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Abstract

This paper introduces deep synoptic Monte Carlo planning (DSMCP) for large
imperfect information games. The algorithm constructs a belief state with an
unweighted particle filter and plans via playouts that start at samples drawn from
the belief state. The algorithm accounts for uncertainty by performing inference on
“synopses,” a novel stochastic abstraction of information states. DSMCP is the basis
of the program Penumbra, which won the official 2020 reconnaissance blind chess
competition versus 33 other programs. This paper also evaluates algorithm variants
that incorporate caution, paranoia, and a novel bandit algorithm. Furthermore, it
audits the synopsis features used in Penumbra with per-bit saliency statistics.

1 Introduction

Choosing a Nash equilibrium strategy is rational when the opponent is able to identify and exploit
suboptimal behavior [Bowling and Veloso, 2001]. However, not all opponents are so responsive, and
computing a Nash equilibrium is intractable for many games. This paper presents deep synoptic
Monte Carlo planning (DSMCP), an algorithm for large imperfect information games that seeks a
best-response strategy rather than a Nash equilibrium strategy.

When opponents use fixed policies, an imperfect information game may be viewed as a partially
observable Markov decision process (POMDP) with the opponents as part of the environment.
DSMCP treats playing against specific opponents as related offline reinforcement learning (RL)
problems and exploits predictability. Importantly, the structure of having opponents with imperfect
information is preserved in order to account for their uncertainty.

DSMCP uses sampling to break the “curse of dimensionality” [Pineau et al., 2006] in three ways:
sampling possible histories with a particle filter, sampling possible futures with upper confidence
bound tree search (UCT) [Kocsis and Szepesvári, 2006], and sampling possible world states within
each information state uniformly. It represents information states with a generally-applicable stochas-
tic abstraction technique that produces a “synopsis” from sampled world states. This paper assesses
DSMCP on reconnaissance blind chess (RBC), a large imperfect information chess variant.

2 Background

Significant progress has been made in recent years in both perfect and imperfect information settings.
For example, using deep neural networks to guide UCT has enabled monumental achievements in
abstract strategy games as well as computer games [Silver et al., 2016, 2017a,b, Schrittwieser et al.,
2019, Wu, 2020, Tomašev et al., 2020]. This work employs deep learning in a similar fashion.

Recent advancements in imperfect information games are also remarkable. Several programs have
reached superhuman performance in Poker [Moravčík et al., 2017, Brown and Sandholm, 2018, 2019,
Brown et al., 2020]. In particular, ReBeL [Brown et al., 2020] combines RL and search by converting
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Figure 1: Within 98k historical reconnaissance
blind chess (RBC) games between non-random
players, the win percentage tends to decrease
as the number of possible states increases. The
games were replayed while tracking up to one mil-
lion states. Each bucket is labeled with an inclu-
sive upper bound. The median of the maximum
number of possible states encountered during a
game is 4,869.

(a) (b)

Figure 2: Playing RBC well requires balanc-
ing risks and rewards. (a) On the left, Penumbra
moved the white queen to g8. After sensing at
d2, Black could infer that the white queen occu-
pied one of 25 squares. That uncertainty allowed
the white queen to survive and capture the black
king on the next turn. (b) On the right, Penumbra
moved the black queen to h2. In this case, the
opponent detected and captured the black queen.
The games are available online at https://
rbc.jhuapl.edu/games/120174 and https:
//rbc.jhuapl.edu/games/124718.

imperfect information games into continuous state space perfect information games with public belief
states as nodes. This approach is powerful, but it relies on public knowledge and fails to scale to
games with hidden actions and substantial private information, such as RBC.

Information set search [Parker et al., 2006, 2010] is a limited-depth algorithm for imperfect infor-
mation games that operates on information states according to a minimax rule. This algorithm was
designed for and evaluated on Kriegspiel chess, which is comparable to RBC.

Partially observable Monte Carlo planning (POMCP) [Silver and Veness, 2010] achieves optimal
policies for POMDPs by tracking approximate belief states with an unweighted particle filter and
planning with a variant of UCT on a search tree of histories. In practice, POMCP can suffer from
particle depletion, requiring a domain-specific workaround. This work combines an unweighted
particle filter with a novel information state abstraction technique which increases sample quality and
supports deep learning.

Smooth UCT [Heinrich and Silver, 2015] and information set Monte Carlo tree search (ISMCTS)
[Cowling et al., 2012] may be viewed as multi-agent versions of POMCP. These two algorithms for
playing extensive-form games build search trees (for each player) of information states. These two
algorithms and DSMCP all perform playouts from determinized states that are accurate from the
current player’s perspective, effectively granting the opponent extra information. Still, Smooth UCT
approached a Nash equilibrium by incorporating a stochastic bandit algorithm into its tree search.
DSMCP uses a similar bandit algorithm that mixes in a learned policy during early node visits.

While adapting perfect information algorithms has performed surprisingly well in some imperfect
information settings [Long et al., 2010], the theoretical guarantees of variants of counterfactual regret
minimization (CFR) [Neller and Lanctot, 2013, Brown et al., 2018] are enticing. Online outcome
sampling (OOS) [Lisy et al., 2015] extends Monte Carlo counterfactual regret minimization (MCCFR)
[Lanctot et al., 2009] by building its search tree incrementally and targeting playouts to relevant parts
of the tree. OOS draws samples from the beginning of the game. MCCFR and OOS are theoretically
guaranteed to converge to a Nash equilibrium strategy. Specifically, CFR-based algorithms produce
mixed strategies while DSMCP relies on incidental stochasticity.

Neural fictitious self-play (NFSP) [Heinrich and Silver, 2016] is an RL algorithm for training two
neural networks for imperfect information games. Experiments with NFSP employed compact
observations embeddings of information states. DSMCP offers a generic technique for embedding
information states in large games. Dual sequential Monte Carlo (DualSMC) [Wang et al., 2019]
estimates belief states and plans in a continuous domain via sequential Monte Carlo with heuristics.
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3 Reconnaissance blind chess

Reconnaissance blind chess (RBC) [Newman et al., 2016, Markowitz et al., 2018, Gardner et al.,
2020] is a chess variant that incorporates uncertainty about the placement of the opposing pieces
along with a private sensing mechanism. As shown in Figure 1, RBC players are often faced with
thousands of possible game states, and reducing uncertainty increases the odds of winning.

Game rules Pieces move in the same way in RBC as in chess. Players cannot directly observe the
movement of the opposing pieces. However, at the beginning of each turn, players may view the
ground truth of any 3×3 patch of the board. The information gained from the sensing action remains
private to that player. Players are also informed of the location of all captures, but not the identity of
capturing pieces. When a requested move is illegal, the move is substituted with the closest legal
move and the player is notified of the substitution. For example, in Figure 2 (a), if Black attempted to
move the rook from h8 to f8, the rook would capture the queen on g8 and stop there instead. Players
are always able to track the placement of their own pieces. Capturing the opposing king wins the
game, and players are not notified about check. Passing and moving into check are legal.

Official competition This paper introduces the program Penumbra, the winner of the official
2020 RBC rating competition. In total, 34 programs competed to achieve the highest rating by
playing public games. Ratings were computed with BayesElo [Coulom, 2008], and playing at least
100 games was required to be eligible to win. Figure 2 shows ground truth positions from the
tournament in which Penumbra voluntarily put its queen in danger. Players were paired randomly,
but the opponent’s identity was provided at the start of each game which allowed catering strategies
for specific opponents. However, opponents were free to change their strategies at any point, so
attempting to exploit others could backfire. Nonetheless, Penumbra sought to model and counter
predictable opponents rather than focusing on finding a Nash equilibrium.

Other RBC programs RBC programs have employed a variety of algorithms [Gardner et al.,
2020] including Q-learning [Mnih et al., 2013], counterfactual regret minimization (CFR) [Zinkevich
et al., 2008], online outcome sampling (OOS) [Lisy et al., 2015], and the Stockfish chess engine
[Romstad et al., 2020]. Another strong RBC program [Highley et al., 2020, Blowitski and Highley,
2021] maintains a probability distribution for each piece. Most RBC programs select sense actions
and move actions in separate ways while DSMCP unifies all action selection. Savelyev [2020]
also applied UCT to RBC and modeled the root belief state with a distribution over 10,000 tracked
positions. Input to a neural network consisted of the most-likely 100 positions, and storing a single
training example required 3.5MB on average which was large enough to hinder training. This work
represents training examples with compact synopses which are less than 1kB without compression.

4 Terminology

Consider the two-player extensive-form game with agents P = {self, opponent}, actions A, “ground
truth” world states X , and initial state x0 ∈ X . Each time an action is taken, each agent p ∈ P is
given an observation op ∈ O that matches (∼) the possible world states from p’s perspective. For
simplicity, assume the game has deterministic actions such that each a ∈ A is a function a : X → X
defined on a subset of world states X ⊂ X . Define Ax as the set of actions available from x ∈ X .

An information state (infostate) s ∈ S for agent p consists of all observations p has received so far.1
Let X s ⊂ X be the set of all world states that are possible from p’s perspective from s. In general, Xs

contains less information than s since some (sensing) actions may not affect the world state. Define a
collection of limited-size world state sets L = {L ⊂ Xs : s ∈ S, |L| ≤ `}, given a constant `.

Let ρ : X → P indicate the agent to act in each world state. Assume that Ax = Ay and ρ(x) = ρ(y)
for all x, y ∈ X s and s ∈ S. Then extend the definitions of actions available A∗ and agent to act
ρ over sets of world states and over infostates in the natural way. A policy π(a|s) is a distribution
over actions given an infostate. A belief state B(h) is a distribution over action histories. Creating a
belief state from an infostate requires assumptions about the opponent’s action policy τ(a|s). Let

1An infostate is equivalent to an information set, which is the set of all possible action histories from p’s
perspective [Osborne and Rubinstein, 1994].
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Figure 3: DSMCP approximates infostates with
size-limited sets of possible states (circles). It
tracks all possible states Xt for each turn from
its own perspective and constructs belief states B̂t

with approximate infostates from the opponent’s
perspective. At the root of each playout, the initial
approximate infostate for the opponent is sampled
from B̂t, and the initial approximate infostate for
itself is a random subset of Xt.

Algorithm 1 Bandit – Action selection with a
stochastic multi-armed bandit

Given: c > 0,m ≥ 0
Input: policy π, visit counts ~n, value totals ~q
n←

∑
a ~na

if e−mn > Uniform([0, 1]) and ¬root then
return a← an action selected by policy π

else
return a← argmaxa

(
~qa
~na

+ cπa

√
lnn
~na

)

Algorithm 2 DrawSample – Sample selection
with rejection

Given: k, ` ∈ Z+, synopsis function σ,
policy τ̂

Input: previous belief distribution B̂, possible
states X , visit counts N, value totals Q

for 0 to k do
J ← random sample from B̂
a← Bandit(τ̂(σ(J)),NJ ,QJ)
I ← {a(x) : x ∈ J}
I ← random ` states from I if |I| > `
return I if I ∩X 6= ∅

return { random state from X }

Rp : X → R map terminal states to the reward for player p. Then (S,A,Rself, τ, s0) is a POMDP,
where the opponent’s policy τ provides environment state transitions and s0 is the initial infostate. In
the rest of this paper, the word “state” refers to a world state unless otherwise specified.

5 Deep synoptic Monte Carlo planning

Effective planning algorithms for imperfect information games must model agents’ choice of actions
based on (belief states derived from) infostates, not on world states themselves. Deep synoptic Monte
Carlo planning (DSMCP) approximates infostates with size-limited sets of possible world states in L.
It uses those approximations to construct a belief state and as UCT nodes [Kocsis and Szepesvári,
2006]. Figure 3 provides a high-level visualization of the algorithm.

A bandit algorithm chooses an action during each node visit, as described in Algorithm 1. This
bandit algorithm is similar to Smooth UCB [Heinrich and Silver, 2015] in that they both introduce
stochasticity by mixing in a secondary policy. Smooth UCB empirically approached a Nash equilib-
rium utilizing the average policy according to action visits at each node. DSMCP mixes in a neural
network’s policy (π) instead. The constant c controls the level of exploration, and m controls how
the policy π is mixed into the bandit algorithm. For example, taking m = 0 always selects actions
directly with π without considering visit counts, and taking m =∞ never mixes in π. As in Silver
et al. [2016], π provides per-action exploration values which guide the tree search.

Approximate belief states are constructed as subsets B̂ ⊂ L, where each L ∈ B̂ is a set of possible
world-states from the opponent’s perspective. This “second order” representation of belief states
allows DSMCP to account for the opponent’s uncertainty. Infostates sampled with rejection (Algo-
rithm 2) are used as the “particles” in a particle filter which models successive belief states. Sampling
is guided by a neural network policy (τ̂ ) based on the identity of the opponent. To counter particle
deprivation, if k consecutive candidate samples are rejected as incompatible with the possible world
states, then a singleton sample consisting of a randomly-chosen possible state is selected instead.
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Algorithm 3 ChooseAction – UCT playouts
Given: b, d, `, nvl, z ∈ Z+, synopsis func. σ,

policy π, opp. policy τ̂ , value func. ν
Input: belief distribution B̂, possible states X ,

visit counts N, value totals Q
π̄ ← average of π ◦ σ over b samples from B̂
while time is left do
J ← random sample from B̂
I ← random ` states in X including one in J
a0 ← Bandit(π̄,Nroot,Qroot)
for t = 0 to d do
xt ← the one state in I ∩ J
o← observations when at is played on xt
I ← {a(x) : x ∈ I, a ∈ AI , oself ∼ a(x)}
J ← {a(x) : x ∈ J, a ∈ AJ , oopp∼ a(x)}
I ← random ` states in I including at(xt)
J ← random ` states in J including at(xt)
Kt ← I and µ← π if I is to act
Kt ← J and µ← τ̂ if J is to act
d += 1 if NKt,at > z
for i = 0 to t do
NKi,ai += nvl

at+1 ← Bandit(µ(σ(Kt)),NKt
,QKt

)
q ← ν(σ(Kt))
for i = 0 to t do

QKi,ai
+= q if ρ(Kt)=ρ(Ki) else −q

NKi,ai
+= 1− nvl

return a← argmaxa Qroot

Algorithm 4 PlayGame – DSMCP
Given: nparticles ∈ Z+

N∗,∗ ← 0 // Visits ∀ (sample, action) ∈ L ×A
Q∗,∗ ← 0 // Values ∀ (sample, action) ∈ L×A
X0 ← {x0}
B̂0 ← {X0}
while the game is not over do
t← current turn
o← current observation
// Track all possible world states
Xt←{a(x) : x∈Xt−1, a∈Ax, oself∼a(x)}
// Filter belief states with the new information
for i = t− 1 to 0 do
Xi ← {x ∈ Xi : ∃a ∈ Ax

such that a(x) ∈ Xi+1}
B̂i ← {I ∈ B̂i : I ∩Xi 6= ∅}

// Repopulate belief states with new particles
while opponent to act or |B̂t| < nparticles do
i← smallest i > 0 s.t. |B̂i| < nparticles

I ← DrawSample(B̂i−1, Xi,N,Q)

B̂i ← B̂i ∪ {I}
if self to act then
a← ChooseAction(B̂t, Xt,N,Q)
Perform action a

The tree search, described in Algorithm 3, tracks an approximate infostate for each player while
simulating playouts. Playouts are also guided by policy (π and τ̂ ) and value (ν) estimations from
a neural network. A synopsis function σ creates a fixed-size summary of each node as input for
the network. The constant b is the batch size for inference, d is the search depth, ` is the size of
approximate infostates, nvl is the virtual loss weight, and z is a threshold for increasing search depth.

Algorithm 4 describes how to play an entire game, tracking all possible world states. Approximate
belief states (B̂t) are constructed for each past turn by tracking nparticles elements of L (from the
opponent’s point of view) with an unweighted particle filter. Each time the agent receives a new
observation, all of the (past) particles that are inconsistent with the observation are filtered out and
replenished, starting with the oldest belief states.

5.1 Synopsis

One of the contributions of this paper is the methodology used to approximate and encode infostates.
Games that consist of a fixed number of turns, such as poker, admit a naturally-compact infostate
representation based on observations [Heinrich and Silver, 2015, 2016]. However, perfect repre-
sentations are not always practical. Game abstractions are often used to reduce computation and
memory requirements. For example, imperfect recall is an effective abstraction when past actions are
unnecessary for understanding the present situation [Waugh et al., 2009, Lanctot et al., 2012].

DSMCP employs a stochastic abstraction which represents infostates with sets of world states
and then subsamples to a manageable cardinality (`). Finally, a permutation-invariant synopsis
function σ produces fixed-size summaries of the approximate infostates which are used for inference.
An alternative is to run inference on “determinized” world states individually and then somehow
aggregate the results. However, such aggregation can easily lead to strategy fusion [Frank et al.,
1998]. Other alternatives include evaluating states with a recurrent network [Rumelhart et al., 1986]
one-at-a-time or using a permutation-invariant architecture [Zaheer et al., 2017, Wagstaff et al., 2019].
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# White Black
1 g6 : e2e4 e3 : h7h5
2 g7 : d2d4 f2 : f7f5
3 g6 : e4f5 e4 : h5h4
4 d7 : f1e2 g4 : b8c6
5 g7 : e2h5 g4 : h8h5
6 b7 : d1h5 g5 : g7g6
7 e7 : h5e8 g6 : d7d6
8 g6 : g6e8

Figure 4: Penumbra played as White in this short game. In the position shown on the left, Black just
moved a knight from b8 to c6. From White’s perspective, the black pieces could be placed in 238
different ways. Figure 5 shows a set of synopsis bitboards for this information state.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

Figure 5: This set of synopsis bitboards was used as input to the neural network before White’s
sense on turn 5 of the game in Figure 4. The synopsis contains 104 bitboards. Each bitboard encodes
64 binary features of the possible state set that the synopsis summarizes. For example, bitboard #26
contains the possible locations of opposing pawns, and bitboard #27 contains the possible locations of
opposing knights. An attentive reader may notice that the black pawn on h4 is missing from bitboard
#26, which is due to subsampling to ` = 128 states before computing the bitboards. In this case, the
true state was missing from the set of states used to create the synopsis. The features in each synopsis
are only approximations of the infostates that they represent. The first 10 bitboards are constants,
which provide information that is difficult for convolutions to construct otherwise [Liu et al., 2018].

Given functions gi : X → {0, 1} for i = 0, . . . , F that map states to binary features, define the ith
component of a synopsis function σ : L → {0, 1}F as

σi(X) = gi(x0) ∗i gi(x1) ∗i · · · ∗i gi(x`) (1)

where X = {x0, x1, . . . , x`} and ∗i is either the logical AND (∧) or the logical OR (∨) operation.
For example, if gi encodes whether an opposing knight can move to the d7 square of a chess board
and ∗i = ∧, then σi indicates that a knight can definitely move to d7. Figure 4 shows an example
game, and Figure 5 shows an example output of Penumbra’s synopsis function, which consists of
104 bitboard feature planes each with 64 binary features. The appendix describes each feature plane.

5.2 Network architecture

Penumbra uses a residual neural network [He et al., 2016] as shown in Figure 6. The network
contains 14 headsets, designed to model specific opponents and regularize each other as they are
trained on different slices of data [Zhang et al., 2020]. Each headset contains 5 heads: a policy head,
a value head, two heads for predicting winning and losing within the next 5 actions, and a head for
guessing the number of pieces of each type in the ground truth world state. The Top policy head and
the All value head are used for planning as π and ν, respectively. The other heads (including the
SoonWin, SoonLose, and PieceCount heads) provide auxiliary tasks for further regularization [Wu,
2020, Fifty et al., 2020]. While playing against an opponent that is “recognized” (when a headset was
trained on data from only that opponent), the policy head (τ̂ ) of the corresponding headset is used for
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8×8×104 input

8×8×128 res. block

... 8 residual blocks omitted ...

8×8×128 res. block

Headset

8×8×88×8×48×8×128 8×8×4 8×8×4 8×8×216

8×8×65

Policy

64 dense

Pass

256 dense

Value

256 dense

SoonWin

256 dense

SoonLose

8×8×216

PieceCount

Figure 6: Penumbra’s network contains a shared tower with 10 residual blocks and 14 headsets.
Each headset contains 5 heads for a total of 70 output heads. The residual blocks are shown with a
double border, and they each contain two 3×3 convolutional layers and batch normalization. All of
the convolutional layers in the headsets are 1×1 convolutions with the exception of the one residual
block for each policy head. Each headset was trained on a separate subset of the data, as described in
Table 1. The policy head provides logits for both sense and move actions.

the opponent’s moves while progressing the particle filter (Algorithm 2) and while constructing the
UCT tree (Algorithm 3). When the opponent is unrecognized, the Top policy head is used by default.

5.3 Training procedure

The network was trained on historical2 game data as described by Table 1. The reported accuracies
are averages over 5 training runs. The All headset was trained on all games, the Top headset was
trained on games from the highest-rated players, the Human headset was trained on all games played
by humans, and each of the other 11 headsets were trained to mimic specific opponents.

10% of the games were used as validation data based on game filename hashes. Training examples
were extracted from games multiple times since reducing possible state sets to ` states is non-
deterministic. A single step of vanilla stochastic gradient descent was applied to one headset at a time,
alternating between headsets according to their training weights. See the appendix for hyperparameter
settings and accuracy cross tables. Training and evaluation were run on four RTX 2080 Ti GPUs.

5.4 Implementation details

Penumbra plays RBC with DSMCP along with RBC-specific extensions. First, sense actions that are
dominated by other sense actions are pruned from consideration. Second, Penumbra can detect some
forced wins in the sense phase, the move phase, and during the opponent’s turn. This static analysis
is applied at the root and to playouts; playouts are terminated as soon as a player could win, avoiding
unnecessary neural network inference. The static analysis was also used to clean training games in
which the losing player had sufficient information to find a forced win.

Piece placements are represented with bitboards [Browne, 2014], and the tree of approximate
infostates is implemented with a hash table. Zobrist hashing [Zobrist, 1990] maintains hashes of piece
placements incrementally. Hash table collisions are resolved by overwriting older entries. The tree
was not implemented until after the competition, so fixed-depth playouts were used instead (m = 0).
Inference is done in batches of 256 during both training and online planning. The time used per

2The games were downloaded from rbmc.jhuapl.edu in June, 2019 and rbc.jhuapl.edu in August,
2020. Additionally, 5,000 games were played locally by StockyInference.
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Table 1: Summary of headset training data and resulting validation accuracies
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All 85.6k 16.8M 1.8M 4 15 No 33.6 62.0 74.8
Top 49.5k 16.0M 1.6M ∼9.6 13 No 43.1 73.4 82.4

StrangeFish 13.3k 8.1M 0.8M ∼20.7 10 No 45.9 74.3 86.6
LaSalle 3.7k 4.3M 0.4M 32 4 No 36.4 68.2 69.7

Dyn.Entropy 7.8k 7.8M 0.8M 32 7 No 50.0 76.7 78.9
Oracle 20.3k 17.6M 1.9M 32 9 No 49.3 77.4 81.4

StockyInfe. 10.7k 13.5M 1.4M 16 9 No 45.2 73.6 68.3
Marmot 10.2k 3.9M 0.4M 16 8 No 24.6 55.4 80.8

Genetic 5.6k 2.3M 0.2M 16 8 No 40.4 70.5 77.9
Zugzwang 10.9k 3.1M 0.3M ∼12.0 5 No 47.0 71.6 80.1

Trout 18.0k 5.1M 0.5M 16 5 No 41.8 63.4 79.8
Human 6.3k 1.5M 0.2M 16 2 No 24.9 51.9 73.3

Attacker 15.3k 1.7M 0.2M 16 4 No 45.1 61.9 80.1
Random 17.0k 0.6M 76k 2 1 Yes 4.5 20.7 94.7

action is approximately proportional to the time remaining. The program processes approximately
4,000 nodes per second, and it plays randomly when the number of possible states exceeds 9 million.

6 Experiments

This section presents the results of playing games between Penumbra and several publicly available
RBC baselines [Gardner et al., 2020, Bernardoni, 2020]. Each variant of Penumbra in Table 2 played
1000 games against each baseline, and each variant in Table 3 and Table 4 played 250 games against
each baseline. Games with errors were ignored and replayed. The Elo ratings and 95% confidence
intervals were computed with BayesElo [Coulom, 2008] and are all compatible. The scale was
anchored with StockyInference at 1500 based on its rating during the competition.

Table 2 gives ratings of the baselines and five versions of Penumbra. PenumbraCache relied solely
on the network policy for action selection in playouts (m= 0), PenumbraTree built a UCT search
tree (m=∞), and PenumbraMixture mixed in the network policy during early node visits (m= 1).
The mixed strategy performed the best. PenumbraNetwork selected actions based on the network
policy without performing any playouts. PenumbraSimple is the same as PenumbraMixture with
the static analysis described in Section 5.4 disabled. PenumbraNetwork and PenumbraSimple serve
as ablation studies; removing the search algorithm is detrimental while the effect of removing the
static analysis is not statistically significant. Unexpectedly, Penumbra played the strongest against
StockyInference when that program was unrecognized. So, in this case, modeling the opponent
with a stronger policy outperformed modeling it more accurately.

Two algorithmic modifications that give the opponent an artificial advantage during planning were
investigated. Table 3 reports the results of a grid search over “cautious” and “paranoid” variants
of DSMCP. The caution parameter κ specifies the percentage of playouts that use ` = 4 for the
opponent instead of the higher default limit. Since each approximate infostate is guaranteed to contain
the correct ground truth in playouts, reducing ` for the opponent gives the opponent higher-quality
information, allowing the opponent to counter risky play more easily in the constructed UCT tree.

The paranoia parameter augments the exploration values in Algorithm 1 to incorporate the minimum
value seen during the current playout. With paranoia φ, actions are selected according to

argmax
a

(
(1− φ)

~qa
~na

+ φ~ma + cπa

√
lnn

~na

)
(2)

where ~m contains the minimum value observed for each action. This is akin to the notion of paranoia
studied by Parker et al. [2006, 2010].
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Table 2: Bot Elo scores

Bot Recognized as Elo score
PenumbraMixture unrecognized 1747± 11
PenumbraSimple unrecognized 1739± 10
PenumbraCache unrecognized 1727± 10
PenumbraTree unrecognized 1641± 9
StockyInference Trout 1610± 7
StockyInference StrangeFi. 1528± 8
StockyInference Genetic 1512± 8
StockyInference StockyInf. 1500± 8
StockyInference unrecognized 1474± 8
PenumbraNetwork unrecognized 1376± 9
AggressiveTree unrecognized 1134± 15
FullMonte unrecognized 1028± 20
Trout Trout 1005± 22
Trout unrecognized 997± 22

Table 3: Caution and paranoia grid search results

Caution
0% 10% 20% 30%

Pa
ra

no
ia 0% 1711±19 1714±19 1707±19 1702±19

10% 1711±19 1705±19 1726±19 1695±18
20% 1688±18 1700±19 1688±18 1670±18
30% 1691±18 1683±18 1681±18 1666±18

Table 4: Exploration strategy grid search results

Exploration ratio c
1 2 4

UCB1 1698± 19 1686± 18 1696± 18
aVoP 1696± 18 1680± 18 1695± 18

Table 4 shows the results of a grid search over exploration constants and two bandit algorithms. UCB1
[Kuleshov and Precup, 2014] (with policy priors), which is used on the last line of Algorithm 1, is
compared with “a variant of PUCT” (aVoP) [Silver et al., 2016, Tian et al., 2019, Lee et al., 2019],
another popular bandit algorithm. This experiment used κ = 20% and φ = 20%. Figure 7 show that
Penumbra’s value head accounts for the uncertainty of the underlying infostate.

(a) (b)

Figure 7: The mean historical win percentage and the mean network value assigned to (a) train and
(b) validation synopses tend to decrease as the number of world states given to σ increases.

7 Per-bit saliency

Saliency methods may be able to identify which of the synopsis feature planes are most important
and which are least important. Gradients only provide local information, and some saliency methods
fail basic sanity checks [Adebayo et al., 2018]. Higher quality saliency information may be surfaced
by integrating gradients over gradually-varied inputs [Sundararajan et al., 2017, Kapishnikov et al.,
2019] and by smoothing gradients locally [Smilkov et al., 2017]. Those saliency methods are not
directly applicable to discrete inputs such as the synopses used in this work. So, this paper introduces
a saliency method that aggregates gradient information across two separate dimensions: training
examples and iterations. Per-batch saliency (PBS) averages the absolute value of gradients over
random batches of test examples throughout training. Similarly, per-bit saliency (PbS) averages the
absolute value of gradients over bits (with specific values) within batches of test examples throughout
training. Gradients were taken both with respect to the loss and with respect to the action policy.

Figure 8 shows saliency information for input synopsis features used by Penumbra. In order to
validate that these saliency statistics are meaningful, the model was retrained 104 times, once with
each feature removed [Hooker et al., 2018]. Higher saliency is slightly correlated with decreased
performance when a feature is removed. The correlation coefficient to the average change in accuracy
is −0.208 for loss-PBS, and −0.206 for action-PbS. Explanations for the low correlation include
noise in the training process and the presence of closely-related features. Ultimately, the contribution
of a feature during training is distinct from how well the model can do without that feature. Since
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(a)

(b)

(c)

(d)

Figure 8: (a) The loss per-batch saliency (PBS) and (b) the action per-bit saliency (PbS) are taken on
test examples during training. These graphs show the saliency of feature plane #8, dark squares, for
each headset in one training run. The large gradients with respect to the loss suggest that the Genetic
headset has overfit. (c) The loss PBS and (d) the action PbS provide insight about which synopsis
features are most useful. The top-five most-salient feature planes and the least-salient feature plane
for the Top headset from one training run are shown.

some features are near-duplicates of others, removing one may simply increase dependence on
another. Still, features with high saliency — such as the current stage (sense or move) and the location
of the last capture — are likely to be the most important, and features with low saliency may be
considered for removal. The appendix includes saliency statistics for each feature plane.

8 Discussion

Broader impact DSMCP is more broadly applicable than some prior algorithms for imperfect
information games, which are intractable in settings with large infostates and small amounts of shared
knowledge [Brown et al., 2020]. RBC and the related game Kriegspiel were motivated by uncertainty
in warfare [Newman et al., 2016]. While playing board games is not dangerous in itself, algorithms
that account for uncertainty may become effective and consequential in the real world. In particular,
since it focuses on exploiting weaknesses of other agents, DSMCP could be applied in harmful ways.

Future work Planning in imperfect information games is an active area of research [Russell and
Norvig, 2020], and RBC is a promising testing ground for such research. Penumbra would likely
benefit from further hyperparameter tuning and potentially alternative corralled bandit algorithms
[Arora et al., 2020]. Modeling an opponent poorly could be catastrophic; algorithmic adjustments may
lead to more-robust best-response strategies [Ponsen et al., 2011]. How much is lost by collapsing
infostates with synopses is unclear and deserves further investigation. Finally, the “bitter lesson” of
machine learning [Sutton, 2019] suggests that a learned synopsis function may perform better.
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