full proof of the above result. Here we limit our-
selves to a few comments regarding the extra terms that appear in the paired SDEs.
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The appearance of the Casimir element (we assume the identity as bilinear
form on g (Kac & Kac, 1983)) compensates for the deviation of the tangent
vector from the orbit due to the curvature of the flow coordinates. This can be
seen in the example of SO(2) acting on R2 (which will be discussed thoroughly
below). An infinitesimal transformation along the θ direction, represented by
Πθ, moves any point x along a vector tangent to its SO(2) orbit, a circle of
radius r =

√
x2
1 + x2

2. Due to the orbit’s non-zero curvature, this movement
would shift the point to an orbit of radius r′ > r. The term ρX(Ω) compensates
for this displacement, ensuring the final point remains close to the original
orbit. This is illustrated in Figure 3. With this result at hand we can formulate
our procedure for our Lie group-induced score-based generative modeling with
SDEs.

Perturbing data through the SDE. The forward-time SDE (5) defines a noising diffusion process
respecting the decomposition of the Lie algebra g infinitesimal actions on X . In fact, given a data
sample x(0) ∼ p0, the solution (7) takes the form of a product of finite group element actions Oi on
x(0), where the specific order is irrelevant since the Lie algebra generators commute. For each factor,
we first determine τ (0) = τ (x(0)), and employ these as initial conditions for the forward SDE (8).
By choosing appropriately the drift terms f ′

is, for instance, to be affine in the flow coordinates τi, we
can solve for τ (t) with standard techniques (Särkkä & Solin, 2019), as this will follow a Gaussian
distribution. Alternatively, we can sample from τ (t) by first simulating (8), then performing sliced
score matching Song et al. (2020a); Pang et al. (2020) to sample from pt(x(τ (t))|x(0)).

Generating samples through the reverse SDE. The time-reverse SDE (6) guides the generation
of samples x(0) ∼ p0(x) starting from samples x(T ) ∼ pT (x), provided we can estimate the
generalized score L log pt(x) of each marginal distribution. To sample from pT , we use the fact that
the distribution in the flow coordinates τ is tractable (with an appropriate choice of the drift terms
and time-dependent functions β, γ in (5)), and that (since pt(x)dx = pt(τ )dτ )

pt(x) = pt(τ )

∣∣∣∣∂τ∂x
∣∣∣∣ = pt(τ )

∣∣Π−1(x)
∣∣ , (9)

where the extra term corresponds to the determinant of the Jacobian of the coordinate transformation
induced by the fundamental flow coordinates. In particular, when f(τ ) is affine in τ , it follows that
pT (τ ) = N (τ | 0,Σ), where Σ = diag(σ2

1 , σ
2
2 , . . . , σ

2
n). Thus, we can sample τ (T ) ∼ pT (τ )

simply as a collection of independent Gaussian random variables, and use the flow map to obtain
x(T ) = ξA(τ (T ),x0), which will follow the distribution (9) for t = T . We describe training and
sampling procedures in Algorithms 1 and 2 in Appendix E.

Estimating the generalized score. Analogously to standard score matching, we train a time-
dependent neural network sθ(x(t), t) : Rn × R → Rn to estimate the generalized score
L log pt(x(t)|x(0)) at any time point, that is, we minimize the objective

Et

{
w(t)Ex(0)∼p0(x)Ex(t)∼pt(x|x(0))

[∣∣sθ(x(t), t)−L log pt(x(t)|x(0))
∣∣2]} , (10)

where w : [0, T ] → R+ is a time-weighting function. Now, from Condition 3 above and the
property that LAi computes the direction derivative along the flow of ΠAi(x), it follows that
L log pt(x(t)|x(0)) = ∇τ (t) log pt(x(τ )(t)|x(τ )(0)). Under the above assumptions, pt(τ ) =
N (τ |µ(x(0), t),Σ(t)), where the form of the mean and the variance depends on the explicit form of
(8). Using the parametrization τ (t) = µ(x(0), t) +

√
Σ(t)ηt, where ηt ∼ N (0, I), we obtain

L log pt(x(t)|x(0)) = −Σ−1(τ (t)− µ(x(0), t) = −
√
Σ(t)

−1
ηt . (11)

3.1 Examples

Standard Score Matching. Standard score matching can be recovered as a special case of our
formalism by choosing X = Rn and G = T (n). As we show explicitly in Appendix B.1, we have
L = ∇ and the Lie algebra action Π(x) = I , the identity on X . Since Π is x-independent, its
divergence vanishes, as well as the quadratic Casimir (T (N) is Abelian), so that the SDEs (5) take
the known form

dx = β(t)f(x)dt+ γ(t)dW , dx =
[
β(t)f(x)− γ(t)2∇ log pt(x)

]
dt+ γ(t)dW . (12)
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Figure 5: (a) 2d mixture of Gaussians (top: ground truth, bottom: generated); (b) generating
process using single scores for the subgroups SO(2),R+ with the corresponding scores (c); (d,e) one-
dimensional learning for a symmetric distributions; 3d-distributions: torus (f) and Möbius strip (g)
(top: ground truth, bottom: generated); (h) 4d mixture of Gaussian for the group G = SO(4)× R+.

G = SO(2) × R+. A simple but non-trivial case in given by G = SO(2) × R+ describing
rotations and dilations acting on X = R2. A basis for g = so(2) ⊕ R is given by Ar = I and

Aθ =

(
0 −1
1 0

)
, yielding Π(x) =

(
x −y
y x

)
, which satisfies all the conditions of section 2.2.

Following our discussion above and in Appendix B.1 we have (since ρ(Ω) = A2
r +A2

θ = I − I = 0)
dx = β(t) (fr(r)Arx+ fθ(θ)Aθx) dt+ γ(t) (dWrArx+ dWθAθx) , (13)

and we see that the SDE splits into contributions from the two Lie algebra summands. To find an
explicit solution, let γ(t) =

√
β(t) and fr = − 1

4 log(x
2 + y2), fθ = − 1

2 arctan
y
x . This choice

corresponds, in the flow coordinates system, to a 2d Ornstein-Uhlenbeck system (Gardiner, 1985)

which has a Gaussian solution with mean
(
r(0)
θ(0)

)
e−

∫ t
0
β(s)ds and variance

(
1− e−

∫ t
0
β(s)ds

)
I . Let

us define σ(t) =
√
1− e−

∫ t
0
β(s)ds, such that r(t) = r(0) + λ(t) = r(0)− r(0)σ(t)2 + σ(t)ηr and

similarly θ(t) = θ(0) + φ(t) = θ(0) − θ(0)σ(t)2 + σ(t)ηθ, where ηr, ηθ ∈ N (0, 1), then it is an
easy calculation to show that(

x1(t)
x2(t)

)
= eλ(t)

(
cosφ(t) − sinφ(t)
sinφ(t) cosφ(t)

)(
x1(0)
x2(0)

)
. (14)

We can look at the asymptotic behavior of the solution. Assuming that β(t) is a monotonous
increasing function, that is, β(t+ ϵ) > β(t) for ϵ > 0, then limt→∞ σ(t) = 1 and hence

lim
t→∞

x(t) = e−r0+ηr

(
cos θ0 sin θ0
− sin θ0 cos θ0

)(
cos ηθ sin ηθ
− sin ηθ cos ηθ

)(
er0 cos θ0
er0 sin θ0

)
=

(
eηr cos ηθ
eηr sin ηθ

)
,

where θ0 = θ(0), r0 = r(0). Note that, even if (15) is not Gaussian, we can still easily draw samples
from it by sampling the two Gaussian variables ηr,θ.

𝒙𝒊−𝟏

𝒙𝒊

𝒙𝒊+𝟏

𝒙𝒊+𝟐

𝜸𝒊

(a) (b)

𝒙𝒊−𝟏

𝒙𝒊

𝒙𝒊+𝟏

𝒙𝒊+𝟐

𝜷𝒊

𝜷𝒊+𝟏

(c) (d)

Π𝛽 𝒙 = 𝐴𝛽𝒙   dynamic

Π𝛾 𝒙 = 𝐴𝛾𝒙   dynamic

Figure 4: Lie algebra so(2) ⊂ so(3) dynamics for
torsion (a,b) and bond angles (c,d) in molecular
conformers.

Dihedral and bond angles. The above for-
malism can be applied to obtain transformations
of physically meaningful quantities, as bond
and torsion angles for molecules’ conforma-
tions. Let γi be the dihedral angle between the
planes identified by the points {xi−1,xi,xi+1}
and {xi,xi+1,xi+2}, respectively (Figure 4a).
The Lie algebra element corresponding to an in-
finitesimal change in γi is given by a 3N × 3N -
dimensional 3×3-block diagonal matrix, whose
j = 1, . . . , N block is given by H(j − (i +
1))x̂i+1,i ·A), where A = (Ax, Ay, Az) is the
vector of the Lie algebra basis for so(3), x̂i+1,i = (xi+1 − xi)/|(xi+1 − xi)| and H(i) = 1 if i > 0
and 0 otherwise is the Heaviside step function. For bond angles βi (Figure 4c) we construct the
corresponding so(2) ∈ so(3) algebra element blocks as H(j − i)(xi+1,i × xi−1,i) ·A. Examples of
the dynamics generated by these operators are presented in Figure 4(b,d).

4 Related Work

Representation theory applied to neural networks has been studied both theoretically (Esteves, 2020;
Chughtai et al., 2023; Puny et al., 2021; Smidt, 2021) and applied to a variety of groups, architectures
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Figure 6: (a) Original and rotated MNIST samples with generated samples from our model and
BBDM. (b) Reverse diffusion trajectories of our model against BBDM. Intermediate samples from
BBDM resemble interpolation of mixed digits. For the first BBDM case, the 4-digit transitions into a
6-digit.

and data type: CNNs (Cohen & Welling, 2016; Romero et al., 2020; Liao & Liu, 2023; Finzi et al.,
2020; Weiler & Cesa, 2019; Weiler et al., 2018), Graph Neural Networks (Satorras et al., 2021),
Transformers, (Geiger & Smidt, 2022; Romero & Cordonnier, 2020; Hutchinson et al., 2021), point
clouds (Thomas et al., 2018), chemistry (Schütt et al., 2021; Le et al., 2022a). On the topic of
disentanglement of group action and symmetry learning, Pfau et al. (2020) factorize a Lie group
from the orbits in data space, while Winter et al. (2022) learn through an autoencoder architecture
invariant and equivariant representations of any group acting on the data. Fumero et al. (2021) learns
disentangled representations solely from data pairs. Dehmamy et al. (2021) propose an architecture
based on Lie algebras that can automatically discover symmetries from data. Xu et al. (2022)
predict molecular conformations from molecular graphs in an roto-translation invariant fashion with
equivariant Markov kernels.

Related to our study is the field of diffusion on Riemannian manifolds. De Bortoli et al. (2022)
propose diffusion in a product space, a condition which is not a necessary in our framework, defined
by the flow coordinates in the respective Riemannian sub-manifolds. When the Riemannian manifold
is a Lie group, their method yields dynamics similar to ours, as illustrated in an example in Section
3.1. In fact, our formalism could be integrated with their approach to create a unified framework
for diffusion processes on the broader class of Riemannian manifolds admitting a Lie group action.
These techniques has been applied in a variety of use cases (Corso et al., 2023; Ketata et al., 2023;
Yim et al., 2023; Jing et al., 2022) for protein docking, ligand and protein generation. The works
Zhu et al. (2024); Kong & Tao (2024) leverage trivialized momentum to perform diffusion on the Lie
algebra (isomorphic to Rn) instead of the Lie group, thereby eliminating curvature terms, although
their approach is to date only feasible for Abelian groups. An interesting connection with our work
is the work of Kim et al. (2022): the authors propose a bijection to map a non-linear problem to a
linear one, to approximate a bridge between two non-trivial distributions. Our case can be seen as a
bijection between the (curved) Lie group manifold and the (flat) Euclidean data space.

5 Experiments
2d, 3d and 4d distributions. In Figure 5 we illustrate the framework for a variety of d = 2, 3-
dimensional distributions. In all cases we take G = SO(d)× R+. Figure 5(a,b,c) displays a mixture
of Gaussians: in (a) (bottom) we see that our generalized score-matching can learn any distribution,
regardless of its inherent symmetry; (b) shows the output of the generation process using only one
score (top g = so(2), bottom g = r+), while (c) shows the vector fields corresponding to the scores,
where we color-coded the field directions. Figures 5(d,e) depicts radial and angular distributions,
where the score is learned using the respective Lie algebra elements. This reflects the ability to
leverage the symmetry properties of the data and perform diffusion in a lower-dimensional space. We
also show in Figure 5h (G = SO)(4)× R+) that our method can be applied to higher dimensional
Lie groups. We list quantitative comparisons in terms of W2-distances for our generalized score
model against standard diffusion model in Appendix E.1.

Rotated MNIST. In this experiment we show that our framework can be applied to effectively
learn a bridge between two non-trivial distributions, adopting however only techniques from score-
matching and DDPM. Let pT (x) be the rotated MNIST dataset and p0(x) the original (non-rotated)
MNIST dataset. We can learn to sample from p0 starting from element of pT by simply modeling
a SO(2) dynamic. Some examples of our results are shown in Figure 6. Notice that our formalism
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allows us to reduce the learning to a 1-dimensional score Lθ = x1∂x1 − x2∂x2 , which reflects the
true dimensionality of the problem. We trained the model with T = 100 time-steps, but for sampling
it suffices to set T = 10. As it can be seen in the example trajectories 6b, the model starts converging
already at t/T ∼ 0.5. We employ a CNN which processes input images x(t), and the resulting
feature map is flattened and concatenated with a scalar input t, then passed through fully connected
layers to produce the final output.

We compare our approach to the Brownian Bridge Diffusion Model (BBDM) (Li
et al., 2023). Unlike our method, BBDM operates unconstrained in the full MNIST
pixel space (R28×28), where intermediate states represent latent digits. As shown
in Figure 6a, this can result in incorrect transitions, such as adding extraneous pix-
els or altering the original digit, even generating entirely different digits (Figure 6b).

Table 1: FID and Accuracy scores com-
paring GSM against BBDM.

Model Avg
Acc (↑)

Avg
FID (↓)

GSM 0.96± 0.02 85.8± 15.7
BBDM 0.80± 0.10 133.4± 19.0

We further evaluate both methods on the classification
accuracy as well as FID scores of generated MNIST digits.
Since the task is to correctly rotate a MNIST digit into
the correct orientation aligning with the ground-truth data
distribution, we observe that our GSM model achieves
superior classification accuracies (0.96 vs 0.80) and FID
scores (85.77 vs 133.4) as shown in Table 1.

Further details can be found in Appendix E.2.

QM9. We use our framework to train a generative model pθ(X|M) for conformer sampling
of small molecules M from the QM9 dataset (Ramakrishnan et al., 2014). We only keep the
lowest energy conformer as provided in the original dataset, that is, for each molecule only one 3D
conformer is maintained. Here X = R3N and we choose G = (SO(3)× R+)

N , where each factor
acts on the space R3 spanned by the Cartesian coordinates of the molecule’s atoms, respectively.

generated

ground
truth

(a) (b)

Figure 7: (a) Generated 3D conformer from the QM9 validation set
(top) and ground truth conformer (bottom). (b) Energy difference
distribution between diffusion models (pθ, pγ) and ground-truth energy.
Both models generate a similar ∆ energy distribution.

As Figure 7a shows, our
generative process yields
conformers that are energet-
ically very similar to the
ground truth conformers,
while showing some vari-
ability, as it can be seen in
the last example where the
torsion angle is differently
optimized. We train an-
other model pγ(X|M) via
standard Fisher denoising
score-matching, i.e., choos-
ing G = T (3)N as in Sec. 3.1, and generate 5 conformers per molecule for both models pθ, pγ .
We then compute the UFF energy (Rappe et al., 1992) implemented in the RDKit for all generated
conformers and extract the lowest energy geometry as generated sample. To compare against the
reference geometry, we compute the energy difference ∆ = Utrue − Ugen for both models. Figure
7b shows that both diffusion models tend to generate conformers that have lower energies than
the ground true conformer according to the UFF parametrization, while the diffusion model that
implements the dynamics according to G = (SO(3)×R+)

N (colored in blue) achieves slightly lower
energy conformers, mean ∆θ = −0.2159 against mean ∆γ = −0.2144 for the standard diffusion
model (colored in orange).

CrossDocked2020: Global E(3) and Protein-Ligand Complexes. In this final experiment, we
train a generative model for global SE(3) transformations acting on small molecules. Specifically,
given a pair consisting of a compound and a protein pocket, our goal is to generate the trajectory
by which the ligand best fits into the pocket. Importantly, the internal structure of the compound
remains fixed, which presents a challenge with standard diffusion processes. Thus, while the SE(3)
transformations are global with respect to the ligand, they do not represent global symmetries of
the overall system. We derive in appendix B.4 the relevant operators that guide the dynamics (6).
Figure 8a shows examples of docked molecules using SE(3)-guided score-matching diffusion. The
true and generated molecules at different generation steps are visualized as point clouds, showing a
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(a) (b)

Figure 8: (a) SE(3) trajectories for molecular docking; (b) Comparison with RSGM.

good agreement. Figure 8b shows that our model achieves a lower RMSD (2.9± 1.0 Å vs 5.6± 1.2
Å) for the docked ligands than the RSGM method (De Bortoli et al., 2022; Corso et al., 2023) (for
details, we refer to Appendix E.3.1). We also compare our method against the Brownian Bridge
Diffusion Model (BBDM) which operates on the T (3)N group, as a standard (Euclidean) diffusion
baseline with the constraint to start and end at valid rigidly transformed molecules during training.
We use the same network architecture as in the GSM and RSGM experiments to learn the correct
SO(3) rotation. Unlike existing experiments (our method and RSGM), the Euclidean BBDM in this
setting attempts to learn only global SO(3) rotation, neglecting translation. Since the problem is
implicitly 3-dimensional but the equivariant score network predicts all 3N ligand atom coordinates,
final samples with implausible coordinate trajectories tend to have higher energies due to unphysical
poses including bond stretching, non-planar aromatic rings, and deformed rings. In terms of mean/std
RMSD on the CrossDocked2020 test set, our method (Lie algebra: 2.91± 1.0 Å) is comparable with
BBDM (2.92± 1.57 Å). However, since BBDM models all atomic coordinates, the overall dynamics
do not follow a global SO(3) rotation, achieving MAE(D(x0, x0), D(x̂0, x̂0)) = 0.43± 0.21), while
RSGM and our method achieve 0.0 by design. This indicates that Lie algebra induced diffusion offers
a clear advantage over standard diffusion models in this particular bridging problem.

6 Conclusions and Outlook

We presented a method for generative modeling on any Lie group G representation on a space X
through generalized score matching. Our framework generates a curved Lie group diffusion
dynamics in flat Euclidean space, without the need to transform the data and of performing
group projections. Specifically, we introduced a new class of exactly-solvable SDEs that guide the
corruption and generation processes. Thus, our framework does not merely complement existing
methods, but expands the space of exactly solvable diffusion processes. Our framework is particularly
relevant given recent findings (Abramson et al., 2024) showing that unconstrained models outperform
equivariant ones: with our framework there is no need of a tradeoff, as we retain the expressivity
of unconstrained models on raw Cartesian coordinates with the benefits of group inductive bias.
Moreover, our techniques descend quite straightforwardly to flow matching (Lipman et al., 2022).
We spell out the connection in appendix F and we plan to expand on this in future work.

Code Availability

Our source code will be made available on https://github.com/pfizer-opensource/symmetry-induced-
score-matching.
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A Appendix A: Summary of Notation and Intuition

Symbol Name Definition Intuition

G Lie group A continuous symmetry group, e.g., ro-
tations (SO(3)), translations, scalings.
Encodes the structure of transforma-
tions acting on the data.

e Identity element of G e · g = g∀g ∈ G The identity transformation leaving ev-
erything unchanged.

g Lie algebra of G TeG Tangent space at the identity; represents
infinitesimal group transformations.

X Data manifold The space where the data lives, often
Rn, but can be more general or even
discrete (e.g., graph for molecules, grid
for images, etc.).

ρX Group action ρX : G×X → X Specifies how each abstract group ele-
ment g ∈ G transforms data points in
X via matrices.

G · x Orbit of x under G {ρX(g)(x), g ∈ G} The set of all points reachable from x
via group actions. Captures the “sym-
metry class” of x.

Gx Stabilizer subgroup at x {g ∈ G|ρX(g)(x) = x} Subgroup of G that leaves x unchanged.
Describes residual symmetries at that
point.

dρX Infinitesimal action dρX : g → Vect(X) Maps infinitesimal transformations to
vector fields on X; captures how a tiny
"step" in G moves a point in X .

exp Exponential map exp(A) = γA(1), where
γA : R → G

Geodesic path on G determined by the
direction given by the vector A ∈ g.

ξA Flow on X induced by ρX ρX (exp(τA)) (x) Path on X corresponding to a geodesic
path on G determined by A.

ΠA(x) Fundamental vector field
from A ∈ g

d
dτ

∣∣
τ=0

ρX(exp(τA))(x) A vector field on X generated by a direc-
tion A in the Lie algebra; describes how
x moves under an infinitesimal group
transformation.

Table 2: Summary of Lie group/Lie algebra related quantities with their notation, definition and
intuitive meaning.

B Examples of Lie groups and Lie algebra actions

In this appendix we list some important Lie groups and Lie algebra actions, their corresponding
fundamental vector fields as well as the fundamental flow coordinates. These will be useful in the
main text.

B.1 T (N)

Let X = RN and G = T (N), the group of translations in N -dimensional space. Element of T (N)
are represented by a vector v = (v1, v2, . . . , vN )⊤ ∈ RN , where vi are the translation components
along the xi axes for i = 1, . . . , N , thus T (N) ≃ RN . Explicitly, for a x ∈ X its action is given by
ρRN (v,x) = x+ v.
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The corresponding Lie algebra t(N) is also isomorphic to RN , and it consists of vectors a =
(a1, a2, . . . , aN )⊤ ∈ RN . The Lie bracket of any two elements in t(N) vanishes, as T (N) is
Abelian.

To derive the infinitesimal action, we first note that the exponential map is trivial, exp(τA) = τA.
Hence, we have

ΠA(x) =
d

dτ

∣∣∣∣
τ=0

ρRN (τA,x) =
d

dτ

∣∣∣∣
τ=0

(x+ τA) = A . (15)

Thus, the fundamental vector field ΠA corresponding to A ∈ t(N) is the constant vector field:

ΠA = a1
∂

∂x1
+ a2

∂

∂x2
+ · · ·+ aN

∂

∂xN
= A · ∇ .

B.2 X = RN , G = R∗
+ (group of dilations)

Let us consider X = RN and G = R∗
+, the group of dilations in N -dimensional space. The group

R∗
+ consists of all positive scaling factors. Each element of G = R∗

+ can be represented by a scalar
λ > 0 that scales all vectors in RN by this factor.

The action of G = R∗
+ on RN is a dilation, meaning that every vector x = (x1, x2, . . . , xN )⊤ ∈ RN

is scaled by the factor λ. Explicitly, the group action is given by

ρRN (λ,x) = λx . (16)

The Lie algebra g = R corresponding to the dilation group G = R∗
+ consists of real numbers

representing the logarithm of the scaling factor. Specifically, an element A ∈ g corresponds to a
generator of the dilation, and the exponential map exp : g → G is given by:exp(τA) = eτA, where
τ is a real parameter.

The infinitesimal action corresponds to taking the derivative at τ = 0. For a vector x ∈ RN and
A ∈ g, the fundamental vector field ΠA is computed as:

dρRN (A) =
d

dτ

∣∣∣∣
τ=0

ρRN (eτA,x) =
d

dτ

∣∣∣∣
τ=0

(
eτAx

)
= Ax , (17)

and
LA(x) = Ax · ∇ .

Now, solving the equation

x = eτAx0 (18)

in terms of τ we obtain

τ =
1

A
log

|x|2

x · x0
=

1

A
log

|x|2

|x||x0|
=

1

A
log

|x|
|x0|

=
1

2A
log

|x|2

|x0|2
. (19)

In the usual case of A = 1 (generator of the Lie algebra), x0 = 1√
N
(1, 1, . . . , 1)⊤ to be the unit

vector we obtain the usual expression as flow coordinate

τ =
1

2
log(x2

1 + x2
2 + · · ·+ x2

N ) . (20)

B.3 X = R3, G = SO(3)× R∗
+

The dilation part is solved in the previous section, so we actually just focus on the action of SO(3) on
R3. The orbits are given by spheres centered at the origin, and we can decompose the action of SO(3)
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by variying the azimuthal or the polar angle defined by a vector x. Namely, we have the two actions

ρR3(φ,x) =

(
cosφ − sinφ 0
sinφ cosφ 0
0 0 1

)(
x
y
z

)
,

ρR3(θ,x) =

[
I + sin θ

(
0 0 cosφ
0 0 sinφ

− cosφ − sinφ 0

)

+(1− cos θ)

 − cos2 φ − cosφ sinφ 0
− cosφ sinφ − sin2 φ 0

0 0 −1

(xy
z

)
. (21)

If we take the differentials

dρR3(φ,x)|φ=0 =

(− sinφ − cosφ 0
cosφ − sinφ 0
0 0 0

)(
x
y
z

)∣∣∣∣∣
φ=0

=

(
0 −1 0
1 0 0
0 0 0

)(
x
y
z

)
= Azx ,

dρR3(θ,x) =

[
cos θ

(
0 0 cosφ
0 0 sinφ

− cosφ − sinφ 0

)

− sin θ

 cos2 φ cosφ sinφ 0
cosφ sinφ sin2 φ 0

0 0 1


θ=0

(
x
y
z

)

=

(
0 0 cosφ
0 0 sinφ

− cosφ − sinφ 0

)(
x
y
z

)
= (cosφAy − sinφAx)x , (22)

where

Ax =

(
0 0 0
0 0 −1
0 1 0

)
Ay =

(
0 0 1
0 0 0
−1 0 0

)
Az =

(
0 −1 0
1 0 0
0 0 0

)
(23)

form a basis for so(3). The corresponding differential operators are

Lφ = x∂y − y∂x , Lθ =
1√

x2 + y2

[
zx∂x + zy∂y − (x2 + y2)∂z

]
, (24)

and it is an easy calculation to show that they commute [Lφ,Lθ] = 0 . The attentive reader might
have noticed that the commutation does not hold at the matrices level. While this is expected, since
there is no 2-dimensional commuting subalgebra in so(3), it is nonetheless quite puzzling since
everything works out at the level of differential operators. This reflect the fact that the commutation
properties are necessary at the level of the action of g on X , and not necessarily at the Lie algebra
level. In this case, however, we can elegantly resolve the puzzle, we found a matrix representation for
the action dρR3(θ)x which does commute with the φ action. To do this we note that we can rewrite

Lθ =
cos θ

sin θ
x∂x +

cos θ

sin θ
y∂y −

sin θ

cos θ
z∂z , (25)

which corresponds to simultaneous dilations, with different coefficient, in the z axis and x, y-plane.
The finite action takes the form

ρ̃R3(θ,x) = exp

[
log sin θ

(
1 0 0
0 1 0
0 0 0

)
+ log cos θ

(
0 0 0
0 0 0
0 0 1

)]
, (26)

and computing the first order term we obtain

dρ̃R3(θ,x) =

 cos θ
sin θ 0 0
0 cos θ

sin θ 0
0 0 − sin θ

cos θ

x . (27)

This matrix is diagonal and it trivially commutes with Az . The price we had to pay to realize a system
of commuting matrices is that in ρ̃ the flow parameter θ appear non-linearly, thus we traded-off
commutativity at the level of the Lie algebra matrices for the linearity of the flow parameters at
the group level. We remark that both give rise to the same differential operator on X , which is the
relevant object for our purposes.
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Figure 9: (a) The coordinates x̂µ are the coordinates in the coordinate system defined by x1, the
orthogonal projection of x2 with respect to x1. x2 ⊥ x1 = x2 − x1 · x2, and x2 × x1. (b) Graphical
depiction of the global symmetry transformations parametrized by the three angles φ2, θ1, φ1.

B.4 X = R3N and global SO(3)

Let X = R3N be parametrized by xi=1,...,N . We can describe a global SO(3) action as follows

x1 = Rez
(φ1)Rey

(θ1)

(
0
0
ẑ1

)
,

x2 = Rez (φ1)Rey (θ1)Rez (φ2)

(
x̂2

0
ẑ2

)
,

xµ=3,...,N = Rez
(φ1)Rey

(θ1)Rez
(φ2)x̂µ , (28)

where Ra(ω) represents a rotation of an angle ω around the axis a. We can then derive the operator
Π ∈ R3N×3N as follows. Let R′(ω) be the matrix where we take the partial derivative with respect
to ω of all elements of R. Then

Πφ1
=
(
[Azx1]

⊤ [Azx2]
⊤ · · · [AzxN ]⊤

)⊤
Πθ1 =


(cosφ1Ay − sinφ1Ax)x1

(cosφ1Ay − sinφ1Ax)x2

...
(cosφ1Ay − sinφ1Ax)xN



Πφ2 =


0

(sin θ1 cosφ1Ax + sin θ1 sinφ1Ay + cos θ1Az)x2

...
(sin θ1 cosφ1Ax + sin θ1 sinφ1Ay + cos θ1Az)xN

 (29)

Notice that these do represent global rotations since it is easy to see that (sin θ1 cosφ1Ax +
sin θ1 sinφ1Ay + cos θ1Az)x1 = 0. Formally, the true Lie algebra elements are 3× 3 matrices of
the form

Aφ =


Az 0 0 · · · 0
0 Az 0 · · · 0
0 0 Az · · · 0
...

...
...

. . .
...

0 0 0 · · · Az

 (30)
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and similarly for the other operators. Now, for the inverse relations we have

θ1 = arccos
z1

(x2
1 + y21 + z21)

1/2
,

φ1 = sgn(y1) arccos
x1

(x2
1 + y21)

1/2
,

φ2 = arctan
ỹ2
x̃2

, (31)

where x̃2 = Rey
(θ1)

−1Rez
(φ1)

−1x2 = Rey
(−θ1)Rez

(−φ1)x2.

B.5 X = R4, G = SO(4)× R+

Now we look at the case of a higher dimensional Lie group, namely G = SO(4) × R+. The
parametrization is given by

x1 = er cosφ1 ,

x2 = er sinφ1 cosφ2 ,

x3 = er sinφ1 sinφ2 cosφ3 ,

x4 = er sinφ1 sinφ2 sinφ3 . (32)
The Lie algebra elements corresponding to the SO(4) flow coordinates are

Aφ1
=

 0 − cosφ2 − sinφ2 cosφ3 − sinφ2 sinφ3

cosφ2 0 0 0
sinφ2 cosφ3 0 0 0
sinφ2 sinφ3 0 0 0

 ,

Aφ2
=

0 0 0 0
0 0 − cosφ3 − sinφ3

0 cosφ3 0 0
0 sinφ3 0 0

 ,

Aφ3 =

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 . (33)

Next, we compute the three non-trivial commutators (note that an operators with itself always
commute). First, we list the differential operators

Lφ1
=

1√
x2
2 + x2

3 + x2
4

[
x1x2∂2 + x1x3∂3 + x1x4∂4 − (x2

2 + x2
3 + x2

4)∂1
]
,

Lφ2
=

1√
x2
3 + x2

4

[
x2x3∂3 + x2x4∂4 − (x2

3 + x2
4)∂2

]
,

Lφ3
= x3∂4 − x4∂3 . (34)

where we used the notation ∂i = ∂xi
. These follow directly from (33) together with Lφi

= Aφi
x ·∇,

and using the relations

sinφ3 =
x4√

x2
3 + x2

4

, cosφ3 =
x3√

x2
3 + x2

4

, cosφ2 =
x2√

x2
2 + x2

3 + x2
4

, sinφ2 =

√
x2
3 + x2

4√
x2
2 + x2

3 + x2
4

.

(35)
Specifically, we have

[Lφ2 ,Lφ3 ] =
1√

x2
3 + x2

4

[−x2x4∂3 + x2x3∂4]−
−x3x4 + x4x3

(x2
3 + x2

4)
1/2

[
x2x3∂3 + x2x4∂4 − (x2

3 + x2
4)∂2

]
− 1√

x2
3 + x2

4

[x2x3∂3 − 2x3x4∂2 − x2x4∂4 + 2x3x4∂1]

=
1√

x2
2 + x2

3 + x2
4

[x1x3∂4 − x1x4∂3]−
1√

x2
2 + x2

3 + x2
4

[
x1x3∂4 − 2x3x

2
4∂1 − x1x4∂3 + 2x3x4∂1

]
= 0 . (36)
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[Lφ1
,Lφ3

] =
1√

x2
2 + x2

3 + x2
4

[x1x3∂4 − x1x4∂3]−
−x3x4 + x4x3

(x2
2 + x2

3 + x2
4)

3/2

[
x1x2∂2 + x1x3∂3 + x1x4∂4 − (x2

2 + x2
3 + x2

4)∂1
]

− 1√
x2
2 + x2

3 + x2
4

[x1x3∂4 − 2x3x4∂1 − x1x4∂3 + 2x3x4∂1]

=
1√

x2
2 + x2

3 + x2
4

[x1x3∂4 − x1x4∂3]−
1√

x2
2 + x2

3 + x2
4

[x1x3∂4 − 2x3x4∂1 − x1x4∂3 + 2x3x4∂1]

= 0 , (37)

[Lφ1
,Lφ2

] =
x3∂3 + x4∂4√
x2
2 + x2

3 + x2
4

x1x2√
x2
3 + x2

4

+
1√

x2
2 + x2

3 + x2
4

−x1x
2
3 − x1x

2
4

(x2
3 + x2

4)
3/2

[
x2x3∂3 + x2x4∂4 − (x2

3 + x2
4)∂2

]
+

1√
x2
2 + x2

3 + x2
4

1

(x2
3 + x2

4)
1/2

[
x1x2x3∂3 − 2x1x

2
3∂2 − 2x1x

2
4∂2 + x1x2x4∂4

]
− 1

(x2
3 + x2

4)
1/2

−x2x
2
4 − x2x

2
3 + (x2

3 + x2
4)x2

(x2
2 + x2

3 + x2
4)

3/2

[
x1x2∂2 + x1x3∂3 + x1x4∂4 − (x2

2 + x2
3 + x2

4)∂1
]

− 1

(x2
3 + x2

4)
1/2

1√
x2
2 + x2

3 + x2
4

[
x1x2x4∂4 − 2x2x

2
4∂1 + x1x2x3∂3 − 2x2x

2
3∂1 − (x2

3 + x2
4)(x1∂2 − 2x2∂1)

]
=

1√
x2
2 + x2

3 + x2
4

−x1(x
2
3 + x2

4)

(x2
3 + x2

4)
3/2

[
x2x3∂3 + x2x4∂4 − (x2

3 + x2
4)∂2

]
+

1√
x2
2 + x2

3 + x2
4

1

(x2
3 + x2

4)
1/2

[
x1x2x3∂3 − 2x1x

2
3∂2 − 2x1x

2
4∂2 + x1x2x4∂4

]
− 1

(x2
3 + x2

4)
1/2

1√
x2
2 + x2

3 + x2
4

[
−2x2x

2
4∂1 − 2x2x

2
3∂1 − (x2

3 + x2
4)(x1∂2 − 2x2∂1)

]
=

1√
x2
2 + x2

3 + x2
4

−x1

(x2
3 + x2

4)
1/2

[
−(x2

3 + x2
4)∂2

]
+

1√
x2
2 + x2

3 + x2
4

1

(x2
3 + x2

4)
1/2

[
−2x1x

2
3∂2 − 2x1x

2
4∂2
]

− 1

(x2
3 + x2

4)
1/2

1√
x2
2 + x2

3 + x2
4

[
−(x2

3 + x2
4)x1∂2

]
= 0 . (38)

B.6 G = SO(N)

We present here the formalism for the G = SO(N) for any N ≥ 4. The parametrization is given by
(Blumenson, 1960)

x1 = er cosφ1 ,

x2 = er sinφ1 cosφ2 ,

x3 = er sinφ1 sinφ2 cosφ3 ,

...
xj = er sinφ1 sinφ2 sinφ3 · · · sinφj−1 cosφj ,

...
xn−1 = er sinφ1 sinφ2 sinφ3 · · · sinφn−2 cosφn−1 ,

xn = er sinφ1 sinφ2 sinφ3 · · · sinφn−2 sinφn−1 . (39)
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The corresponding Lie algebra elements are given by

Aφn−1
=


0 · · · 0 0

0
. . .

...
...

0 · · · 0 −1
0 · · · 1 0

 , Aφn−2
=


0 · · · 0 0 0

0
. . .

...
...

...
0 · · · 0 − cosφn−1 − sinφn−1

0 · · · cosφn−1 0 0
0 · · · sinφn−1 0 0

 ,

Aφn−3
=



0 · · · 0 0 0 0

0
. . .

...
...

...
...

0 · · · 0 − cosφn−2 − sinφn−2 cosφn−1 − sinφn−2 sinφn−1

0 · · · cosφn−2 0 0 0
0 · · · sinφn−2 cosφn−1 0 0 0
0 · · · sinφn−2 sinφn−1 0 0 0

 ,

...

Aφj
=

1

xj



0 · · · 0 0 0 · · · 0

0
. . .

...
...

...
...

...
0 · · · 0 −xj+1 −xj+2 · · · −xn

0 · · · xj+1 0 0 · · · 0
0 · · · xj+2 0 0 · · · 0

0 · · ·
...

...
...

. . .
...

0 · · · xn 0 0 · · · 0


,

...

Aφ1
=

1

x1



0 −x2 −x3 −x4 · · · −xn

x2
. . .

...
...

...
...

x3 · · · 0 0 0 0
x4 · · · 0 0 0 0
... · · · 0 0 0 0
xn · · · 0 0 0 0


. (40)

C Proofs of condition for suitable Lie group

Here we provide the statements with proofs of the results in Section 2.2.

Proposition C.1. The linear operator induced by Π is complete if Π is the local frame of a vector
bundle E over X whose rank is n ≥ dimX almost everywhere. If rank E = n everywhere, then
E = TX , the tangent bundle of X .

Proof. We start by noting that, given the expression of the fundamental fields as derivations, we
can write L(x) = Π(x)⊤∇. Let π : E → X be the projection map, then rank π−1(x) =
min(rank Π(x), n), since rank ∇ = n. Now, consider L log p(x) = L log q(x), which implies
L log p(x)

q(x) = 0. Let U ⊆ X such that rank Π ≥ n ∀x ∈ U , and by assumption X \ U has measure

zero. Then the above holds if and only if ∇ log p(x)
q(x) = 0, which implies p(x)

q(x) = c, constant ∀x ∈ U .
Now, p(x) and q(x) are probability densities by assumption, thus c = 1, which proves the claim.

Proposition C.2. The operator Π induced by g is complete if and only if the subspace U ⊆ X such
that dim G

Gx
< n for x ∈ U , where n = dimX , has measure zero in X .

Proof. First, we recall that the dimension of an orbit Ox of x ∈ X equals the dimension of the image
of the map dρx : g → TxX : A 7→ Π(x). Suppose first that Π is complete. Then, from Proposition
C.1 the rank of Π(x) is ≥ n almost everywhere, and therefore dimG/Gx ≥ n almost everywhere,
which implies one direction of the claim. The reverse is quite straightforward. Assume that the rank
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of Π(x) is ≥ n almost everywhere. As Π represent the action of the infinitesiamal transformations
of G, it means that locally G cannot fix points in X , thus proving the claim.

D Proof of main theorem

Here we provide the full proof of Theorem 3.1:
Theorem D.1. Let G be a Lie group acting on X satisfying the conditions of Section 2.2, and let g
be its Lie algebra. The pair of SDEs

dx =

[
β(t)Π(x)f(x) +

γ(t)2

2
ρX(Ω)

]
dt+ γ(t)Π(x)dW , (41)

dx =

[
β(t)Π(x)f(x)− γ2(t)

2
ρX(Ω)− γ2(t)Π(x)∇⊤ ·Π(x)

−γ(t)2Π(x)L log pt(x)
]
dt+ γ(t)Π(x)dW , (42)

where β, γ : R → R are time-dependent functions, Π : Rn → Rn×n the fundamental vector fields,
f : Rn → Rn the drift, Ω =

∑
i A

2
i is the quadratic Casimir element of g, and L = Π(x)⊤∇ is

such that

1. The forward-time SDE (41) is exactly solvable, with solution

x(t) =

(∏
i

Oi(τi(t))

)
x(0) =

(
n∏

i=1

eτi(t)Ai

)
x(0) , (43)

where Oi = eτi(t)Ai is the finite group action and τ (t) is the solution to the SDE

dτ (x) = β(t)f(x)dt+ γ(t)dW . (44)

2. The SDE (6) is the reverse-time process of (5).

3. The Langevin dynamic of the above SDEs decomposes as a direct sum of g infinitesimal
actions (1), each defining an infinitesimal transformation along the flows ξτ .

Proof. We start by proving 3. We start by rewriting (41) in terms of the fundamental flow coordinates
τi = ξ−1

Ai
(x0)(x) : X → R. For this we employ Itô’s Lemma for the multivariate case: given the

SDE (41) and a transformation τ (x), it is given by

dτ (x) = (∇xτ )
⊤
[
β(t)Π(x)f(x) +

γ2(t)

2
ρX(Ω)

]
dt+

γ2(t)

2
Tr
[
Π(x)⊤ (Hxτ)Π(x)

]
dt

+ γ(t)(∇xτ )
⊤Π(x)dW

= β(t)f(x) +
γ2(t)

2

[
(∇xτ )

⊤∆τx+Tr
[
Π(x)⊤ (Hxτ )Π(x)

]]
dt+ γ(t)dW (45)

since ∇xτ = Π−1(x) as matrices. Now, the second term can be rewritten in components as{
(∇xτ )

⊤∆τx+Tr
[
Π(x)⊤ (Hxτ)Π(x)

]}
k,l

=
∑
i

∑
j

∂xj

∂τk

(
∂

∂xj

∂xi

∂τl

)
∂τ

∂xi
+
∑
i

∑
j

∂xj

∂τk

∂xi

∂τl

∂2τ

∂xi∂xj

=
∑
j

∂xj

∂τk

∂

∂xj

(∑
i

∂xi

∂τl

∂τ

∂xi

)

=
∂

∂τk

(∑
i

∂xi

∂τl

∂τ

∂xi

)

=
∂

∂τk

∂τ

∂τl
= Hττ , (46)
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which vanishes. Thus we proved that
dτ (x) = β(t)f(x)dt+ γ(t)dW , (47)

and provided that is chosen so that fi(x(τ )) = fi(τi), this corresponds to a system of independent
SDEs, as claimed.

Now, to prove 1, let τ (t) be a solution to (47) and x(t) as in (7). Then a Taylor expansion yields

x(t) =

I +∑
i

τi(t)Ai +
1

2

(∑
i

τi(t)Ai

)2

+O(τ3i )

x(0) (48)

since [Ai, Aj ] = 0 and where O(τ3i ) represents terms of third order in τi’s. Then taking the
differential and dropping higher order terms

dx(t) =

∑
i

dτi(t)Ai +
1

2

(∑
i

dτi(t)Ai

)2
x(0)

=

∑
i

[β(t)f(x)dt+ γ(t)dW]Ai +
1

2

(∑
i

[β(t)f(x)dt+ γ(t)dWAi]

)2
x(0)

= [β(t)Π(x)f(x)dt+ γ(t)Π(t)dW] +
1

2

(∑
i

γ(t)dWAi

)2

x(0)

= [β(t)Π(x)f(x)dt+ γ(t)Π(t)dW] +
γ(t)2

2

(∑
i

A2
i dt

)
x(0)

=

[
β(t)Π(x)f(x) +

γ(t)2

2
ρX(Ω)

]
dt+ γ(t)Π(x)dW , (49)

which in the forward SDE (5), proving our claim, where we used the relations dW 2
i = dt and

dWidWj = 0 for j ̸= i.

Finally, we prove 2. To do this it suffices to apply Anderson’s result (Anderson, 1982)

dx =

[
β(t)Πi(x)f(x) +

γ2(t)

2
ρX(Ω)− γ2(t)∇ · (Π(x)Π(x)⊤)

−γ(t)2Π(x)Π(x)⊤∇x log pt(x)
]
dt+ γ(t)Π(x)dWi , (50)

and note that Π(x)⊤∇x = L, the generalized score, and[
∇x · (Π(x)Π(x)⊤)

]
i
=

∂

∂xk
(ΠijΠkj)

=
∂

∂xk
(Πij)Πkj +Πij

∂

∂xk
Πkj

=
∂xk

∂τj

∂

∂xk

(
∂xi

∂τj

)
+Πij [∇⊤ ·Π(x)]j

=
∂

∂τj

(
∂xi

∂τj

)
+Πij [∇⊤ ·Π(x)]j

= [TrHτ (x)]i +Πij [∇⊤ ·Π(x)]j (51)
where we recall that the divergence of a matrix is a vector whose components are the divergence of
its rows. Recalling the relationship between the trace of the Hessian and the Laplacian we can write
in operator form

∇x · (Π(x)Π(x)⊤) = Π(x)∇⊤ ·Π(x) + ρX(Ω) , (52)
Plugging this back in into the previous expression we obtain our claim

dx =

[
β(t)Π(x)f(x)− γ2(t)

2
ρX(Ω)− γ2(t)Π(x)∇⊤ ·Π(x)

−γ(t)2Π(x)L log pt(x)
]
dt+ γ(t)Π(x)dW . (53)
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Algorithm 1 Training with variance-preserving
scheduler
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, . . . , T})
4: η ∼ N (0, I)
5: τ0 = MG(x0) ▷ Flow coordinates. MG is

group-dependent
6: τt = αtτ0 + σtη ▷ Sample from p(τt|τ (x0))
7: xt = M−1

G (τt) ▷ Cartesian coordinates
8: Take gradient descent step on

∇θ

∥∥∥sθ(xt, t) +
η
σt

∥∥∥2
9: until converged

Algorithm 2 Sampling with variance-preserving
scheduler

1: τT ∼ N (0, I)
2: xT = M−1

G (τT ) ▷ Cartesian coordinates
3: for t = T, . . . , 1 do
4: η ∼ N (0, I) if t > 1, else η = 0

5: vs,t = (
∑

i (
1

2
τt,i + sθ(xt, t)i)︸ ︷︷ ︸

∈R

Ai)xt ▷

Dynamics induced by drift and generalized scores
6: ρX(Ω) = vc,t = (

∑
i A

2
i )xt ▷ Dynamics

induced by quadratic Casimir elements
7: vd,t =

∑
i ∇ · [Aixt]︸ ︷︷ ︸

∈R

(Aixt) ▷ Dynamics

induced by divergences
8: vt = vs,t +

1
2
vc,t + vd,t

9: x̃t−1 = xt + βtvt ▷ Update state based on
velocity

10: xt−1 = x̃t−1 +
√
βt

∑
i ηiAixt ▷ Stochastic

dynamics
11: τt−1 = MG(xt−1)
12: end for
13: return x0

E Experiments

Practical implementation. In this section we list practical implementations for training and
inference of our proposed Algorithm 1 and Algorithm 2 assuming a variance-preserving SDE for
the flow-coordinates, see Eq. (55), because we know that this standard SDE is exactly solvable and
related to the forward SDE in Cartesian space as stated in the main Theorem 3.1.

The implementation showcase the examples for G0 = (SO(2)× R+) (see the second paragraph in
3.1) for data living in x ∈ R2 and G1 = (SO(3)× R+) for x ∈ R3 from Appendix B.3.

The flow-maps for G0 and G1 can be computed by leveraging the bijection from Cartesian to polar
τ = (r, θ) for G0 and spherical τ = (r, θ, ϕ) for G1, respectively. As stated in the main text and
Appendix, we obtain

MG0(x) =

(√
x2 + y2

arctan( yx )

)
, M−1

G0
(τ ) =

(
r cos(θ)
r sin(θ)

)
.

As mentioned in (13), the Lie algebra basis are Ar = I and Aθ =

(
0 −1
1 0

)
, yielding a quadratic

Casimir operator A2
r + A2

θ = 0, such that the dynamics induced by the Casimir elements in line
6 in Alg. 2 vanishes, i.e. vc = 0. The dynamics induced by the divergences (line 7 in Alg. 2)
returns ∇ · Arx = ∇ · x =

∑2
i=1

∂
∂xi

xi =
∑2

i=1 1 = 2 and ∇ · Aθx = ∇ · (−x2, x1)
⊤ =

∂
∂x1

(−x2) +
∂

∂x2
x1 = 0. Therefore, the divergence dynamics returns the velocity component

vd = 2Arx+ 0Aθx = 2x.

For G1 the bijection to flow- and Cartesian coordinates is well-known as

MG1
(x) =


√

x2 + y2 + z2

arctan(

√
x2+y2

z )
arctan( yx )

 , M−1
G1

(τ ) =

(
r sin(θ) cos(ϕ)
r sin(θ) sin(ϕ)

r cos(θ)

)
.

With Ar = I , Aθ = (cosϕAy − sinϕAx) and Aϕ = Az as defined in (22)-(23), the quadratic
Casimir elements A2

i are left multiplied with the vector representation x, we can distinguish each
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group component as follows

A2
rx = I2x = Ix = x = (x1, x2, x3)

⊤

A2
θx = (cos2(ϕ)A2

y + sin2(ϕ)A2
x − cosϕ sinϕAyAx − cosϕ sinϕAxAy)x = −x = −(x1, x2, x3)

⊤

A2
ϕx = A2

zx = −(x1, x2, 0)
⊤,

defining the Casimir dynamics in line 6 in Algorithm 2.

The dynamics induced by the divergences are computed in the same manner as shown in the SO(2)
examples. Specifically, we obtain the (scalar) divergences

∇ ·Arx = ∇ · x = 3

∇ ·Aϕx = ∇ ·Azx = ∇ · (−x2, x1, 0) =
∂

∂x1
(−x2) +

∂

∂x2
x1 +

∂

∂x3
0 = 0

∇ ·Aθx =
x3√

x2
1 + x2

2

,

where the last divergence is point dependent.

In practice, it suffices to compute the quadratic Casimir elements directly using GPU-accelerated
frameworks when these are point dependent as in Aθ, or pre-compute them should they be constant
matrices. The divergences can be computed using automatic differentiation libraries from modern
deep learning frameworks.

Experimental details. In this final section we present some further details regarding our experiment
in Section 5. We provide the code to replicate our experiments in the Supplementary Information
(SI). Following publication we will open-source our code.

E.1 2D and 3D toy datasets

Table 3: Comparison of GSM and Fisher Score matching on 2D and 3D synthetic datasets. Best
results are in bold. When numbers are two close we consider them on par.

Dataset Group W2

MoG (2D) SO(2)× R+ 0.34
MoG (2D) T (2) 0.15

Concentric Circles (2D) SO(2)× R+ 0.19
Concentric Circles (2D) T (2) 0.17

Line (2D) SO(2)× R+ 0.33
Line (2D) T (2) 0.56

MoG (3D) SO(2)× R+ 0.40
MoG (3D) T (3) 0.44

Torus (3D) SO(3)× R+ 0.14
Torus (3D) T (3) 0.35

Möbius Strip (3D) SO(3)× R+ 0.06
Möbius Strip (3D) T (3) 0.16

We perform a quantitative evaluation using the Wasserstein-2 (W2) distance on synthetic 2D and
3D datasets, comparing standard (Fisher) score matching (G = T (2), G = T (3)) with our proposed
approach based on Lie groups (G = SO(2)× R+) and (G = SO(3)× R+). A strong bias in such
experiments arises from the similarity between the prior and target distributions. The considered toy
datasets are often symmetric with respect to the origin in R2,3, as in the standard Gaussian prior in
Fisher score matching. The similarity of the prior distribution to the target one affects decisively the
performance of the generating process.

To account for this, we report a normalized W2 metric, dividing the W2 distance between samples and
target by the W2 distance between target and the corresponding priors. We observe that generalized
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score matching (GSM, ours) performs on par or better in most datasets, particularly where symmetry
provides a clear inductive bias as indicated in Table 3. In the MoG datasets, standard (Fisher) score
matching (G = T (N)) outperforms the Lie group model (G = SO(N)× RN ), which is expected
since no rotational symmetry is present, while translation symmetry effectively helps locate the
Gaussian modes. The performance gap becomes even more pronounced in 3D, where GSM shows
stronger advantages. We hypothesize that in higher dimensions, memorizing the target distribution
becomes more difficult, and models that incorporate symmetry more explicitly benefit increasingly
from this inductive bias.

E.2 MNIST

We parametrize the noising process through the SDE

dτ =
√

β(t)dW , (54)

where we set the drift term to zero. Notice that this choice is consistent with a 2d-rotation of a
function over the grid xi,j , given by f(xi,j) = fi,j , denoting the value of the pixel of image f at
the location i, j. We train a convolutional neural network (CNN) with three convolutional layers
followed by fully connected layers that outputs a single value, being the score for the flow coordinate
τ . For the specific details of the implementation we refer to the code-base in the SI. In sampling, we
apply a smoothing function to compensate interpolation artifacts due to rotations on a discretized
grid. We choose T = 100 time-steps in training but only need T = 10 time-steps during sampling.

E.2.1 BBDM

We implement the Brownian Bridge Diffusion Model (BBDM) (Li et al., 2023) and train it on the
rotated MNIST dataset. The BBDM operates on the full pixel space R784 of the 28×28 MNIST digits
and indicates a continuous time stochastic process conditioned on the starting x(0) and end point x(T )
which are pinned together as paired data. In this case, we assume x(T ) ∼ p(xT ) to be a randomly
augmented MNIST digit obtained from an original MNIST digit x(0). During training, we sample
an intermediate point x(t) ∼ N(xt|µt(x(0), x(T )),Σt) where the mean function µt(t)(x(0),x(T ))
is a linear interpolation between the endpoints (x(0),x(T )) and use the score-network to predict
the original data point x̂(0) = sθ(xt, t, xT ) as opposed to the noise or difference paramterization
proposed in the original BBDM paper. We noticed that predicting the original data point led to better
sampling quality including the inductive bias that MNIST digits are represented as binary tokens.
Furthermore, we observe that the sampling quality is also better when the prior image xT is input as
context into the score network, enforcing a stronger signal throughout the trajectory. As opposed
to our model, we trained the BBDM on T = 1000 diffusion timesteps using the sin-scheduler from
BBDM.

To evaluate the quality of generated MNIST samples, we train a convolutional neural network
(CNN) classifier to predict digit labels. This classifier provides a reliable metric for assessing the
reconstruction accuracy by comparing the predicted labels of original (unrotated) and generated
(rotated) images. The architecture consists of two convolutional blocks, followed by fully connected
layers to predict the 10 MNIST digit labels. All convolutional layers use 3x3 kernels with padding 1,
and max pooling uses 2x2 kernels. The model is trained using Adam optimizer (lr=0.001), cross-
entropy loss, batch size 64, for 10 epochs on the standard MNIST training set (60,000 samples). The
trained classifier achieves greater than 99% accuracy on the MNIST test set, providing a reliable
metric for evaluating reconstruction quality.

To calculate the FID scores, we extract the embedding after the second convolutional block.

E.3 QM9 & CrossDocked2020

QM9. The conformer generation tasks is about learning a conditional probabilistic map x ∼
pθ(X|M), where x ∈ R3N for a molecule with N atoms. We implement a variant of EQGAT (Le
et al., 2022b) as neural network architecture where input features for the nodes consist of atom types
and atomic coordinates, while edge features are encoded to indicate the existence of a single-, double,
triple or aromatic bond based on the adjacency matrix. We use L = 5 message passing layers with
sdim = 128 , vdim = 64 scalar and vector features, respectively. To predict the scores for each atom,
we concatenate the hidden scalar and vector embeddings s ∈ R128 , v ∈ R3×64 into one output
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embedding o = R128+3∗64 which is further processed by a 2-layer MLP with three output units.
Notice that the predicted scores per atom are neither invariant nor equivariant since the scalar and
vector features are transformed with an MLP.

We choose the drift f with its scaling β and the diffusion coefficients γ in such way that the forward
SDE for the flow coordinates τ in (8) has the expression

dτ = −1

2
β(t)τdt+

√
β(t)dW , (55)

where for clarity we have omitted the dependency between the flow coordinates and the original
data in Cartesian coordinates, i.e. τ (x), since the coordinate transformations with Lie algebra
representation are described in B.3. The forward SDE in (55) is commonly known as variance-
preserving SDE (Song et al., 2020b). We use the cosine scheduler proposed by Dhariwal & Nichol
(2021) and T = 100 diffusion timesteps.

CrossDocked. For this experiment we adopt again an SDE of the form (55) for the three SO(3)
flow coordinates θ1, φ1, φ2 and the three T (3) center of mass Cartesian flow coordinates. The SO(3)
flow coordinates are always computed and applied in the ligand center of mass. In this way there
is no ambiguity regarding the non-commutativity of SE(3), as rotation around the origin commute
with translations of the system. We train a variant of EQGAT as in the QM9 case, but now including
also node and edge features of the protein pocket. Specifically, the adjacency matrix for the GNN
is computed dynamically at each time step, according to the relative distance between ligand and
protein. For this, we choose a cut-off of 5 Å. We also use in this experiment a cosine scheduler and
T = 100 diffusion timesteps. Since this learning problem is 6-dimensional, we aggregate the last
layer’s node embeddings from the ligand atoms into a global representation through summation. This
embedding is fed as input into a 2-layer MLP to predict the six scores.

E.3.1 RSGM and BBDM n CrossDocked

RSGM We utilized the framework of Riemannian Score-Based Generative Models (RSGM)
by (De Bortoli et al., 2022) to model rigid-body motions on G = (SO(3) × T (3)), in sim-
ilar fashion to (Corso et al., 2023; Yim et al., 2023) by choosing a variance exploding SDE
for the rotation dynamics and variance preserving SDE for the global translations. The ter-
minal distribution for the rotation is designed to converge to an isotropic Gaussian distribu-
tion on SO(3) (Leach et al., 2022), while the terminal distribution for the translation compo-
nent converges to an isotropic Gaussian in R3. To obtain the tractable scores for rotation and
translation, we use the code by the authors from DiffDock and SE(3)-Diffusion for Protein
Backbone Modeling in https://github.com/gcorso/DiffDock/blob/main/utils/
so3.py and https://github.com/jasonkyuyim/se3_diffusion/blob/master/
data/se3_diffuser.py and make sure that the score outputs for rotation and translation are
SO(3) equivariant using the same EQGAT model architecture. The (variance-preserving) scheduler
for the translation dynamics is chosen in similar fashion to our experiment using the cosine scheduler,
while the (variance-exploding) scheduler for the rotation dynamics is implemented as an linear
increasing sequence in log10 space with σmin = 0.001 and σmax = 2.0 and T = 100 discretized
diffusion steps as σ(t) = 10t for t ∈ (log10(σmin), log10(σmax)).

BBDM In similar fashion to the MNIST experiment, we train and evaluate a standard Euclidean
diffusion model on CrossDocked2020 for rigid docking. We sample a rotated ligand endpoint
xT using the Riemannian Score-Based Generative Models (RSGM) scheduler, with the original
ligand x0, and sample intermediates as xt = mtx0 + (1 −mt)xT + σtϵ, where ϵ ∼ N(0, I) and
mt =

t
T , σt = 2(mt −m2

t ) using T = 100 diffusion steps. As the Euclidean baseline, we train an
equivariant Fisher score network with 3N degrees of freedom to predict the ground-truth pose x̂0.
In this setting intermediate perturb ligand coordinates xt do not resemble ligands due to the linear
interpolation and addition of Gaussian noise, while the learning task is to predict the ground-truth
ligand coordinate, given the static protein pocket. The output prediction head in BBDM is 3N ,
compared to to GSM and RSGM which model 6 dimensions accounting for global rotation and
translation.

To compare all modeling approaches with respect to the dynamics using the same network architecture,
we perform 5 dockings per protein-ligand complex in the CrossDocked test dataset comprising 100
complexes and compute the mean RMSD between ground-truth coordinates and predicted coordinates.
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F Lie group-induced flow matching modeling
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Figure 10: so(2) (green and
blue) vs. t(2) (orange) in-
duced flows.

We briefly summarize the formalism of flow matching. Given a target
distribution p0(x) and a vector field ut generating the distribution
pt(x), i.e., if it satisfies pt(x) = [ut]∗p0(x) where [ut]∗ is the push-
forward map, the flow matching objective is defined as

LFM(θ) = Et,xt∼pt(x) |vt;θ(xt)− ut(xt)|2 . (56)

Marginalizing over samples x0 ∼ p0(x) we obtain the conditional
flow matching objective

LCFM(θ) = Et,x0∼p0(x),xt∼pt(x|x0) |vt;θ(xt)− ut(xt|x0)|2 . (57)

Now, under the assumptions for learning the generalized
score through the objective 10 we have that pt(τ (x)) =
N (τ |µ(τ (0), t),Σ(t)), where τ (0) = x(τ )(0). Then the solution
of the SDE from Theorem 3.1

x(t) =

(
n∏

i=1

eτi(t)Ai

)
x(0) , (58)

is a flow inducing the distribution pt(τ (x)). Thus, the vector field that generates the conditional
probability path is obtained by differentiating the path above with respect to t, yielding

ut(x(t)|x(0)) =
d

dt
x(t) =

∑
i

∂x(t)

∂τi

∂τi
∂t

=
∑
i

Aix(t)
(
µ′
t,i(τi(0)) + σ′

t(τi(0))ηi
)

= Π(x(t))

[
µ′

t(τi(0)) +
σ′
t(τi(0))

σt(τi(0))
(τ (t)− µt(τ (0)))

]
, (59)

where we used the fact that

τ (t) = µt(τ (0)) + σt(τ (0))η , (60)

where η ∼ N (0,1). Thus, we see that the unique vector field that defines the flow (7) is again
proportional to the fundamental vector field Π(x) of the Lie algebra g of G. In figure 10 we illustrate
the flow generated by our formalism in the case of SO(2) in comparison with the traditional flow
matching of T (2). The orange path depicts the linear (in Euclidean metric) displacement given by the
traditional flow matching, assuming G = T (2). In green and blue we depicted the orbits trajectories
resulting from generalized flow matching with G = SO(2)× R+. Although the start and end points
are the same, the path is decomposed into transformations along the orbits of the two group factors.
This is particularly useful when these correspond to meaningful degrees of freedom in the system. For
example, when flowing between conformers of the same molecule, the intermediate states produced
by traditional flow matching are often unphysical, as they involve linear interpolation between the
Cartesian coordinates of the atoms. However, generalized score matching, following the degrees of
freedom given by bond and torsion angles as described in Section 3.1, would not only yield efficient
learning but also produce chemically meaningful intermediate states, as the path is broken down into
updates of chemically relevant degrees of freedom.

G Further Related Work

In the context of interpreting the latent space of diffusion models, Park et al. (2023) explores the local
structure of the latent space (trajectory) of diffusion models using Riemannian geometry. Similarly,
Haas et al. (2024) propose a method to uncover semantically meaningful directions in the semantic
latent space (h-space) (Wang et al., 2023) of denoising diffusion models (DDMs) by PCA. Wang et al.
(2023) propose a method to learn disentangled and interpretable latent representations of diffusion
models in an unsupervised way. We note that the aforementioned works aim to extract meaningful
latent factors in traditional DDMs, often restricting to human-interpretable semantic features and
focusing on image generation.
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H Further Outlook

In the context of generative chemistry, particularly for modeling interactions within protein pockets,
our methods could be employed to decouple the intrinsic generation of ligands from the global
transformations required to fit the ligand into the pocket. This approach can also be extended beyond
3D coordinates, for instance, by working with higher-order representations, such as modeling electron
density (Rackers et al., 2023).

Moreover, for more complex problems, it is feasible that an optimal generation process can be
achieved by combining different choices of G along the trajectory. In the context of ligand generation,
we propose a time-dependent group action Gt = tT (3N)+(1−t)(SO(3)×R+)

N : at the beginning
of the diffusion process, when the point cloud is still far from forming a recognizable conformer, we
can leverage the properties of a true Gaussian prior. As the point cloud is gradually optimized to
“resemble a molecule”, we progressively transition to a generalized score-guided process. This shift
allows us to fine-tune chemically relevant properties, such as bonds and torsion angles, ensuring that
the intermediate and final conformers are chemically valid and accurate. This will be the focus of our
forthcoming work.

A potential limitation of our work is that it currently does not extend to representations of finite
groups. While finite groups also admit a rich representation theory, it remains an open question how
to adapt our framework to those settings. Another limitation lies in our assumption that X is a vector
space, whereas Lie groups can act on more general manifolds. Although the conditions discussed
in Section 2.2 hold for arbitrary manifolds, our main theoretical results are restricted to actions on
vector spaces. Extending the full analysis to curved spaces would be a compelling direction for future
work, potentially enabling a general theory of diffusion on Riemannian manifolds via Lie group
representations.
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We also share the code to reproduce our results in the Supplementary Material
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to make their results reproducible or verifiable.
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to reproduce that algorithm.
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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code to reproduce our results in the Supplementary Material of this submission.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details are presented in the Appendix and in addition we share our code
to reproduce the results. Pseudo-code for training and inference are provided in Algorithms
1 and 2 in the Appendix.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This can be seen in the description of the results in the Experiment Section 5.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide all the details in the Appendix and in addition we share the code to
reproduce all our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: we reviewed the Code Of Ethics and confirm that the research in the paper
conform to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the dataset we used are publicly available and properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide our code as in the Supplementary Material of this submission.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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