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ABSTRACT

Recent advancements in large language model (LLM)-based agents have demon-
strated that collective intelligence can significantly surpass the capabilities of in-
dividual agents, primarily due to well-crafted inter-agent communication topolo-
gies. Despite the diverse and high-performing designs available, practitioners
often face confusion when selecting the most effective pipeline for their spe-
cific task: Which topology is the best choice for my task, avoiding unneces-
sary communication token overhead while ensuring high-quality solution? In re-
sponse to this dilemma, we introduce G-Designer, an adaptive, efficient, and ro-
bust solution for multi-agent deployment, which dynamically designs task-aware,
customized communication topologies. Specifically, G-Designer models the
multi-agent system as a multi-agent network, leveraging a variational graph auto-
encoder to encode both the nodes (agents) and a task-specific virtual node, and
decodes a task-adaptive and high-performing communication topology. Exten-
sive experiments on six benchmarks showcase that G-Designer is: (1) high-
performing, achieving superior results on MMLU with accuracy at 84.50% and
on HumanEval with pass@1 at 89.90%; (2) task-adaptive, architecting commu-
nication protocols tailored to task difficulty, reducing token consumption by up
to 95.33% on HumanEval; and (3) adversarially robust, defending against agent
adversarial attacks with merely 0.3% accuracy drop. The code is available at
https://github.com/yanweiyue/GDesigner.

1 INTRODUCTION
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Figure 1: Existing practices for LLM-based multi-
agent communication topology design.

An LLM-based agent, which integrates
the language generation capabilities of
LLMs with decision-making and action-
execution functionalities (Richards &
et al., 2023; Nakajima, 2023; Reworkd,
2023), has exhibited impressive perfor-
mance across a wide range of tasks,
from reasoning (Yao et al., 2023b) and
code generation (Shinn et al., 2023) to
even more complex applications like video
gaming (Wang et al., 2023) and au-
tonomous driving (Jin et al., 2023). Even
more exciting, researchers have discovered that combining multiple LLM-based agents–whether im-
plicitly or explicitly–into a team can outperform individual agents when tackling complex tasks (Du
et al., 2023; Liang et al., 2023; Wang et al., 2023b; Jiang et al., 2023; Shinn et al., 2023; Zheng
et al., 2023; Wu et al., 2023), demonstrating a form of collaborative intelligence reminiscent of
human teamwork in multi-agent systems (Zhang et al., 2023b). This emergence of human-esque
collective intelligence is fundamentally driven by the design of their topology, i.e., how multi-agents
are connected, and how they transmit, exchange, and assimilate information.

∗Kun Wang and Xiangguo Sun are the corresponding authors, † denotes equal contributions.
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In practice, prior research has extensively explored how multiple instances of LLMs, referred to
as agents (Wang et al., 2024; Xi et al., 2023; Gao et al., 2023; Cheng et al., 2024), should be
structured and organized to converse, collaborate, debate, or even compete. Various topological
designs have been investigated, such as chain (Wei et al., 2022; Hong et al., 2023), tree (Yao
et al., 2023a; Wu et al., 2023), star (Wu et al., 2023), complete graphs (Qian et al., 2024), random
graphs (Qian et al., 2024), optimizable graphs (Zhuge et al., 2024; Zhang et al., 2024), and LLM-
based networks (Hao et al., 2023; Liu et al., 2023). These elaborately designed communication
topologies have demonstrated remarkable performance with minimal human supervision, bridging
the gap between individual and collective intelligence. Faced with numerous structures available, an
inquisitive practitioner might ask: how should I select or design a topology that best suits my task?
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Figure 2: The token consumption and accuracy of dif-
ferent multi-agent protocols on two subsets of MMLU
dataset, “Highschool Biology” and “College Math”,
tested with four gpt-4-based agents.

The question posed above is non-trivial
and, at times, perplexing. A piece of ex-
perimental evidence is presented in Fig-
ure 2, where we evaluated the performance
of different multi-agent structures on the
MMLU dataset (Hendrycks et al., 2021),
a collection of multiple-choice questions
across various subjects. The results re-
veal that even within the same dataset,
the suitability of different communication
topologies varies. ❶ Simpler Case: in
the simpler ”High School Biology” sub-
set, the chain structure performs compara-
bly to the complex GPTSwarm, while con-
suming significantly fewer tokens (0.5k versus 7.8k). In this case, the chain structure is clearly a
more economical choice. ❷ Harder Case: However, for the more challenging ”College Mathe-
matics” subset, GPTSwarm outperforms the chain structure by 8.75%, primarily attributed to its
intricate topology and prompt optimization. In summary, practitioners often find it challenging to
effortlessly identify the most efficient and complexity-adaptive multi-agent topology for a given task.

In light of this dilemma, we propose the LLM-based
::
Multi-

:
agent

:
Communication

::
Protocol

(MACP), establishing standardized guidance for LLM-MA topology design:

Multi-agent Communication Protocol (MACP): Given a task/query q, an optimal LLM-MA
communication topology for q should satisfy the following protocol logics: (1) Effectiveness: The
communication structure must effectively produce the qualified solution for q; (2) Complexity-
adaptiveness: The topology should dynamically adjust to the complexity of the task, minimizing
communication overhead; (3) Adversarial robustness: The topology should maintain reliable
under adversarial attacks.

The formal definition of MACP is provided in Section 3. To design a communication topology that
ideally adheres to the MACP principles, we propose an effective, adaptive, and robust LLM-powered
multi-agent communication graph designer, termed G-Designer. Technically, G-Designer first ar-
chitects a multi-agent graph, where each agent, along with its specific properties (e.g., profile (Li
et al., 2023a), external API tools (Zhuang et al., 2023), or knowledge base (Chen et al., 2024a)), is
represented as a node, and communication between agents forms the edges. G-Designer employs
a variational graph auto-encoder to encode the nodes (agents) along with task-specific information,
and to decode the resulting collaboration network between agents. This input-dependent paradigm
allows G-Designer to design task-adaptive, high-performing communication topology, which
is, at the same time, assured of efficiency and robustness with sparsity regularization. Unlike previ-
ous LLM-based multi-agent topology designs, which rely on a static structure for all queries/tasks,
G-Designer adaptively crafts customized topologies for different domains and tasks, serving as a
fully autonomous and flexible assistant for multi-agent system establishment and deployments.

Our contribution can be summarized as follows:

❶ Protocol Proposal. We propose the first communication protocol tailored for LLM-powered
multi-agent systems, MACP, which comprehensively regulates multi-agent topology design across
three dimensions: performance, adaptability, and robustness, and incisively highlights the short-
comings of existing designs.
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❷ Practical Solution. We present G-Designer, an effective, adaptive, and robust designer of LLM-
powered multi-agent communication graphs. By leveraging a variational graph auto-encoder to
construct and process the multi-agent network, G-Designer decodes task-adaptive and high-
performing agent communication, which is also equipped with strong robustness against agent-
rooted adversarial attacks via dynamic topology adjustment.

❸ Experimental Validation. Extensive experiments across six benchmarks show that G-Designer
is: (1) high-performing, surpassing state-of-the-art topologies by 0.20% ∼ 4.10% on MMLU and
HumanEval; (2) task-adaptive, dynamically adjusting topology complexity with task awareness,
outperforming state-of-the-art methods on MMLU with a cost of merely 1.5e+5 compared to their
2.6e+ 6, reducing token consumption by up to 92.24%; and (3) adversarially robust, defending
against agent adversarial attacks with merely 0.3% accuracy drop.

2 RELATED WORKS

LLM-agent Collaboration Recent research has explored various multi-agent communication
topologies, including: (1) Non-interactive, where agents operate independently without inter-agent
communication, as employed in systems like LATM (Zhang et al., 2023a) and LLM-Debate (Du
et al., 2023); (2) Chain, where agents are arranged in a sequential structure, each receiving the out-
put from its predecessor and passing information to its successor, utilized by ChatDev (Qian et al.,
2023), MetaGPT (Hong et al., 2023), and L2MAC (Holt et al., 2024); (3) Star, where a central
administrative agent (often referred to as a commander, teacher, etc.) directs subordinate agents,
seen in AutoGen (Wu et al., 2023), SecurityBot (Yan et al., 2024), and MiniGrid (Zhou et al., 2023);
(4) Tree, where a root agent hierarchically manages multiple child agents, as in SoA (Ishibashi &
Nishimura, 2024); and (5) Graph, encompassing complete graphs (Qian et al., 2024; Zhuge et al.,
2024) and random graphs (Qian et al., 2024), among others.

Multi-agents as Graphs Graphs, as a fundamental data structure for organizing and represent-
ing relationships between entities (Zhang & Chartrand, 2006), are widely adopted in the pre-LLM
era as a powerful tool to facilitate effective communication in multi-agent reinforcement learning
(MARL) (Pesce & Montana, 2023; Hu et al., 2024; Liu et al., 2022). With the rise of LLMs and
the proliferation of LLM-based agents Chen et al. (2023a); Cohen et al. (2023); Hua et al. (2023),
researchers have similarly recognized that interactions among multiple agents can naturally be mod-
eled from a graph-based perspective (Chen et al., 2023b; Zhuge et al., 2024; Qian et al., 2024; Liu
et al., 2023). Early attempts are implicit, like ChatEval (Chan et al., 2023), AutoGen (Wu et al.,
2023), and DSPy (Khattab et al., 2023). More recent practices including ChatLLM (Hao et al.,
2023), DyLAN (Liu et al., 2023), GPTSwarm (Zhuge et al., 2024), and MacNet (Qian et al., 2024),
have explicitly represented the organization of multiple agents as a graph. However, all these at-
tempts, whether predefined or iteratively optimized, remain input-independent. Consequently, they
fail to be task-aware and adaptively design topologies that suit the complexity of the specific task.

3 FORMALIZATION

This section establishes the notation, formalizes key concepts from a topology perspective, and
formally defines our proposed multi-agent communication protocol.

Topology Structure We model the multi-agent system as a directed graph G = (V, E), where
V = {v1, . . . , vN} represents the set of nodes (with N = |V|) and E denotes the set of edges. Each
node vi ∈ V corresponds to an agent, formalized as:

vi = {Basei,Rolei,Statei,Plugini}, (1)

where each agent vi is composed of four key elements: (1) Basei, the language model instance
powering vi; (2) Rolei, the agent’s pre-assigned role or function; (3) Statei, representing the
agent’s accumulated knowledge and interaction history; and (4) Plugini, a set of external tools or
plugins available to vi, such as web searchers (Ma et al., 2023), code compilers (Richards & et al.,
2023; Wu et al., 2023; Hong et al., 2023; Bouzenia et al., 2024; Ishibashi & Nishimura, 2024), or
file readers (Zhuge et al., 2024; Richards & et al., 2023). Each LLM-based agent vi receives prompt
P and generates responseRi: Ri = vi(P) = vi(Psys,Pusr), (2)
where Psys = {Rolei,Statei} represents the system prompt encompassing its role and state, and
Pusr denotes the user prompt, which possibly includes the given tasks, responses/instructions from
other agents and externally retrieved knowledge.
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The connectivity of G can also be characterized by a (non-symmetric) adjacency matrix A ∈
{0, 1}N×N , where A[i, j] = 1 if eij = (vi, vj) ∈ E , otherwise 0. Each edge eij ∈ E represents the
flow of information from vi to vj .
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Figure 3: The designing workflow of our proposed G-Designer.
Communication Pipeline Given a query/problemQ, the multi-agent system engages in K rounds
of interactive utterances, which collaboratively drive the agents toward producing the final solution
a(K) based on their cumulative dialogue exchanges. At the beginning of the t-th dialogue round, a
mapping function ϕ is applied to determine the execution index for each agent:

ϕ : G 7−→ σ, σ = [vσ1
, vσ2

, · · · , vσN
],

s. t.∀i > j, vσi
/∈ Nin(vσj

),
(3)

where σ is the execution sequence of agents, Nin(vσ(j)) denotes the in-neighborhood of vσ(j), and
the constraint ensures that an agent vσ(i) can only execute after any agent vσ(j) from which it re-
ceives information. Once the execution order is determined, each agent proceeds to perform input-
output operations sequentially:

R(t)
i = vi(P(t)

sys ,P(t)
usr ), P(t)

usr = {Q,∪vj∈Nin(vi)R
(t)
j } (4)

where R(t)
i represents the output of vi, which could be a rationale, an answer, or a partial solution,

depending on the specific context. The output R(t)
i is generated based on the system prompt P(t)

sys
and the context prompt, consisting of the query Q and messages from other agents. At the end of
each dialogue, an aggregation function is adopted to generate the answer/solution a(t):

a(t) ← Aggregate(R(t)
1 ,R(t)

2 , · · · ,R(t)
N ). (5)

The implementation of the Aggregate function is flexible, with possible options including majority
voting (Chen et al., 2024b; Zhuge et al., 2024; Li et al., 2024), aggregating all agents’ responses and
delegating one agent to provide the final answer (Wu et al., 2023; Jiang et al., 2023; Liu et al., 2023;
Zhang et al., 2024), or simply using the output of the last agent R(t)

σN (Qian et al., 2024). Through
K rounds of utterances, either predefined (Qian et al., 2024) or determined by an early-stopping
mechanism (Liu et al., 2023), the overall system G produces the final answer a(K) for Q.

MACP Protocol We give the formal definition of MACP Protocol as follows:

Definition 1 (Multi-agent Communication Protocol) Given an LLM-based multi-agent system
G = (V, E), we establish the following objective as optimization principle:

min
G∈G

[
−u

(
G(Q)

)
+β1 · ||G||+ β2 ·

∣∣Ĝ(Q̂)− G(Q)∣∣], (6)
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where G represents the feasible parameter space of G, u(·) is the utility evaluator, ||G|| measures
the computational and communication overhead of the entire graph, and Q̂ and Ĝ denote the query
description and the multi-agent system after adversarial perturbation, respectively. The first term in
Equation (6) corresponds to high performance, aiming to maximize the utility of the system’s out-
put; the second term addresses task-adaptiveness, seeking to minimize system complexity to reduce
power consumption and economic cost; and the third term focuses on robustness, constraining the
deviation of system output under adversarial attacks.

4 G-DESIGNER
Figure 3 illustrates how G-Designer adaptively designs communication topologies for any given
query. Specifically, the process begins with a few “raw materials”: the input query Q, the agent set
V , the profile pool, and the toolset. In the Construct stage, G-Designer leverages a node encoder to
construct a multi-agent network along with a task-specific virtual node. In the Design stage, a graph
auto-encoder is employed to decode the communication graph topology Gcom, which is leveraged
for multi-round inter-agent collaboration in the Optimize stage.

4.1 MULTI-AGENT NETWORK CONSTRUCTION

Given an input query Q and a set of LLM-agents V , G-Designer aims to design a task-adaptive
and effective communication topology Gcom. We begin by assigning each agent a unique role and
profile, as previous research (Wang et al., 2023b) has shown that assigning distinct personas or roles
to LLM-based agents can enhance cognitive synergy. Based on these roles, different external tools
are allocated to the agents (e.g., Mathematica for a math analyst). Thus, we successfully initialize
each agent vi as {Basei,Rolei,Statei,Plugini}, as defined in Equation (1).

We proceed to construct a structured multi-agent network as input to G-Designer, represented as
G = (Xagent,A), where Xagent ∈ RN×D is the node (agent) feature matrix and A ∈ RN×N

represents the connectivity matrix. For the feature matrix Xagent, we employ a node encoder to
transform each agent’s unique profile into a fixed-length embedding representation:

xi ← NodeEncoder (T (Basei),Rolei, T (Plugini)) , (7)
where T (·) extracts the textual description of the agent’s LLM backbone and its assigned plugins,
and NodeEncoder can be realized using small and lightweight text embedding models (Reimers,
2019). After encoding the individual agents, we aim to ensure that the multi-agent network incorpo-
rates information related to the query Q, as this query-dependent approach enables G-Designer to
be task-aware and adaptive. To this end, we introduce an additional task-specific virtual global
node vtask, which is bidirectionally connected to all agent nodes, enabling a global ”storage
sink” and facilitating smoother information flow among agents (Shirzad et al., 2023; Tan et al.,
2023; Rosenbluth et al., 2024). This task node is encoded by the NodeEncoder as follows:
xtask ← NodeEncoder(Q).
After obtaining the agent node features Xagent = [x1,x2, . . . ,xN ]⊤ and the task-specific embed-
ding xtask, we provide a simple anchor topology Aanchor ∈ {0, 1}N×N , which serves as a starting
point for G-Designer’s topology design process. For instance, given a code generation task with
three agents: manager/programmer/code reviewer, the anchor topology could be configured as a
chain structure, i.e., “manager→ programmer→ reviewer”, reflecting the typical workflow of code
completion. The anchor topology, being either user-defined or automatically generated by LLMs, is
often simple and sub-optimal1. However, it provides a foundational reference and prior knowledge
for G-Designer’s subsequent optimization process. We incorporate the task-specific vertex vtask
and its corresponding edges and obtain Ãanchor ∈ {0, 1}(N+1)×(N+1). Consequently, we establish
a task-specific multi-agent network G̃:

G̃ =
([Xagent

x⊤task

]
, Ãanchor

)
= (Ṽ, Ẽ) =

(
V ∪ {vtask}, E ∪ {

←→
(vi, vtask)|vi ∈ V)}

)
, (8)

where
[
Xagent

x⊤
task

]
can also be jointly denoted as X̃.

4.2 DESIGNING COMMUNICATION TOPOLOGY

Building upon the task-specific multi-agent network G̃, G-Designer seeks to establish a more fine-
grained and precise communication topology Gcom. Drawing inspiration from the variational graph

1We discuss the performance improvement of G-Designer over the anchor topology in Section 5.4.
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auto-encoder (VGAE) framework (Kipf & Welling, 2016; Zhao & Zhang, 2024), G-Designer em-
ploys a VGAE-based encoder-decoder fv to generate the multi-agent interaction topology:

Gcom = fv(G̃; Θv) = p(Gcom | H)q(H | X̃, Ãanchor), (9)

where fv is the encoder-decoder architecture with parameters Θv , q(·) is the encoder module, p(·)
is the decoder module. The encoder utilizes posterior probabilities to encode the node embeddings
into low-dimensional latent vector representations Hagent, which can be formulated as:

q(Hagent | X̃, Ãanchor) =

N∏
i=1

q(hi | X̃, Ãanchor), q(hi | X̃, Ãanchor) = N (hi | µi, diag(σ
2
i )), (10)

where µ = GNNµ(X̃, Ãanchor; Θµ) is the matrix of mean vectors µi; similarly log(σ) =

GNNσ(X̃, Ãanchor; Θσ). The choice of GNN backbone can be customized as needed; here, we
utilize a simple two-layer GCN (Kipf & Welling, 2017). hi, µi, and σi denote the i-th column of
H, µ, and σ, respectively. The encoder q(·) is parameterized by Θe = {Θµ,Θσ}. Following the en-
coding phase, the decoder employs the latent representations to generate a comprehensive blueprint
for multi-agent communication. More specifically, the decoder q(·) = qc ◦ qs first constructs a
parameterized, sketched graph S, which is then refined into the final multi-agent topology:

p(Gcom | Hagent) =

∫
S

pc(Gcom | S)ps(S | Hagent) dS. (11)

At first, ps(·) constructs the sketched adjacency matrix S from the latent representation Hagent:

ps(S | Hagent) =

N∏
i=1

N∏
j=1

ps(Sij | hi,hj ,htask; Θd), (12)

whose detailed derivation is as follows:

ps(Sij = 1 | hi,hj ,htask) = g(hi,hj ,htask),

= Sigmoid((log(ϵ)− log(1− ϵ) +ϖij)/τ),
(13)

where ϖ = FFNd([hi,hj ,htask]) with FFNd parameterized by Θd, ϵ ∼ Uniform(0, 1), and
τ denotes the temperature coefficient. When τ approaches zero, Equation (13) essentially return
the Bernouli sampling result for Sij . The resulting matrix S ∈ [0, 1]N×N represents a densely-
connected, non-negative graph distribution, indicating an overly complex and resource-intensive
pair-wise communication structure, which is not yet suitable for guiding multi-agent collaboration.
To align with G-Designer’s objectives of task adaptiveness and minimizing costs, we apply a re-
finement decoder pc(·) to refine the sketched S into a compact, sparse, and highly informative com-
munication graph, instantiated by a regularization objective:

pc : argmax
S̃∈S

1

2
||S− ZWZ⊤||2F + ζ||W||∗ +

1

2
||Aanchor − ZWZ⊤||2F , s. t. S̃ = ZWZ⊤, (14)

where Z ∈ RN×r is the top-r columns of left singular matrix S, ζ is a coefficient hyperparameter,
W ∈ Rr×r is an optimizable weight matrix, || · ||F denotes the Frobenius norm and ||W||∗ =

∑
i λi

where λi is the i-th singular value of W. S̃ ∈ RN×N is the desired sparse topology, which is
decomposed as ZWZ⊤. In Equation (14), the first and second terms are jointly denoted as anchor
regularization, which encourage the learned S̃ to maintain similarity with both the original S and the
anchor topology. The third term, denoted as sparsity regularization, though appearing to minimize
the nuclear norm of W, essentially sparsifies S̃, since ||S̃||∗ = ||W||∗ holds due to Z⊤Z = Ir×r.
Therefore, Equation (14) achieves two key goals: (1) producing a sparse, refined communication
topology, and (2) constraining the design to remain grounded in practical intuition. The resulting
communication can be represented as follows:

Gcom = (V, Ecom), Ecom = {(i, j) | S̃ij ̸= 0 ∧ (i, j) ∈ E}). (15)

At this stage, we have successfully distilled a lightweight and informative collaboration network
Gcom from the sketched task-specific network G̃, which is now ready to guide inter-agent message
passing in the following process.
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Table 1: Performance comparison with three types of baselines, including single-agent execution, spatial com-
munication, and temporal communication. The best results are in bold, and the runner-ups are underlined. All
methods, except for the single-agent category, utilize five gpt-4-based agents. “Mul.”, “Ada.”, and “Rob.”
indicate whether the method supports a multi-agent setting, whether it is task-adaptive, and whether it is adver-
sarially robust, respectively. %, ✓✗ and! signifies no/partial/full support in these aspects.

Method Mul. Ada. Rob. MMLU GSM8K MultiArith SVAMP AQuA HumanEval Avg.
Vanilla % % % 82.14 85.40 93.15 87.18 70.34 71.68 81.65
CoT % % % 82.65↑0.51 87.17↑1.77 94.79↑1.64 88.32↑1.14 73.91↑3.57 75.52↑3.84 83.73
ComplexCoT % % % 83.78↑1.64 87.62↑2.22 95.86↑2.71 90.17↑2.99 77.58↑7.24 74.94↑3.26 84.99
SC (CoT) % % % 82.66↑0.52 87.93↑2.53 96.88↑3.73 88.69↑1.51 75.08↑4.74 77.30↑5.62 84.75
SC (ComplexCoT) % % % 83.65↑1.51 86.14↓0.74 96.94↑3.79 89.72↑2.54 77.69↑7.35 77.94↑6.26 85.35
PHP ! % % 83.45↑1.31 95.50↑10.1 98.10↑2.84 90.02↑3.44 79.00↑8.66 82.96↑11.36 88.17
Chain ! % % 82.35↑0.21 85.57↑0.17 94.38↑1.23 83.41↓3.77 70.94↑0.60 80.88↑9.20 82.92
Star ! % % 80.79↓1.35 85.55↑0.15 93.79↓0.64 88.09↑0.91 68.57↓1.77 75.65↑3.97 82.07
Tree ! % % 81.89↓0.25 84.56↓0.84 94.60↑1.45 89.25↑2.07 72.84↑2.50 77.38↑5.70 83.42
Complete Graph ! % % 83.15↑1.01 86.49↑1.09 97.20↑4.05 89.48↑2.30 79.21↑8.87 83.75↑12.07 86.55
Random Graph ! % % 83.76↑1.62 86.14↑0.74 95.46↑2.31 85.41↓1.77 74.07↑3.73 82.66↑10.98 84.58
AutoGen ! % % 82.13↓0.01 90.06↑7.92 93.80↑0.65 88.44↓1.26 73.65↑3.31 85.41↑13.73 85.58
MetaGPT ! % % - - - - - 85.90↑14.22 84.90
LLM-Blender ! % % 81.22↓0.92 89.17↑3.77 94.27↑1.12 88.77↑1.59 77.05↑6.71 - 86.09
LLM-Debate ! % ! 83.69↑1.55 90.23↑4.83 96.27↑3.12 90.56↑3.38 77.52↑7.18 83.79↑12.11 87.01
DyLAN ! ✓✗ ! 80.16↓1.98 88.16↑2.76 94.27↑1.12 87.40↑0.22 74.16↑3.82 89.70↑18.02 85.64
GPTSwarm ! ✓✗ ! 83.98↑1.84 89.74↑4.34 97.84↑4.69 86.42↓0.76 78.16↑7.82 88.49↑16.81 87.32
G-Designer ! ! ! 84.50↑2.36 95.07↑9.67 98.30↑5.15 91.85↑4.67 79.47↑9.13 89.90↑18.22 89.84

4.3 OPTIMIZING G-DESIGNER

Upon obtaining Gcom, the multi-agent utterances and dialogues can proceed as usual using Gcom,
as detailed in Section 3. After K rounds of interaction, the agents converge to a final solution
a(K) = Gcom(Q). We then give the following optimization objective:

argmin
Θe,Θd

EΘe,Θd∼Ω

[
u
(
Gcom(Q)

)]
, (16)

where Θe and Θd are the parameters of the encoder q(·) and decoder p(·), respectively, Ω is the
parameter space and E(·) denotes the mathematical expectation. Equation (16) aims to maximize
the utility of the generated solution, but it is inherently intractable and non-differentiable, as u(·)
often depends on external API calls (Li et al., 2023b; Hendrycks et al., 2021). To address this,
following standard approaches in multi-agent structure design (Zhuge et al., 2024; Zhang et al.,
2024), we apply policy gradient (Williams, 1992) to approximate and optimize Equation (16):

∇ΘEΘ∼Ω

[
u
(
Gcom(Q)

)]
≈ 1

M

M∑
k=1

u(a(K)
m )∇Θ(P (Gk)), (17)

where Θ = {Θe,Θd}, {Gk}Mm=1 are indepently samples from Gcom, and {a(K)
m }Mm=1 are the corre-

sponding output. P (Gk) calculates the probability of Gk being sampled, which can be expressed as
P (Gk) =

∏N
i=1

∏N
j=1 S̃ij . Through iterative optimization guided by Equations (14) and (16) over a

limited set of queries as the “training set”, G-Designer efficiently develops task-awareness and the
strategically designing capability, achieving task-customized multi-agent topology design.

Optimization configuration The overall training objective of our method is formulated as
LG-Designer = Lutility + Lanchor + Lsparse, where Lutility represents the optimization target from
Equation (16), Lanchor corresponds to the first and third terms in Equation (14), and Lsparse is the
second term. Given a benchmark {Qi}Di=1 consisting of B queries, G-Designer begins by optimiz-
ing with a small subset of B′ queries and fixes the learned parameters for testing on the remaining
(B −B′) queries. The whole algorithm workflow of G-Designer is depicted in Algorithm 1.

5 EXPERIMENTS
5.1 EXPERIMENTAL SETUP

Datasets and Metrics We evaluate G-Designer on three categories of datasets: ■ General Rea-
soning: MMLU (Hendrycks et al., 2021); ■ Mathematical Reasoning: GSM8K (Cobbe et al.,

7
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2021), MultiArith (Roy & Roth, 2016), SVAMP (Patel et al., 2021), and AQuA (Ling et al., 2017);
■ Code: HumanEval (Chen et al., 2021). We include the dataset statistics in Table 4.
Baselines For single-agent approaches, we select COT (Wei et al., 2022), ComplexCoT (Fu
et al., 2022), Self-Consistency (Wang et al., 2023a), and PHP (Zheng et al., 2023). For multi-
agent topologies, we select Chain, Star, and Tree (formally defined in (Qian et al., 2024)), Com-
plete Graph and Random Graph , AutoGen (Wu et al., 2023), MetaGPT (Hong et al., 2023),
LLM-Debate (Du et al., 2023), LLM-Blender (Jiang et al., 2023), DyLAN (Liu et al., 2023), and
GPTSwarm (Zhuge et al., 2024).
Implementation Details We access the GPT via the OpenAI API, and mainly test on
gpt-4-1106-preview (gpt-4) and gpt-3.5-turbo-0125 (gpt-3.5). We set
temperature to 0 for the single execution and single agent baselines and 1 for multi-agent
methods. We set a summarizer agent to aggregate the dialogue history and produce the final so-
lution a(K), with K = 3 across all experiments. The NodeEncoder(·) is implemented using
all-MiniLM-L6-v2 (Wang et al., 2020), with the embedding dimension set to D = 384. The
anchor topology Aanchor is predefined as a simple chain structure. The sampling times M are set
as 10, and τ = 1e− 2 and ζ = 1e− 1 are set for all experiments. We provide explicit agent profil-
ing for multi-agent methods, following the classical configurations in LLM-MA systems (Liu et al.,
2023; Zhuge et al., 2024; Yin et al., 2023), and use gpt-4 to generate agent profile pools. For all
benchmarks, we merely use B′ ∈ {40, 80} queries for optimization.

5.2 MAIN RESULTS

We conduct extensive experiments across six benchmarks to verify that G-Designer is:
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Figure 4: Visualization of the performance met-
rics and prompt token consumption of different
multi-agent communication topologies across
MMLU, HumanEval, GSM8K, and SVAMP.

High-performing The experimental results
from Table 1 demonstrate that G-Designer is
effective in designing powerful LLM-MA topolo-
gies. Concretely, G-Designer achieves the best
performance in five out of six benchmarks, and
on GSM8K, it trails only PHP with a 9.67% ↑
accuracy improvement. On the HumanEval
benchmark, G-Designer surpasses MetaGPT, a
specialized multi-agent code generation frame-
work, by 4.0% at pass@1, and outperforms
state-of-the-art multi-agent collaboration frame-
works like GPTSwarm and DyLAN by margins
of 0.20% ∼ 1.41%.
Task-adaptive Figure 6 visualizes the differ-
ent topologies designed by G-Designer on
HumanEval and GSM8K. As shown in Fig-
ure 6, the multi-agent topologies generated by
G-Designer are highly dependent on the specific
task context and its difficulty. In Case a, despite
having five gpt-4 agents available as design resources, G-Designer identified the task of design-
ing a strlen(string) function as relatively simple. It streamlined the topology by removing
unnecessary agents and retained only a minimal “Algorithm Designer→ Programmer” structure to
solve the problem. In contrast, for the more complex Case c/e, G-Designer crafted a more intricate
communication graph. These cases highlight the strong task-adaptiveness of G-Designer.
Scalable To evaluate the scalability of G-Designer to a larger number of agents, we report its
performance across 5 ∼ 20 agents, as presented in Table 6. Notably, G-Designer exhibits a steeper
performance gain than GPTSwarm as the agent count increases. More importantly, while the com-
plete graph and GPTSwarm incur an overwhelming token cost at 20 agents (5.6M∼ 30.3M tokens),
G-Designer achieves superior performance with merely 6.11% of GPTSwarm’s prompt token con-
sumption, surpassing it by 2.44% ↑. These results decisively demonstrate the scalability and poten-
tial of G-Designer in advancing large-scale autonomous multi-agent systems.
Token-economical (inference) A key benefit of G-Designer’s adaptivity is that it prevents the
use of overly complex structures for simple tasks, thus minimizing unnecessary communication
costs—in the case of LLM-MA, reducing token consumption. Figure 4 It illustrates the differences
in prompt token consumption between G-Designer and several representative multi-agent designs.
We observe that simpler topologies, such as complete graphs and random graphs, consume fewer

8
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Table 2: Efficiency analysis. We compare
the training/inference wall-clock time and to-
ken consumption between G-Designer and
other high-performing baselines on the GSM8K
dataset.

Method Perf. #Training
Token

#Inference
Token

#Overall
Token

Training
Time

Inference
Time

Complete 86.4 - 9.8× 106 9.8× 106 - 2.4h
DyLAN 88.1 9.6× 106 1.3× 107 2.2× 107 2.8h 4.6h
GPTSwarm 89.7 5.5× 106 8.4× 106 1.4× 107 2.1h 2.8h

G-Designer 95.0 2.7× 105 8.2× 106 8.5× 106 0.3h 2.3h

Chain Star Tree Complete
Graph

Random
Graph

DyLAN GPTSwarm AutoGen G-Designer
60

65

70

75

80

85

90

82.3

71.3

80.7
78.5
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73.3

83.7

80.1
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77.2

84.0 83.7
82.1

72.2

84.5 84.2
before attack after attack

Figure 5: We compare the accuracy (%) of var-
ious multi-agent frameworks before and after
prompt attacks on MMLU.

tokens but show significantly weaker performance. More complex communication structures, like
GPTSwarm and DyLAN, achieve superior performance, albeit at the cost of excessive token con-
sumption. For instance, DyLAN’s cost on GSM8K is 2.82× that of the random graph. In contrast,
G-Designer elegantly balances both efficiency and task performance, achieving the highest per-
formance across all four benchmarks while maintaining the lowest token cost. For example, on
SVAMP, G-Designer surpasses DyLAN by 4% while using only 23.7% of DyLAN’s token cost.
Resource-efficient (training) We validate G-Designer’s training process is resource-friendly
from three dimensions: GPU cost, token cost, and wall-clock time. Table 5 showcases that train-
ing G-Designer with up to 1000 agents requires less than 4GB of memory. Table 2 unveils that
G-Designer not only attains the highest accuracy but also exhibits superior token efficiency and
reduced wall-clock time compared to existing baselines, underscoring its resource efficiency.

5.3 ROBUSTNESS ANALYSIS

Following (Zhuge et al., 2024), we simulate a system prompt attack on one of the five agents. As
seen in Figure 5, many trivial structures, such as chain or complete graph, experience significant
performance degradation under partial system attacks, with drops as high as 11.0%. Among more
sophisticated structures, GPTSwarm, benefiting from its specialized node optimization mechanism,
only suffers a minor 0.3% accuracy decline. However, other methods fare less well, with DyLAN
and AutoGen showing accuracy drops of 6.2% and 9.9%, respectively. Remarkably, G-Designer
demonstrates exceptional robustness against adversarial attacks, maintaining nearly identical perfor-
mance pre- and post-attack. This resilience can be attributed to its agent encoding capability, which,
during optimization, can detect malicious inputs and prune the corresponding edges.

5.4 FRAMEWORK ANALYSIS Table 3: Ablation study of G-Designer.

Variant MMLU GSM8K
Clean Attack Clean Attack

vanilla G-Designer 84.5 84.2 95.0 92.5

w/o SR 84.1 83.2 94.4 90.7
w/o Anchor 84.0 83.8 94.7 92.0
w/o NodeEncoder(·) 83.2 82.4 92.8 87.4
w/o vtask 81.3 82.0 90.3 87.7

Ablation Study. We report results for two
variants of ourmethod: (1) w/o SR, which
removes the sparsity regularization in Equa-
tion (14), (2) w/o Anchor, which excludes the
anchor structure Aanchor, (3) w/o NodeEn-
coder, removing node encoder in Equation (7),
and (4) w/o vtask in Equation (8). As shown in
Table 3, removing the task virtual node disrupts G-Designer’s task-adaptiveness, leading to the
most significant performance drop. Removing Aanchor leads to performance degradation, while the
absence of sparsity regularization makes the system more vulnerable to adversarial attacks.
Discussion on anchor topology. Given that G-Designer is initialized with the anchor topology
Aanchor introduced in Section 4.1, one may question whether the performance gains of G-Designer
primarily stem from Aanchor itself. In response, we emphasize that the anchor topology corresponds
to the simple Chain structure in Table 1, where G-Designer achieves substantial improvements
over it, specifically 9.50% ↑ on GSM8K and 8.44% ↑ on SVAMP. Thus, we assert that the superior
performance of G-Designer is predominantly attributed to its adaptive topology design rather than
the anchor topology itself.

6 CONCLUSION
In this paper, we first present the LLM-based Multi-agent Communication Protocol (MACP), which
aims to provide insightful guidance for designing complex multi-agent systems. Furthermore, we
propose an effective, adaptive, and robust LLM-powered multi-agent communication graph de-
signer, termed G-Designer, to facilitate the automated design of collaborative AI systems. We
hope that G-Designer will inspire future research on the emergence of self-organizing and self-
evolving collective intelligence.
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A ALGORITHM WORKFLOW

Algorithm 1 Designing workflow of G-Designer
Input : Input queryQ, Graph auto-encoder fv composed of encoder q(·) and decoder p(·) (param-

eterized by Θe and Θ), learning rate α
for query d in {1, 2, · · · , D′} do

/* Establish multi-agent network */
for node i in {1, 2, · · · , N} do

xi ← NodeEncoder (T (Basei),Rolei, T (Plugini))
end
Obtain agent embeddings Xagent ← [x1,x2, · · · ,xN ]⊤

Obtain task-specific node xtask ← NodeEncoder(Qd)
Set an anchor topology Aanchor // In our experiments, the anchor topology

is simply set as the chain structure

Obtain a task-specific multi-agent network G̃ =
([Xagent

x⊤task

]
,Aanchor

)
// Note that

Aanchor here contains bidirectional edges added by the task
node vtask

/* Design communication topology */

Encode G̃ into latent agent representations Hagent: q(Hagent | X̃,Aanchor) =∏N
i=1 q(hi | X̃,Aanchor)

Decode (phase 1) and obtain the sketched graph S: ps(S | Hagent) =∏N
i=1

∏N
j=1 ps(Sij | hi,hj ,htask; Θd),

Decode (phase 2) and obtain the communication graph Gcom = (V, Ecom), Ecom =

{(i, j) | S̃ij ̸= 0 ∧ (i, j) ∈ E})
/* Guide multi-agent system collaboration */
for iteration t in {1, 2, · · · ,K} do

for node i in ϕ(Gcom) do
Agent vi generatesR(t)

i ← vi(P(t)
sys ,P(t)

usr ), P(t)
usr = {Q,∪vj∈Nin(vi)R

(t)
j }

end
/* Aggregate solution */

a(t) ← Aggregate(R(t)
1 ,R(t)

2 , · · · ,R(t)
N )

end
/* Update G-Designer parameters */
Θd+1 ← Θd − α∇ΘdLG-Designer

end

B SUPPLEMENTARY RESULTS

Table 4: Dataset descriptions and statistics.

Dataset Answer Type Metric #Test License
MMLU Multi-choice Acc. 153 MIT License

GSM8K Number Acc. 1,319 MIT License
MultiArith Number Acc. 600 Unspecified
SVAMP Number Acc. 1,000 MIT License
AQuA Multi-choice Acc. 254 Apache-2.0

HumanEval Code Pass@1 164 MIT License
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HumanEval (case a)
def strlen(string: str) -> int:
   """ Return length of given string
    >>> strlen('')
    0
    >>> strlen('abc')
    3
   """

Programming
Expert

Algorithm
Designer

HumanEval (case b)
def double_the_difference(lst: List[float]) -> int:
    """
    Given a list of numbers, return the sum of squares of
the numbers in the list that are odd. Ignore numbers that
are negative or not integers.
    If the input list is empty, return 0.
    """

HumanEval (case c)
def do_algebra(operator: List[str], operand: List[int]) -> int:
    """
    Given two lists operator, and operand. The first list has basic algebra operations, and  the second list is a
list of integers. Use the two given lists to build the algebraic expression and return the evaluation of this
expression.  The basic operations: Addition(+); Subtraction(-); Multiplication(*); Floor division(//);
Exponentiation(**) . Example: operator['+', '*', '-']; array = [2, 3, 4, 5];result = 2 + 3 * 4 - 5;=> result = 9
    Note: 1. The length of operator list is equal to the length of operand list minus one. 2. Operand is a list of
of non-negative integers. 3. Operator list has at least one operator, and operand list has at least two operands.
    """

Algorithm
Designer

Programming
Expert

Bug
Fixer

Test
Analyst

Project
Manager

Harder Example:
G-Designer is complexity-
aware and capable of designing
task-adaptive topologies

GSM8K (case d)
Background:
A robe takes 2 bolts of blue fiber and half that much
white fiber.  
Question:
How many bolts in total does it take?

Math
Analyst

Programming
Expert

Math
Solver

Inspector

GSM8K (case e)
Question: 
John drives for 3 hours at a speed of 60 mph and then turns
around because he realizes he forgot something very
important at home.  He tries to get home in 4 hours but
spends the first 2 hours in standstill traffic.  He spends the
next half-hour driving at a speed of 30mph, before being
able to drive the remaining time of the 4 hours going at 80
mph.  How far is he from home at the end of those 4 hours?

Math
Analyst

Programming
Expert

Math
Solver

Inspector

Algorithm
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Programming
Expert

Bug
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Test
Analyst

Figure 6: Case study of the communication topologies designed by G-Designer.

Table 5: The GPU cost of G-Designer with increasing number of agents.

#Agents 5 50 100 1000

Memory (GB) 2.7 2.9 3.0 3.8

Table 6: Comparison of accuracy, time, token consumption, and cost across different agent configu-
rations. We use the MMLU benchmark and gpt-3.5-turbo as the base LLM.

#Agents 5 10 20

Chain
Accuracy (%) 70.59 71.24 71.98

Time (min) 15.73 30.20 56.18
#Prompt Tokens 351,802 702,164 1,378,328

Cost (USD) 0.5228 1.0434 2.0482

Complete Graph
Accuracy (%) 71.90 72.16 72.51

Time (min) 16.85 34.21 66.47
#Prompt Tokens 545,984 1,669,451 5,648,834

Cost (USD) 0.7161 2.1770 7.3662

GPTSwarm
Accuracy (%) 72.55 73.86 75.38

Time (min) 62.14 186.86 412.18
#Prompt Tokens 3,055,236 9,048,465 30,317,341

Cost (USD) 4.2190 12.4961 41.4235

G-Designer
Accuracy (%) 73.20 74.51 77.82

Time (min) 19.26 36.04 68.89
#Prompt Tokens 452,329 885,332 1,852,538

Cost (USD) 0.6036 1.2768 2.6713
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