
Under review as a conference paper at ICLR 2024

GO BEYOND END-TO-END TRAINING: BOOSTING
GREEDY LOCAL LEARNING WITH CONTEXT SUPPLY

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional end-to-end (E2E) training of deep networks necessitates storing inter-
mediate activations for back-propagation, resulting in a large memory footprint
on GPUs and restricted model parallelization. As an alternative, greedy local
learning partitions the network into gradient-isolated modules and trains super-
visely based on local preliminary losses, thereby providing asynchronous and par-
allel training methods that substantially reduce memory cost. However, empirical
experiments reveal that as the number of segmentations of the gradient-isolated
module increases, the performance of the local learning scheme degrades sub-
stantially, severely limiting its expansibility. To avoid this issue, we theoretically
analyze the greedy local learning from the standpoint of information theory and
propose a ContSup scheme, which incorporates context supply between isolated
modules to compensate for information loss. Experiments on benchmark datasets
(i.e. CIFAR, SVHN, STL-10) achieve SOTA results and indicate that our pro-
posed method can significantly improve the performance of greedy local learning
with minimal memory and computational overhead, allowing for the boost of the
number of isolated modules.

1 INTRODUCTION

End-to-end (E2E) back-propagation, a standard training paradigm for deep neural networks, en-
ables deep neural networks to solve complex tasks and cognitive applications with great success
(Szegedy et al., 2015; He et al., 2016; Huang et al., 2016). As shown in Figure 1a, an E2E training
loss is calculated at the final layer, and the error is propagated backward layer-by-layer for weights
update. In this case, the E2E is caught in the well-known backward-locking problem (Jaderberg
et al., 2017; Frenkel et al., 2021; Duan & Principe, 2022), which prohibits module updates until all
dependent modules have completed forward and backward passes, and restricts the network from
performing training in a sequential manner (Jaderberg et al., 2017). During the forward pass, inter-
mediate tensors and operations required for weights update must be preserved, resulting in a high
memory cost and frequent memory access (Mostafa et al., 2018). In general, memory constraints
impede the training of state-of-the-art DNNs with high-resolution inputs and large batch sizes, and
the strong inter-layer backward dependency prevents training parallelization, thereby delaying the
training process (Chen et al., 2016; Gomez et al., 2017).

As an alternative to E2E training, numerous local learning paradigms have been proposed to opti-
mize gradient computations and weight updates by cutting off the feedback path for greater memory
efficiency and model parallelization (Hinton et al., 2006; Bengio et al., 2006; Akrout et al., 2019;
Meulemans et al., 2020; Belilovsky et al., 2020; Duan & Principe, 2022). A representative example
is the greedy local learning (GLL) method (Löwe et al., 2019), which partitions a deep neural net-
work into multiple gradient-isolated modules and trains them independently under local supervision
(see Figure 1b). Since back-propagation occurs only within local modules, it is unnecessary to store
all intermediate activations simultaneously. In addition, it is feasible to train local modules in par-
allel since error signals from subsequent layers are no longer required (Chen et al., 2016; Mostafa
et al., 2018; Huo et al., 2018; Belilovsky et al., 2020). This approach is also considered more biolog-
ically plausible due to the fact that biological systems are highly modular and primarily learn from
local signals (Crick, 1989; Dan & Poo, 2004; Bengio et al., 2016); and parallel pathways frequently
perform distinct but somewhat overlapping computations(Patel et al., 2023). However, in contrast
to E2E training, GLL suffers from a performance drop issue (Mostafa et al., 2018; Belilovsky et al.,

1

Under review as a conference paper at ICLR 2024

Figure 1: Dataflow in training schemes. (a) The standard paradigm that back-propagates errors
end-to-end in reverse. (b) Greedy learning occurred with local-defined objectives. (c) ContSup
provides the context path in addition to feature paths, and consists of two portions with element-
wise addition to preserve the same shapes of features and computations within modules.

2019; Wang et al., 2021; Duan & Principe, 2022), and an increase in the number of segments corre-
lates directly with a large performance decline (Wang et al., 2021; Guo et al., 2023).

Theoretical support for the design and optimization of GLL can be derived from an information-
theory-based analysis (Ma et al., 2019; Wang et al., 2021; Du et al., 2021). It is discovered through
empirical experiments that local modules tend to generate more discriminative intermediate fea-
tures at earlier network layers, resulting in task-relevant information decreasing with network depth
(Wang et al., 2021; Guo et al., 2023). In order words, the short-sighted GLL tends to learn interme-
diate features that only benefit prior local objectives, disregarding the requirements of the remaining
layers (Wang et al., 2021; Du et al., 2021). By introducing the additional objective of maximizing
the entropy of intermediate features, the short-sight problem can be improved (Wang et al., 2021;
Zhang et al., 2022; Ma et al., 2019); however, this method of constructing constraints frequently
requires good priors and careful adjustments, which is highly constructive. Moreover, since the
phenomenon of information loss is irreversible, the upper bound of the potency of the intermediate
features decreases with depth, which limits the behaviors of the deep modules to the incomplete
supply of the early modules and cannot be recovered by well-designed local objectives.

Based on the above observations, we proceed with the theoretical analysis of GLL and postulate that
irreversible information loss is the crucial bottleneck restricting the overall network performance.
Then, we intuitively propose the Context Supply (ContSup) scheme (Figure 1c) to supplement the
context for the intermediate feature allowing it to access a portion of the lost information and subse-
quently escape the dilemma. Empirical experiments show that the proposed ContSup can effectively
compensate for the information loss of intermediate features while maintaining a high level of per-
formance with a large number of isolated modules, and yields state-of-the-art GLL results on three
benchmarks (i.e. CIFAR-10(Krizhevsky, 2009), SVHN(Netzer et al., 2011) and STL-10(Coates
et al., 2011)).

2 THEORETICAL ANALYSIS OF GREEDY LOCAL LEARNING

In this section, we take insights from information theory to present a theoretical framework for
greedy local learning, showing that the irreversible loss of task-relevant mutual information is a bot-
tleneck of the final decision. We also analyze the benefits and drawbacks of the current mainstream
ideas for optimizing GLL based on defining a local reconstruction objective and lay the theoretical
foundation for our further optimization.

2

Under review as a conference paper at ICLR 2024

2.1 PRELIMINARY
Algorithm 1: Greedy Local Learning.
Input: Number of gradient-isolated

modules L; Datasets D;
Epochs T ; Batch size B.

1 Initialize Paramters {θl, wl}l≤L ;
2 for t = 1 to T do
3 Sample a mini-batch {hb

0, y
b}b≤B

over D ;
4 for l = 1 to L do
5 hb

l ← F l
θl
(hb

l−1) ;
6 ŷbl ← Al

wl
(hb

l) ;
7 (θl, wl)← Update by

∇θl,wl
L̂(ŷbl , yb; θl, wl) ;

8 end
9 end

The greedy local learning (GLL) method is proposed
to divide a deep network into several gradient-isolated
modules and trains them separately under local ob-
jectives (Algorithm 1). A series of F l modules with
main parameters θl forms a feedforward network with
L-partitioned gradient-isolated modules, in which the
network’s primary parameters wl are trained locally
alongside a local auxiliary moduleAl. The predictive
feature, ŷl, is obtained by the local auxiliary module
to evaluate the performance of the local classification
task with the objective function L̂. Consistently, we
denote the network’s final result as ŷL, which is the
output of the final Lth module via its implicit auxil-
iary module AL (which is considered within the en-
tire network). The final objective L̂(ŷL, y) is then de-
livered in the same manner as E2E training.

2.2 NAÏVE GREEDY LOCAL LEARNING SUFFERS A DILEMMA CALLED CONFIRMED HABITS

We first clarify that the performance discrepancy between GLL and E2E schemes is the result of
a confirmed habit dilemma in feature transfer, which we attribute to an information bottleneck in
GLL’s working mechanism.

Notation of mutual information about features. We focus on the information captured by the
intermediate feature hl, and let I(hl, y) denote the amount of task-relevant information in hl. Mean-
while, the task-irrelevant information in the input data x can be formed by introducing the concept
of nuisance r (Achille & Soatto, 2018), such that the Markov chain stands as (y, r)→ x→ h (more
details in Appendix A).

The trend of information loss is conclusive and irreversible. From the perspective of informa-
tion theory, it is clear to deduce that the serial inference of isolated modules gradually reduces the
information entropy, and the amount of task-related information it contains will inevitably diminish
(decreasing potency); moreover, since the local objective of auxiliary modules is defined in terms of
the prediction target ŷl, it cannot act directly on the mutual information I(hl, y) of the intermediate
features, resulting in the loss of task-related information (local short-sight); we restate those two
conclusions in Theorem 1 (full proof in Appendix B).

Theorem 1. The feedforward process of isolated modules forms the Markov chain (y, r) → x →
...→ hl−1 → hl → ŷl in Greedy Local Learning. Then the decreasing trend of mutual information
is given by:

I (x, y) ≥ I (hl−1, y) ≥ I (hl, y) ≥ I (ŷl, y) (1)

which can be further divided into two clear insights:
1.1 Decreasing potency. The upper bound of task-related information is decreasing over isolated
modules:

I (x, y) ≥ I (hl−1, y) ≥ I (hl, y) (2)

1.2 Local short-sight. The local prediction always lags the task-related information of features:

I (hl, y) ≥ I (ŷl, y) (3)

Experiments indicate that I(hl, y) will decrease substantially during the greedy module process,
whereas it will remain essentially unchanged during the E2E process (Wang et al., 2021; Du et al.,
2021). Therefore, the loss of task-related information will accumulate in the cascade (Equation 2),
resulting in a gradual decline in the final performance potential of the network. The final prediction
result I(ŷL, y) is fundamentally constrained by the sustained irreversible loss on I(hl, y), falling
into the confirmed habit dilemma (see Figure 2a).

Local learning depends on the progressive relay. From a different angle, GLL can be viewed as
the integrated learning of a series of classifiers, making the incremental improvement in its perfor-

3

Under review as a conference paper at ICLR 2024

Figure 2: An information-theoretic perspective in GLL. (a) illustrates information trends via net-
work depth, showing the monotonically decreasing of I(hl, y) and general upward trend of I(ŷl, y),
where the final performance is obtained by progressive improvement. (b) shows that local recon-
struction efforts to alleviate the short-sight issue are impeded by the confirmed habit. (c) illustrates
the function of context that enables a local module to surpass its obstruction.

mance more intuitive. Under mild conditions, the series of classifiers improve the training error at
each module as shown below (full proof in Appendix B):

Theorem 2 (Progressive improvement). Assume that F l
θl

can be potentially equivalent as an
identity mapping as F l

θl
(hl−1) = hl−1, then there exists θ̂l such that:

L̂l (ŷl, y; θl, wl) ≤ L̂l

(
ŷl, y; θ̂l, wl−1

)
= L̂l−1 (ŷl−1, y; θl−1, wl−1) (4)

Once the local loss L̂l is defined on task-relevant mutual information, we obtain:

I (ŷl−1, y) ≤ I (ŷl, y) (5)

In practice, a technical requirement for the actual optimization procedure is not to generate an objec-
tive that is inferior to the initialization, which can be met by selecting the optimal solution along the
optimization trajectory. Stacking solitary models can therefore facilitate the output of the auxiliary
module and incrementally enhance the mutual information of yl (Equation 5).

Dilemma of confirmed habits. Based on the preceding discussion, we can determine the trend of
task-related information in GLL (Figure 2a), and incorporate the presented propositions together:

Theorem 3. Combined with Equation 1-5, the final performance of the overall network relies on
task-relevant information I(ŷL, y), which is:

• Developed by accumulating efforts from series local learning:

I(ŷl−1, y) ≤ I(ŷl, y) ≤ ... ≤ I(ŷL, y) (6)

• Bounded by continuous hurt from series local learning [confirmed habits]:

I(x, y) ≥ I(hl−1, y) ≥ I(hl, y) ≥ I(hL, y) ≥ I(ŷL, y) (7)

Theorem 3 shows a dilemma of GLL that when the network depth increases, even if we can find
a careful step for progressive improvement (Equation 6), our potency (theoretical upper bound of
performance) is irreparably damaged, trapping us in the dilemma of confirmed habits (Equation 7).
That is, the more gradient-isolated modules a network is divided into, the more it will be affected
by the confirmed habit. Therefore, in order to obtain a high level of efficacy, the experiment must
ensure that L is as small as possible, which severely restricts the scalability of the GLL method.

2.3 THE LOCAL RECONSTRUCTION EASES SHORT-SIGHT BUT STILL IN CONFIRMED HABITS.

Several works propose assuring the original input’s information (I(h, x)) as part of the learning
objective to prevent information loss caused by excessive local optimization (Ma et al., 2019; Wang
et al., 2021; Zhang et al., 2022), which is typically implemented by reconstructing from features

4

Under review as a conference paper at ICLR 2024

to input. Since I(h, x) cannot be directly calculated, pursuing the local maximization of I(h, x)
is equivalent to the reconstruction task for the original image, i.e., by simultaneously training an
auxiliary decoder from h to x. Those reconstruction methods have been shown to be effective by
empirical experiments (Wang et al., 2021) and are regarded as a solution to the local short-sight
problem (Figure 2b); therefore, analyzing their working mechanism can assist us in better dissecting
and comprehending the GLL method. A plausible explanation is that reconstruction methods build
auto-encoders to facilitate the extraction of essential features. Notably, beginning with information
theory, we can determine that during deterministic feature transmission, I(h, x) is equivalent to
information entropy H(h). The optimization of I(h, x) is therefore identical to maximizing the
decreasing upper bound of local information entropy:

Lemma 4 (Entropy Bound). Since the Markov chain x → ... → hl−1 → hl is the deterministic
procedure in the network forward, the input-related information is bounded by:

H(x) ≥ H (hl−1) = I (hl−1, x) ≥ H (hl) = I (hl, x) = I (hl, hl−1) (8)

Lemma 4 shows that increasing I(hl, x) by defining the reconstruction target of hl is identical to
increasing the information entropy H(hl), whose upper bound is given by the information entropy
H(hl−1) of the previous module hl−1. Therefore, constructing a decoder from hl to hl−1 is suffi-
cient to satisfy the requirement of increasing information entropy in practice, and theoretically works
the same as a decoder for origin input x, as confirmed in a comparable scheme for performance and
memory optimization (Zhang et al., 2022).

Clearly, methods of maximizing information entropy can reduce information loss, which simulta-
neously reduces loss of nuisance I(h, r) and task-relevant information I(h, y) (details in Appendix
B); thus, we conclude their success in optimizing short-sight and indicate they are still constrained
by the upper bound I(hl, y) ≤ I(hl−1, y) (Equation 7), resulting in a decline in overall performance
when the number of isolated-partitions is high and being trapped in confirmed habits that restricted
by previously lost information.

3 CONTEXT SUPPLY GIVES CHANCE TO ESCAPE THE DILEMMA

When a new gradient-isolated module needs to be layered on top of the existing network structure
and task-related information in superficial layers has been lost, the confirmed habit dilemma cannot
be avoided, i.e., with the irreversible loss in the intermediate feature hl, the information supremum
of extracted hl+1 has been tightly framed:

I (ŷl+1, y) ≤ sup {I (ŷl+1, y)} = I (hl+1, y) ≤ sup {I (hl+1, y)} = I (hl, y) (9)

Algorithm 2: GLL with ContSup.
1 Initialize Parameters
{θl, wl, ϕl}l≤L;

2 for t = 1 to T do
3 Sample a mini-batch {h0, y}B

over D ;
4 for l = 1 to L do
5 cl ← context selection;
6 hc

l−1 ← hl−1 +Ml
ϕl
(cl) ;

7 hl ← F l
θl
(hc

l−1) ;
8 ŷl ← Al

wl
(hl) ;

9 (θl, wl, ϕl)← Update by
∇θl,wl

L̂(ŷl, y; θl, wl, ϕl) ;
10 end
11 end

If we continue to increase the number of greedy modules
on top of this, the maximum theoretical result cannot sur-
pass I(hl, y), and the loss of information may even be
worsened by the short-sighted objective. In the case of a
large number of network segments, the serial structure of
GLL imposes significant limitations, as the task-relevant
information is directly reduced, preventing cascading on a
large scale and limiting the method’s generality and scala-
bility. On this basis, we propose the ContSup structure to
incorporate an additional information path in an attempt
to supplement the lost information by context, aimed to
escape the discussed dilemma (Figure 2c).

Context supply to intermediate features. Assuming we
have context cl with I(cl, y) ≥ I(hl−1, y), to compen-
sate for the lost task information, we hope to obtain in-
tegrated feature hc

l−1 = hl−1 +Ml(cl), such that there
exists proper F l andMl for:

sup{I (hl, y)} = I
(
hc
l−1, y

)
≥ I (hl−1, y) (10)

following the trend in Figure 2c. For simplicity, we utilize element-wise addition to incorpo-
rate context and feature without changing the shape size of hl and the configuration of F l, i.e.,

5

Under review as a conference paper at ICLR 2024

hl = F l(hc
l−1) = F l(hl−1 +Ml(cl)), so the context-supply under this definition can be readily

transferred to the existing GLL framework.

Concise priors to ascend supremum. There are currently two simple and intuitive options available
for locating a suitable context to boost lth module after (l − 1)th module:

1. Introduce the origin input x directly to supplement task-relevant information. Let cl = x,
and

hl = F l(hc
l−1) = F l

(
hl−1 +Ml

E(x)
)

(11)

whereMl
E works as a local encoder to compress input x into the same size as hl. Then, its supreme

is extended into:
I(hl, y) ≤ sup

{
I(hl, y)

}
= I(hc

l−1, y) ≤ I(x, y) (12)

2. Introduce a shortcut connection between the adjacent hidden feature, i.e., let cl = hc
l−2 to

supplement the task-relevant information that may be lost when hc
l−2 → hl−1, and

hl = F l(hc
l−1) = F l(hl−1 +Ml

R1
(hc

l−2)) (13)

which is similar to shortcut connections across modules, whereMl
R1

is used to align feature shapes.
In this case, the supreme is then:

I(hl, y) ≤ sup
{
I (hl, y)

}
= I

(
hc
l−1, y

)
≤ I

(
hc
l−2, y

)
(14)

Clearly, both context designs go beyond the cascaded Markov-process hl−2 → hl−1 → hl; con-
sequently, the assumption of theorems (Equation 1) is refuted in this instance, so that I(hl, y) ≥
I(hl−1, y) may hold in some cases, allowing the opportunity to flee the confirmed habits dilemma.

Table 1: Comparison of GLL with different
context modes. The experiment is evaluated
on CIFAR-10 with 16-partitioned ResNet-
32 (see Appendix C for details). ”base”
refers to GLL without context.

base E R1 R1E

Test Error 16.21% 10.32% 15.30% 10.14%

Empirical experiments show that the above two pri-
ors can simply and effectively protect against the loss
of I(hl, y) during transmission, and enhance the per-
formance of GLL by incurring a small additional
calculation and memory overhead. Simultaneously,
these two methods can effectively mitigate the trend
of performance degradation as the number of divided
modules increases, thereby reducing memory over-
head substantially while maintaining high performance.

Topological extension from priors. On the basis of efficacy, we can intuitively combine the two
methods, that is, introduceMl

E(x) andMl
R1

(hc
l−2) simultaneously to construct for better perfor-

mance in practice:
hc
l−1 = hl−1 +Ml

E(x) +Ml
R1

(hc
l−2) (15)

To avoid losing scalability, we consider whether it is possible to achieve further accuracy improve-
ment by constructing a path with all previous information, i.e., by constructing the largest topologi-
cal connection across all modules on the original structure to construct:

hc
l = hl +Ml+1

R

([
hc
l−1, . . . , h1

])
+Ml+1

E (x) = hl +Ml+1
E (x) +

∑
i
Ml+1

Ri

(
hc
l−i

)
(16)

In this way, we can be very confident that hc
l contains all the required information, despite the fact

that it introduces a substantial amount of calculation and memory overhead.

The emphasis of the experimental portion of this article will be on the two simplest priori assump-
tions, denoted as [E] (Equation 11) and [R1] (Equation 13) respectively, and their combination as
[R1E] (Equation 15) to prove that the ContSup structure is simple but effective; additionally, we will
prove the feasibility of introducing topological connections through experiments ([RnE], Equation
16), and demonstrate that the proposed structure can be further flexibly extended.

4 EXPERIMENTS

In this section, we first demonstrate the effectiveness of the proposed ContSup in improving ac-
curacy and optimizing GPU memory cost via comparative experiments on benchmarks. Then, we
combine the ablation experiments to investigate the effect of structure and hyperparameter settings
in ContSup. Finally, we will discuss the scalability of ContSup and analyze the benefits and tradeoffs
of the potential expansion mode.

6

Under review as a conference paper at ICLR 2024

Table 2: Performance of GLL methods on CIFAR-10 with K-partitioned ResNet-32. The averaged
test errors and standard deviations of 5 independent trials on ContSup are reported. The best result
of each case is shown in bold.

K DGL InfoPro
(softmax)

InfoPro
(contrast)

BackLink
(best result)

ContSup[E]
(softmax)

ContSup[R1E]
(softmax)

ContSup[E]
(contrast)

ContSup[R1E]
(contrast)

2 8.69 ± 0.12% 8.13 ± 0.23% 7.76 ± 0.12% 6.97% 8.04 ± 0.22% 7.97 ± 0.28% 7.87 ± 0.24% 7.85 ± 0.16%
4 11.48 ± 0.20% 8.64 ± 0.25% 8.58 ± 0.17% 7.55% 8.75 ± 0.29% 8.42 ± 0.12% 8.52 ± 0.21% 8.09 ± 0.15%
8 14.17 ± 0.28% 11.40 ± 0.18% 11.13 ± 0.19% 10.6% 9.67 ± 0.26% 9.39 ± 0.24% 9.57 ± 0.18% 9.32 ± 0.19%
16 16.21 ± 0.36% 14.23 ± 0.42% 12.75 ± 0.11% 12.4% 10.52 ± 0.43% 10.09 ± 0.26% 10.21 ± 0.45% 9.98 ± 0.18%

4.1 SETUP

Environments and Evaluation. We evaluate the efficiency of proposed ContSup on three image
datasets (CIFAR-10 (Krizhevsky, 2009), SVHN (Netzer et al., 2011), and STL-10 (Coates et al.,
2011)) with ResNet (He et al., 2016) as the foundational network architecture. To train networks
with GLL, the entire network is divided into K gradient-isolated modules containing the same num-
ber of layers. The interior modules are trained with locally designed objectives, whereas the final
module is trained directly with the standard E2E loss. Details of data processing, network setting,
and training configurations are contained in Appendix C.

Implementation modes of context supply are notated in the form ’ContSup[RnE]’, which indicates
how context is selected, where (1) if the original image is included in context, then denote with ’E’
and (2) the n number of adjacent used in, as ’Rn’. The optimal representations of two simple
basics are ’E’ as the input-encoded context and ’R1’ as the only context of the last feature. Notably,
decoupled greedy learning (DGL) (Belilovsky et al., 2019) is the simplest implementation of GLL
and can be viewed as the baseline case ’R0’ of ContSup, in which no context is provided.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Figure 3: Comparisons of ContSup
and state-of-the-art GLL methods
in terms of the test errors. The
best results of methods based on K-
partitioned ResNet-32 and CIFAR-
10 are reported.

Quick Comparisons. We first compare ContSup with five
recently proposed algorithms: decoupled greedy learning
(DGL) (Belilovsky et al., 2020), BoostResNet (Huang et al.,
2018), deep incremental boosting (DIB) (Mosca & Magoulas,
2017), InfoProp (Wang et al., 2021), and BackLink (Guo
et al., 2023) in Figure 3. Notably, DGL is the simplest imple-
mentation of GLL and can be regarded as the baseline method
for InfoPro, BackLink, and our ContSup. As previously indi-
cated, we make direct changes to the proposed ContSup on
DGL by including a simple but functional context route. For
the sake of brevity, we only present the best results reported
in the corresponding papers for a quick comparison, despite
the fact that each approach may have detailed structures and
hyperparameters. One can observe that, when K increases,
the performance of several different approaches shows a clear
negative trend, indicating that the number of segmentations
poses an essential obstacle to the further expansion of GLL
methods; in this case, the performance of ContSup remains reasonably high, indicating the value of
context supply in resolving the GLL bottleneck problem.

Comprehensive results with benchmarks are shown in Table 2 and Table 3. We compare Con-
tSup’s performance to that of DGL, InfoPro, and BackLink on a variety of image classification
benchmarks. Specifically, the GLL scheme requires a local classifier that is typically defined by the
objective function of cross-entropy based on softmax, while InfoPro (Wang et al., 2021) suggested
using contrastive-like loss (Chen et al., 2020; He et al., 2020) as the local objective in GLL to im-
prove performance; consequently, we set ContSup to use both cases (designated in softmax/contrast)
as controls. On the premise of the baseline method (DGL), it is discovered that ContSup can further
enhance performance, especially when K is large. We found, however, that when K is small (i.e.,
K = 2/4), the performance gain brought by ContSup is not readily apparent; we consider that the
impact caused by the confirmed habit dilemma to be negligible at that time due to the small num-
ber of isolated nodes, so the mutual information gain brought by context has no significant effect.
(Detailed analysis in Appendix C).

GPUs memory Efficiency. Figure 4 compares the GPU memory footprint of ContSup to those of
InfoPro, DGL, and E2E, and illustrates the linkages of error rates trade-offs as functions by joining

7

Under review as a conference paper at ICLR 2024

Table 3: Comparison of GLL methods on benchmarks with K-partitioned ResNet-110. The aver-
aged test errors and standard deviations of 5 independent trials on ContSup are reported. The best
result of each case is shown in bold.

Datasets K DGL InfoPro
(softmax)

InfoPro
(contrast)

BackLink
(best result)

ContSup[R1E]
(softmax)

ContSup[R1E]
(contrast)

2 7.70 ± 0.28% 7.01 ± 0.34% 6.42 ± 0.08% 6.36% 7.40 ± 0.22% 6.56 ± 0.10%
CIFAR-10 4 10.50 ± 0.11% 7.96 ± 0.06% 7.30 ± 0.14% 7.79% 7.81 ± 0.20% 7.18 ± 0.12%

(E2E:6.50 ± 0.34%) 8 12.46 ± 0.37% 9.40 ± 0.27% 8.93 ± 0.40% 9.25% 8.46 ± 0.32% 7.66 ± 0.30%
16 13.80 ± 0.15% 10.78 ± 0.28% 9.90 ± 0.19% 9.75% 8.91 ± 0.32% 8.89 ± 0.24%
2 3.61 ± 0.16% 3.41 ± 0.08% 3.15 ± 0.03% 3.35% 3.21 ± 0.10% 3.23 ± 0.03%

SVHN 4 4.97 ± 0.19% 3.72 ± 0.03% 3.28 ± 0.11% 4.33% 3.54 ± 0.03% 3.41 ± 0.08%
(E2E:3.07 ± 0.23%) 8 5.35 ± 0.13% 4.67 ± 0.07% 3.62 ± 0.11% 4.67% 3.98 ± 0.10% 3.45 ± 0.08%

16 5.55 ± 0.34% 5.14 ± 0.08% 3.91 ± 0.16% 4.91% 4.03 ± 0.22% 3.91 ± 0.23%
2 24.96 ± 1.18% 21.02 ± 0.51% 20.99 ± 0.64% 20.40% 20.87 ± 0.66% 21.20 ± 0.78%

STL-10 4 26.77 ± 0.64% 21.28 ± 0.27% 22.73 ± 0.40% 23.72% 21.96 ± 0.28% 20.53 ± 0.03%
(E2E:22.27 ± 1.61%) 8 27.33 ± 0.24% 23.60 ± 0.49% 25.15 ± 0.52% 24.16% 23.61 ± 0.04% 23.38 ± 0.43%

16 27.73 ± 0.58% 26.05 ± 0.71% 26.27 ± 0.48% 23.47% 25.52 ± 0.04% 25.74 ± 0.73%

results dots from the same method. In practice, taking into account the memory burden, the balanced
partitioning method of the overall network no longer aims to include the same number of layers in
each module; instead, it anticipates guaranteeing each isolated module utilizes as much of the same
memory as possible.

Figure 4: Comparison of the GLL methods’ test er-
rors on the CIFAR-10 as a function of GPU mem-
ory footprint. Results of training both ResNet32 and
ResNet110 on a single Tesla V100-PCIE-32GB GPU
are reported.

The results illustrate that ContSup has a
higher memory-performance ratio, meaning
that it can accomplish lower error rates with
less memory overhead and requires less
memory to meet the same precision require-
ments. Comparing the memory require-
ments of ContSup and DGL, it can be de-
termined that the memory required to con-
struct the context module (encoder) is very
small, but the effect it produces is remark-
able; at the same time, the construction of
the encoder is not overly complicated, and
the network structure can be added directly
to the backbone network. Therefore, we be-
lieve that ContSup[E] has good scalability
and application value, as well as the poten-
tial to be further combined and utilized in
asynchronous training schemes (Chen et al.,
2016; Belilovsky et al., 2020).

4.3 ABLATION STUDY

Context Selection. As shown in Figure 5a, by eliminating the selection of Context, it is evident
that the E path plays a crucial role in the R1E structure, which is also consistent with our intu-
itive assumption (Equation 12). Moreover, the improvement effect of R1 relative to the baseline
demonstrates that this local shortcut structure is also useful for addressing the problem of mutual
information loss and can be combined with the E method to improve performance as expected.

Local Decoder for Reconstruction. As discussed previously in section 2.3, the local reconstruction
alleviates the short-sight issue. We conducted a controlled experiment to determine whether a local
decoder is compatible with ContSup (Figure 5b). Experiments show that a local decoder can aid in
improving the overall performance of ContSup[R1], whereas modes E and R1E are only marginally
superior.

Local Classifier Objective for lower bound of I(h, y). InfoPro (Wang et al., 2021) first introduced
supervised contrastive loss for GLL from the viewpoint of contrastive representation learning as a
replacement for cross-entropy loss (Chen et al., 2020; He et al., 2020) and empirically demonstrated
its effectiveness over a large batch size. The essence of the two losses for optimizing the lower bound
of I(h, y) is identical (see Appendix B for details). Experiments (Figure 5c) indicate that contrastive
loss is superior to the cross-entropy loss for protecting I(h, y) from short-sight with large batch size,
which is advantageous for the performance optimization of the GLL scheme.

8

Under review as a conference paper at ICLR 2024

Figure 5: Ablation studies. Test errors of ResNet-32 on CIFAR-10 are reported.

Table 4: Error rate (%) and memory-cost (GB) tradeoffs of training ResNet-32 on CIFAR-10.

R0 E R1 R2 R4 R8 R16

K Error Mem Error Mem Error Mem Error Mem Error Mem Error Mem Error Mem

8 15.70 1.54 9.50 1.76 12.77 1.88 10.91 2.43 9.80 4.25 10.56 5.25 - -
16 15.40 1.25 10.01 1.65 15.30 1.72 13.91 2.06 12.58 2.88 10.32 4.90 10.35 6.02

4.4 EXTENSION TOWARD TOPOLOGICAL CONNECTION

The potential expansion of the ContSup structure is shown in Table 4, the greater the density of
the Context’s connections, the more obvious the accuracy enhancement, but also the greater the
computational burden and memory cost. The maximum Rn situation of each split case represents
the maximum topological connection of hc

l conveyed by the context, i.e., all {hc
l }l≤L in the network

are connected in pairs in a single forward direction, where ContSup reaches its theoretical limit.

4.5 WEIGHT VISUALIZATION

Figure 6: Weight Visualization Study. The average
filter weights of M in trained 16-partitioned ResNet-
32 on CIFAR-10. The color of pixel (s, d) encodes
the average L1 norm (normalized by the channel num-
ber of features) of the weights connecting from layer
s to d within ContSup modules M.

According to the structural design, the man-
ner in which the context selects the histori-
cal feature is essentially a shortcut connec-
tion; consequently, ContSup’s structure can
superficially resemble ResNet (He et al.,
2016), DenseNet(Huang et al., 2016), and
DSnet(Zhang et al., 2021). The implica-
tions of cross-layer connections in ContSup
may direct us to determine more about how
learning occurred locally and provide more
explicit, straightforward insights. Several
intriguing events are shown in Figure 6.
Horizontally, we observe that certain features are reused multiple times and that their impact on
the deep layer is relatively large (e.g. s = 1); this suggests that crucial features can be broadcast
into deep layers as parts of ContSup. Vertically, features tend to rely on their neighbors, consistent
with the intuitive belief that feature extraction is an iteratively progressive process. Nonetheless,
some features are heavily influenced by shallow layers, revealing from the side, that some modules
selectively ignore the information transmitted by the most recently connected module and backspace
to previous states.

5 CONCLUSION

This work indicates and analyzes, from the standpoint of information theory, the bottleneck issue
of Greedy Local Learning (GLL) that results in performance degradation. Concluding that existing
GLL schemes are incapable of effectively addressing the confirmed habit dilemma, we proposed the
Context Supply (ContSup) scheme that enables local modules to retain more information via addi-
tional context, thereby enhancing the theoretical effectiveness of final performance. Experiments
have demonstrated that ContSup can substantially reduce GPUs memory footprint while maintain-
ing the same level of performance; moreover, relatively stable performance can be maintained even
as the number of isolated modules grows, allowing the network to be divided into more segments
to reduce memory costs and possibly decomposing module-wise GLL towards layer-wise. ContSup
may provide novel opportunities for local learning to reconcile global end-to-end back-propagation
with locally plausible biological algorithms.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Alessandro Achille and Stefano Soatto. Emergence of Invariance and Disentanglement in Deep
Representations. In 2018 Information Theory and Applications Workshop (ITA), pp. 1–9, San
Diego, CA, 2018. IEEE.

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
Learning without Weight Transport. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy Layerwise Learning Can
Scale To ImageNet. In Proceedings of the 36th International Conference on Machine Learning,
pp. 583–593. PMLR, 2019.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled Greedy Learning of
CNNs. In Proceedings of the 37th International Conference on Machine Learning, pp. 736–745.
PMLR, 2020.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy Layer-Wise Training
of Deep Networks. In Advances in Neural Information Processing Systems, volume 19. MIT
Press, 2006.

Yoshua Bengio, Dong-Hyun Lee, Jorg Bornschein, Thomas Mesnard, and Zhouhan Lin. Towards
Biologically Plausible Deep Learning. arXiv preprint arXiv:1502.04156, 2016.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training Deep Nets with Sublinear
Memory Cost. arXiv preprint arXiv:1604.06174, 2016.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework
for Contrastive Learning of Visual Representations. In Proceedings of the 37th International
Conference on Machine Learning, pp. 1597–1607. PMLR, 2020.

Adam Coates, Andrew Ng, and Honglak Lee. An Analysis of Single-Layer Networks in Unsuper-
vised Feature Learning. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Francis Crick. The recent excitement about neural networks. Nature, 337:129–132, 1989.

Yang Dan and Mu-ming Poo. Spike Timing-Dependent Plasticity of Neural Circuits. Neuron, 44
(1):23–30, 2004.

Xin Du, Katayoun Farrahi, and Mahesan Niranjan. Information Bottleneck Theory Based Explo-
ration of Cascade Learning. Entropy, 23(10), 2021.

Shiyu Duan and Jose C. Principe. Training Deep Architectures Without End-to-End Backpropaga-
tion: A Survey on the Provably Optimal Methods. arXiv preprint arXiv:2101.03419, 2022.

Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning Without Feedback: Fixed Random
Learning Signals Allow for Feedforward Training of Deep Neural Networks. Frontiers in Neuro-
science, 15, 2021.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The Reversible Residual
Network: Backpropagation Without Storing Activations. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Wenzhe Guo, Mohammed E. Fouda, Ahmed M. Eltawil, and Khaled Nabil Salama. Supervised
Local Training with Backward Links for Deep Neural Networks. IEEE Transactions on Artificial
Intelligence, pp. 1–14, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778.
IEEE, 2016.

10

Under review as a conference paper at ICLR 2024

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum Contrast for
Unsupervised Visual Representation Learning. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 9729–9738. IEEE, 2020.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning Algorithm for Deep
Belief Nets. Neural Computation, 18(7):1527–1554, 2006.

Furong Huang, Jordan Ash, John Langford, and Robert Schapire. Learning Deep ResNet Blocks
Sequentially using Boosting Theory. In Proceedings of the 35th International Conference on
Machine Learning, pp. 2058–2067. PMLR, 2018.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely Connected
Convolutional Networks. arXiv preprint arXiv:1608.06993, 2016.

Zhouyuan Huo, Bin Gu, Yang, and Heng Huang. Decoupled Parallel Backpropagation with Con-
vergence Guarantee. In Proceedings of the 35th International Conference on Machine Learning,
pp. 2098–2106. PMLR, 2018.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled Neural Interfaces using Synthetic Gradients. In
Proceedings of the 34th International Conference on Machine Learning, pp. 1627–1635. PMLR,
2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Department
of Computer Science, University of Toronto, 2009.

Sindy Löwe, Peter O’ Connor, and Bastiaan Veeling. Putting An End to End-to-End: Gradient-
Isolated Learning of Representations. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

Wan-Duo Kurt Ma, J. P. Lewis, and W. Bastiaan Kleijn. The HSIC Bottleneck: Deep Learning
without Back-Propagation. arXiv preprint arXiv:1908.01580, 2019.

Alexander Meulemans, Francesco Carzaniga, Johan Suykens, João Sacramento, and Benjamin F.
Grewe. A Theoretical Framework for Target Propagation. In Advances in Neural Information
Processing Systems, volume 33, pp. 20024–20036. Curran Associates, Inc., 2020.

Alan Mosca and George D. Magoulas. Deep Incremental Boosting. arXiv preprint
arXiv:1708.03704, 2017.

Hesham Mostafa, Vishwajith Ramesh, and Gert Cauwenberghs. Deep Supervised Learning Using
Local Errors. Frontiers in Neuroscience, 12, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Adeetya Patel, Michael Eickenberg, and Eugene Belilovsky. Local Learning with Neuron Groups.
arXiv preprint arXiv:2301.07635, 2023.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going Deeper With Convolutions. In
IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2015.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results. Advances in neural information
processing systems, 30, 2017.

Yulin Wang, Zanlin Ni, Shiji Song, Le Yang, and Gao Huang. Revisiting Locally Supervised Learn-
ing: an Alternative to End-to-end Training. arXiv preprint arXiv:2101.10832, 2021.

Chaoning Zhang, Philipp Benz, Dawit Mureja Argaw, Seokju Lee, Junsik Kim, Francois Rameau,
Jean-Charles Bazin, and In So Kweon. ResNet or DenseNet? Introducing Dense Shortcuts to
ResNet. pp. 3550–3559, 2021.

11

Under review as a conference paper at ICLR 2024

Jingwei Zhang, Xin Zhang, Ke Ma, Rajarsi Gupta, Joel Saltz, Maria Vakalopoulou, and Dimitris
Samaras. Gigapixel Whole-Slide Images Classification Using Locally Supervised Learning. In
Medical Image Computing and Computer Assisted Intervention, pp. 192–201. Springer Nature
Switzerland, 2022.

12

Under review as a conference paper at ICLR 2024

A MORE ABOUT MUTUAL INFORMATION IN GLL

Figure 7: Mutual Information Flow in Greedy Local Learning. I(hl, r) and I(hl, y) are orthogonal
subsets of the information of intermediate feature hl. In practice, the classification loss is defined
to maximize I(ŷl, y), which is short-sighted and may unexpectedly result in a reduction of I(hl, y).
The reconstruction loss is equivalently defined to maximize the entropy H(hl), which simultane-
ously maximizes both useful I(hl, y) and redundant I(hl, r).

Given intermediate feature hl outputted by lth module corresponding to the input data x and the la-
bel y, the local auxiliary module projects feature hl into target-prediction ŷl (all of them are treated
as random variables). We use I(A,B) as the representation of the mutual information between
distribution A and B, where I(hl, y) is naturally designed to measure the amount of task-relevant
information in hl, and I(ŷl, y) represents the predictive correction of the local objective function.
Meanwhile, we model the task-irrelevant information in the input data x by introducing the con-
cept of nuisance. A nuisance is defined as an arbitrary random variable that affects x but provides
no helpful information for the task of interest Achille & Soatto (2018). Mathematically, given a
nuisance r, we have I(r, x) > 0 and I(r, y) = 0, where y is the label. For conciseness, we de-
fine r as a maximal nuisance, that r = argmaxr∗,I(r∗,y)=0I(r

∗, x), then the supposed Markov
chain (y, r) → x → ... → hl → ... → hL is used to describe the forward informational process
of stacked modules and information of intermediate feature can be divided into orthogonal factors
H(hl) = I(hl, y) + I(hl, r) (see Figure 7).

B PROOFS AND EXTRA DISCUSSION ON THEORETICAL RESULTS

In this section, we provide all theorem proofs along with relevant discussion.

B.1 PROOFS FOR THEOREM 1 IN SECTION 2.2

To prove Theorem 1 of the paper, we first need to introduce a lemma for mutual information in
the Markov chain. Lemma B1 (Data Processing Inequality). Suppose that the Markov chain
X → Y → Z holds. Then the mutual information of X and Z is bounded by:

I(X,Y) ≥ I(X,Z) (17)

13

Under review as a conference paper at ICLR 2024

Proof. If the Markov chain X → Y → Z holds, then:

p (x, z|y) = p(x, y, z)

p(y)
=

p(x, y)p (z|y)
p(y)

= p (x|y) p (z|y) (18)

which implies that X and Z are conditionally independent when Y is given, thus:

I(X,Z|Y) = 0 (19)

Since the mutual information I(X,Y ∪ Z) can be expanded as:

I(X,Y ∪ Z) = I(X,Z) + I(X,Y |Z) = I(X,Y) + I(X,Z|Y) (20)

Combining Equation 19 and Equation 20:

I(X,Z) + I(X,Y |Z) = I(X,Y) (21)

Due to I(X,Y |Z) ≥ 0, we have:
I(X,Y) ≥ I(X,Z) (22)

The equivalence happened if and only if I(X,Y |Z) = 0, which implies that X → Z → Y also
holds, so that X → Y ↔ Z at that time.

Following Lemma B1, two propositions can be derived based on the assumption of Markov chain
(y, r)→ x→ h in Greedy Local Learning:

Proposition B2 (Decreasing potency). Suppose that the Markov chain (y, r) → x → ... →
hl−1 → hl holds. Then we have a decreasing upbound of task-related information

I (x, y) ≥ I (hl−1, y) ≥ I (hl, y) (23)

Proposition B3 (Local short-sight). Suppose that the Markov chain (y, r) → x → ... → hl → ŷl
holds. Then the task-related upbound of local prediction is given by:

I (x, y) ≥ I (hl, y) ≥ I (ŷl, y) (24)

Note that the serial inference of isolated modules gradually reduces the information entropy, and the
amount of task-related information it contains will inevitably diminish (Proposition B2). Moreover,
since the local objective of auxiliary modules is defined in terms of the prediction target ŷl, it cannot
act directly on the mutual information I(hl, y) of the intermediate features, resulting in the loss of
task-related information (Proposition B3). Those two propositions then constitute Theorem 1 in the
main text.

B.2 PROOFS FOR THEOREM 2 IN SECTION 2.2

Theorem 2 in the main text is founded on a condition similar to that described in Belilovsky et al.
(2019). The mild condition is restated next, followed by a description of the proofs.

Condition B4 (Potential Identity Mapping). Given an arbitrary intermediate feature hl−1 and
forward procedure F l, it is always possible to find the parameters θ∗ such that hl = F l

θ∗(hl−1) =
hl−1. Note that the mild condition can be inherently guaranteed by the residual structure (without
downsampling), making it available for partitioned ResNet in GLL.

Theorem 2 (Progressive improvement). Assume that F l
θl

can be potentially equivalent as an
identity mapping as F l

θl
(hl−1) = hl−1, then there exists θ̂l such that:

L̂l (ŷl, y; θl, wl) ≤ L̂l

(
ŷl, y; θ̂l, wl−1

)
= L̂l−1 (ŷl−1, y; θl−1, wl−1) (25)

Once the local loss L̂l is defined on task-relevant mutual information, we obtain:

I (ŷl−1, y) ≤ I (ŷl, y) (26)

Proof. Assuming Condition B4 holds, given modules Awl
and F l

θl
, there exists θ̂l such that:

ŷl−1 = Awl−1
(hl−1) = Awl−1

(F l
θ̂l
(hl−1)) = Awl−1

(hl) = ŷl (27)

14

Under review as a conference paper at ICLR 2024

therefore,
L̂l

(
ŷl, y; θ̂l, wl−1

)
= L̂l−1 (ŷl−1, y; θl−1, wl−1) (28)

Then, by following the descent direction based on the gradient ∇θl,wl
L̂l(ŷl, y), a pair of better

parameters (θl, wl) can be found, such that:

L̂l (ŷl, y; θl, wl) ≤ L̂l

(
ŷl, y; θ̂l, wl−1

)
(29)

Thus, there is always a progressive improvement available under Condition B4:

L̂l (ŷl, y; θl, wl) ≤ L̂l

(
ŷl, y; θ̂l, wl−1

)
= L̂l−1 (ŷl−1, y; θl−1, wl−1) (30)

Given the definition of mutual information I(ŷl, y):

I(ŷl, y) = H(y)−H(y|ŷl) = H(y)− E(ŷl,y)[− log p(y|ŷl)] (31)

Once the local objective is defined highly correlated with E(ŷ,y)[− log p(y|ŷl)], say:

L̂(ŷl, y) ∝ −I(ŷl, y) (32)

With Equation 30, we obtain:
I(ŷl, y) ≥ I(ŷl−1, y) (33)

Finally, Theorem 2 is given by combining Equation 30 and Equation 33.

B.3 PROOFS FOR LEMMA 4 IN SECTION 2.3

This section provides full proof for Lemma 4 in the main text.

Lemma 4 (Entropy Bound). Since the Markov chain x → ... → hl−1 → hl is the deterministic
procedure in the network forward, the input-related information is bounded by:

H(x) ≥ H (hl−1) = I (hl−1, x) ≥ H (hl) = I (hl, x) = I (hl, hl−1) (34)

Proof. Given by the definition of mutual information, we have

I(hl, hl−1) = H(hl)−H(hl|hl−1) (35)

and,
I(hl, x) = H(hl)−H(hl|x) (36)

When considering hl as a deterministic function regards to hl−1 (or, to x), we obtain H(hl|hl−1) =
0 (H(hl|x) = 0 in a same way), and therefore

H(hl) = I(hl, hl−1) = I(hl, x) (37)

Following Lemma B1, given the Markov chain x→ ...→ hl−1 → hl, we have:

H(x) ≥ I (hl−1, x) ≥ I (hl, x) (38)

Combining Equation 37 and Equation 38, we obtain:

H(x) ≥ H (hl−1) = I (hl−1, x) ≥ H (hl) = I (hl, x) = I (hl, hl−1) (39)

for which we have proven Lemma 4.

B.4 FURTHER DISCUSSION ON RECONSTRUCTION METHODS IN GLL.

Suppose that the Markov chain (y, r) → x → ... → hl−1 → hl holds, H(hl) =
I(hl, r) + I(hl, y) is given by the definition Achille & Soatto (2018). As shown in Figure
8, the objective of maximizing I(hl, x) = H(hl) can be precisely divided into two ortho-
metric directions: I(hr, r) and I(hl, y). Meanwhile, the local-objective of I(ŷl, y) is learn-
ing to decrease I(hl, r), which may unexpectedly harm I(hl, y) (Proposition B3). The short-
sight problem caused by local-objectiveI(ŷl, y) can be formed into the case when I(hl, y) de-
creases, which can be corrected by meticulously accompanying a reconstruction limit (Figure 8).

15

Under review as a conference paper at ICLR 2024

Figure 8: The Learning Directions of Local
Objectives. The local classifier is short-sighted
since it only considers the function defined on
I(ŷl, y) and may occasionally reduce the ex-
pected goal I(yl, l). The reconstruction ob-
jective is intended to maximize both I(hl, r)
and I(hl, y) and to neutralize short-sighted lo-
cal optimization.

Despite the fact that local reconstruction can help
the local objective recover I(hl, y), it is still con-
strained by the upper bound I(hl, y) ≤ I(hl−1, y)
(Proposition B2), and trapped in confirmed habits
concluded in Theorem 3, where each stacking of
greedy modules results in permanent loss of target
information. In other words, when the number of
isolated partitions is high, the deep modules are un-
able to recover the information lost in the shallow
layers, and the progressive improvement of contin-
uing to stack is limited, resulting in a decline in
overall performance.

B.5 FURTHER DISCUSSIONS
ON LOCAL CLASSIFIER OBJECTIVES

Local objectives for I(h, y) are required by GLL,
and they are always realized via the creation of
auxiliary classifiers that evaluate task-relevant in-
formation. Define the local classifiers for max-
imum likelihood estimation of p(y|h), such that
q(ŷ) = p̂Aw

(y|h) ≈ p(y|h). The GLL methods
often choose the widely used cross-entropy loss
for local classifiers Belilovsky et al. (2019); Zhang
et al. (2022); Duan & Principe (2022); Guo et al.
(2023), which can be expressed as:

E
[
L̂CE(ŷ, y)

]
= Eh

[
− y log q(ŷ)

]
=

1

N

[N∑
−y log q(ŷ)

]
(40)

Then, we could demonstrate that minimizing the cross-entropy loss is exactly maximizing the lower
bound of task-relevant information I(h, y). Note that

H(y)− I(h, y) = H(y|h) (41)

= E(h,y)

[
− log p(y|h)

]
(42)

= Eh

[
Ey

[
− p(y|h) log p(y|h)

]]
(43)

≤ Eh

[
Ey

[
− p(y|h) log q(ŷ)

]]
(Gibb’s inequality) (44)

= Eh

[1
C

[C∑
c=1

−1yc=1 log q(ŷ)c
]]

(45)

=
1

C

[
Eh

[
− y log q(ŷ)

]]
(46)

=
1

C
E
[
L̂CE(ŷ, y)

]
(47)

In the above, Equation 45 samples the probabilities along class dimension with the number of
classes C, where the value exists along on the target class. Finally, we have I(h, y) ≥ H(y) −
1
CE

[
L̂CE(ŷ, y)

]
, and thus minimizing L̂CE(ŷ, y) under the stochastic gradient descent framework

maximizes a lower bound of I(h, y).

Meanwhile, as mentioned in section 4, the supervised contrastive loss, namely Lcontrast, is first
applied to GLL by Wang et al. (2021) from the viewpoint of contrastive representation learning as a
replacement for cross-entropy loss Chen et al. (2020); He et al. (2020). Contrastive loss is founded
on supervised clustering utilizing latent features; therefore, its loss is defined by the relative distance
between any two samples within the same batch, as

Lcontrast =
1∑

i ̸=j 1yi=yj

∑
i̸=j

[
1yi=yj log

exp((ŷi)T ŷj/τ)∑N
k=1 1i ̸=kexp((ŷi)T ŷk/τ)

]
, ŷb = Aw(h

b) (48)

16

Under review as a conference paper at ICLR 2024

Table 5: Architecture of the local decoder W on CIFAR-10, SVHN and STL-10.

Input: 32×32 / 16×16 / 8×8 feature maps (96×96 / 48×48 / 24×24 on STL-10)

Bilinear Interpolation to 32×32 (96×96 on STL-10)

3×3 conv, stride=1, padding=1, output channel=12, BatchNorm + ReLU

3×3 conv, stride=1, padding=1, output channel=3, Sigmoid

Table 6: Architecture of the local classifier A on CIFAR-10, SVHN and STL-10.

Input: 32×32 / 16×16 / 8×8 feature maps (96×96 / 48×48 / 24×24 on STL-10)

32×32 (96×96) input features: 3×3 conv, stride=2, padding=1, output channel=32, BatchNorm + ReLU
16×16 (48×48) input features: 3×3 conv, stride=2, padding=1, output channel=64, BatchNorm + ReLU
8×8 (24×24) input features: 3×3 conv, stride=1, padding=1, output channel=64, BatchNorm + ReLU

Global average pooling

Fully connected 32 / 64→ 128, ReLU

Fully connected 128→ 10 for LCE or 128→ 128 for Lcontrast

The effectiveness of contrastive loss in GLL over a large batch size is empirically demonstrated.
It was also proofed that E

[
Lcontrast

]
≥ log(N − 1) − I(h, y) Wang et al. (2021); consequently,

contrastive loss also maximizes the lower bound of I(h, y) and offers an alternative to cross-entropy
in practice.

C EXPERIMENTAL DETAILS

C.1 BENCHMARK DATASETS

In this paper, three image datasets (CIFAR-10 (Krizhevsky, 2009), SVHN (Netzer et al., 2011), and
STL-10 (Coates et al., 2011)) are used in the experiments to evaluate the efficacy of ContSup. Here,
we describe the composition of each dataset and the pre-processing methods applied to them. (1)
CIFAR-10 (Krizhevsky, 2009) consists of 60,000 32x32 colored images of 10 classes, with 50,000
for training and 10,000 for testing. According to the standard pre-processing method, we normalize
the origin images with channel means and standard deviations, followed by 4x4 random translation
and random horizontal flip (He et al., 2016; Huang et al., 2016). (2) SVHN (Netzer et al., 2011) con-
sists of 32x32 real-world images of house numbers, 10 classes for digits ranging from 0 to 9, with
73,257 images for training and 26,032 images for evaluation. Random 2x2 translation is performed
to augment the training set, as (Tarvainen & Valpola, 2017). (3) STL-10 (Coates et al., 2011) con-
tains 96×96 labeled RGB images belonging to 10 classes, which are split into 5,000 training samples
and 8,000 test samples. We train with all of the labeled images and evaluate performance on the test
set. Data augmentation is performed by a 4x4 random translation followed by a random horizontal
flip.

C.2 TRAINING HYPER-PARAMETERS

The experiments use the ResNet-32 and ResNet-110 networks (both of which are part of the ResNet
architectural family proposed in (He et al., 2016)) as their basis. We employ an SGD optimizer with
a Nesterov momentum of 0.9 and an L2 weight decay ratio of 1e-4 to train the networks for 160
epochs. The initial learning rate is 0.8 for CIFAR-10/SVHN and 0.1 for STL-10, while the batch
size is 1024 for CIFAR-10/SVHN and 128 for STL-10. It is important to note that the experimental
setups described here are employed by all of the GLL methods reported in Table 2 and Table 3 in
Section 4.2.

17

Under review as a conference paper at ICLR 2024

Table 7: Architecture of the input-based context supply ME on CIFAR-10, SVHN and STL-10.

Input: 32×32 origin input (96×96 on STL-10)

3×3 conv, stride=1, padding=1, output channel=16/32/64, BatchNorm + ReLU

3×3 conv, stride=1, padding=1, output channel=16/32/64, BatchNorm + ReLU

Adaptive average pooling

Output: 32×32 / 16×16 / 8×8 feature maps (96×96 / 48×48 / 24×24 on STL-10)

Table 8: Architecture of the feature-based context supply MR on CIFAR-10, SVHN and STL-10.

Input: 32×32 / 16×16 / 8×8 feature maps (96×96 / 48×48 / 24×24 on STL-10)

1×1 conv, stride=1, padding=0, output channel=16/32/64, BatchNorm + ReLU

Adaptive average pooling

Output: 32×32 / 16×16 / 8×8 feature maps (96×96 / 48×48 / 24×24 on STL-10)

C.3 IMPLEMENTATIONS OF AUXILIARY MODULES

In this section, we describe the experimental implementations of Fθ, Aw and Mϕ that mentioned
in the main text, as well as an additional decoder W for reconstruction objective I(h, x). The
structures of applied modules are identical to that of other GLL methods (see Table 5 and Table 6)
(Belilovsky et al., 2020; Wang et al., 2021; Guo et al., 2023); while the architecture of proposed
module M for context supply is shown in Table 7 and Table 8. Note that F is obtained by divid-
ing Resnet into gradient-isolated modules, which is discussed further with the partitioning strategy.
Decoder W reconstructs the original images from intermediate features. The output size of aux-
iliary classifier A varies depending on whether the cross-entropy loss LCE or the contrastive loss
Lcontrast is applied. Two distinct forms of M are used for ME(x) and MR(hpast), respectively.

C.4 PARTITIONING STRATEGY ON RESNET

The GLL method necessitates partitioning the entire network into K gradient-isolated modules, and
the partitioning strategy must be clarified. For simplicity, we are only considering about ResNets
that exist in our experiments. Due to the impossibility of subdividing the residual blocks into smaller
parts, we regard each residual block inside ResNets to be an indivisible minimal unit. Particularly,
the entire network’s first convolutional layer is considered an additional minimal unit, comparable
to residual blocks. In this instance, ResNet-32 has a total of 15 potential partitioning locations, so
K = 16 is sufficient to partition all minimal units into isolated modules. Then, it is straightforward
for cases of K = 2/4/8, which only need to ensure that each isolated module contains the same
number of minimal units. For ResNet-110 with 55 minimal units, one less minimal unit is assigned
to earlier isolated modules when the number of minimal units is not evenly divisible by K, such that
{27, 28} for K = 2, {13, 14, 14, 14} for K = 4, etc. Notably, when we concentrate on reducing
memory costs, we employ a distinct partitioning strategy, namely the memory balance strategy; in
this case, the networks are meticulously partitioned such that each local module incurs comparable
memory costs during training, as described in Section 4.2.

D VISUALIZATION OF TASK-RELEVANT INFORMATION INSIDE
INTERMEDIATE FEATURES

In order to provide evidence to support the theoretical analysis, we have included the estimate and
visualization of task-relevant information pertaining to intermediate features, as shown in Figure
9. The experiment was performed using an 8-partitioned Resnet32 on CIFAR-10. In this case,
each block consists of two units, with each unit representing the smallest indivisible unit as spec-

18

Under review as a conference paper at ICLR 2024

ified in Appendix C.4. The hyperparameter remains consistent. The models exhibiting superior
performance during the training phase are saved, and then utilized to estimate the feature. In or-
der to estimate task-related information, we adopt the method employed in InfoPro. Specifically,
we utilize the estimation of I(h, y) by leveraging the equation I(h, y) = H(y) − H(y|h) =
H(y) − E(h,y)[− log p(y|h)]. To achieve this, we train a supplementary classifier qϕ(y|h) with
parameters ϕ to serve as an approximation of p(y|h). Consequently, we can express I(h, y) as
an approximation given by I(h, y) ≈ maxϕH(y)− 1

N [
∑N

i=1− log qϕ(yi|hi)]. This estimation
has a strong correlation with the value of − 1

N [
∑N

i=1− log qϕ(yi|hi)], which can be interpreted
as the maximum level of performance achieved by a classifier that is based on h. In our set-
ting, ResNet-32 is used as the qϕ, including upsampling and channel-alignment in the first layer.

Figure 9: Visualization results of estimating task-
relevant information through intermediate features
of 8-partitioned ResNet-32 on CIFAR-10. ”Con-
tSup[8]”, ”InfoPro[8]”, and ”DGL[8]” denote the
pure implementations of each GLL method. The no-
tations in the form of ”A[x]+B[y]” represent hybrid
methods that employ method A for the first x blocks
and method B for the remaining y blocks.

Among the three pure schemes, it is evi-
dent that the mutual information of Con-
tSup exhibits significant benefits in the deep
layer. The pivotal moment occurs when
contextual information is provided subse-
quent to minimum units # 7, hence increas-
ing the disparity with InfoPro. To address
the issue of bottleneck caused by confirmed
habits, we devised and implemented hybrid
schemes with training the first 2 or 4 mod-
ules using coarse DGL and achieved the
phenomena of decreasing potency, as stated
in Theorem 1.1 in the main text. In this
case, while InfoPro can only mitigate the
phenomenon of information decline to the
greatest extent feasible, ContSup effectively
addresses the challenges posed by the con-
firmed habits, as expected.

E MORE DISCUSSION
ABOUT EXPERIMENTAL RESULTS

In section 4.2, we compare ContSup’s per-
formance to that of DGL, InfoPro, and BackLink on a variety of image classification benchmarks.
The experimental results show that, when the number of network segmentations increases, the per-
formance of several different approaches shows a clear negative trend, indicating that the number of
segmentations poses an essential obstacle to the further expansion of GLL methods. Among compa-
rable GLL methods, Backlink allows overlap between separated modules, making it superior to the
non-overlapping scheme within the same number of segmentations; its benefit is evident when the
number of segments is small, but it remains vulnerable to the confirmed habit dilemma as K rises.
InfoPro improves upon baseline performance by introducing an additional local decoder to boost
information entropy; however, it incurs additional computational and memory costs that partially
offset the GLL’s benefits. In contrast, the proposed ContSup effectively mitigates the decreasing
trend in a large number of segmentations, by introducing a simple route for context supply. Further-
more, we also compare the GPU memory cost of ContSup to those of InfoPro, BackLink, DGL, and
E2E. It can be determined that the memory required to construct the context module (encoder) is
very small, but the effect it produces is remarkable; at the same time, the construction of the encoder
is not overly complicated, and the network structure can be added directly to the backbone network.
Intriguingly, our encoder structure from x to local feature is the inverse process of the designed
decoder structure in InfoPro, which expects local features to reconstruct x for larger I(h, x); how-
ever, our encoder structure is lean, whereas the decoder structure introduces about much memory
overhead for reconstruction. Therefore, we believe that the encoder can take into consideration the
prospective alternative of the decoder while avoiding the time-consuming step of modifying hyper-
parameters to balance classifier and decoder objectives. In section 4.4, we extend the context mode
from R1 to Rn, such that [hc

l−n, ..., h
c
l−1] are used as context to supplement the existing mutual

information of hl. Obviously, this linear superposition scheme is inefficient, but it does provide a
reasonable comprehension of the ContSup structure. The experimental results are intuitive, i.e., as

19

Under review as a conference paper at ICLR 2024

Table 10: Evaluation of inference overhead. The inference costs over the whole test datasets (in
seconds) are evaluated on CIFAR-10 with K-partitioned ResNet-32. The trial is built on a single
NVIDIA GeForce RTX 4090 GPU.

Backbone
K=2 K=4 K=8 K=16

E R1E E R1E E R1E E R1E

Resnet32 1.301 1.305 1.307 1.321 1.337 1.367 1.414 1.437 1.513
/ 0.31% 0.46% 1.54% 2.77% 5.07% 8.69% 10.45% 16.30%

Resnet110 1.611 1.614 1.619 1.628 1.632 1.657 1.683 1.735 1.805
/ 0.19% 0.50% 1.06% 1.30% 2.86% 4.47% 7.70% 12.04%

n increases, accuracy continues to rise and tends to plateau. One may discover that the ContSup[E]
structure appears to be superior to Rn; this is not surprising given that the encoder’s design structure
is more complex, consisting of two 3 × 3 convolution operations, whereas Rn’s design structure
is much simpler, consisting of a 1 × 1 convolution (linear combination of channels) for dimension
alignment.

F MORE RESULTS

Table 9: Test errors of GLL combination.
The experiment is evaluated on CIFAR-10
with K-partitioned ResNet-32.

K=2 K=4

BackLink 6.97 7.55
ContSup[E] 8.04 8.75

ContSup[E] + BackLink 6.88 7.18

Combination with other GLL variations. We are
well aware that combining ContSup and the existing
approaches can help to demonstrate the scalability of
ContSup while compensating for the performance in
small K. ContSup is developed specifically for the
GLL framework, therefore making it potentially suit-
able to other GLL variations. Since ContSup is de-
signed for the GLL framework, it is theoretically ap-
plicable to multiple GLL variants. As in experimen-
tal section, some GLL designs that improved by In-
foPro and DGL have been directly taken into consideration in the proposed ContSup scheme. Figure
5(b,c) illustrates the effect of those optimizations employed on ContSup, demonstrating that these
optimizations can be maintained in the implementation of ContSup. In light of the scheme’s scala-
bility, we conducted a trial wih error rates on CIFAR-10, as shown in Table 9. It can be found that
the BackLink and ContSup exhibits compatibility with one another. The incorporation of BackLink
into the ContSup scheme has the potential to significantly enhance the performance of small K. In
accordance with the empirical results shown in Table 3, ContSup does not weaken the original per-
formance when K is small; however, the influence of the confirmed habits issue is less pronounced
in this scenario, and the performance gains achieved by ContSup are constrained. Hence, it is vital to
thoroughly contemplate additional bottleneck elements that restrict GLL in this case. Incorporating
existing approaches might serve as a first step.

Inference Cost from Context Modules. The introduced extra parameters of the local encoders
to compress the context cannot be discarded in inference time, leading to a reduction in computing
efficiency. Fortunately, the size of the context module is comparatively less than that of the backbone
network, which helps in reducing the negative effect of a decrease in inference speed. The cost of
inference will increase to some degree, for instance, on CIFAR-10, the increasing inference time (in
seconds) for Resnet-32 and Resnet-110 is shown in Table 10. Thorough evaluation and optimization
at the application level still need careful consideration.

Table 11: Test errors with different context selec-
tion. The experiment is evaluated on CIFAR-10
with 16-partitioned ResNet-32.

R0 E R1E M1R1E M2R1E R8E

K=16 15.30 10.21 9.98 9.71 9.22 9.42

Potential Improvement of Context Selection.
Based on our theoretical study, the primary func-
tion of context is to compensate for the absence
of task-related information in order to overcome
the challenge of proven habits. However, the is-
sue of optimizing context selection still remains
unresolved and requires additional attention. It
is posited that the pruning operation has the po-

20

Under review as a conference paper at ICLR 2024

Table 12: Comparison of training overhead under different GLL methods. The batch-wise training
times (in seconds) are evaluated on CIFAR-10 with K-partitioned ResNet-32. The trial is built on a
single NVIDIA GeForce RTX 2070 GPU.

DGL InfoPro ContSup[E] ContSup[R1E] BackLink[l=4]

K=2 0.727 0.778 0.737 0.740 0.817[l=4]
K=4 0.738 0.917 0.795 0.819 0.910[l=4]
K=8 0.771 1.235 0.901 0.959 1.023[l=2]

K=16 0.829 1.599 1.178 1.227 1.099[l=2]

tential to be executed based on the comprehensive topological connectivity of RnE. Given the com-
parative simplicity involved in processing the next module’s feature (R), it is conceivable that its
approximation might make it redundant. On the other hand, the origin input (E) is more rudimentary
and hard to process, although it offers a higher quantity of information. Consequently, incorporating
the intermediate features between these two could potentially be advantageous. Based on the afore-
mentioned assumption, for module l, it is possible to choose the intermediate point as the context by
considering R1E, which includes the 0th origin input and ((l−2)

2)th additional features. Examples of
suitable contexts include the bisector at (l−2)

2 , , as well as two-three points at (l−2)
3 and 2(l−2)

3 . The
scheme is denoted as Mi, where i is the number of chosen intermediate points. The experimental
results for error rates are shown in Table 11. The context module for the intermediate feature M is
designed according to R, which consists of a single 1*1 convolution and pooling. This design deci-
sion ensures channel and dimension alignment, as shown in Table 8. It has been observed that both
M1R1E and M2R1E exhibit a heightened level of performance that closely resembles that of R1E
when K=8. Acknowledging the limited depth, the inclusion of trivial examples serves to illustrate
the possibility of enhanced optimization in the process of context selection.

Comparison of Training Overhead. For the compared method, InfoPro, the decoder’s hyperpa-
rameters must be altered and optimized through repetitive attempts in order to effectively safeguard
the information entropy, which increases the trial cost. ContSup, on the other hand, does not depend
on the decoder’s design, and the Context module definition contains no additional hyperparame-
ters; therefore, it is simple and effective for experimental deployment. Due to the local classifier,
DGL will increase the training overhead in GPU training compared to E2E. On this basis, the local-
decoder structure introduced by InfoPro will further increase the training overhead; instead, the
local-encoder design in ContSup is lighter than that of the decoder, so its training speed is even
faster than that of InfoPro. For instance, we compare the batch-wise training time (in seconds) of
ResNet32 on CIFAR-10, and the results are shown in Table 12 [with baseline E2E=0.721].

G LIMITATION AND FUTURE WORK

The context selection within the ContSup structure has not been fully developed. Experience has
shown that a straightforward implementation of context can significantly boost the performance
and memory footprint of the GLL scheme on the GPU. In addition, we investigate the expansion
potential of ContSup and its expected upper bound, as described in Section 4.4, which is based on a
linear expansion that is memory-intensive and difficult to expand. On the basis of this, an optimized
expansion strategy may be considered by tailoring wholly topological connections out of superfluous
connections, so that context selection prioritizes only the most important relationships and avoids
similar or redundant features. In addition, future research may investigate the relationship between
the structural design of the context and the extant networks in order to draw further conclusions.
Using the analogy and practice of the GLL training scheme may also help analyze the possible
interpretation of the E2E training scheme in an effort to discover valuable insights for enhancing the
interpretability of neural networks.

21

	Introduction
	Theoretical Analysis of Greedy Local Learning
	Preliminary
	Naïve Greedy Local Learning suffers a dilemma called confirmed habits
	The local reconstruction eases short-sight but still in confirmed habits.

	Context Supply gives chance to escape the dilemma
	Experiments
	Setup
	Comparison with State-of-the-Arts
	Ablation Study
	Extension toward Topological Connection
	Weight Visualization

	Conclusion
	More about mutual information in GLL
	Proofs and extra discussion on theoretical results
	Proofs for Theorem 1 in section 2.2
	Proofs for Theorem 2 in section 2.2
	Proofs for Lemma 4 in section 2.3
	Further discussion on reconstruction methods in GLL.
	Further discussions on local classifier objectives

	Experimental Details
	Benchmark Datasets
	Training hyper-parameters
	Implementations of auxiliary modules
	Partitioning strategy on ResNet

	Visualization of task-relevant information inside intermediate features
	More discussion about experimental results
	More Results
	Limitation and future work

