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Abstract

Recently, many BERT based approaches have
been proposed for task-oriented dialogue
(TOD) task. Despite their impressive perfor-
mance, the insufficient utilization of deep se-
mantic information and long-distance context
understanding makes it difficult for these meth-
ods to digest complex dialogue scenarios for
they cannot obtain sufficient evidence from dia-
logue data to support dialogue decision-making.
In this work, we propose a novel structured se-
mantics reinforcement (SSR) method to handle
these issues. SSR reorganized the end-to-end
TOD structure, which mainly includes two key
components: 1. The dialogue symbolic mem-
ory, which cache the objects mentioned in the
dialogue and the structure under the seman-
tic relationship. 2. semantic projection mod-
ule, understanding module, based on the pre-
vious structured results, determines the source
of the slot extraction required for the current
task. And our approach achieves state-of-the-
art results on dataset MultiwOZ 2.1, where
we acquire a joint goal accuracy beyond 60%
and also gains a significant effect on dataset
DSTCS.

1 Introduction

Task-oriented dialogue, as a focus in the field of
conversational Al has attracted a surging interest
from both academia and industry. In a dialogue
system, dialogue state tracking (DST) is a sub-task
that is defined to be recognizing the meaning and
intent in a user utterance, and be able to keep and
update this information during the process of the
dialog (Young et al., 2010). DST is critical to a
dialogue system since it determines the next ac-
tion that the system can respond to a user utterance.
Previous works on DST evolve from traditional ap-
proaches that operate on a fixed ontology (Mrksi¢
et al.,, 2017; Liu and Lane, 2017; Zhong et al.,
2018) to approaches that can handle open vocab-

Usr: | I'm looking for a cheap spanish restaurant.

gl pricerange: cheap
Sys: | There is the La Raza located at 4-6 Rose food: spanish

- Crescent. The phone number is 0122364550.

Usr: | Is it located in the center area?

2 pricerange: cheap

Sys: | Yes, itis located in the centre. Would you like to || food spanish
make a booking? area: centre

Usr: | Yes can you please?

3 pricerange: cheap
Sys: | When would you like to eat at La Raza and food: spanish

= how many people in the party? area: centre

name: La Raza
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Figure 1: An example of a real conversation being
parsed. case A shows a traditional approach that im-
mediately recognizes restaurant-name when the slot
appears but the user has not decided to use it. In case
B, the method is to follow the user’s will, and the slot
is not recognized in the round r2, but the slot cannot be
retrieved when it is needed. In SSR-TOD, unlike the
result of using NLU directly in traditional DST, we have
added symbolic memory here for structured parsing of
dialogue description content and caching of information
that the task frame needs to use immediately or later.

ulary (Ren et al., 2018; Nouri and Hosseini-Asl,
2018).

All these previous works focus on extraction
from the user and/or system utterance in the current
round, but ignore the fact that some desired results
may come from the long-distance dialogue history.
Figure 1 shows an illustrating example of such a
phenomenon. In the example, the value for the
restaurant name appears in the first round of the
dialogue, but the dialogue system is not expected
to put the restaurant name into a dialogue state



since the user has not decided whether to book
the recommended restaurant or not. Instead, the
value is desired in the third round where a decision
is confirmed by the user. This means we need to
obtain the value from a long-distance history. Heck
et al. (2020) adopt a copy mechanism to obtain slot-
values from dialogue state history, but obviously, it
cannot solve the problem shown in the example.
To tackle this problem, we propose a novel ap-
proach to dialog state tracking. The basic idea is
to utilize an additional data structure named sym-
bolic memory to store all the candidate slot-values
that we can obtain during the conversations and
use the memory as a dialogue history. Extensive
experiments on two benchmarks demonstrate the
effectiveness of the proposed approach.

2 Related Work

Early works on DST consider fixed ontology.
Mrksié et al. (2017) for the first time propose neu-
ral models to couple spoken language understand-
ing (SLU) and state tracking. The basic idea is to
rely on embedding representations instead of exact
matching to retrieve correct answers. (Liu and
Lane, 2017) focus on an end-to-end neural network
model for task-oriented dialogue. Zhong et al.
(2018) propose a globally-locally self-attentive ap-
proach to dialogue state tracking where global mod-
ules learn parameters shared among slots while
local modules learn slot-specific parameters. All
these works suffer from scalability and generaliza-
tion issues. Nouri and Hosseini-Asl (2018) ex-
tend the approach proposed in Zhong et al. (2018)
by using only one recurrent network with global
conditioning instead of (1+# slots) recurrent net-
works. Ren et al. (2018) propose an approach
named StateNet which is independent of the num-
ber of values, shares parameters across all slots,
and uses pre-trained word vectors. Chao and Lane
(2019) for the first time propose to use BERT (De-
vlin et al., 2019) as encoding dialogue context, in-
cluding both current utterances and history. Heck
et al. (2020) enhance previous BERT-DST with
three copy mechanisms, which are used to obtain
values from the user utterance, the system utter-
ance, and previous dialogue states.

3  Our Approach

3.1 Problem Formulation

We define a dialogue as a sequence of 1" rounds of
utterance pairs, denoted as as X = (< Uy, M; >

y..., < Up, Mp >) where Uy, is the user utterance
and M, is the corresponding response from the sys-
tem in the round ¢. In each round of dialogue, the
goal of the dialogue system is to predict whether
the slots under the current domain have been as-
signed values, and what corresponding values have
been assigned. Therefore, we organize the out-
put of each round in the form of domain-slot-pair
S = {81, ..., Sn}, where N is the total number of
all the slots under all domains.

To solve the above problem, we propose a frame-
work as depicted in Figure 2. Briefly, the frame-
work consists of the following modules.

* Dialogue Symbolic Memory. A data struc-
ture for storing all the slot-values that appear
in the dialogue history.

* Dialogue Context Encoder. A BERT-based
module that encodes user utterance and sys-
tem utterance in the current round as well as
history.

3.2 Dialogue Symbolic Memory

To build dialogue symbolic memory, we refer to
CUED dialogue acts (Steve, 2009) to introduce
task-independent ontology and manually establish
the mapping from entities to task slots. Figure 3
presents an example. We implement the mapping
between schema and entity to slots through simple
rules. After the mapping, we get a batch of new
entity attributes P = { Py, ..., P }, where K is the
total number of entity attributes introduced by the
mapping relationship.

Dialogue symbolic memory is specifically de-
signed to track the slots and properties recognized
in the dialogue process. Here, we set a strong
heuristic rule for filling slots: if a slot has a cor-
responding entity property, the slot will be filled
first with the value of the entity property, and the
slots in the DST will be handled by the semantic
projection module.

Take the venue entity as an example. There are
three types of venue entities in MultiWOZ: restau-
rant, hotel, and attraction. They have common
properties: name and area. Therefore, the venue
name, venue area, and venue type of the venue are
introduced into P as entity properties. For further
illustration, for example, in a scene where a restau-
rant is identified during the dialogue process, its
name is “backstreetbistro” and its area is “center”.
We recognize the hotel of the next scheduled task.
When we need to find the hotel of "the same area
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Figure 2: Architecture of the proposed approach.

of", we can display the area information of the pre-
vious event from the symbolic memory through the
previous schema, instead of expecting our model
to learn how to extract the area of the restaurant
from the previous dialogue context according to
the semantics of “the same area".

Through the introduction of this task-
independent schema, we display the relationship
(the main relationships include: entity to property,
and the same property of different entities under
the same type) between many task slots hidden
behind the dialogue in the dialogue process
to the model. At the same time, because it is
task-independent, slots between different domains
can share entities and attributes in this way, so
that the dialogue task can make full use of the
logical relationship behind the dialogue, not just
the identified semantic information.

In addition, for the following semantic projec-
tion module to learn how DST can get values from
the symbolic memory, the symbolic memory iden-
tifier

igache c {0’ 1}(N+K+1)><Q

ey

is introduced to mark whether the symbolic
memory is filled at each position in round 7, the )
here is a hyperparameters. As the number of layers
of symbolic memory, with the more layers, and the
more historical semantic information can be used.
We selected three layers artificially.

3.3 Dialogue Context Encoder

The module is an adaption from the BERT encod-
ing structure in (Chao and Lane, 2019; Heck et al.,
2020), as depicted in Figure 1. The input the en-
coder consists of three parts:

R, = BERT([CLS| @ Us & [SEP] & M;&
[SEP]® H, ® [SEP)),
2)

where U, is the user utterance in the round ¢, M;
is the corresponding system utterance, and H; is
structured dialogue history from the symbolic mem-
ory. Note that the definition of H; is different
from the definition in (Heck et al., 2020) where
H, = (Ut—la Mi_1),...,(Us, Ml) is the history
of dialogue up to and excluding round ¢. The output
is used as the encode of the dialogue content in the
round t, it consists of two parts: one is rtc LS which
as the representation of dialogue context sentence-
level, will be directly used by the following slot
classification module and value classification mod-
ule to predict the slot type and enumeration value.
And each of following

CLS 1 seq
Ry =[ry™,ry, .y, o]

3)

, as the representation of dialogue context token-
level, are all corresponding to a token at the corre-
sponding position in the input. Then, this part will
be input into the value span extraction module for
span-extraction of non-enumerated slot-values.
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Figure 3: An illustrating example for dialogue symbolic
memory.

3.4 Dialogue State Tracker

This part is the same as the DST in the traditional
end-to-end method to record the slot filling of each
task during the entire dialogue. As before, in order
to let the semantic projection module learn how to
value, introduce the DST identifier

iP5 e {0, 13N (4)

to record in each round ¢, whether each domain-
slot-pair is filled.

3.5 Semantic Projection Module

This module is used to learn how DST gets values
from symbolic memory:

(e & iPT) =

t,s t -
softmaz (WP (a3e™ @ iPST) + pProd) ¢ RNV
®)
where
af®m = rilS g jgache (6)

The input consists of three parts: 1. The struc-
tured semantic information extracted from the cur-
rent round 7', and because the symbolic memory
is a multi-layer structure, it also contains a certain
length of historical structured semantic information.
2. For the dialogue status of the previous round,
we learn the dialogue status of the current round of
t through the historical 7" — 1 and the DST status
of previous rounds. 3. Semantic representation of
sentence-level extracted by BERT.

3.6 Slot Classification Module

This module uses to the sentence-level represen-

tation 7% and i§2"¢ of the previous Dialogue

context as input. Also, this module is used to learn
if the slot has value ( none or dontcare) and how to
get value form the corresponding module value (
span or classification).

pilH(a5em) = softmaz (Wi i) + b)) € R,
(AS {Sl, ey SN, P, ..., PK}
(7
Span represents the value obtained from the
value span extraction module, and class represents
the value obtained from the value classification
module. In the input part, the 5§%“"® in here acts as
structured historical information. Since the values
in the symbolic memory are filled or not, this part
of structured information is obviously helpful to
the sub-task of the current slot classification.

3.7 Value Classification Module

This module is used to learn enumerated slot value,
for example, "true" of if has wifi, "expensive" of
restaurant’s price range, "north" of location, "5" of
star rating, we define the enumeration of slot value
as:

M ={M,..,. M} ®)

The enumerated slot value is L, so we define the
module:

P (e @ i (a3 @ iP5T)) =

Wit (@ & e (agem @ iP5T)) + b =

[none, My, ..., M) € REF!

©)

The input here includes the semantic information of
BERT, the structured semantics and history of the
symbolic memory, and corresponding type of the
previous value is added to constrain the learning of
the value classification.

3.8 Value Span Extraction Module

This module uses the dialogue context represen-
tation 7,7 € [1, 8€q,,4,) Of token-level form pre-
vious BERT to predict the start and end position
of each slot in the origin utterance. The ozf;,e and
B,a . are corresponding to the start position and end
position of each slot e in the symbolic memory in
round .

[0 c: B el = WEPry + 07" € R%, V1 <i <
(10)

pg’tea’r‘t — Softmax(at7€)

1D



pmd = softmaz(f)  (12)
start,e = argmax(pffgrt) (13)
endy e = argmax(pfzd) (14)

3.9 Dialogue History

When we get current round ¢ and all the proprieties
slot e from prediction, and we use the information
we get to organize a structured dialogue history to
support the next round of predictions.

H, = z‘giﬁhe ® (schemay_1. ® tokeny_1 ) (15)

schema, € {1,... N+ K +1}  (16)

The formula above is the unique digital id rep-
resentation of the schema of each prediction re-
sult e, token;_1 . is the normalized word token
of the value at e. In all locations where 52
has prediction results, there are corresponding
schema, © embedding;_1 . to structure the repre-

sentation, pairs separated by [C'LS].

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate our approach on two
widely used benchmarks: MultiWwOZ 2.1 (Eric
et al., 2020) and Schema-Guided Dialogue
(SGD) (Rastogi et al., 2019). MultiwOZ 2.1 is a
very challenging dataset for the task of DST. It
contains more than 10,000 multi-domain dialogues
defined over a fairly large ontology. The dialogues
belong to 5 domains (train, restaurant, hotel,
taxi, attraction) with 30 domain-slot pairs that
appear in all portions of the data. SGD consists of
over 20k annotated multi-domain, task-oriented
conversations between a human and a virtual
assistant. These conversations involve interactions
with services and APIs spanning 20 domains,
such as banks, events, media, calendar, travel,
and weather. SGD shares the same ontology with
MultiWwOZ 2.1 in many domains

Evaluation. We adopt Joint Goal Accuracy
(JGA) as the evaluation metric to measure the
overall performance of the models. JGA is defined
as the average of prediction accuracies obtained
in each round of dialogue. Only if all domains,

DST Models

BERT-DST (Chao and Lane, 2019)
TripPy (Heck et al., 2020)

SimpleTOD (Hosseini-Asl et al., 2020)
ConvBERT-DG (Jiang et al., 2020)
TripPy+CoCoAug (Li et al., 2020)
This Work

DSTC8 SGD-All MulitiWOZ 2.1
38.30% 43.40%
- 55.30%
56.45%
58.70%
60.53%

67.89%

41.94%

50.70 %

Table 1: Comparison results of our approach and previ-
ous works on SGD-ALL and MultiWOZ 2.1.

Figure 4: for each slot, measure the JSA difference
rate of each scheme (TripPy, transformer-dst, bert-dst)
compare to SSR-TOD (from table 2). compare between
ontology covered slots and uncovered : right 5 slot is
covered by ontology schema, left 5 slot is uncovered.
the figure shows that the 5 slots covered by ontology
achieve more JSA increment than the 5 slots uncovered
among all three schemes JSA difference rate compari-
son. furthermore, among the 5 slots uncovered, train-
arriveBy and train-leaveAt achieve more JSA than the
other 3 slots, for they gain benefits from venues which
covered by ontology.

slots, and values in the dialogue state are predicted
correctly, the dialog state prediction is considered
correct.

Training Details. Our model is initialized
with a pre-trained BERT model that has 12 layers
of 768 hidden units and 12 self-attention heads.
We set the learning rate and warmup proportion to
le-4 and 0.1 respectively, and we set the maximum
sequence length of BERT input to 256. We use a
batch size of 16. The model is trained on a P100
GPU device for 50 epochs.

In the data augmentation phase, we enhanced the
original data with the method in (Li et al., 2020)
by 8 times and obtained more significant effects.

4.2 Main Results

Table 1 depicts the results of our approach and
previous works on MultiwOZ 2.1 and SGD-ALL.
From the results we can see that out approach has



slot name is covered type BERT-DST Transformer-DST  TripPy ~SSR-TOD-Aug BERT-DST diff Transformer-DST diff TripPy diff

train-arriveBy span 94.87% 96.79% 97.02% 98.93% 4.28% 2.21% 1.97%
train-leaveAt span 93.14% 92.28% 94.33% 98.64% 5.91% 6.90% 4.57%
hotel-stars classification 96.83% 97.59% 97.98% 99.25% 2.51% 1.70% 1.30%
hotel-area classification 92.61% 94.29% 95.78% 97.45% 5.23% 3.35% 1.74%
hotel-parking classification 95.75% 96.12% 96.81% 97.60% 1.93% 1.54% 0.81%
restaurant-name true span 82.98% 95.37% 96.15% 97.99% 18.09% 2.75% 1.91%
hotel-name true span 86.61% 95.84% 96.44% 98.71% 13.97% 3.00% 2.36%
attraction-name true span 86.32% 94.24% 94.99% 98.43% 14.03% 4.44% 3.61%
restaurant-area true classification 93.43% 96.11% 96.80% 99.09% 6.05% 3.10% 2.37%
restaurant-food true classification 85.00% 96.04% 97.94% 99.40% 16.94% 3.50% 1.50%

Table 2: joint slot accuracy comparison and analysis: we extracted ten representative slots. The second column
indicates whether the slots in the first column are covered by our external knowledge. The first five rows show five
uncovered slots, and the last five are covered slots. The third column type indicates how the slot is extracted in our
task, span means that the slot is extracted by the value span extraction module, and the classification means that the
slot is extracted by the value classification module. The next three columns BERT-DST, Transformer-DST (Zeng
and Nie, 2020), TripPy, and SSR-TOD-Aug respectively correspond to the JGA performance of the slot in the
above four schemes. The last three columns show the improvement ratio of the slot in the SSR-TOD-Aug scheme

compared to the JGA under the other three schemes.

dst model with dontcare ignore dontcare
TripPy 53.83% 55.39%
SSR-TOD base 55.67% 57.90%
SSR-TOD-Aug 61.87% 67.89%

Table 3: different standard and version

obtained performance that greatly surpasses previ-
ous systems on both DSTCS8 and MultiwWOZ 2.1
data sets. The improvements are attributed to two
possible reasons. One is the structured knowledge
which is incorporated in the previous part. The
other is that the network structure, the symbolic
memory can carry more structured dialogue history
than the traditional models.

4.3 Discussion

4.3.1 Impact of Ontology Knowledge

In our experiment, to facilitate analysis and compar-
ison, we did not cover all the slots with an external
ontology schema, as shown in table 2, we selected
five covered and uncovered slots, and in these 10
slots, and we also extracted 5 span type and 5 classi-
fication type. Table 2 shows the JGA performance
of those slots on the original baseline scheme and
SSR-TOD-Aug respectively.

It can be seen that in these slots, the JSA of SSR-
TOD-aug is better than the previous three schemes
in an all-round way. Furthermore, we show the
JSA difference rate of SSR-TOD-aug compared
to the aforementioned schemes in Figure 4 sepa-
rately, which can be obviously seen that the JSA
difference rate of the left five slots that are not cov-
ered by external knowledge is much lower than that
of the covered slots, which directly illustrates the

importance of external knowledge.

External knowledge is introduced as a schema,
and we found why is it so effective when analyzing
data case by case. The reason is that the model
does not have basic common sense like us, imagine
a scene of booking a hotel, the system said "a star
rating of 4", the human can realize only hotel has a
star rating and guesthouse does not, so the booking
type must be a hotel, therefore, the lack of common
sense information often leads to ambiguity and
interruption of reasonable dialogue.

The introduction of this kind of knowledge in-
formation, on the one hand, complements the back-
ground information for the dialogue; on the other
hand, it externalizes the knowledge contained in
the semantics and dialogue flow. Complementary
information makes the model, as a learning ob-
ject without any background knowledge, have the
possibility to fully understand the dialogue. And
the knowledge externalization allows the model
to learn how we make dialogue decisions through
explicit features.

In addition to the benefits of introducing knowl-
edge, there is also a very important point is type
constraint. From the data point of view, which
type of slot is suitable for span or classification
has obvious characteristics. For example, there are
only a few fixed dishes provided by the restaurant,
so classification should be used in slot restaurant-
food, also, car-parking also has two opinions which
are true or false. The various place names corre-
sponding to restaurant-name cannot be predicted
in advance and should be extracted by the span
method. Compared with BERT-DST which is a
classic method of using span to solve all slot fill-



Trippy

SSR-TOD train-arriveby

train-leaveat

hotel-parking restaurant-name

hotel-area hotel-name

restaurant-area attraction-name

restaurant-food

Figure 5: joint slot accuracy compare between TripPy,
BERT-DST, Transformer-DST and SSR-TOD-Aug

ing. In hotel-parking extraction, there are only
simple scenarios of "yes" and "no", so there is not
much difference with SSR-TOD, while restaurant-
food has "British", "European"”, and "gastropub"
in many cases, if still use the span method, the ef-
fect is reduced compared with the SSR-TOD using
classification.

4.3.2 Impact of Semantic Knowledge

The semantic knowledge was represented by sym-
bolic memory and semantic projection module, has
two core functions here. semantic projection mod-
ule is to process the mapping from schema to slot;
symbolic memory is to cache semantic information
so that the model can handle more complex scenar-
10s, such as semantics across multiple rounds, and
multiple-choice cases.

And the mapping in the semantic projection mod-
ule is based on simple rules. The key point here
is that we did not completely cover the entire task
with a set of schema, and the reason is, on the one
hand, in the implementation of the algorithm, the
closer to the details, the more obvious the inher-
ent characteristics of the data set. It is difficult to
achieve unbiased coverage by introducing common
knowledge and forced coverage will lead to a lot
of extra proofreading and annotation work. On the
other hand, ontology knowledge can be regarded as
our consistent static understanding of common con-
cepts, and it is more aimed at the description of the
concept itself. In the dialogue scenario, ontology
knowledge is the common sense of the dialogue
participants. and much of the information will not
be used by the dialogue participants to make dia-
logue decisions. Therefore, we only extract and
simplify the part that is often described semanti-
cally in statistics. Also, to verifying the validity of
external knowledge, our experiments did not cover

user: Could you help me find a moderately priced chinese food restaurant?
sys: there are 4. which side of town do you prefer?
restaurant:

“restaurant-food": "chinese”,

“restaurant-pricerange™ "maoderate”

user: It doesnt matter what side of town.
sys: In that case, | would suggest this one lan hong house.
restaurant:

“restaurant-food": "chinese",

“restaurant-pricerange”: "moderate”

"area": "dontcare"

user: Okay, can | please have the postcode and address?
sys: Here's you are: cb12If, 12 Norfolk Street City Centre.
restaurant:

“restaurant-food": "chinese",

“restaurant-pricerange”™: "moderate”

“name": "lan hong house"

"area": "dontcare"

Figure 6: example dialogue and slot groundtruth

all domains.

Figure 6 shows the effect of the semantic knowl-
edge, and it shows the dialogue in figure one and
the groud truth of each round of the slot. It can
be seen from figure 6 that in the second round
of dialogue, the system recommended "lan hong
house", but at this time the user did not confirm
the reservation of this hotel, so the name of this
hotel should not be in the restaurant frame of DST
when the user confirmed the reservation in the next
round, the name of the restaurant can be "lan hong
house". In the traditional scheme (BERT-DST and
Transformer-DST), this situation will not be han-
dled, so the slot must be predicted when it is not
needed, resulting in errors.

And TripPy has a trick mechanism, which is
also one of the three copy mechanisms. It caches
the content on the system side and solves part of
the problem to some extent. However, the situa-
tion after a round still cannot be handled. As far
as the problem itself is concerned, the traditional
solutions have not touched the fundamentals, in
essence, the assumptions of traditional DST are
simple and straightforward, making the task frame
not capable of handling this kind of cross-round se-
mantics. And symbolic memory can deal with this
situation well. Before the task frame, the informa-
tion of the restaurant name was stored in symbolic
memory, and the name information is passed to
the downstream module as a slot during the task
frame. At the same time, when the situation of
"book a taxi from the hotel to the restaurant” oc-
curs, the hotel and restaurant mentioned above can
also be found in the symbolic memory according
to the schema structure without ambiguity. This is
why SSR-TOD’s ability to understand dialogue is
stronger than traditional solutions.



5 Conclusion

We display a new perspective for dealing with
the TOD problem, compared with the traditional
method of sending NLU results directly to DST
to process dialogue tasks. In addition to the tra-
ditional NLU information extraction, we have ad-
ditionally added a mechanism for organizing and
caching knowledge under the new assumptions. So
that DST can focus on the processing of specific
dialogue tasks, thereby expanding the boundaries
and capabilities of the end-to-end solution that can
handle dialogue tasks. We also proved this from
the performance of the experiment.

This is our attempt under the new dialogue hy-
pothesis. SSR-TOD is a simple attempt. Later
we will further look for a more reasonable model
structure to realize the new hypothesis.

At the same time, due to the increase of the
semantic layer, it is possible to unify various tasks
in the dialogue interaction scenario.
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