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Abstract

Recently, many BERT based approaches have001
been proposed for task-oriented dialogue002
(TOD) task. Despite their impressive perfor-003
mance, the insufficient utilization of deep se-004
mantic information and long-distance context005
understanding makes it difficult for these meth-006
ods to digest complex dialogue scenarios for007
they cannot obtain sufficient evidence from dia-008
logue data to support dialogue decision-making.009
In this work, we propose a novel structured se-010
mantics reinforcement (SSR) method to handle011
these issues. SSR reorganized the end-to-end012
TOD structure, which mainly includes two key013
components: 1. The dialogue symbolic mem-014
ory, which cache the objects mentioned in the015
dialogue and the structure under the seman-016
tic relationship. 2. semantic projection mod-017
ule, understanding module, based on the pre-018
vious structured results, determines the source019
of the slot extraction required for the current020
task. And our approach achieves state-of-the-021
art results on dataset MultiWOZ 2.1, where022
we acquire a joint goal accuracy beyond 60%023
and also gains a significant effect on dataset024
DSTC8.025

1 Introduction026

Task-oriented dialogue, as a focus in the field of027

conversational AI, has attracted a surging interest028

from both academia and industry. In a dialogue029

system, dialogue state tracking (DST) is a sub-task030

that is defined to be recognizing the meaning and031

intent in a user utterance, and be able to keep and032

update this information during the process of the033

dialog (Young et al., 2010). DST is critical to a034

dialogue system since it determines the next ac-035

tion that the system can respond to a user utterance.036

Previous works on DST evolve from traditional ap-037

proaches that operate on a fixed ontology (Mrkšić038

et al., 2017; Liu and Lane, 2017; Zhong et al.,039

2018) to approaches that can handle open vocab-040

Figure 1: An example of a real conversation being
parsed. case A shows a traditional approach that im-
mediately recognizes restaurant-name when the slot
appears but the user has not decided to use it. In case
B, the method is to follow the user’s will, and the slot
is not recognized in the round r2, but the slot cannot be
retrieved when it is needed. In SSR-TOD, unlike the
result of using NLU directly in traditional DST, we have
added symbolic memory here for structured parsing of
dialogue description content and caching of information
that the task frame needs to use immediately or later.

ulary (Ren et al., 2018; Nouri and Hosseini-Asl, 041

2018). 042

All these previous works focus on extraction 043

from the user and/or system utterance in the current 044

round, but ignore the fact that some desired results 045

may come from the long-distance dialogue history. 046

Figure 1 shows an illustrating example of such a 047

phenomenon. In the example, the value for the 048

restaurant name appears in the first round of the 049

dialogue, but the dialogue system is not expected 050

to put the restaurant name into a dialogue state 051
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since the user has not decided whether to book052

the recommended restaurant or not. Instead, the053

value is desired in the third round where a decision054

is confirmed by the user. This means we need to055

obtain the value from a long-distance history. Heck056

et al. (2020) adopt a copy mechanism to obtain slot-057

values from dialogue state history, but obviously, it058

cannot solve the problem shown in the example.059

To tackle this problem, we propose a novel ap-060

proach to dialog state tracking. The basic idea is061

to utilize an additional data structure named sym-062

bolic memory to store all the candidate slot-values063

that we can obtain during the conversations and064

use the memory as a dialogue history. Extensive065

experiments on two benchmarks demonstrate the066

effectiveness of the proposed approach.067

2 Related Work068

Early works on DST consider fixed ontology.069

Mrkšić et al. (2017) for the first time propose neu-070

ral models to couple spoken language understand-071

ing (SLU) and state tracking. The basic idea is to072

rely on embedding representations instead of exact073

matching to retrieve correct answers. (Liu and074

Lane, 2017) focus on an end-to-end neural network075

model for task-oriented dialogue. Zhong et al.076

(2018) propose a globally-locally self-attentive ap-077

proach to dialogue state tracking where global mod-078

ules learn parameters shared among slots while079

local modules learn slot-specific parameters. All080

these works suffer from scalability and generaliza-081

tion issues. Nouri and Hosseini-Asl (2018) ex-082

tend the approach proposed in Zhong et al. (2018)083

by using only one recurrent network with global084

conditioning instead of (1+# slots) recurrent net-085

works. Ren et al. (2018) propose an approach086

named StateNet which is independent of the num-087

ber of values, shares parameters across all slots,088

and uses pre-trained word vectors. Chao and Lane089

(2019) for the first time propose to use BERT (De-090

vlin et al., 2019) as encoding dialogue context, in-091

cluding both current utterances and history. Heck092

et al. (2020) enhance previous BERT-DST with093

three copy mechanisms, which are used to obtain094

values from the user utterance, the system utter-095

ance, and previous dialogue states.096

3 Our Approach097

3.1 Problem Formulation098

We define a dialogue as a sequence of T rounds of099

utterance pairs, denoted as as X = (< U1,M1 >100

, . . . , < UT ,MT >) where Ut is the user utterance 101

and Mt is the corresponding response from the sys- 102

tem in the round t. In each round of dialogue, the 103

goal of the dialogue system is to predict whether 104

the slots under the current domain have been as- 105

signed values, and what corresponding values have 106

been assigned. Therefore, we organize the out- 107

put of each round in the form of domain-slot-pair 108

S = {S1, ..., SN}, where N is the total number of 109

all the slots under all domains. 110

To solve the above problem, we propose a frame- 111

work as depicted in Figure 2. Briefly, the frame- 112

work consists of the following modules. 113

• Dialogue Symbolic Memory. A data struc- 114

ture for storing all the slot-values that appear 115

in the dialogue history. 116

• Dialogue Context Encoder. A BERT-based 117

module that encodes user utterance and sys- 118

tem utterance in the current round as well as 119

history. 120

3.2 Dialogue Symbolic Memory 121

To build dialogue symbolic memory, we refer to 122

CUED dialogue acts (Steve, 2009) to introduce 123

task-independent ontology and manually establish 124

the mapping from entities to task slots. Figure 3 125

presents an example. We implement the mapping 126

between schema and entity to slots through simple 127

rules. After the mapping, we get a batch of new 128

entity attributes P = {P1, ..., PK}, where K is the 129

total number of entity attributes introduced by the 130

mapping relationship. 131

Dialogue symbolic memory is specifically de- 132

signed to track the slots and properties recognized 133

in the dialogue process. Here, we set a strong 134

heuristic rule for filling slots: if a slot has a cor- 135

responding entity property, the slot will be filled 136

first with the value of the entity property, and the 137

slots in the DST will be handled by the semantic 138

projection module. 139

Take the venue entity as an example. There are 140

three types of venue entities in MultiWOZ: restau- 141

rant, hotel, and attraction. They have common 142

properties: name and area. Therefore, the venue 143

name, venue area, and venue type of the venue are 144

introduced into P as entity properties. For further 145

illustration, for example, in a scene where a restau- 146

rant is identified during the dialogue process, its 147

name is “backstreetbistro” and its area is “center”. 148

We recognize the hotel of the next scheduled task. 149

When we need to find the hotel of "the same area 150
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Figure 2: Architecture of the proposed approach.

of", we can display the area information of the pre-151

vious event from the symbolic memory through the152

previous schema, instead of expecting our model153

to learn how to extract the area of the restaurant154

from the previous dialogue context according to155

the semantics of “the same area".156

Through the introduction of this task-157

independent schema, we display the relationship158

(the main relationships include: entity to property,159

and the same property of different entities under160

the same type) between many task slots hidden161

behind the dialogue in the dialogue process162

to the model. At the same time, because it is163

task-independent, slots between different domains164

can share entities and attributes in this way, so165

that the dialogue task can make full use of the166

logical relationship behind the dialogue, not just167

the identified semantic information.168

In addition, for the following semantic projec-169

tion module to learn how DST can get values from170

the symbolic memory, the symbolic memory iden-171

tifier172

icachet ∈ {0, 1}(N+K+1)×Q (1)173

is introduced to mark whether the symbolic174

memory is filled at each position in round T , the Q175

here is a hyperparameters. As the number of layers176

of symbolic memory, with the more layers, and the177

more historical semantic information can be used.178

We selected three layers artificially.179

3.3 Dialogue Context Encoder 180

The module is an adaption from the BERT encod- 181

ing structure in (Chao and Lane, 2019; Heck et al., 182

2020), as depicted in Figure 1. The input the en- 183

coder consists of three parts: 184

Rt = BERT ([CLS]⊕ Ut ⊕ [SEP ]⊕Mt⊕
[SEP ]⊕Ht ⊕ [SEP ]),

(2)
185

where Ut is the user utterance in the round t, Mt 186

is the corresponding system utterance, and Ht is 187

structured dialogue history from the symbolic mem- 188

ory. Note that the definition of Ht is different 189

from the definition in (Heck et al., 2020) where 190

Ht = (Ut−1,Mt−1), . . . , (U1,M1) is the history 191

of dialogue up to and excluding round t. The output 192

is used as the encode of the dialogue content in the 193

round t, it consists of two parts: one is rCLS
t , which 194

as the representation of dialogue context sentence- 195

level, will be directly used by the following slot 196

classification module and value classification mod- 197

ule to predict the slot type and enumeration value. 198

And each of following 199

Rt = [rCLS
t , r1t , ..., r

seqmax
t ] (3) 200

, as the representation of dialogue context token- 201

level, are all corresponding to a token at the corre- 202

sponding position in the input. Then, this part will 203

be input into the value span extraction module for 204

span-extraction of non-enumerated slot-values. 205
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Figure 3: An illustrating example for dialogue symbolic
memory.

3.4 Dialogue State Tracker206

This part is the same as the DST in the traditional207

end-to-end method to record the slot filling of each208

task during the entire dialogue. As before, in order209

to let the semantic projection module learn how to210

value, introduce the DST identifier211

iDST
t ∈ {0, 1}N+1 (4)212

to record in each round t, whether each domain-213

slot-pair is filled.214

3.5 Semantic Projection Module215

This module is used to learn how DST gets values216

from symbolic memory:217

pprojt,s (asemt ⊕ iDST
t−1 ) =

softmax(W proj
s (asemt ⊕ iDST

t−1 ) + bprojs ) ∈ RN+1

(5)218

where219

asemt = rCLS
t ⊕ icachet−1 (6)220

The input consists of three parts: 1. The struc-221

tured semantic information extracted from the cur-222

rent round T , and because the symbolic memory223

is a multi-layer structure, it also contains a certain224

length of historical structured semantic information.225

2. For the dialogue status of the previous round,226

we learn the dialogue status of the current round of227

t through the historical T − 1 and the DST status228

of previous rounds. 3. Semantic representation of229

sentence-level extracted by BERT.230

3.6 Slot Classification Module231

This module uses to the sentence-level represen-232

tation rCLS
t and icachet of the previous Dialogue233

context as input. Also, this module is used to learn 234

if the slot has value ( none or dontcare) and how to 235

get value form the corresponding module value ( 236

span or classification). 237

pslott,e (asemt ) = softmax(W slot
e (asemt ) + bslote ) ∈ R4,

e ∈ {S1, ..., SN , P1, ..., PK}
(7) 238

Span represents the value obtained from the 239

value span extraction module, and class represents 240

the value obtained from the value classification 241

module. In the input part, the icachet in here acts as 242

structured historical information. Since the values 243

in the symbolic memory are filled or not, this part 244

of structured information is obviously helpful to 245

the sub-task of the current slot classification. 246

3.7 Value Classification Module 247

This module is used to learn enumerated slot value, 248

for example, "true" of if has wifi, "expensive" of 249

restaurant’s price range, "north" of location, "5" of 250

star rating, we define the enumeration of slot value 251

as: 252

M = {M1, ...,ML} (8) 253

The enumerated slot value is L, so we define the 254

module: 255

pclzt,e (a
sem
t ⊕ pprojt,e (asemt ⊕ iDST

t−1 )) =

W clz
t,e (a

sem
t ⊕ pprojt,e (asemt ⊕ iDST

t−1 )) + bclze =

[none,M1, ...,ML] ∈ RL+1

(9) 256

The input here includes the semantic information of 257

BERT, the structured semantics and history of the 258

symbolic memory, and corresponding type of the 259

previous value is added to constrain the learning of 260

the value classification. 261

3.8 Value Span Extraction Module 262

This module uses the dialogue context represen- 263

tation rit, i ∈ [1, seqmax] of token-level form pre- 264

vious BERT to predict the start and end position 265

of each slot in the origin utterance. The αi
t,e and 266

βi
t,e are corresponding to the start position and end 267

position of each slot e in the symbolic memory in 268

round t. 269

[αi
t,e, β

i
t,e] = W span

e rit + bspane ∈ R2,∀1 ≤ i ≤ n
(10) 270

pstartt,e = softmax(αt,e) (11) 271
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pendt,e = softmax(βt,e) (12)272

startt,e = argmax(pstartt,e ) (13)273

endt,e = argmax(pendt,e ) (14)274

3.9 Dialogue History275

When we get current round t and all the proprieties276

slot e from prediction, and we use the information277

we get to organize a structured dialogue history to278

support the next round of predictions.279

Ht = icachet−1 ⊗ (schemat−1,e⊕ tokent−1,e) (15)280

281

schemae ∈ {1, ..., N +K + 1} (16)282

The formula above is the unique digital id rep-283

resentation of the schema of each prediction re-284

sult e, tokent−1,e is the normalized word token285

of the value at e. In all locations where icachet−1286

has prediction results, there are corresponding287

schemae ⊕ embeddingt−1,e to structure the repre-288

sentation, pairs separated by [CLS].289

4 Experiments290

4.1 Experimental Settings291

Datasets. We evaluate our approach on two292

widely used benchmarks: MultiWOZ 2.1 (Eric293

et al., 2020) and Schema-Guided Dialogue294

(SGD) (Rastogi et al., 2019). MultiWOZ 2.1 is a295

very challenging dataset for the task of DST. It296

contains more than 10,000 multi-domain dialogues297

defined over a fairly large ontology. The dialogues298

belong to 5 domains (train, restaurant, hotel,299

taxi, attraction) with 30 domain-slot pairs that300

appear in all portions of the data. SGD consists of301

over 20k annotated multi-domain, task-oriented302

conversations between a human and a virtual303

assistant. These conversations involve interactions304

with services and APIs spanning 20 domains,305

such as banks, events, media, calendar, travel,306

and weather. SGD shares the same ontology with307

MultiWOZ 2.1 in many domains308

309

Evaluation. We adopt Joint Goal Accuracy310

(JGA) as the evaluation metric to measure the311

overall performance of the models. JGA is defined312

as the average of prediction accuracies obtained313

in each round of dialogue. Only if all domains,314

DST Models DSTC8 SGD-All MulitiWOZ 2.1
BERT-DST (Chao and Lane, 2019) 38.30% 43.40%
TripPy (Heck et al., 2020) - 55.30%
SimpleTOD (Hosseini-Asl et al., 2020) - 56.45%
ConvBERT-DG (Jiang et al., 2020) 41.94% 58.70%
TripPy+CoCoAug (Li et al., 2020) - 60.53%
This Work 50.70% 67.89%

Table 1: Comparison results of our approach and previ-
ous works on SGD-ALL and MultiWOZ 2.1.

Figure 4: for each slot, measure the JSA difference
rate of each scheme (TripPy, transformer-dst, bert-dst)
compare to SSR-TOD (from table 2). compare between
ontology covered slots and uncovered : right 5 slot is
covered by ontology schema, left 5 slot is uncovered.
the figure shows that the 5 slots covered by ontology
achieve more JSA increment than the 5 slots uncovered
among all three schemes JSA difference rate compari-
son. furthermore, among the 5 slots uncovered, train-
arriveBy and train-leaveAt achieve more JSA than the
other 3 slots, for they gain benefits from venues which
covered by ontology.

slots, and values in the dialogue state are predicted 315

correctly, the dialog state prediction is considered 316

correct. 317

318

Training Details. Our model is initialized 319

with a pre-trained BERT model that has 12 layers 320

of 768 hidden units and 12 self-attention heads. 321

We set the learning rate and warmup proportion to 322

1e-4 and 0.1 respectively, and we set the maximum 323

sequence length of BERT input to 256. We use a 324

batch size of 16. The model is trained on a P100 325

GPU device for 50 epochs. 326

In the data augmentation phase, we enhanced the 327

original data with the method in (Li et al., 2020) 328

by 8 times and obtained more significant effects. 329

4.2 Main Results 330

Table 1 depicts the results of our approach and 331

previous works on MultiWOZ 2.1 and SGD-ALL. 332

From the results we can see that out approach has 333
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slot name is covered type BERT-DST Transformer-DST TripPy SSR-TOD-Aug BERT-DST diff Transformer-DST diff TripPy diff
train-arriveBy false span 94.87% 96.79% 97.02% 98.93% 4.28% 2.21% 1.97%
train-leaveAt false span 93.14% 92.28% 94.33% 98.64% 5.91% 6.90% 4.57%

hotel-stars false classification 96.83% 97.59% 97.98% 99.25% 2.51% 1.70% 1.30%
hotel-area false classification 92.61% 94.29% 95.78% 97.45% 5.23% 3.35% 1.74%

hotel-parking false classification 95.75% 96.12% 96.81% 97.60% 1.93% 1.54% 0.81%
restaurant-name true span 82.98% 95.37% 96.15% 97.99% 18.09% 2.75% 1.91%

hotel-name true span 86.61% 95.84% 96.44% 98.71% 13.97% 3.00% 2.36%
attraction-name true span 86.32% 94.24% 94.99% 98.43% 14.03% 4.44% 3.61%
restaurant-area true classification 93.43% 96.11% 96.80% 99.09% 6.05% 3.10% 2.37%
restaurant-food true classification 85.00% 96.04% 97.94% 99.40% 16.94% 3.50% 1.50%

Table 2: joint slot accuracy comparison and analysis: we extracted ten representative slots. The second column
indicates whether the slots in the first column are covered by our external knowledge. The first five rows show five
uncovered slots, and the last five are covered slots. The third column type indicates how the slot is extracted in our
task, span means that the slot is extracted by the value span extraction module, and the classification means that the
slot is extracted by the value classification module. The next three columns BERT-DST, Transformer-DST (Zeng
and Nie, 2020), TripPy, and SSR-TOD-Aug respectively correspond to the JGA performance of the slot in the
above four schemes. The last three columns show the improvement ratio of the slot in the SSR-TOD-Aug scheme
compared to the JGA under the other three schemes.

dst model with dontcare ignore dontcare
TripPy 53.83% 55.39%
SSR-TOD base 55.67% 57.90%
SSR-TOD-Aug 61.87% 67.89%

Table 3: different standard and version

obtained performance that greatly surpasses previ-334

ous systems on both DSTC8 and MultiWOZ 2.1335

data sets. The improvements are attributed to two336

possible reasons. One is the structured knowledge337

which is incorporated in the previous part. The338

other is that the network structure, the symbolic339

memory can carry more structured dialogue history340

than the traditional models.341

4.3 Discussion342

4.3.1 Impact of Ontology Knowledge343

In our experiment, to facilitate analysis and compar-344

ison, we did not cover all the slots with an external345

ontology schema, as shown in table 2, we selected346

five covered and uncovered slots, and in these 10347

slots, and we also extracted 5 span type and 5 classi-348

fication type. Table 2 shows the JGA performance349

of those slots on the original baseline scheme and350

SSR-TOD-Aug respectively.351

It can be seen that in these slots, the JSA of SSR-352

TOD-aug is better than the previous three schemes353

in an all-round way. Furthermore, we show the354

JSA difference rate of SSR-TOD-aug compared355

to the aforementioned schemes in Figure 4 sepa-356

rately, which can be obviously seen that the JSA357

difference rate of the left five slots that are not cov-358

ered by external knowledge is much lower than that359

of the covered slots, which directly illustrates the360

importance of external knowledge. 361

External knowledge is introduced as a schema, 362

and we found why is it so effective when analyzing 363

data case by case. The reason is that the model 364

does not have basic common sense like us, imagine 365

a scene of booking a hotel, the system said "a star 366

rating of 4", the human can realize only hotel has a 367

star rating and guesthouse does not, so the booking 368

type must be a hotel, therefore, the lack of common 369

sense information often leads to ambiguity and 370

interruption of reasonable dialogue. 371

The introduction of this kind of knowledge in- 372

formation, on the one hand, complements the back- 373

ground information for the dialogue; on the other 374

hand, it externalizes the knowledge contained in 375

the semantics and dialogue flow. Complementary 376

information makes the model, as a learning ob- 377

ject without any background knowledge, have the 378

possibility to fully understand the dialogue. And 379

the knowledge externalization allows the model 380

to learn how we make dialogue decisions through 381

explicit features. 382

In addition to the benefits of introducing knowl- 383

edge, there is also a very important point is type 384

constraint. From the data point of view, which 385

type of slot is suitable for span or classification 386

has obvious characteristics. For example, there are 387

only a few fixed dishes provided by the restaurant, 388

so classification should be used in slot restaurant- 389

food, also, car-parking also has two opinions which 390

are true or false. The various place names corre- 391

sponding to restaurant-name cannot be predicted 392

in advance and should be extracted by the span 393

method. Compared with BERT-DST which is a 394

classic method of using span to solve all slot fill- 395
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Figure 5: joint slot accuracy compare between TripPy,
BERT-DST, Transformer-DST and SSR-TOD-Aug

ing. In hotel-parking extraction, there are only396

simple scenarios of "yes" and "no", so there is not397

much difference with SSR-TOD, while restaurant-398

food has "British", "European", and "gastropub"399

in many cases, if still use the span method, the ef-400

fect is reduced compared with the SSR-TOD using401

classification.402

4.3.2 Impact of Semantic Knowledge403

The semantic knowledge was represented by sym-404

bolic memory and semantic projection module, has405

two core functions here. semantic projection mod-406

ule is to process the mapping from schema to slot;407

symbolic memory is to cache semantic information408

so that the model can handle more complex scenar-409

ios, such as semantics across multiple rounds, and410

multiple-choice cases.411

And the mapping in the semantic projection mod-412

ule is based on simple rules. The key point here413

is that we did not completely cover the entire task414

with a set of schema, and the reason is, on the one415

hand, in the implementation of the algorithm, the416

closer to the details, the more obvious the inher-417

ent characteristics of the data set. It is difficult to418

achieve unbiased coverage by introducing common419

knowledge and forced coverage will lead to a lot420

of extra proofreading and annotation work. On the421

other hand, ontology knowledge can be regarded as422

our consistent static understanding of common con-423

cepts, and it is more aimed at the description of the424

concept itself. In the dialogue scenario, ontology425

knowledge is the common sense of the dialogue426

participants. and much of the information will not427

be used by the dialogue participants to make dia-428

logue decisions. Therefore, we only extract and429

simplify the part that is often described semanti-430

cally in statistics. Also, to verifying the validity of431

external knowledge, our experiments did not cover432

Figure 6: example dialogue and slot groundtruth

all domains. 433

Figure 6 shows the effect of the semantic knowl- 434

edge, and it shows the dialogue in figure one and 435

the groud truth of each round of the slot. It can 436

be seen from figure 6 that in the second round 437

of dialogue, the system recommended "lan hong 438

house", but at this time the user did not confirm 439

the reservation of this hotel, so the name of this 440

hotel should not be in the restaurant frame of DST 441

when the user confirmed the reservation in the next 442

round, the name of the restaurant can be "lan hong 443

house". In the traditional scheme (BERT-DST and 444

Transformer-DST), this situation will not be han- 445

dled, so the slot must be predicted when it is not 446

needed, resulting in errors. 447

And TripPy has a trick mechanism, which is 448

also one of the three copy mechanisms. It caches 449

the content on the system side and solves part of 450

the problem to some extent. However, the situa- 451

tion after a round still cannot be handled. As far 452

as the problem itself is concerned, the traditional 453

solutions have not touched the fundamentals, in 454

essence, the assumptions of traditional DST are 455

simple and straightforward, making the task frame 456

not capable of handling this kind of cross-round se- 457

mantics. And symbolic memory can deal with this 458

situation well. Before the task frame, the informa- 459

tion of the restaurant name was stored in symbolic 460

memory, and the name information is passed to 461

the downstream module as a slot during the task 462

frame. At the same time, when the situation of 463

"book a taxi from the hotel to the restaurant" oc- 464

curs, the hotel and restaurant mentioned above can 465

also be found in the symbolic memory according 466

to the schema structure without ambiguity. This is 467

why SSR-TOD’s ability to understand dialogue is 468

stronger than traditional solutions. 469
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5 Conclusion470

We display a new perspective for dealing with471

the TOD problem, compared with the traditional472

method of sending NLU results directly to DST473

to process dialogue tasks. In addition to the tra-474

ditional NLU information extraction, we have ad-475

ditionally added a mechanism for organizing and476

caching knowledge under the new assumptions. So477

that DST can focus on the processing of specific478

dialogue tasks, thereby expanding the boundaries479

and capabilities of the end-to-end solution that can480

handle dialogue tasks. We also proved this from481

the performance of the experiment.482

This is our attempt under the new dialogue hy-483

pothesis. SSR-TOD is a simple attempt. Later484

we will further look for a more reasonable model485

structure to realize the new hypothesis.486

At the same time, due to the increase of the487

semantic layer, it is possible to unify various tasks488

in the dialogue interaction scenario.489
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Nikola Mrkšić, Diarmui Ó Séaghdha, Tsung-Hsien 527
Wen, Blaise Thoms, and Steve Young. 2017. Neural 528
belief tracker: Data-driven dialogue state tracking. 529
In Proceedings of ACL, pages 1777–1788. 530

Elnaz Nouri and Ehsan Hosseini-Asl. 2018. Toward 531
scalable neural dialogue state tracking model. In 532
arXiv preprint arXiv:1812.00899. 533

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, 534
Raghav Gupta, and Pranav Khaitan. 2019. Towards 535
scalable multi-domain conversational agents: The 536
schema-guided dialogue dataset. In arXiv preprint 537
arXiv:1909.05855, pages 422–428. 538

Liliang Ren, Kaige Xie, Lu Chen, and Kai Yu. 2018. 539
Towards universal dialogue state tracking. In Pro- 540
ceedings of EMNLP, pages 2780–2786. 541

Young Steve. 2009. CUED standard dialogue acts. In 542
Report Cambridge University Engineering Depart- 543
ment. 544
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