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ABSTRACT

In-context learning, i.e., learning from in-context samples, is an impressive ability
of Transformer. However, the exact mechanism behind this learning process
remains unclear. In this study, we aim to explore this aspect from a relatively
less explored perspective, i.e., representation learning. For in-context learning,
the representation becomes more complex as it can be influenced by both model
weights and context samples. To study how the model weights and in-context
samples affect the prediction, we conceptually isolate the component, that can only
be influenced by the model’s weights, from the model’s inner representation. We
name this component as in-weights component and the rest as in-context component.
We create a novel synthetic experimental set up, which allows to control the
difficulty level of learning good in-context component, making it possible to study
how the two components interplay with each other and impact the in-context
performance. We find that the in-weights component plays a significant role in the
learning of the in-context component. However, in traditional training way, the the
in-weights component may be overlooked, resulting in a poor performance. We
propose to a training settup to synergistically learn the in-weight and in-context
components and the in-context learning performance can be significant improved.
A further theoretical analysis is provided to justify the importance of our findings.
Overall, our discoveries from the perspective of representation learning provide
valuable insights into new approaches for enhancing in-context capacity.

1 INTRODUCTION

Transformer-based models have exhibited remarkable capabilities in language processing (OpenAI,
2023; Devlin et al., 2018). One of the most striking features is their ability to rapidly learn from
contextual examples (Brown et al., 2020), which is referred to as in-context learning. As it does
not require changing weights, in-context learning has garnered significant research interest and has
been effectively employed to address real-world problems. This development calls for a deeper
comprehension of the underlying mechanisms driving in-context learning. Numerous efforts have
been dedicated to this crucial subject. For instance, several recent studies (von Oswald et al., 2022;
Dai et al., 2023; Akyürek et al., 2022) have characterized in-context learning as a form of gradient
descent. Other works (Li et al., 2023; Bai et al., 2023) have further interpreted in-context learning as
algorithm implementation and selection.

In-context learning is different from regular supervised learning. For regular supervised learning,
given the input sample xp with label yp, we want to find a parameterized function fw with w, such
that yp = fw(xp). In this situation, all the information to accomplish the tasks is stored in the weights
w. However, for the in-context learning framework, there is extra information source, the context
samples sc. Then, the prediction can be modeled as fw,sc(xp), that means both the weights and the
context samples can influence the prediction.

We study the joint effect between the in-weights component and in-context component on
the prediction, by assuming that the function fw,sc(x) can be decomposited as fw,sc(xp) =
g(gweights(xp), gcontext(sc)). In this way, we can isolate a component gweights(xp) that only
depends on the weights and the other component gcontext(sc) that both depend on weights and
context samples. We denote gweights(xp) as in-weights component and gcontext(sc) as in-context
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component. Due to the weights sharing within the transformer, gweights and gcontext interplay with
each other.

1.1 MAIN CONCLUSIONS

Figure 1: Test results for different train-
ing epoch and model size. Improving
in-weights component (dashed line) can
enable the emergence of in-context learn-
ing for small models. Detail in Section
4.2

With the aforementioned setup, we investigate the impact
of the in-weight component and in-context component
on in-context learning capabilities. The experimental re-
sults reveal that: (i) In-weights components is easy to be
overlooked in regular I.I.D training, leading to a poor in-
context performance as the solid line shown in Fig. 6, even
though it play an essential role in the in-context learning.
Details is presented in Section 4. (ii) By synergistically
enhancing the in-weight and in-context components, the in-
context performance of a base model (blue line in Fig. 6)
significantly improves (in-context learning score increases
from 0.168 to 0.885), and in-context ability emerges for
small model (orange line in Fig 6).

A theoretical analysis is provided to further understand the
role of in-weights component. We prove by construction
that three additional Transformer layers on top of the rep-
resentation with perfect in-weights component can achieve
comparable performance in the experimental part.

1.2 CONTRIBUTIONS

Our main contributions can be summarized as follows:

• We give a formulation of in-weights and in-context component and introduce a new synthetic
task that enables the study of the impact of in-context component and in-weights component
on in-context ability.

• The experimental results reveal that although the in-weights component cannot directly
influence the in-context learning performance, it plays a significant role in the learning of the
in-context component. However, the traditional training method may overlook the in-weigts
component and result in a worser performance.

• We offer mathematical analysis to understand the importance of in-weights components.

2 EXPERIMENTAL DESIGN

In this section, we will discuss the experimental design, which encompasses dataset construction,
model and training objectives, and the exploration framework.

Principles for Experimental Design The following principles guide our experimental design: 1)
The prediction of the prompt example should adapt to the in-context example. 2) The evolution
of in-weights and in-context components should be trackable. 3) The learning of in-weights and
in-context components must be controllable.

2.1 DATASET CONSTRUCTION

In general tasks, the impacts of model weights and context samples are intertwined, which
complicates the process of providing separate evaluations. Therefore, we propose a task using
the Shapes3D (Kim & Mnih, 2018) dataset for more controllable study. The experimental setting is
shown in Fig. 2. Specifically, given a sequence of image and label pairs as context, the task involves
predicting the label of the prompt image. Each image contains six different factors: object color,
object shape, object scale, background color, floor color, and pose. We denote the factor as e and
the factor value of factor e as v(e). For each sequence, we randomly choose a factor to generate the
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Figure 2: Experimental setup. We train Transformers using a sequence of image and label pairs,
teaching the model to predict labels for each image. During inference, we evaluate the model’s ability
to accurately predict new, unseen sequences. The images from the 3D Shapes dataset are synthesized
based on six factors. The output factor is determined by the context. In this case, we provide two
sequences of factors: ”object color” and ”object shape,” respectively.

labels of the images, referring to this factor as the hidden factor for this sequence. We denote the
hidden factor fir i-th sentence as ei. For the two context sequences in Fig. 2, the hidden factor of Seq
#1 is object color, and the correct label for the prompt image is 1 (object color is green). In Seq #2,
for the same prompt image, the correct label is 3 (object shape is cube).

In order to make accurate predictions, the network must not only identify the values of the six factors
in the prompt image (associated with the in-weight component), but also identify the correct hidden
factor to output based on the contexts (related to the in-context component).

2.2 PROBLEM DEFINITION

Notations We denote xp as the prompt example with ground truth label yp and the context examples
are sc = {x1, y1, · · · ,xl, yl}. We denote the factor values of prompt as vp and the corresponding
factor value for factor e as v(e)p . The hidden factor is denoted as eh. We denote the mapping function
as m, which maps the factor value to the corresponding label, i.e. yp = m(v

(eh)
p ). We denote the

probability as P.

In-weights and in-context For regular supervised learning, given the input sample xp, we want
to find a parameterized function fw such that yp = fw(xp). In this situation, all the information to
finish the tasks is stored in the weights w. However, for the in-context learning framework, there is
extra information source, the context samples sc. Then, the predictions become yp = fw,sc(xp), that
means both the weights and the context samples can influence the prediction. For a representation h
in the function fw,sc(x), we denote the component of h that can only be influenced by weights as
in-weights component and the component that can be influenced by context examples as in-context
component. The representation in fw(xp) can be regarded as having only in-weights component. In
the following, we decomposite the distribution P(yp|xp, sc) into the parts according whether they are
depended on in-context examples.

Proposition 2.1. The probability of P(yp|xp, sc) can be decomposite as:

P(yp|xp, sc) =
∑

vp,m,eh

P(yp|vp,m, eh)︸ ︷︷ ︸
Properties of Task

P(vp|xp)︸ ︷︷ ︸
In-weights

P(eh|sc,m)P(m|sc)︸ ︷︷ ︸
In-context

, (1)

where P(vp|xp) is in-weights related information, and P(eh|sc,m)P(m|sc) is in-context related
information. P(yp|vp,m, eh) is related for the properties of task, and we have P(yp|vp,m, eh) = 1
if m(vehp ) = yp else P(yp|vp,m, eh) = 0.
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Figure 3: Illustration of task design. C, W, and P represent the in-context component, in-weights
component, and in-context performance of the Transformer, respectively. A: All possible relations.
B: the relationships we aim to investigate in each experimental setup. The red line signifies the
relationship being explored, and the black line indicates the relationships that have not been removed.

Ideally, if we can approximate the distribution P(yp|vp,m, eh) and the distribution
P(eh|sc,m)P(m|sc), we can obtain the distribution P(yp|xp, sc). Based on the decomposited
results of P(yp|xp, sc), we assume the representatio h can also be decomposited.
Assumption 2.2. (Decomposible) We assume that there exsits functions g, gweights, gcontext,
such that for any (xp, sc) ∼ P(xp, sc), fw,sc(xp) can be decomposited as fw,sc(xp) =
g(gweights(xp), gcontext(sc)).
Remark 2.3. 1) The function g(gweights(xp), gcontext(sc)) is not the actually we calculate
f(w, sc). It is a conceptually tool for us to decouple the influence of in-context samples’ influ-
ence. 2) gweights and gcontext are only different in their inputs, which means that the gweights

and gcontext may dependent with each other. For example, in the Transformer gcontext may has
the form gcontext = g′context({gweights(x1), y1, · · · , gweights(xl), yl}). This makes the in-weights
and in-context components have very complex relation, which we aim to explore in this paper.

With the Assumption 2.2, we denote gweights(xp) as in-weights component and gcontext(sc) as
in-context component. Then, we define our expectation for the components to be good, that is to infer
the corresponding part in Proposition 2.1.
Definition 2.4. If fw,sc(xp) has good in-weights component in its representation, we can infer
P(vp|xp) from gweights(xp), and if it has good in-context component, we can infer P(eh|sc,m) from
gcontext(sc).

2.3 EXPLORATION FRAMEWORK

To study whether we can have infer the can infer P(vp|xp) from hw, and infer P(eh|sc,m) from hc,
we leverage the probe method. and we defind the corresponding scores in the following

Probing methods and metrics We use three metrics here. in-weights comp. score: accuracy
of the probe model to predict vp given x, and “comp.” is short for component. in-context comp.
score: the accuracy of the probe model to predict eh. in-context learning score: the gap between the
accuracy of Transformer to predict yp give l1 in-context examples and the accuracy of Transformer
to predict yp give l2 in-context samples. Here, we choose l1 = 40 and l2 = 0. The choose of l1, l2
doesn’t have obvious influence (Olsson et al., 2022). We give the detail of the probe framework
design, probe model and training configure in the Appendix.

To investigate the relationship between the effectiveness of learning in-weight/context components
and the strength of in-context learning ability, we control the difficulty of learning representation
components by devising two label assignment settings during the training phase:

• Dfix: The mapping m remains constant throughout all sequences.
• Drnd: The mapping m is consistent within a sequence, but it is randomly choosed for

different sequences.

The model is anticipated to learn the in-weight component more effectively in the Dfix setting and the
in-context component more effectively in the Drnd setting. To further analyze the interplay between
these components, we consider two composite settings:
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• Dfix→rnd: In this setting, we initially train the model on Dfix for a specific epoch, and then,
we train the model on Drnd.

• Dfix∧rnd: Half of the data in the training set utilizes the Dfix setting, while the other half
employs the Drnd setting.

Given two data settings D1 and D2, we use D1 ⇒ D2 to represent the evaluation result of a model
on data setting D2 after the model has been trained on data setting D1.

Analysis For Dfix: Recall that we have P(yp|xp, sc) ∼ P(vp|xp)P(eh|sc,m)P(m|sc). Under Dfix
setting, we only has one mapping function, which we denote as m0. Therefore, we model can easily
learn Pf (P(m0|sc)) = P(P(m0|sc)) = 1 and then the model only need to learn P(eh|sc,m) in its
in-context component, which is expected to learn easier than Drnd. And as a result, the model is
expected to focus on learning P(vp|xp). As a result, we are expected the model to have a better
in-weights component in this setting. Knowledge transfering between Dfix and Drnd settings: The
knowledge of P(vp|xp) is shared between these two tasks. The only different between these two
tasks is P(eh|sc,m)P(m|sc).

Task settings and explored relations (Fig. 3) Based on the analysis, Fig. 3 demonstrates the
connections between the relations we wish to investigate (i.e., the relations between in-weight
components, in-context components, and in-context learning) and the training-test data settings. The
possible dependence between the in-weights and in-context components are caused by the possible
dependent between gweights(·) and gcontext(·) as stated Assumption 2.2. For testing in-context ability
during inference, we prefer the Drnd setting, referring to studies by Wei et al. (2023); Min et al.
(2022), which indicate that the label-shuffled case can more effectively discern in-context ability.

3 COMPARED WITH PREVIOUS SYNTHETIC TASKS

Table 1: Comparison with other papers that explore in-context learning using synthetic dataset.

Garg et al. (2022) Chan et al. (2022a) Ours
Synthetic task Simple functions Image data Image data

Sentence Semantic No No Yes
Perspective Algorithm implementing Data properties Representation

In-weights learning No Trade off with in-context learning Complex relations with in-context learning

There are two kinds of synthetic tasks are common used in the exploration of in-context learning:

• (ST1, simple functions) In this task, a simple function is sampled for each sentence (an
input sequence for the Transformer). Then, xi is generated by sampling from a specific
distribution, and yi is produced using the sampled simple function with xi as input.

• (ST2, image sequence) In this task, xi is a randomly sampled image from the image dataset,
and yi is generated using the original label values.

(ST1) is investigated in the works by Garg et al. (2022); von Oswald et al. (2022); Akyürek et al.
(2022). (ST2) is examined in the studies by Chan et al. (2022a); Kirsch et al. (2022); Chan et al.
(2022b). (ST1) researches in-context learning at a more abstract level, leading to the conclusion
that in-context learning implements algorithms, such as gradient descent (von Oswald et al., 2022).
However, their tasks are significantly distant from real applications because 1) The input token x
consists of numbers without any evident pattern or semantics, while most tokens in NLP tasks are
words with clear meanings. 2) The tangible forms of their results is hard to be found in practice. The
resolution of real NLP tasks is difficult to be expressed as straightforward, comprehensible algorithms,
such as gradient descent or ridge regression. In contrast, (ST2) is closer to real applications since
the image data used has semantic meaning. Thus, it is feasible to investigate how data properties
influence in-context learning (Chan et al., 2022a). Our synthetic task belongs to the (ST2) category.
The primary distinction between our synthetic task and the previous tasks in (ST2) is that ”sentence
semantics” are considered in our approach. In the following, we provide a detailed comparison
between our work and that of Chan et al. (2022a).
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𝐷fix ⇒ 𝐷rnd𝐷rnd ⇒ 𝐷rnd
A 𝐷rnd⋀fix ⇒ 𝐷rnd𝐷fix→rnd ⇒ 𝐷rnd

B C D

Figure 4: Performance on Drnd with different training settings. A: Drnd ⇒ Drnd only improve the
in-context component. B: Dfix ⇒ Drnd only improve the in-weights component. CD: An improved
in-weights component can speed up the learning process of the in-context component. The green
dashed line marks the point when switch from Dfix to Drnd

Comparison with Chan et al. (2022a) Regarding dataset setting: The primary difference in our
task setting compared to that of Chan et al. (2022a) lies in the consideration of ”sentence semantics.”
Specifically, if we remove hidden factors of the sequence, our constructed synthetic data would
degenerate to that of Chan et al. (2022a). The importance of considering ”Sentence Semantic” lies
in the following: 1) Understanding sentence semantics plays a crucial role in practical applications,
as evidenced by various studies (Zheng et al., 2021; Bowerman, 1976; Reimers & Gurevych, 2019).
2) Without sentence semantics, the function of in-context learning would degenerate into a simple
copy-paste mechanism, wherein the Transformer can predict the label of a query image by searching
for context images with the same label and then copying the label of the in-context image to the
prediction of the query image. Regarding the division of in-weights/in-context: At a high level,
the meanings of ”in-context” and ”in-weights” are consistent across our work and that of Chan et al.
(2022a). However, our paper advances further by: 1) Analyzing the complex relationship between
in-weights and in-context components from a representation perspective, leading to a more realistic
conclusion. Chan et al. (2022a) concludes that in-context learning and in-weights learning are in
a tradeoff relationship in their exploration, but large language models can exhibit both capacities
Brown et al. (2020), which is acknowledged by Chan et al. (2022a) in the discussion at the end of
their paper. 2) While Chan et al. (2022a) devises two tasks to evaluate in-context and in-weights
learning, our work leverages a task that requires both in-context and in-weights information to solve.
This setting is more closely aligned with practical applications, as real tasks often require both types
of information (Brown et al., 2020; Alayrac et al., 2022).

4 RESULTS

In this section, we present our experimental results. In Section 4.1, we examine the in-weights
component, in-context component and in-context learning performance score under different settings.
In Section 4.2, we give further analysis of the influence of in-weights component under different
settings. We give the detail experiments setup, including model structure, optimization configure,
training object in the Appendix.

4.1 SEPARATE INFLUENCE OF IN-CONTEXT AND IN-WEIGHTS COMPONENTS

Key Points Through experiments we observe that 1) regular training Drnd ⇒ Drnd will overlook the
learning of in-weights component 2) A high-quality in-weights component can assist in the learning
of the in-context component, and 3) Improving both the in-weights component and the in-context
component simultaneously is more effective.

To verify the effectiveness of task design, we first conduct experiments to explore the evolution of
representation learning when applying data settings Dfix and Drnd. We find that:

• The regular training set up Drnd ⇒ Drnd (the test and training data are from same
distribution) cannot improve the in-weights component. In Fig 4A, we observe the
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Figure 5: Enhance in-weights and in-context components by combining Dfix and Drnd. A: We
conduct Dfix→rnd ⇒ Drnd under different switching point. The curve with legend “2” means that we
switch from Dfix to Drnd at epoch 2. Curve with legend “rnd” is the baseline setting, i.e., Drnd ⇒ Drnd.
The dash lines mark the corresponding switching points. B: Enhancing the in-weights component can
facilitate the emergence of in-context learning ability in smaller models. The dashed line represents
the task setting Dfix∧rnd ⇒ Drnd, while the solid line corresponds to the setting Drnd ⇒ Drnd.

increase of in-context comp. score and in-context learning performance. The in-weights
comp. score stays below the initialized value.

• A signicant improvement of in-weights learning under Dfix ⇒ Drnd settings In Fig 4B,
we observe a gradually improvement of in-weights comp. score. However, no obvious
improvement of the in-context comp. score and in-context learning score can be observed.

We consider the setting Dfix→rnd ⇒ Drnd, where model is first trained on Dfix to improve the in-
weights component, and then we transfer to Drnd to enhance its in-context component. This approach
allows us to examine the impact of the in-weights component on in-context components. We make
the following observation:

• A better in-weights component can accelerate the learning of the in-context component.
In Fig. 4C (Dfix→rnd ⇒ Drnd), we notice a sudden increase in the in-context comp score
when switching from Dfix to Drnd. This result indicates that we can learn the in-context
component more quickly based on a representation with a better in-weights component.

We then further investigate the combined effect of in-weights and in-context components on in-context
learning by simultaneously improving the in-weights and in-context components using the task setting
Dfix∧rnd ⇒ Dfix. We find that:

• Learning in-weights component and in-context component simultaneously is more
effective than learning them separately. Compared to training on Dfix⇒rnd, the model
trained on Dfix∧rnd learns much faster( 4D (Dfix∧rnd ⇒ Drnd)). Additionally, Dfix∧rnd can
facilitate in-context learning in smaller models (see Fig. ??B).

4.2 INFLUENCE OF IN-WEIGHTS COMPONENT UNDER DIFFERENT SETTINGS

Key Points Through experiments we observe that 1) Small epochs trained on Dfix under Dfix→rnd ⇒
Drnd setting can significant improve the in-context learning. 2) Enhancing the in-weights component
(Dfix∧rnd) can facilitate the emergence of in-context learning ability in smaller models.

We consider the setting Dfix→rnd ⇒ Drnd, where model is first trained on Dfix to improve the in-
weights component, and then we transfer to Drnd to enhance its in-context component. This approach
allows us to examine the impact of the in-weights component on in-context components. We make
the following observation:

• More explorations on in-weights component We conduct Dfix→rnd ⇒ Drnd under different
switching point. The results are given in Fig. 4A. We find that even training on Dfix with
small epochs, the model can still benifit a lot.
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We then further investigate the combined effect of in-weights and in-context components on in-context
learning by simultaneously improving the in-weights and in-context components using the task setting
Dfix∧rnd ⇒ Dfix. We find that:

• Enhancing the in-weights component can facilitate the emergence of in-context learning
ability in smaller models. In Fig. 4, we observe that enhancing the in-weights component
by using Drnd∧fix settings, can facilitate the emergence of in-context learning ability in
smaller models. For base models, we observe significant improvements of the in-context
learning performance

5 FURTHER STUDIES OF THE IMPORTANCE OF IN-WEIGHTS COMPONENT

5.1 THEORETIC ANALYSIS

Key points We investigate the mechanism of in-context learning by construction. Our main result
is that the significance of the in-weights component, as demonstrated in the experiments, is further
validated by the fact that a simple Transformer can achieve potent in-context learning results based
on the assumption of a perfect in-weights component.

We consider the naive Transformer (Vaswani et al., 2017). The hidden representation of token
i in Transformer is denoted as hi ∈ Rd. The whole hidden state of the sequence is denoted as
H = [h1, · · · ,h2L]

T ∈ R2L×d. The hidden representation of l-th layer is denoted as H(l).
Definition 5.1. (Transformer) One layer of Transformer contains one attention layer and one MLP
layer. The calculation of Attention Layer is

Attn(l)(H(l)) = H(l) +

C∑
c=1

σ
(
H(l)W

(l,c)
Q (H(l)W

(l,c)
K )T

)
H(l)W

(l,c)
V W

(l,c)
O . (2)

And the calculation of MLP layer is

H(l+1) = Attn(l)(H(l)) + Relu(Attn(l)(H(l))W
(l)
1 )W

(l)
2 . (3)

Here we consider relaxed case where σ = Id .

Figure 6: The constructed Transformer can match
the performancce of best trained GPT2 (Dfix∧rnd
setting) in experiment part

The relaxion of Transformer is discussed by
many previous works. Press et al. (2019) dis-
cover using the Relu in feed forward layer
can acheiver comparable results in original one.
Wiegreffe & Pinter (2019); Brunner et al. (2019);
Richter & Wattenhofer (2020) point out that
softmax operation may not actually needed for
Transformer.
Definition 5.2. (Perfect in-weights component)
If feature h has a perfect in-weights component,
then for all factor e, exists We ∈ Rd×|Ve| such
that f (e)x1 · f (e)x2 = 1 only when v

(e)
x1 = v

(e)
x2 , else

we have f
(e)
x1 · f (e)x2 = 0, where f

(e)
x = Wehx.

Based on the perfect in-weights component assumption, we can construct a Transformer with
additional three layers to learn the in-context component and achieve comparable performance
compared with the best trained GPT2 model in previous experiments.
Proposition 5.3. We consider the data with ne factors and each factor has nv values in Drnd
setting. For causal Transformer with the number of heads larger or equal the number of fac-
tors with the hidden size O(nenv + L), if the Transformer can learn a perfect in-weights
component in layer k, then it can learn a feature given i in-context samples with in-context
comp. score srsi = (1 − srsi−1)si + srsi−1 and srs0 = s0 at layer k + 2, where si =

1−
∑i

j=0

(
i
j

)∑|E|
k=2

(|E|
k

)
k−1
k

(
(nv−1)i−j

ni
v

)k (
1− (nv−1)i−j

ni
v

)|E|−k

, and we can obtain in-context

learning score as clsi =
(nv−1)(ni−1

v −(nv−1)i−1)
ni
v

srsi at k + 3 layers.
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In-context learning can be readily achieved with a high-quality in-weights component Fig.
?? illustrates that the performance of the constructed simple Transformer can match the best-tuned
GPT2 model under the perfect in-weights component assumption. Given the limited capacity of the
three simple Transformer layers, it can be inferred that in-context learning can be easily achieved
when supported by a high-quality in-weights component.

5.2 BEYOND SYNTHETIC TASKS

Figure 7: Experiments on SST-ICL dataset. A: Example of dataset. The example label y is obtained
from v by map function m, i.e. y = m(v). The in-context examples is denoted as sc and the prompt
example is denoted as xp. B: The Transformer is trained to predict the label of prompt example yp
given sc, xp. C: Effect of in-weights component. We explore the Dfix→rnd ⇒ Drnd and Drnd ⇒ Drnd
settings. The dash line denote the time when we transit from Dfix to Drnd.

We conduct another NLP meta learning task to demonstrate that the relations discovered in our
synthetic task about in-weigts component, in-context component and in-context learning ability can
further extend to practice problem.

SST-ICL dataset The dataset is contructed based on SST (Socher et al., 2013) datasets. We remove
the long review in the datasets and transform the original labels into “Negative”, “Positive” and
“Neutral”. Then, we organize the reviews follow the same way as that in Subsection A.4. We produce
104 sequence for training and 4× 103 for testing. Each sequence contains 5 reviews. We illustrate
the example of the dataset in Fig. 9 AB.

Experiments results We follow the same training pipline as described in Section A. We compare
the results of Dfix→rnd ⇒ Drnd and Drnd ⇒ Drnd settings. We find that improve of in-weights
component (by training on Dfix) can also help the in-context learning in this setting.

6 CONCLUSION

This paper investigates the relationship between representation and in-context learning by decompos-
ing representation into in-weights and in-context components. Our experiments demonstrate that the
in-context component has a direct connection with in-context learning ability. Further investigation
shows that the in-weights component plays a crucial role in the learning of the in-context component.
These findings are further examined by constructing a simple Transformer that matches the perfor-
mance of the best-trained GPT2 model. In summary, this paper unveils the influence of representation
on in-context learning within the context of a synthetic dataset.
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A MORE DETAILS ABOUT EXPERIMENTS

A.1 DATASET DETAIL

3dshapes1 is a dataset of 3D shapes procedurally generated from 6 ground truth independent latent
factors. These factors are floor colour, wall colour, object colour, scale, shape and orientation.

All possible combinations of these latents are present exactly once, generating N = 480000 total
images.

Latent factor values floor hue: 10 values linearly spaced in [0, 1] wall hue: 10 values linearly spaced
in [0, 1] object hue: 10 values linearly spaced in [0, 1] scale: 8 values linearly spaced in [0, 1] shape:
4 values in [0, 1, 2, 3] orientation: 15 values linearly spaced in [-30, 30] We varied one latent at a time
(starting from orientation, then shape, etc), and sequentially stored the images in fixed order in the
images array. The corresponding values of the factors are stored in the same order in the labels array.

A.2 MODEL AND TRAINING CONFIGURE

In the proposed task, our objective is to investigate the properties of in-context learning. We utilize the
causal Transformer, in which each token can only attend to prior tokens. Specifically, we implement
the Transformer f as the GPT2 model, consisting of 12 layers, 4 attention heads, and an embedding
size of 128 in default. To simulate the auto-regression framework, we calculate the loss for the
sequence s = {(x1, y1), . . . , (xL, yL)} as:

L(θ, s) = 1

L

L∑
i=1

l(fw,s(i−1)(xi), yi), (4)

where s(j) ≜ {x1, y1, · · · ,xj , yj},l denotes the loss function. x will be tokenized by VAE before
being passed to Transformer. The training loss in the dataset S, which contains n sequence, is
calculated as the average of loss over all training sequences, i.e.,

L(θ, S) = 1

n

∑
s∈S

L(θ, s). (5)

In this study, we employ the Adam optimizer (Kingma & Ba, 2014) and mini-batch training to
optimize the loss function L(θ, S). Here, we use cross-entropy as the loss function. We utilize a
batch size of 128 and set the learning rate to 0.0001. For training purposes, we use 105 sequences
and, for evaluation, 4× 104 sequences. There is no overlap between images in the training sequences
and those in the evaluation sequences.

A.3 MORE DETAIL ABOUT PROBE FRAMEWORK

We employ metrics for numerical evaluation of components and in-context learning performance.
Since the components are hidded in the representation, we use the probe method (Alain & Bengio,
2016). The probe classifier has a single linear layer, with softmax and cross-entropy calculating the
loss. It is trained until converge. The in-weight probe predicts values of six factors of all images,
while the in-context probe identifies the hidden factor for each sequence. The details are as follows.

In-context comp. score (Fig. 8A) Given the dataset S, the in-context comp. score is calculated as
1
|S|

∑
s∈S 1êh,s=eh,s

, where 1expr is indicator function, s is the sequence in the dataset, eh,s is the
hidden factor for the sequence s, and êh,s is the prediction of probe classifier. We use | · | to denote
the corresponding size of a set.

in-weights comp. score (Fig. 8B) To remove the influence of in-context component, we disable
the attention layer in the Transformer. We disable the attention layers by replacing the attention
layers in the Transformer with identity maps, whose outputs are equal to their inputs. Then, the
in-weights comp score is calculated as 1

|S|
∑

s∈S
1

|s||E|
∑

(x,y)∈s

∑
e∈E 1v̂e

x=ve
x
, where vex is factor

value of factor e and sample x , v̂ek is the prediction of probe classifier, s = {(x1, y1), . . . , (xL, yL)}
is the sequence in the dataset S and E is the set of all factors.

1https://github.com/deepmind/3d-shapes
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Figure 8: Illustraction of calculation of in-context comp score(A), in-weights comp score(B) and
in-context learning score(C).

In-context learning score (Fig. 8C) Let ai and aj be the accuracies of the Transformer on the
i-th and j-th samples, respectively. Following Olsson et al. (2022), the in-context learning score is
calculated as ai − aj . According to Olsson et al. (2022), the choice of i, j on some reasonable range
won’t influence for the results. Here we choose i = 40, j = 1 by default. The reason is that under
this setting, we have ai = (ai − aj) + aj = (ai − a1) + a1. Because our task is unsolvable without
in-context example, a1 is a contant. In this case, the in-context learning score will have a same trend
as the accuracy at i.

Rationale to leverage hidden factor prediction as in-context probe task. To solve the task on
Drnd, we need to obtain two informations from in-context, that is the hidden factors and the mapping
between factor values and labels. Therefore, we can only choose the probe task for in-context
component from these two candidates. The mapping of the factor values and labels can not be
used as probe task because 1) the number all possible mapping is much larger than the size of
dataset, which means we cannot learn the probe classifier. 2) The information of mapping is not
neccessary stored in representation. Section 5.1 gives a solution of the model that no information of
mapping stored in representation. Hidden factors prediction is suitable for probe task because 1)
Hidden factor is the sequence level information that can only be learned from in-context example. 2)
It is neccesary for solving the tasks and its information is stored in representation (Section 4.1).

A.4 DATASET SPLIT

In-context training We first split all the the images in Shape3D into two part: the training image set
(80 %) and the test image set (20 %). Then, we organize all the training images into Sfix, Srnd, Sfix∧rnd,
corresponding to Dfix, Drnd, Dfix∧rnd settings. Sfix, Srnd, Sfix∧rnd Test image set are also organized into
S′

fix, S′
rnd, S

′
fix∧rnd. Each of Sfix, Srnd, and Sfix∧rnd contains 105 sequences. Each of S′

fix, S′
rnd, S

′
fix∧rnd

contains 4× 104 sequences.

Probe model training If we want to probe a model fw,sc(·) on setting Drnd (test setting), we
will first train the probe model on Srnd with fw,sc(·) and we evaluate the probe model on S′

rnd with
fw,sc(·). The same for Dfix and Dfix∧rnd settings.

B OTHER RELATED WORK

We discuss the most related work in the main part of paper. Here, we list other works that are weaker
related to us.

Analysis of Transformer The analysis of Transformers can be broken down into two main compo-
nents: examining the expressibility of Transformers and comprehending the mechanisms of learned
Transformers. To analyze the expressibility of Transformers, a common approach is to determine

13



Under review as a conference paper at ICLR 2024

if they can solve specific problems by constructing appropriate weights. Giannou et al. (2023)
demonstrates that Transformers can function as Turing machines, while Liu et al. (2022) shows
that they can learn shortcuts to solve automata problems. In addition to expressibility, researchers
have also investigated the mechanisms behind learned Transformers. Bietti et al. (2023) examines
Transformers from a memory standpoint, and Tian et al. (2023) focuses on single-layer Transformers.
While the analysis of Transformers is crucial to our work, our ultimate goal differs; we aim to bridge
the gap between representation learning and in-context learning.

Exploration of representation within Transformer. Owing to the widespread use of Transformers,
numerous studies (Li et al., 2022; Voita & Titov, 2020) seek to investigate their internal representations
as a means of comprehending their functionality. The most prevalent approach involves utilizing
probe models and tasks to discern the information stored within these representations (Voita & Titov,
2020; Schouten et al., 2022). Taking a different perspective, Voita et al. (2019) explores the flow
of information across Transformer layers and how this process is influenced by the selection of
learning objectives. Our work shares similarities with these studies in that we employ the probe
method to examine representations. However, our focus differs in that we do not concentrate on
the semantic meaning within the representation. Instead, we investigate how the in-weights and
in-context information impact representation.

C BRIDGE WITH PRACTICE

C.1 RELATED EVIDENCE OF PRACTICE WORK REGARDING IN-WEIGHTS AND IN-CONTEXT
COMPONENT

In this section, we provide evidence about that the in-context and in-weights components in practice
tasks.

Intuition 1: Influence of words replacing A key difference between the in-weights and in-context
components lies in the susceptibility of the in-weights component to word substitution. The in-
weights component can be easily disrupted if a word is replaced with a token that was not present
during the training phase, as the weights lack information about this new token. On the other hand, if
the context samples are rich in information, the meaning of this new token can still be deduced. This
mirrors the human ability to infer the meaning of an unknown word based on its context. If word
substitution leads to a decline in performance, it suggests that the Transformer’s prediction relies
heavily on the in-weights component.

Intuition 2:Influence of number of in-context examples The efficiency of the in-context com-
ponent is expected to rise with the inclusion of more context-specific examples, a characteristic
not shared by the in-weights components, which remain unaffected by the addition of in-context
examples. Therefore, if performance improves with the integration of more context-specific examples,
it would suggest that the Transformer’s prediction is heavily influenced by the in-context component.

Intuition 3: Zero-shot performance The zero-shot performance can directly indicate the effec-
tiveness of the in-weights component. This is because no in-context examples are provided in this
scenario, reducing the problem to a traditional supervised one

Based on the intuitions above, we collect the related experiments in practice paper.

1. Min et al. (2022) discovered that (1) performance can be improved by increasing the number of
in-context examples. (2) Changing the labels of in-context examples does not influence the predicted
label. The first discovery indicates that the prediction relies on the in-context components. The
second discovery suggests that the Transformer uses the in-weights component for label prediction,
given that there is no observed change when the labels of in-context examples are altered.

2. Brown et al. (2020) found that larger models are increasingly effective at utilizing in-context
information. This suggests that in real-world scenarios, the efficiency of the in-context component
improves with the enlargement of the model’s size. Brown et al. (2020) also found that enhancing
the model size can boost its zero-shot capabilities. These findings suggest that scaling the model
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can enhance both the in-weights and in-context components, and the model employs these two
components to address the problem.

3.Wei et al. (2023) carried out research on a two-class classification issue. They conducted exper-
iments in which they altered a certain percentage of labels in the context examples to ascertain
if the model’s prediction would also change. If a change was observed, it would imply that the
prediction relies on the in-context components. If no change was noticed, the prediction would be
considered to depend on the in-weights component. Their results were intermediate, suggesting that
both in-weights and in-context components contribute. Additionally, they found that enhancing the
model size increases the impact of in-context examples.

C.2 BEYOND SYNTHETIC TASKS

Figure 9: Experiments on SST-ICL dataset. A: Example of dataset. The example label y is obtained
from v by map function m, i.e. y = m(v). The in-context examples is denoted as sc and the prompt
example is denoted as xp. B: The Transformer is trained to predict the label of prompt example yp
given sc, xp. C: Effect of in-weights component. We explore the Dfix→rnd ⇒ Drnd and Drnd ⇒ Drnd
settings. The dash line denote the time when we transit from Dfix to Drnd.

We conduct another NLP meta learning task to demonstrate that the relations discovered in our
synthetic task about in-weigts component, in-context component and in-context learning ability can
further extend to practice problem.

SST-ICL dataset The dataset is contructed based on SST (Socher et al., 2013) datasets. We remove
the long review in the datasets and transform the original labels into “Negative”, “Positive” and
“Neutral”. Then, we organize the reviews follow the same way as that in Subsection A.4. We produce
104 sequence for training and 4× 103 for testing. Each sequence contains 5 reviews. We illustrate
the example of the dataset in Fig. 9 AB.

Experiments results We follow the same training pipline as described in Section A. We compare
the results of Dfix→rnd ⇒ Drnd and Drnd ⇒ Drnd settings. We find that improve of in-weights
component (by training on Dfix) can also help the in-context learning in this setting.

D PROOF OF PROPOSITION 2.1

Proposition D.1. Given yp, probability of P(yp|xp, sc) can be decomposite as:

P(yp|xp, sc) =
∑

vp,m,eh

P(yp|vp,m, eh)P(vp|xp)P(eh|sc,m)P(m|sc). (6)

Proof.

P(yp|xp, sc) =
∑

vp,m,eh

P(yp, vp,m, eh|xp, sc)

=
∑

vp,m,eh

P(yp|xp, sc, vp,m, eh)P(vp,m, eh|xp, sc, )

=
∑

vp,m,eh

P(yp|vp,m, eh)P(vp|xp, sc,m, eh)P(m, eh|xp, sc)

=
∑

vp,m,eh

P(yp|vp,m, eh)P(vp|xp)P(eh|sc,m)P(m|sc),

(7)
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where the first equation is due to the law of total probability, the third equation is leverages the
formular P(yp|xp, sc, vp,m, eh) = P(yp|vp,m, eh).

E PROOF OF PROPOSITION 5.3

Notation The position embedding is denoted as pi = (0, · · · 0, 1, 0, · · · ), where we only have value
1 at i-th position and 0 others. The weights for the attention operation of l-th layer and c-th head in
Transformer is denoted as W(l,c)

Q , W(l,c)
K and W

(l,c)
V . The weights of forward layer in Transformer

are denoted as Wl
1,W

l
2. We use E to denote the all of all possible values of the factor e. we denote

yi as the one hot version of y. The vector with all zero values are denoted as 0 ≜ (0, · · · , 0).
We rewrite the proposition here.
Proposition E.1. We consider the data with ne factors and each factor has nv values in Drnd
setting. For causal Transformer with the number of heads larger or equal the number of fac-
tors with the hidden size O(nenv + L), if the Transformer can learn a perfect in-weights
component in layer k, then it can learn a feature given i in-context samples with in-context
component score as srsi = (1 − srsi−1)si + srsi−1 and srs0 = s0 at layer k + 2, where

si = 1−
∑i

j=0

(
i
j

)∑|E|
k=2

(|E|
k

)
k−1
k

(
(v−1)i−j

vi

)k (
1− (v−1)i−j

vi

)|E|−k

, and we can obtain in-context

learning score as clsi =
(nv−1)(ni−1

v −(nv−1)i−1)
ni
v

srsi at k + 3 layers.

E.1 PROOF OF USEFUL LEMMA

Lemma E.2. One attention head can implement copy and past behavior.

Proof. According to the definition of pi, we have pi ·pj = 0 if i ̸= j, otherwise, we have pi ·pj = 1.
We denote

M =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

Then we have piM = pi−1. For j > i, we denote the value of 2j-th token as h2j = (0,0,0,0,0,pj)
and 2i-th token as h2i = (h′

i,0,0,0,0,pi). If we want to copy the value of 2i-th token to the value
of 2j-th token, we can set the query matrix as WQ = (0,0,0,0,0,Mj−i), the key matrix as
WK = (0,0,0,0, I) and value matrix as WV = (W′

V ,0,0,0,0,0). Then we have

hT
j WQ · hT

aWK = pi · pa =

{
1 a ̸= j
0 a = j

(8)

Therefore, the j-th token can only attend to i-th token. Then we have the value of hj after attention
as hattn

j = ((h′
i)

TWV ,0,0,0,0,pj). By setting WV as different value, we can copy different part
information of i-th to j-th token. Then the lemma is held.

Lemma E.3. For the input h = (hT
1 ,h

T
2 ,h

T
3 )

T, where hi ∈ Rdi and d1 + d2 + d3 = d, for all
MLPs(h) = W′

2 Relu(W
′
1h2) : Rd2 → Rd2 , there exists MLP (h) = W2 Relu(W1h) : Rd →

Rd, such that MLP (h) = (h1,MLPs(h2),h3).

Proof. Obviously, for any W′
1, there exists W1, such that h(1) ≜ hW1 =

(hT
1 ,−hT

1 , (W
′
1h2)

T,hT
3 ,−hT

3 ).

Obviously, for any W′
2, There exists W2, such that h(2) = W2 Relu(h

(1)) = ((Relu(h1) +
Relu(−h1))

T, (W′
2 Relu(W

′
1))

T, (Relu(h3) + Relu(−h3))
T) = (hT

1 ,MLPs(h2)
T,hT

3 )
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E.2 CONSTRUCTION OF TRANSFORMER

Without loss of generality, we assume the representation of Transformer in layer k is in a form that
h
(k)
2i−1 = (fi,0,0,0,0,0,0,pi)

T and h
(k)
2i = (0,yi,0,0,0,0,0,pi)

T (Remind that one sample
will takes two token, one for x and one for y). Because the representation usually lays in low
dimension space, a simple linear layer can transfer the representation in our defined sparse form.
What’s more, it is nature to assume that the position information is stored in the representation, since
it is given in the input and it is essential for attention.

Proof Sketch The constuction of weights can be divided into two steps: 1. Estimate the factor
in this sequence.According to the perfect in-weights component assumption, we can project the
token feature into the space f (e). The factor is chosed by find e such that (f (e)i )Tf

(e)
j can match

yT
i yj . (Layer 1) 2. Estimate y. Based on the discovered factor in previous step, we 1) block the

unrelated representation information (Layer 2) and 2) obtain the logit of new sample by comparing
the similarity between the unblocked feature of this sample and the in-context sample. (Layer 3).

The consider the operations of Transformer in different layers.

1) ** Layer 1 **

Because we assume that h(k)
2i−1 is a perfect token representation, then there exists We, such that

h
(k)
2i−1We = fek , where f

(e)
i satisfies that ∀e, i, we have f

(e)
j · f (e)i = 1 only when v

(e)
i = v

(e)
j else

f
(e)
j · f (e)i = 0.

Step 1, we use each attention head to obtain the matching information of each factor.

We first consider the query token at the position 2i− 1 And we assign W
(l,k)
Q = W

(l,k)
K = Wek and

W
(l,k)
V = (0,0,0,0,0,0,0, I)T so that (h(l)

i )TW
(l,k)
V = pi.

bek =

2i−2∑
a=1

(hT
i W

(l,k)
Q · hT

aW
(l,k)
K )hT

i W
(l,k)
V =

i−1∑
a=1

pa1(v
ek
a = veki ) (9)

We denote base = (20, 21, · · · , 2L)T and u2i−1 = ({base · be1 , · · · , base · bene
}. Obvious, there is

W
(l,k)
O such that

∑ne

k=1 bekW
(l,k)
O = (0,0,u2i−1,0,0,0,0,0).

Then, we consider the token at position 2i as query token. We assign W
(l,ne+1)
Q = W

(l,ne+1)
K =

(0, I,0,0,0,0,0,0)T and W
(l,ne+1)
V = (0,0,0,0,0,0,0, I)T.

by =

2i−1∑
a=1

(hT
i W

(l,ne+1)
Q · hT

aW
(l,ne+1)
K )hT

i W
(l,ne+1)
V =

i−1∑
a=1

pa1(ya = yi) (10)

Obvious, there is WO such that byW
(l,ne+1)
O = (0,0,0,u2i,0,0,0,0,0), where u2i =

{base ·by, · · · ,base ·by}. Note that base · bek has the property that base · bek = base · bek′ if
and only if all the context samples that have same factor value of factor ek with the sample i also
has the same factor value of factor ek′ as sample i. Therefore, we denote u as the matching
information.

After the operation, we have h2i−1 = (fi,0,u2i−1,0,0,0,0,pi) and h2i =
(0,yi,0,u2i,0,0,0,pi)

Step 2: compare the u2i−1 and u2i to infer possible hidden factor.

For embedding of h2i, using the copy past of Lemma E.2, we can obtain h2i =
(0,yi,0,u2i,u2i−1,0,0,pi). (By setting the copy position as pi and therefore the operation will
only influence y token.) According to Lemma E.3, there exists W

(l)
1 ,W

(l)
2 , such that we have

h2i = (0,yi,0,u2i,u2i−1,m2i,0,pi), where m2i = Relu(u2i − u2i−1) + Relu(u2i−1 − u2i).
Recall that h2i−1 = (fi,0,u2i−1,0,0,0,0,pi). because all the corresponding terms of h2i−1 are 0,
this operation won’t impact the value of it.
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The k-th position in m2i is equal to 0 if the values of k-th position of u2i−1 and u2i are equal.

After this operation, we have h2i = (0,yi,0,u2i,u2i−1,m2i,0,pi) and h2i−1 =
(fi,0,u2i−1,0,0,0,0,pi)

2) ** Layer 2 **

Blocking the information according to m.

First attention head: for y token, at position 2i, we apply Lemma E.2 to copy m2i−2

from h2i−2 to h2i. Due to the weights sharing of attention, this yield a iterative effects.
We denote m′

2i−1 = 2m′
2i−3 + m2i−2 and m′

2i = m2i−1 + m2i. Therefore, we have
h2i = (0,yi,0,u2i,u2i−1,m

′
2i,0,pi). Because of weights sharing, we have h2i−1 =

(fi,0,u2i−1,0,0,m
′
2i−1,0,pi) .

Second attention head: In this layer, for y token, at position 2i, we apply Lemma E.2 to copy fi
from h2i−1 (This operation only affects y tokens). We have h2i = (fi,yi,0,u2i,u2i−1,m

′
2i,0,pi).

MLP Layer: We denote f ′i,x ≜ (f
(ej)
i −Mm′

2i−1[1], · · · , f
(ej)
i −Mm′

2i−1[ne]) and f ′i,y ≜ (f
(ej)
i −

Mm′
2i[1], · · · , f

(ej)
i −Mm′

2i[ne]). M is a large constant value. In f ′i,x, we will block the information
of j-th factor if m′

2i−1[j] > 0. m′
2i−1[j] < 0 if and only if ∀ k < i, m2k[j] = 0. The same for f ′i,y

In MLP, we calculate Relu(hT
2i−1W

(l+2)
1 )W

(l+2)
1 = (fi, f

′
i)W

(l+2)
1 = (f ′i − fi,0,0,0,0,0,0,0).

Then, we have h2i−1 = Relu(hT
2i−1W

(l+2)
1 )W

(l+2)
1 + h2i−1 = (f ′i,x,0,u2i−1,0,m

′
2i−1,0,0,pi).

And similar, we have h2i = (f ′i,y,yi,0,u2i,u2i−1,m
′
2i,0,pi).

3) ** Layer 3 **

This layer obtain the logit of new sample by comparing the similarity between the unblocked feature
of this sample and the in-context sample.

Setting W
(l+3,1)
Q = W

(l+3,1)
K = (I,0,0,0,0,0,0,0), we have hT

i W
(l+3,1)
Q = hT

i W
(l+3,1)
K = f ′i .

Setting W
(l+3,1)
V = (0, I,0,0,0,0,0,0) such that hT

2iW
(l+3,1)
V = yi and hT

2i−1W
(l+3,1)
V = 0.

For position 2i− 1, we have

Logit =
2i−2∑
a=1

(hT
i W

(l+3,1)
Q · hT

aW
(l+3,1)
K )hT

i W
(l+3,1)
V =

i−1∑
a=1

(f ′i,x · f ′a,y)y′
a. (11)

Note that value f ′i,x · f ′a,y is equal to the number of unblocked factors (both unbloked) that have

same value between a-th sample and i-th sample Obviously, there is a W
(l+3,1)
O such that h2i−1 =

(f ′i,x,0,u2i−1,0,0,0,m
′
2i−1,Logit,pi).

Finally, we output Logit using the prediction head.

E.3 PERFORMANCE ANALYSIS

Here, we will analyze the sequence representation score and the in-context learning accuracy of our
constructed model.

1) **In-context comp. score**

Propability for same factor value between in-context examples and prompt sample The
probability for a in-context example having same value of a factor as prompt sample is 1

nv
and the

probability of having different values is nv−1
nv

. Therefore, given i samples, the probability for j

samples have a same value of a factor as prompt sample is
(
i
j

) (nv−1)i−j

ni
v

.

Probability for connot distinguish factors Given i in-context examples, we cannot distinguish
k factors to decide which one is the hidden factor if the k factors satisfying that of ∀ e1, e2 ∈
Ek, (x, y) ∈ sc, we have v(e1)x = v

(e2)
p ⇔ v

(e2)
x = v

(e2)
p , where Ek is the set of these k factors, sc is

in-context examples, and v is factor value.
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Given i in-context examples, the probability for we cannot distinguish k factors is(|E|
k

) i∑
j=0

(
i
j

)( (nv − 1)i−j

ni
v

)k (
1− (nv − 1)i−j

ni
v

)|E|−k

. (12)

In-context comp. score When we cannot distinguish the hidden factor from k factors, the probabil-
ity to predict wrong results is k−1

k . Combining the results above, we obtain the error that

|E|∑
k=2

(|E|
k

) i∑
j=0

(
i
j

)k − 1

k

(
(nv − 1)i−j

ni
v

)k (
1− (nv − 1)i−j

ni
v

)|E|−k

. (13)

The probability to give a right prediction is

si = 1−
i∑

j=0

(
i
j

) |E|∑
k=2

(|E|
k

)k − 1

k

(
(v − 1)i−j

vi

)k (
1− (v − 1)i−j

vi

)|E|−k

. (14)

In the constructed Transformer, we will autogressively combining the results of the previous prediction
(Corresponding to Layer 2), we have:

srsi = (1− srsi−1)si + srsi−1,

where srs0 = s0.

2) **In-context learning score**

The copy-past mechanism is used to predict the answer of the prompt example (Corresponding to
layer 3). For the copy-past mechanism, have a in-context example with same prediction result as
the prompt example is neccesary. When we correct predict the hidden factor, the probility to predict
correctly is 1− (nv−1

nv
)i. When we predict a wrong hidden factor, the probility is 1

nv
. Combine the

two above, we obtain the accuracy

(1− (
nv − 1

nv
)i) srsi +

1

nv
(1− srsi).

Because when no in-context example is given, the accuracy is 1
v . Therefore we obtain the in-context

learning score

clsi =
(nv − 1)(ni−1

v − (nv − 1)i−1)

ni
v

srsi .

E.4 CONTRIBUTION OF THE PROOF

Comparison with previous work in analyzing the in-context learning mechanism The key
contribution of our analysis is to analyze how the in-context learning learn the ”sentence semantic”,i.e.
hidden factor, from in-context samples. Previous works investigate the mechanism of in-context
learning mainly focus on the pair-wise relation between the query tokens and in-context tokens, and
they (Olsson et al., 2022) reveals that copy-past is a important mechanism for in-context learning. In
this paper, we want to analyze how Transformer learn the ”Sentence Semantic”. In our construction,
we find that model may rely on the comparison of information within ”Sentence” (i.e., pattern
matching).

F EXTRA EXPERIMENTS RESULT

In this section, we give some extra experiments results as complementary to the results listed in main
text.

More explorations on in-weights component We conduct Dfix→rnd ⇒ Drnd under different
switching point. The results are given in Fig. 10A. We find that even training on Dfix with small
epochs, the model can still benifit a lot.
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Figure 10: A: We conduct Dfix→rnd ⇒ Drnd under different switching point. The curve with legend
“2” means that we switch from Dfix to Drnd at epoch 2. Curve with legend “rnd” is the baseline
setting, i.e., Drnd ⇒ Drnd. The dash lines mark the corresponding switching points. B: The in-
weights and in-context score when we probe at different layers. We choose the Dfix∧rnd ⇒ Drnd
settings. The dashlines marked the chosen layers in the experiments. C: Comparison between the
LSTM (Hochreiter & Schmidhuber, 1997) and Transformer.

Abalation study on the probe layers We give the ablation study on different probe layers. We
choose the setting Drnd∧fix ⇒ Drnd and the model trained at 50 epoch. The choose of setting is
arbitrary. The in-weights and in-context comp. score has similar trend across layers for same model
trained on different task settings and different epoch (except extremely close to initialization). The
results are displayed in Fig. 10B.

Compared between Transformer and LSTM. In Section 4, our primary focus is on discussing
the results of the Transformer. In this section, we aim to compare the in-context learning abilities of
the Transformer and LSTM models. The LSTM model consists of 6 layers, while the Transformer
has 4 heads, 6 layers. We examine the scenario where Dfix → Dfix. Unfortunately, we are unable to
train the LSTM model for all other cases. During the comparison, we employ a larger hidden size for
the LSTM model, as it tends to fail when using a smaller hidden size. The results are displayed in Fig.
10C. We find that 1)LSTM is much harder for obtain in-context learning compared with Transformer.
2) LSTM has potential to obtain better in-context learning ability.
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