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ABSTRACT

We address the problem of fine-tuning pre-trained generative policies with rein-
forcement learning while preserving their multimodality in the action distribution.
Current methods for fine-tuning generative policies (e.g. diffusion policies) with
reinforcement learning improve task performance but tend to collapse diverse be-
haviors into a single reward-maximizing mode. To overcome this, we propose
MD-MAD, an unsupervised mode discovery framework that uncovers latent be-
haviors in generative policies, together with a conditional mutual information met-
ric to quantify multimodality. The discovered modes allow mutual information
to be used as an intrinsic reward, regularizing reinforcement learning fine-tuning
to improve success rates while maintaining diverse strategies. Experiments on
robotic manipulation tasks demonstrate that our method consistently outperforms
conventional fine-tuning, achieving high task success while preserving richer mul-
timodal action distributions.

Figure 1: MD–MAD for Preventing Mode Collapse. Fine-tuning a pre-trained multimodal policy with
standard RL often collapses its action distribution, eliminating modes discovered during pre-training. Our
approach, MD–MAD, preserves multimodality while adapting the policy to the downstream task. In the figure,
each panel overlays trajectories (black) starting from the origin in a reward landscape with four symmetric
goals (bright peaks). Left: the pre-trained diffusion policy covers all four modes. Middle (DPPO): after RL
fine-tuning under two rotated reward shifts (cyan arrows), trajectories collapse to a subset of goals. Right
(MD–MAD): under the same shifts, the policy adapts without collapse and consistently recovers all modes.

1 INTRODUCTION

Robotic manipulation tasks are inherently multimodal, admitting diverse yet valid strategies: a cup
can be grasped from either side, a block can be rotated clockwise or counterclockwise, and redundant
kinematics allow the same goal to be reached via distinct motions. These scenarios naturally give rise
to multimodal action distributions, whose preservation is key for policies that are robust, versatile,
and adaptable to perturbations and unforeseen situations. Recent advances in generative policy
learning have shown that expressive architectures such as diffusion (Chi et al., 2023; Kang et al.,
2023; Psenka et al., 2023) and flow-based models (Lipman et al., 2022; Park et al., 2025) can capture
such multimodality from demonstrations. However, their behavior is bounded by the coverage of
the demonstration dataset. Reinforcement learning (RL) provides a natural mechanism to adapt
and improve these pre-trained policies beyond demonstrations. Yet, RL fine-tuning often biases
the policy toward reward-maximizing behaviors at the expense of diversity, an issue that is further
exacerbated when the fine-tuning reward is misaligned with the implicit objectives expressed in
demonstrations (Zhou & Li, 2024; Brown et al., 2019). The central problem we address in this
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work is therefore: how can we fine-tune pre-trained generative policies with RL while preserving
the multimodality acquired by supervised pre-training?

Despite the community’s growing interest in policies showcasing multimodal behaviors, little work
systematically examines how RL adaptation affects multimodality. Existing research splits broadly
into two directions. A first line of work focuses on fine-tuning expressive policies such as diffusion
or flow models with RL to improve robustness and returns (Park et al., 2025; Ren et al., 2024; Chen
et al., 2024). These approaches, however, do not account for multimodality in the action distribu-
tion, and often collapse the diverse behaviors captured during demonstration into a single dominant
strategy. A second line of work begins to address multimodality more explicitly, for instance by
proposing metrics to characterize it (Jia et al., 2024) or by leveraging language conditioning and
instruction diversity (Black et al., 2024; Kim et al., 2024). Yet, these efforts either rely on assump-
tions that the number of modes is known in advance or that multimodality can be fully captured
through language and labels. In practice, the modalities contained in the demonstration are usually
unknown, and language provides only a coarse handle on behavior, which prevents precise encoding
of low-level motor attributes such as magnitudes, scales, and endpoints (Lee et al., 2025).

In this work, we propose MD–MAD (Mode Discovery for Multimodal Action Distributions), a
method to fine-tune expressive generative policies while explicitly preserving multimodality. We
begin by introducing a principled definition of multimodality for this class of noise-conditioned
generative models, such as diffusion and flow-based policies. Inspired by prior work on unsuper-
vised skill discovery (Gregor et al., 2016; Eysenbach et al., 2018), we then design a mode discov-
ery procedure that uncovers latent behavioral modes in pre-trained policies without assuming prior
knowledge or relying on external annotations. This discovery process serves a dual purpose: it un-
covers and makes controllable the latent modalities of the policy, and it enables the estimation of
the policy’s multimodality via a conditional mutual information objective. This objective is sub-
sequently employed as an intrinsic reward during reinforcement learning fine-tuning, regularizing
the policy to retain diverse behaviors, as shown in Figure 1. We evaluated the proposed regular-
ization method on multiple robotic manipulation tasks exhibiting multimodal behaviors. Across all
tasks, our approach achieves comparable task success to standard fine-tuning while retaining action
multimodality, demonstrating the effectiveness of our regularization objective.

In summary, our contributions are: 1) A definition and measure of multimodality in action distribu-
tions that does not rely on mode labels or language supervision. 2) An unsupervised mode discovery
framework enabling the identification of latent behavioral modes in pre-trained generative policies.
3) A mode-preserving RL fine-tuning objective, where intrinsic rewards derived from discovered
modes prevent collapse while improving task performance. 4) An empirical evaluation on robotic
manipulation tasks showing that our method preserves multimodality while enhancing task success.

2 RELATED WORK

We briefly review two areas closely connected to our central idea and contributions. For a more
comprehensive discussion on related work, see Appendix A.

Fine-tuning of Pre-trained Generative Policies. Diffusion- and flow-based models provide ex-
pressive policy parameterizations for multimodal action distributions, but fine-tuning them with RL
is challenging due to sequential sampling and the cost of backpropagating through the generative
process. Recent work addresses these issues through three main strategies: direct fine-tuning, resid-
ual policies, and steering policies. Direct fine-tuning approaches adapt the network weights either by
distilling the model into a one-step sampler for easier backpropagation (Park et al., 2025; Chen et al.,
2024), by casting the denoising process as a sequential decision problem (Ren et al., 2024), or by
using differentiable approximations that allow offline Q-learning without backpropagating through
all denoising steps (Kang et al., 2023). Residual policy learning methods instead freeze a pre-trained
generative policy and learn a small corrective controller via RL to address execution errors (Ankile
et al., 2024; Yuan et al., 2024). These techniques can yield substantial performance gains over pure
imitation learning (IL), and potentially preserve the diversity learned from demonstrations. Steering
policy methods instead bias the sampling process toward high-value actions without modifying the
generative model itself Wagenmaker et al. (2025); Yang et al. (2023); Wang et al. (2022). A com-
mon limitation of the aforementioned approaches is that they lack explicit mechanisms to preserve
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multimodality, and often converge to a single reward-maximizing solution. Our work extends the
steering-policy framework of Wagenmaker et al. (2025), by introducing mode discovery to discover
and control latent modalities while biasing all behaviors towards higher rewards.

Skill Discovery Multimodal behavior learning has also been studied through unsupervised skill
discovery, which aims to acquire diverse and distinguishable behaviors without external rewards.
A common approach is to maximize mutual information between a latent skill variable and visited
states or trajectories (Gregor et al., 2016; Eysenbach et al., 2018). Most existing methods train
policies from scratch in reward-free settings, but diversity alone often leads to skills that may be ill
suited for downstream tasks. To address this, prior work has incorporated language guidance (Rho
et al., 2025), extrinsic rewards (Emukpere et al., 2024), or state-space regularization (Park et al.,
2023). Our approach differs by leveraging a pre-trained generative model to uncover useful behav-
iors already encoded in demonstrations. To our knowledge, we are the first to study skill discovery
in this context, treating skills as modes in the latent noise space of a pre-trained generative policy.

3 PROBLEM FORMULATION

Formally, we study the problem of fine-tuning a pre-trained diffusion policy using reinforcement
learning to maximize expected return, while explicitly preserving the multimodality of the action
distribution induced by demonstrations. Specifically, we consider multimodality that may arise
either from heterogeneity in task goals or from the existence of multiple feasible trajectories leading
to the same goal. We model the environment as a Markov Decision Process (MDP) described as a
tuple (S,A, r, p, γ), with state space S, action space A, reward function r, transition dynamics p,
and discount factor γ ∈ [0, 1). The objective of RL is to learn a policy πθ(a | s) maximizing the
expected discounted return

J(π) = Eπ

[ ∞∑
t=0

γtr(st, at)

]
.

Pre-trained Multimodal Action Distirbutions. We assume access to an offline dataset of state-
action pairs D = {(st, at)}Ni=1 collected by diverse behavioral policies (e.g., human demonstra-
tions), which is used to pre-train a generative policy πθ(a | s) via imitation learning. When rele-
vant, we make explicit the dependence of the generative policy on its input noise variable w ∈ W
by denoting it as πθ(a | s, w). We define a mode of the policy πθ as a latent variable z ∈ Z ,
implicitly encoded in the pre-trained multimodal policy, which induces the trajectory distribution
pπ(τ | z) = p(s0)

∏T−1
t=0 π(at | st, z) p(st+1 | st, at), so that different values of z correspond to

distinct self-consistent strategies that solve the task, i.e., different modes. We assume the original
modes z ∈ Z contained in the datasets are unknown.

Steerability Assumption. We assume that the pre-trained generative policy πθ(a | s, w) is steer-
able, in the sense that its behavior can be systematically influenced through the choice of the latent
noise input w ∈ W . A steering policy πW

ψ (w | s), parameterized by ψ, acts in the latent space
W and selects noise variables conditioned on the current state, thereby indirectly shaping the ac-
tion distribution of πθ. Steerability also requires that the generative process preserves dependencies
between the input noise and the generated actions (Domingo-Enrich et al., 2024).

Fine-tuning Objective. Our goal is to fine-tune the policy πθ in order to (i) maximize expected
return and (ii) preserve the multimodality present in the pre-trained policy πθ. We formalize this as
the regularized optimization problem

max
θ

J(πθ) + λM(πθ),

where M denotes a multimodality measure of the induced action distribution, and λ ≥ 0 balances
task performance with diversity preservation. Importantly, we do not assume prior knowledge of the
number of modes in πθ. Designing a practical measure for multimodality under these constraints is
a central contribution of this work.
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4 MODE DISCOVERY FOR RL FINETUNING

To fine-tune pre-trained diffusion policies while preserving multimodality, our method builds on
three components: (i) We first introduce a practical definition of multimodality M(·) in generative
policies by making explicit their dependence on latent input noise and deriving a tractable proxy
based on conditional mutual information; (ii) We then develop an unsupervised mode discovery
procedure by reparameterizing a steering policy πW

ψ (w | s) through a latent variable z ∈ Z; This
enables us to uncover and control the behavioral modes of the pre-trained policy during training,
while also providing an estimate of multimodality through mutual information. (iii) Finally, we use
this estimate to construct a mutual information–based intrinsic reward and combine it with task re-
wards, regularizing reinforcement learning fine-tuning to improve task performance while explicitly
retaining diverse behaviors. In what follows, we describe each component of the method in detail.

4.1 MULTIMODALITY IN GENERATIVE POLICIES

To define multimodality in generative policies such as diffusion and flow-based models, we exploit
the fact that these models generate actions by transforming an input noise vector w ∼ N (0, I)
through a denoising process conditioned on s ∈ S . Multimodality can therefore be understood in
terms of the diversity of actions induced by different noise seeds w. This motivates the following
definition:

Definition: Multimodal Policy

A policy πθ(a | s, w) is multimodal in state s ∈ S if there exist w1, w2 ∈ W , w1 ̸= w2, such that

D(πθ(a | s, w1), πθ(a | s, w2)) ≥ δ, (1)

for some distance measure D (e.g., total variation, KL, Wasserstein) and threshold δ > 0.

This distance-based definition captures the intuition that different noise variables w1, w2 can induce
distinct behaviors under the same state s. However, because D measures dissimilarity between
action distributions, its evaluation is intractable for diffusion and flow-based policies.

Mutual Information as a Proxy. To obtain a tractable surrogate, we observe that if a policy
is multimodal according to Definition 1, then the latent W and the action A must be statistically
dependent given the state S. This implies that the conditional mutual information must be strictly
positive (proof in Appendix C)

I(W ;A | S) = Es∼p(s)
[
DKL

(
πθ(a | s, w) ∥ p(a | s)

)]
> 0,

where p(a | s) = Ew∼p(w)[πθ(a | s, w)] is the marginal action distribution. Conversely, unimodal
policies satisfy I(W ;A | S) = 0, and multimodality holds whenever I(W ;A | S) ≥ δ′ for some
δ′ > 0 capturing the minimal dependence required. Thus, multimodality M(πθ) can be quantified
by the conditional mutual information I(W ;A | S). Since computing this quantity exactly remains
intractable, in the next section we will provide a method to estimate this measure in practice.

4.2 MODE DISCOVERY OF PRE-TRAINED GENERATIVE POLICIES

Directly optimizing I(W ;A | S) i is impractical as the implicit structure of W varies at every time-
step and for each action-chunk, whereas the multimodal behaviors we are interested in emerge at the
trajectory level. Maximizing I(W ;A | S) would therefore encourage the policy to exploit arbitrary
noise variations at each time step rather than to capture semantically distinct modes. To overcome
this problem and simultaneously obtain a structured and controllable representation, we introduce
MD-MAD (Mode Discovery for Multimodal Action Distributions), which reparameterizes a steering
policy with a latent variable z ∈ Z that organizes W into trajectory-level modes.

Latent Reparameterization. Let πW
ψ (w | s) denote a steering policy that selects the latent noise

w ∈ W seeding the denoising process. We introduce a latent variable z ∈ Z and define a latent-
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Figure 2: Unsupervised Mode Discovery via Latent Reparameterization of a Steering Policy. An inference
model qϕ(z | s) and a steering policy πW

ψ (w | s, z) are trained jointly to uncover latent modes z ∈ Z in the
frozen diffusion actor πθ(a | s, w). The steering policy structures the noise spaceW according to z, inducing
diverse actions a ∈ A, while the inference model recovers z to provide a variational estimate of I(Z;A | S)
(Eq. 4), used as an intrinsic reward during mode discovery and fine-tuning.

conditioned steering policy πW
ψ (w | s, z), which induces the family of action distributions

πθ,ψ(a | s, z) =

∫
πθ(a | s, w)πW

ψ (w | s, z) dw. (2)

Distinct values of z can therefore select different behaviors (modes) encoded by the fixed pretrained
policy πθ(a | s, w). Under this reparameterization, multimodality is measured by the conditional
mutual information I(Z;A | S) = Es∼p(s)

[
DKL

(
πθ,ψ(a | s, z) ∥ p(a | s)

)]
. When πW

ψ (w | s, z)
is deterministic, I(Z;A | S) ≤ I(W ;A | S) by invariance under deterministic transforms, with
equality if Z is injective inW . Thus, any lower bound on I(Z;A | S) is also a valid lower bound on
I(W ;A | S), providing a direct bridge to our earlier definition. Since the structure of W is unknown
and no mode labels are available, the steering policy mapping Z to W uncovering the behavioral
modes implicit in the pretrained policy must be learned in an unsupervised manner.

Variational Lower Bound. Directly optimizing Z via I(Z;A | S) is intractable, since it requires
access to the marginal distribution p(a | s). Following standard practice in skill discovery (Eysen-
bach et al., 2018), we derive a variational lower bound of the mutual information by introducing an
inference model qϕ(z | s, a) that approximates the posterior over latent codes. This yields

I(Z;A | S) = Es,z,a
[
log

p(z | s, a)
p(z)

]
(3)

≥ Es,z,a [log qϕ(z | s, a)− log p(z)] , (4)

where (s, z, a) are sampled from the steered policy πθ(a | s, z) and prior p(z). The full derivation
is provided in Appendix D, while a discussion on connections with the skill discovery literature is
in Appendix E.1. In practice, qϕ(z | s, a) is trained as qϕ(z | s): although dynamics are not strictly
deterministic, state variability at fixed actions is minor and does not drive mode differentiation, so
excluding a reduces complexity without compromising the ability of z to capture trajectory-level
multimodality.

The log-posterior likelihood is further used as an intrinsic reward for training the steering policy πW
ψ ,

thereby aligning the RL objective with the identifiability of z. This establishes a feedback loop in
which qϕ improves at classifying latent codes while the policy is incentivized to produce trajectories
that are consistent and discriminable, yielding a structured latent space where each z corresponds to
a distinct mode of behavior. An overview of the method for mode discovery is illustrated in Figure 2.

4.3 POLICY FINE-TUNING WITH INTRINSIC REWARD

Recall from Section 3 that we formulated fine-tuning as maximizing task return regularized by a
multimodality measure M. Building on this, the variational lower bound introduced above provides
a tractable instantiation of M, which is leveraged as an intrinsic signal to preserve multimodality
during fine-tuning. Concretely, we define the augmented reward

rtotal(s, a, z) = renv(s, a) + λ
(
log qϕ(z | s, a)− log p(z)

)
, (5)

5
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where renv is the environment reward and λ ≥ 0 balances task performance with multimodality
preservation. Directly combining task and intrinsic rewards may lead to premature collapse if the
task signal dominates before the multimodal structure is discovered. We therefore adopt a two-
stage scheme: first, the steering policy is trained with the intrinsic objective alone to uncover the
modes of the pretrained policy; then the environment reward is introduced to guide fine-tuning
toward high-return behaviors without destroying diversity. During mode discovery, we also apply a
short-to-long horizon curriculum to stabilize learning. Algorithm 1 in Appendix E.3 summarizes the
overall procedure. While we adopt PPO (Schulman et al., 2017) in our experiments, our framework
is agnostic to the specific RL algorithm used.

Broader use of the framework. While the formulation above fine-tunes the generative model in-
directly via the steering policy, the framework is not limited to this case. Because the steering head
actively explores diverse input-noise regions while pursuing reward, it can be combined with direct
fine-tuning of the diffusion weights, acting as a structured exploration agent. At test time, the steer-
ing policy can either be retained—allowing explicit control over the behavioral mode—or removed,
reverting to random sampling from the noise prior. Furthermore, while outside the present study,
the learned latent space Z provides a natural basis for grounding semantic labels (e.g., language
instructions) when limited annotations are available.

5 EXPERIMENTS

Our experimental evaluation is centered around three main questions: (i) Is the mutual information in
Eq. 4 a valid measure of multimodality? (ii) Do existing fine-tuning techniques preserve multimodal-
ity? (iii) Does our method retain multimodality without sacrificing task performance? To answer
these questions, we evaluated our method in two distinct scenarios: an illustrative 2D Gaussian-
mixture reward landscape, and diverse multimodal manipulation tasks from ManiSkill (Tao et al.,
2024) and D3IL (Jia et al., 2024). We finally included ablations on key design choices.

Baselines We benchmark our approach against representative strategies for on-policy fine-tuning
of generative policies, focusing on diffusion models but noting that analogous evaluations apply to
flow-matching policies. We include DPPO (Ren et al., 2024), as a direct finetuning approach, Policy
Decorator (Yuan et al., 2024) as a residual fine-tuning approach (RES), and we consider Wagen-
maker et al. (2025) as a steering policy SP based approach. For DPPO we select DDIM parame-
terization that reduces stochasticity while balancing η > 0 and the number of diffusion steps for
stable weight updates. We further include a DDPM-based version that samples with the full de-
noising chain and fine-tunes the last 10 diffusion steps for completeness (DPPO[10]). Importantly,
our approach is orthogonal to these categories and can be combined with any of them. Therefore,
we report results both for the standalone baselines and their variants augmented with our multi-
modality regularizer, denoted as X[MD-MAD], where X indicates the corresponding baseline. Full
implementation details for all baselines and their regularized variants are provided in Appendix F.

Evaluation Metrics We assume access to the ground truth modes of the trajectories executed by
the policy in simulation, and we evaluate fine-tuned policies along two axes: task success and behav-
ioral diversity. We report overall success rate SR, and two mode-aggregated measures of the success
rate to integrate behavioral diversity: the success rate weighted for each mode SRM = 1

K

∑K
i=1 SRi,

which guards against degenerate solutions (e.g., 100% success on a single mode but failure on oth-
ers), and mode coverage mc@τ = 1

K

∑K
i=1 1{SRi ≥ τ}, the fraction of modes solved above thresh-

old τ = 0.8. We further compute the entropy of the empirical distribution over modes among all
rollouts: H(π) = −

∑K
i=1 pi log pi, where pi is the fraction of episodes in mode i. All metrics are

computed from N = 1024 evaluation episodes with fixed seeds for fair comparison, and we report
both the mean and standard deviation over three independent runs with different random seeds.

5.1 2D GAUSSIAN MIXTURE

To study the proposed questions in a controlled setting, we designed a 2D navigation environment
where the reward landscape is a mixture of 4 Gaussians centered at fixed goal locations. We study
both a balanced variant, where all goals have equal weight, and an unbalanced variant, where mode
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(a) Policy (1 mode) (b) Policy (2 modes) (c) Policy (4 modes)
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(d) 1 mode
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(e) 2 modes.
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(f) 4 modes.

Figure 4: (Top) Trajectories generated from policies pre-trained. (Bot-
tom) Monte Carlo estimate of the action distribution (∆x,∆y) at t = 0.

(a) z = 0 (b) z = 1

(c) z = 2 (d) z = 3

Figure 5: Rollouts generated by
steering the policy with latent codes
z ∈ {0, 1, 2, 3}.

weights are randomized and normalized via a softmax, producing uneven but non-degenerate reward
magnitudes. Further details and illustrations are provided in Appendix H.1.

Mutual Information as a Proxy for Multimodality and Mode Discovery. We first evaluate if
mutual information provides a reliable proxy for multimodality. To this end, we construct expert
datasets in the Gaussian-mixture environment containing one, two, or four goal modes, and train
separate policies on each dataset (demonstrations are shown in Figure 10). Figure 4 shows rollouts
of policies trained on each dataset (top row) alongside Monte Carlo estimates of their action distri-
butions at t = 0 (bottom row). We hypothesize that a valid multimodality metric M should increase
with the number of modes. To test this, we estimate M with Equation 4 by jointly training a steering
policy and an inference model qϕ over a discrete latent space Z = {0, 1, 2, 3}.

Table 1: Mutual information and inference model
loss.

Policy M qϕ Loss

1 mode 0.00±0.00 1.38±0.00

2 modes 0.58±0.02 0.82±0.02

4 modes 1.06±0.00 0.33±0.02

Table 1 reports the estimated mutual information and
inference-model loss from qϕ on 1024 trajectories
with randomly sampled z ∈ Z . As expected, mutual
information increases with the number of modes,
while the loss decreases, indicating that qϕ reliably
recovers latent codes when multimodality exists, but
struggles in the unimodal case. These results sup-
port conditional mutual information as a proxy for
multimodality and as a useful training signal. Fig-
ure 5 further shows that conditioning the steering policy on individual z produces distinct, coherent
trajectories, confirming that the latent space organizes noise into meaningful behavioral modes.

Multimodality and Task Performance under Fine-Tuning We evaluate the performance of ex-
isting fine-tuning methods against our proposed MD-MAD in preserving multimodality when the
reward used for adaptation differs from the one implicitly encoded in the demonstrations. To sim-
ulate this mismatch, we define two shifted reward landscapes obtained by rotating the Gaussian
peaks used for demonstrations by π

8 and π
4 , denoted as Goal[1] and Goal[2]. For each, we consider

both a balanced variant, where all modes contribute equally, and an unbalanced variant, where the
Gaussian weights are rescaled to produce asymmetric rewards (more details in Appendix H.1).

Table 2 reports results for both goals. Among baselines, the residual policy (RES) performs best,
solving Goal[1] and retaining two modes in Goal[2], as constrained corrections help preserve mul-
timodality. Diffusion-based methods (DPPO, DPPO[10]) improve task success, with DPPO aided
by extra denoising steps, but both collapse to fewer modes when rewards diverge from demonstra-
tions. Steering alone (SP) is least effective, with limited success in Goal[1] and full collapse in
Goal[2]. Multimodality retention further degrades in the unbalanced setting, where reward bias
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Table 2: Evaluation on the Gaussian-mixture environment under two fine-tuning reward landscapes, and their
unbalanced version (Unb.).

Goal [1] Goal [2]
Method SR (↑) SRM (↑) mc@80 (↑) H (↑) SRM (Unb.) (↑) SR (↑) SRM (↑) mc@80 (↑) H (↑) SRM(Unb.) (↑)

RES 0.98±0.02 0.98±0.02 4.00/4 1.00±0.00 0.59±0.07 0.92±0.12 0.50±0.00 2.00/4 0.59±0.13 0.50±0.00

SP 1.00±0.00 0.25±0.00 1.00/4 0.00±0.00 0.17±0.12 0.33±0.47 0.08±0.12 0.33/4 0.00±0.00 0.00±0.00

DPPO 1.00±0.00 0.58±0.12 2.33/4 0.40±0.03 0.25±0.00 1.00±0.00 0.42±0.12 1.67/4 0.02±0.02 0.00±0.00

DPPO[10] 0.66±0.32 0.16±0.08 0.33/4 0.00±0.00 0.25±0.00 0.32±0.22 0.11±0.05 0.00/4 0.60±0.22 0.14±0.20

RES[MD-MAD] 1.00±0.00 1.00±0.00 4.00/4 0.99±0.00 1.00±0.00 1.00±0.00 1.00±0.00 4.00/4 0.94±0.00 1.00±0.00

SP[MD-MAD] 0.33±0.47 0.33±0.47 1.33/4 0.46±0.41 0.17±0.12 0.33±0.04 0.08±0.12 0.33/4 0.84±0.14 0.03±0.02

DPPO[MD-MAD] 1.00±0.00 1.00±0.00 4.00/4 0.99±0.00 1.00±0.00 1.00±0.00 0.75±0.00 3.00/4 0.74±0.00 0.75±0.00

toward specific goals causes even strong baselines to collapse to dominant peaks. These results
suggest that standard fine-tuning techniques fail to fully preserve the original multimodality as the
reward landscape deviates from the distribution underlying the demonstrations.

In contrast, the [MD-MAD] variants preserve diversity more consistently: RES recovers full mode
coverage across both goals and their unbalanced versions, and DPPO shows similar gains. For the SP
method, [MD-MAD] mitigates but does not prevent collapse, indicating that additional fine-tuning
of the original policy is required in this case. Overall, MD-MAD stabilizes fine-tuning in symmetric
tasks and counteracts reward asymmetries that bias baselines toward fewer behaviors. Qualitative
visualizations of the trajectories learned by the DPPO and RES[MD-MAD] policies are shown in
Figure 1, while Appendix H.3 reports ablations on the dimensionality of Z .

5.2 ROBOTIC MANIPULATION

Next, we evaluate our method on three simulated robotic tasks: Reach, Lift, and Avoid, implemented
on ManiSkill (Tao et al., 2024) and visualized in Figure 13. Multimodality arises either from goal
diversity or trajectory diversity in achieving the same goal. For each task, we collect 1000 demos
with a motion planner and pre-train a diffusion model for 1000 epochs. Subsequently, dense or
intermediate rewards are provided to support fine-tuning, and a heuristic is used to assign trajectories
to modes for evaluation. Further implementation details are given in Appendix I.

Standard Fine-tuning. Table 3 summarizes results for baselines without explicit multimodality
preservation. In Reach, all methods fine-tune the pre-trained policy without collapse, indicating that
the inherent exploration of diffusion policies suffices to adapt both modes. In Lift, fine-tuning im-
proves success rates but fails to consistently solve both modalities; only the steering-based baseline
(SP) maintains higher entropy, showing that KL regularization with a Gaussian prior on the output
of the steering policy (to enforce closeness with the original input noise distribution) can partly mit-
igate collapse, albeit at the cost of performance. In Avoid, fine-tuning achieves high task success
but eliminates multimodality, driven by (i) reward mismatch between pre-training and fine-tuning,
and (ii) trajectory length asymmetries that bias toward shorter-horizon solutions. Taken together, the
results align with the 2D Gaussian mixture experiments and indicate that standard RL fine-tuning
progressively destroys multimodality as the reward landscape deviates from the pre-trained trajec-
tory distribution and becomes unbalanced across modes.

MD-MAD Fine-tuning. Table 4 shows that incorporating our regularization enables adaptation of
the pre-trained policy while largely preserving multimodality, with only minimal trade-offs between
diversity and task performance. In Reach, regularization leaves success rates unaffected, confirming
that our regularization term does not sacrifice performance. In Lift, it allows the policy to retain both
solution modes from the pre-trained policy, improving over standard fine-tuning. In the more chal-
lenging Avoid, it sustains high success while preserving a subset of the modes, again outperforming
baselines. Although some collapse remains, the results indicate that regularization substantially mit-
igates mode loss, even under pronounced reward imbalance. Qualitative visualizations of the skills
learned by our method are shown in Appendix I.2. Additionally, ablations covering design choices
such as curriculum learning and pre-training the steering policy for mode discovery, as well as the
role of the regularization weight λ and the effect of removing the steering policy after fine-tuning,
are reported in Appendix I.1.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Baselines fine-tuning.

Method SR(↑) SRM (↑) mc@0.80 (↑) H (↑)

Reach

PRE 0.32±0.01 0.31±0.00 0.00/2 0.99±0.00

RES 1.00±0.00 1.00±0.00 2.00/2 0.98±0.01

SP 0.98±0.00 0.98±0.00 2.00/2 0.97±0.00

DPPO 0.93±0.01 0.94±0.02 2.00/2 0.66±0.33

DPPO[10] 0.99±0.00 0.99±0.00 2.00/2 0.97±0.03

Lift

PRE 0.14±0.01 0.15±0.01 0.00/2 0.97±0.01

RES 1.00±0.00 0.50±0.00 1.00/2 0.00±0.00

SP 0.78±0.03 0.78±0.03 0.67/2 0.98±0.01

DPPO 0.99±0.01 0.57±0.10 1.00/2 0.05±0.03

DPPO[10] 1.00±0.00 0.56±0.08 1.00/2 0.02±0.01

Avoid

PRE 0.94±0.04 0.86±0.04 20.00/24 0.63±0.00

RES 0.98±0.03 0.04±0.00 1.00/24 0.00±0.00

SP 1.00±0.01 0.09±0.02 2.00/24 0.01±0.00

DPPO 1.00±0.00 0.26±0.11 6.33/24 0.13±0.15

DPPO[10] 1.00±0.00 0.04±0.00 1.00/24 0.00±0.00

Table 4: Fine-tuning with regularization (MD-MAD).

Method SR (↑) SRM (↑) mc@0.80 (↑) H (↑)

Reach

PRE 0.32±0.01 0.31±0.00 0.00/2 0.99±0.00

RES[MD-MAD] 0.99±0.00 0.99±0.00 2.00/2 1.00±0.00

SP[MD-MAD] 1.00±0.00 1.00±0.00 2.00/2 0.97±0.01

DPPO[MD-MAD] 0.98±0.01 0.98±0.01 2.00/2 0.67±0.43

DPPO[10] - - - -

Lift

PRE 0.14±0.01 0.15±0.01 0.00/2 0.97±0.01

RES[MD-MAD] 0.99±0.00 0.99±0.00 2.00/2 1.00±0.00

SP[MD-MAD] 0.88±0.07 0.88±0.07 1.67/2 0.99±0.01

DPPO[MD-MAD] 0.99±0.00 0.55±0.07 1.00/2 0.06±0.04

DPPO[10] - - - -

Avoid

PRE 0.94±0.04 0.86±0.04 20.00/24 0.63±0.00

RES[MD-MAD] 0.99±0.01 0.30±0.02 7.33/24 0.53±0.01

SP[MD-MAD] 1.00±0.00 0.42±0.00 10.00/24 0.58±0.00

DPPO[MD-MAD] 0.94±0.07 0.43±0.05 9.67/24 0.57±0.01

DPPO[10] - - - -

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

We studied the problem of fine-tune pre-trained generative policies with RL while preserving multi-
modal action distributions. Focusing on diffusion policies trained from demonstrations, we showed
that standard fine-tuning often collapsed multimodality to a dominant behavior when the fine-tuning
reward landscape diverged from the demonstrations. To address this, we proposed using conditional
mutual information as a proxy for multimodality and introduced MD–MAD, an unsupervised mode-
discovery method based on a latent reparameterization of a steering policy. We then used the steering
policy together with the mutual-information estimate to provide an intrinsic reward that regularized
RL fine-tuning toward retaining diverse behaviors. We benchmarked the method across robotic ma-
nipulation environments, and showcased that the proposed regularization mitigated collapse under
reward imbalance, supporting MD–MAD as a practical approach to fine-tuning generative policies
without sacrificing behavioral diversity.

Limitations and Future Work Our study revealed several trade-offs and open directions. The
intrinsic-reward regularization required careful tuning, as excessive weight slowed learning and re-
duced task success. Maintaining an inference model during fine-tuning also introduced instabilities,
as it needed to track the policy’s shifting state distribution. This was further exacerbated by the sen-
sitivity of the inference model to small state perturbations. A promising next step to address these
limitations is to explore techniques from skill discovery that replace mutual-information estimators
with metric representations to improve robustness and generalization.

One of the major failure cases of our proposed method was the inability to retain all modalities in
the Avoid environment. We hypothesize that using a single latent per trajectory limited adaptation
when multimodality emerged late in an episode and could be addressed with hierarchical or time-
varying latents that permit mode switches within a rollout. A second failure case arose with highly
stochastic action generation (e.g., DDPM sampling), where mapping modes to input noise for max-
imizing mutual information was hindered by the sampling stochasticity, reducing the ability to steer
the policy towards consistent behaviors. Exploring stage-aware steering at later diffusion steps or
adaptive noise schedules may help mitigate this limitation.

Finally, although the formulation was independent of language supervision, the learned latent space
is amenable to post-hoc semantic grounding. Aligning modes with language via preference learning
or VLA mappings and developing a joint inference model that preserves diversity while enabling
reliable semantic labels are compelling directions for future work.
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7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. All algorithmic details,
including model architectures, training procedures, and hyperparameters, are described in the main
text and appendix. If any hyperparameter is not explicitly documented in the paper, it will be fully
specified in the released code repository. Upon acceptance, we will release the complete codebase,
together with configuration files, pretrained checkpoints, and evaluation scripts, to allow exact repli-
cation of our experiments. Additionally, proofs of theoretical claims and ablation studies supporting
our design choices are included in the appendix.
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dling such multimodality in the action distribution from three perspectives: (i) general approaches
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Figure 6: Taxonomy of RL Fine-tuning Techniques Discussed in this Work. Each plot illustrates the
learned action-value function Q(st, ·) as the underlying reward landscape. Direct fine-tuning (left) adapts
the pre-trained policy weights to optimize task performance, directly shifting the action distribution toward
higher-value regions. Residual policies (center) learn an additive correction ∆at to the pre-trained action aDt ,
combining them into a fine-tuned action a∗t . Steering policies (right) learn a policy over the input latent noise
of the generative model, biasing sampling toward regions of the noise space whose denoised actions have high-
reward behaviors.

to learning multimodal behaviors, (ii) fine-tuning of generative policies, where we identify three
categories of RL-based techniques schematically illustrated in Figure 6, and (iii) the skill discovery
literature, which closely connects to our central idea of unsupervised mode discovery.

A.1 MULTIMODAL BEHAVIOR LEARNING AND ACTION DIVERSITY

Robotic manipulation often admits multiple distinct solutions, arising from kinematic redundan-
cies, multimodal goals, or heterogeneous demonstrations (Li et al., 2025). Standard RL policies
parameterized by unimodal Gaussians collapse to a single behavior, limiting expressiveness and
trapping learning in suboptimal modes (Huang et al., 2023). Early work tackled this by introducing
a latent-conditioned policy within the policy gradient framework, casting trajectory generation as
a latent-variable model to encourage exploration of distinct modes and avoid local minima Huang
et al. (2023). Imitation learning and offline RL have built on latent representations to infer discrete
behaviors directly from data. Hausman et al. segment unlabeled demonstrations into “intention”
clusters and learn a mode-conditioned policy for each cluster (Hausman et al., 2017), while LAPO
refines a multimodal policy via an advantage-weighted divergence penalty that preserves original
modes during offline finetuning (Chen et al., 2022). Integrating expressive policy representations
such as diffusion and flow-based generative policies further improves upon this by capturing com-
plex, high-dimensional distributions. Deep Diffusion Policy Gradient (DDiffPG) (Li et al., 2024)
demonstrated an RL agent that discovers and maintains multiple strategies by parameterizing the
policy with a diffusion model. They address the tendency of the greedy RL objective to collapse
to one mode by clustering experience and doing mode-specific value learning, thereby ensuring
improvement of all discovered modes.

Similar to these approaches, our work builds on a latent-variable model, but we employ it within a
steering policy rather than the main policy. Unlike prior approaches that learn multimodal behaviors
from scratch, we leverage a pre-trained diffusion model that already encodes diverse demonstrations
and focus on fine-tuning it with RL while preserving multimodality in the action distribution.

A.2 FINE-TUNING OF PRE-TRAINED GENERATIVE POLICIES

Diffusion- and flow-based models provide expressive policy parameterizations for multimodal ac-
tion distributions, but fine-tuning them with reinforcement learning is challenging due to sequential
sampling and the cost of backpropagating through the generative process. Recent work addresses
these issues through three main strategies (illustrated in Figure 6): direct fine-tuning, residual poli-
cies, and steering policies. Direct fine-tuning approaches adapt the network weights either by dis-
tilling the model into a one-step sampler for easier backpropagation (Park et al., 2025; Chen et al.,
2024), by casting the denoising process as a sequential decision problem (Ren et al., 2024), or by
using differentiable approximations that allow offline Q-learning without backpropagating through
all denoising steps (Kang et al., 2023). Despite their promise, such approaches often collapse to
a single reward-maximizing mode. Residual policy learning methods instead freeze a pre-trained
generative policy and learn a small corrective controller via RL to address execution errors (Ankile
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et al., 2024; Yuan et al., 2024). These techniques, along with careful regularization and architectural
choices, can yield substantial performance gains over pure IL, with the potential to preserve the
diversity learned from demonstrations. Steering policy methods instead bias the sampling process
toward high-value actions without modifying the generative model itself. Some methods directly
adjust training data or sampled actions using Q-values, either by nudging demonstration actions to-
ward higher values (Yang et al., 2023) or by combining diffusion with Q-learning to bias samples
while staying close to the demonstration manifold (Wang et al., 2022). More recently, Wagenmaker
et al. (2025) proposed to learn to control the latent noise of generative models, guiding the sampling
process toward regions of the noise space whose denoised actions yield higher reward.

Although all these approaches can successfully fine-tune pretrained policies with RL, they lack
an explicit mechanism to preserve multimodality, often collapsing to a single reward-maximizing
behavior. Our approach extends the steering-policy framework Wagenmaker et al. (2025) by using
it not only to bias behavior toward reward but also to uncover and control the latent multimodal
structure of a pre-trained diffusion policy. Notably, this perspective positions the steering policy
as a complementary module that can be combined with other fine-tuning methods to enforce the
retention of diverse behaviors.

A.3 SKILL DISCOVERY

Multimodal behavior learning has also been explored through the lens of skill discovery methods.
The goal of skill discovery is to acquire a set of diverse and distinguishable behaviors without rely-
ing on external rewards. A common approach is to maximize mutual information between a latent
skill variable and the states or trajectories visited by the policy, as in VIC (Gregor et al., 2016),
DIAYN (Eysenbach et al., 2018), VALOR (Achiam et al., 2018), VISR (Hansen et al., 2019), or
DADS (Sharma et al., 2019). Other methods rely on successor features (Machado et al., 2017;
Hansen et al., 2019), exploration bonuses (Liu & Abbeel, 2021a;b), or hierarchical decomposi-
tions (Kim et al., 2021; Zhang et al., 2021) to induce skill diversity.

Most of these works assume training policies from scratch in reward-free settings. However, purely
diversity-driven objectives often neglect reward alignment and directed exploration, yielding skills
that may not transfer to specific manipulation goals. To mitigate this, previous work has explored a
range of approaches such as incorporating language guidance (Rho et al., 2025), combining discov-
ery with generic extrinsic rewards (Emukpere et al., 2024), maximization of hard-to-achieve state
transitions (Park et al., 2023), or mutual information maximization between agent and environment
sections of state space (Zhao et al., 2021; Cho et al., 2022). Our perspective is different: we leverage
a pre-trained model to uncover diverse and useful behaviors already encoded in it. In particular, we
are the first to study skill discovery in diffusion policies, where skills are represented as modes in
the latent noise space of the generative model.

B DERIVATION OF MUTUAL INFORMATION IN LATENT-CONDITIONED
POLICIES

We begin by recalling the definition of conditional mutual information between a latent variable w
and actions a, given states s:

I(W ;A | S) := Es∼p(s)

[
E(a,w)∼p(w,a|s)

[
log

p(w, a | s)
p(a | s) p(w | s)

]]
. (6)

In the setting of latent-conditioned policies, we assume a generative process where the state s ∼ p(s)
is sampled from a fixed distribution, the latent w ∼ p(w) is sampled independently of s, and actions
are sampled from a conditional policy π(a | s,w). This induces the joint distribution

p(s,w, a) = p(s) · p(w) · π(a | s,w), (7)

and the conditional joint and marginals:

p(w, a | s) = p(w) · π(a | s,w), (8)
p(w | s) = p(w). (9)
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Substituting these expressions into the definition of conditional mutual information, we obtain:

I(W ;A | S) = Es∼p(s)

[
Ew∼p(w), a∼π(a|s,w)

[
log

p(w)π(a | s,w)

p(w) p(a | s)

]]
= Es∼p(s)

[
Ew∼p(w), a∼π(a|s,w)

[
log

π(a | s,w)

p(a | s)

]]
.

(10)

Recognizing this expression as the Kullback–Leibler (KL) divergence between the conditional dis-
tribution π(a | s,w) and its marginal p(a | s), we rewrite the mutual information as:

I(W ;A | S) = Es∼p(s)
[
Ew∼p(w)

[
DKL

(
π(a | s,w) ∥ p(a | s)

)]]
. (11)

In this formulation, p(a | s) is interpreted as the marginal action distribution under latent sampling:

p(a | s) = Ew∼p(w)

[
π(a | s,w)

]
. (12)

This derivation provides a formal and tractable characterization of the mutual information between
latent variables and actions under a latent-conditioned policy. It also justifies the use of mutual
information as a measure of multimodality: if w has a significant influence on the action distribution
π(a | s,w), then the divergence between conditionals and the marginal p(a | s) is large, leading to
a high I(W ;A | S). Conversely, if the latent has little effect on the action distribution, the mutual
information approaches zero.

C MULTIMODALITY IMPLIES POSITIVE MUTUAL INFORMATION

Proposition 1. Let π(a | s,w) be a conditional policy distribution over actions a ∈ A given state
s ∈ S and latent variable w ∈ W, with w ∼ p(w) and s ∼ p(s). Suppose that for some state s0 in
the support of p(s), there exist w1,w2 ∈ W with w1 ̸= w2 such that:

DKL (π(a | s0,w1) ∥π(a | s0,w2)) ≥ δ > 0.

Then the conditional mutual information (as derived in Appendix B)

I(W ;A | S) := Es∼p(s)
[
Ew∼p(w)

[
DKL

(
π(a | s,w) ∥ p(a | s)

)]]
is strictly positive:

I(W ;A | S) > 0.

Proof. Step 1: Mutual information as expected KL.

Recall that for random variables w, a, s, the conditional mutual information can be formulated as:

I(W ;A | S) = Es∼p(s)

[
Ew∼p(w)

[
DKL

(
π(a | s,w) ∥ p(a | s)

)]]
,

where:
p(a | s) := Ew∼p(w)

[
π(a | s,w)

]
is the marginal (multimodal) action distribution.

Step 2: Assumption implies non-constant action distributions in w.

By assumption, there exist w1 ̸= w2 such that:

DKL (π(a | s0,w1) ∥π(a | s0,w2)) ≥ δ > 0.

This implies that the map w 7→ π(a | s0,w) is not constant, i.e., there is variation in the action
distribution as w varies. Therefore, the marginal

p(a | s0) = Ew∼p(w)

[
π(a | s0,w)

]
is a non-degenerate mixture of at least two distinct distributions.

Step 3: Use strict convexity of KL divergence.
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Let f(w) := π(a | s0,w) denote the conditional distribution over actions given latent w, and let
f̄ := Ew[f(w)] be the marginal action distribution at state s0:

f̄ = p(a | s0) = Ew∼p(w)

[
π(a | s0,w)

]
.

If we can show that the expected KL divergence between the latent-conditioned policy and the
marginal action distribution:

Ew
[
DKL

(
π(a | s0,w) ∥ p(a | s0)

)]
> 0,

then I(W ;A | S = s0) > 0.

Since the KL divergence is a strictly convex function in its first argument, we can apply Jensen’s
inequality. In particular, for any strictly convex function ϕ, Jensen’s inequality implies:

E[ϕ(X)] > ϕ(E[X]) if X is not constant.

Applying this to the KL divergence and the random variable f(w), we obtain:

Ew
[
DKL(f(w) ∥ f̄)

]
> DKL

(
Ew[f(w)] ∥ f̄

)
.

Since f̄ = Ew[f(w)], the KL divergence on the right-hand side is zero, and we conclude:

Ew
[
DKL(f(w) ∥ f̄)

]
> 0.

In other words, the expected KL divergence is strictly positive whenever f(w) is not constant in w.
Therefore, there must exist at least one w such that:

DKL(f(w) ∥ f̄) > 0.

This establishes that the conditional mutual information between the latent variable w and actions a
given state s = s0 is strictly positive:

I(W ;A | S = s0) = Ew
[
DKL

(
π(a | s0,w) ∥ p(a | s0)

)]
> 0.

Step 4: Positivity of expectation over s.

Since I(W ;A | S) = Es [I(W ;A | S = s] and the integrand is strictly positive for at least one
s = s0 (which lies in the support of p(s)), it follows that:

I(W ;A | S) > 0.

D DERIVATION OF THE VARIATIONAL LOWER BOUND FOR I(Z;A | S)

We aim to derive a variational lower bound on the conditional mutual information between a latent
variable z and an action a, given a state s. The conditional mutual information is defined as:

I(Z;A | S) = Es∼p(s) [DKL (p(z, a | s) ∥ p(z | s) p(a | s))] . (13)

Using the definition of the Kullback–Leibler divergence, we expand Equation 13 as:

I(Z;A | S) = Es∼p(s)

[∫ ∫
p(z, a | s) log

p(z, a | s)
p(z | s) p(a | s)

dz da
]

(14)

= Es∼p(s), (z,a)∼p(z,a|s)

[
log

p(z, a | s)
p(z | s) p(a | s)

]
. (15)

We now introduce a variational distribution q(z | a, s) to approximate the intractable posterior p(z |
a, s). We start by rewriting the joint p(z, a | s) in terms of the conditional and the marginal:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

p(z, a | s) = p(a | s) p(z | a, s). (16)

Substituting into Equation 15 gives:

I(Z;A | S) = Es∼p(s), (z,a)∼p(z,a|s)

[
log

p(z | a, s) p(a | s)
p(z | s) p(a | s)

]
(17)

= Es∼p(s), (z,a)∼p(z,a|s)

[
log

p(z | a, s)
p(z | s)

]
. (18)

We now apply the variational approximation:

log
p(z | a, s)
p(z | s)

= log
q(z | a, s)
p(z | s)

+ log
p(z | a, s)
q(z | a, s)

. (19)

Taking expectation over (z, a, s) ∼ p(z, a, s) = p(s) p(z, a | s), we obtain:

I(Z;A | S) = Es∼p(s), z,a∼p(z,a|s)

[
log

q(z | a, s)
p(z | s)

]
+ Es∼p(s)

[
DKL

(
p(z | a, s) ∥ q(z | a, s)

)]
. (20)

Since the second term is a KL divergence, it is non-negative. Dropping it yields a variational lower
bound:

I(Z;A | S) ≥ Es∼p(s), z,a∼p(z,a|s)

[
log

q(z | a, s)
p(z | s)

]
. (21)

We now assume a generative model where z ∼ p(z) is independent of s, and the policy π(a | s, z)
defines a conditional distribution over a given s and z. Thus, we can write:

p(z, a | s) = p(z)π(a | s, z), and p(z | s) = p(z). (22)

Substituting this model into Equation 21, we get:

I(Z;A | S) ≥ Es∼p(s), z∼p(z), a∼π(a|s,z)

[
log

q(z | a, s)
p(z)

]
(23)

= Es∼p(s), z∼p(z), a∼π(a|s,z) [log q(z | a, s)− log p(z)] . (24)

Equation 24 is the desired lower bound on the conditional mutual information. It can be optimized
with respect to the parameters of the variational posterior q(z | a, s), which is typically implemented
as a neural network encoder. This objective promotes learning representations z that are both re-
coverable from behavior and diverse in their influence on action selection. Simultaneously, the
regularization term − log p(z) prevents the latent codes from deviating excessively from the prior.
In practice, p(z) is often chosen to be a uniform or isotropic Gaussian distribution.

E METHOD DETAILS

E.1 CONNECTION TO SKILL DISCOVERY.

The variational lower bound in equation 4 is formally analogous to those used in prior skill discovery
methods, but its purpose in our setting is fundamentally different. In mutual-information-based skill
discovery, the bound is optimized jointly with the policy to encourage exploration and broaden
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coverage of the state space. By contrast, our diffusion policy is pre-trained and fixed, so the mutual
information objective cannot alter the state distribution. Instead, maximizing I(Z;A | S) serves
to uncover and control the intrinsic multimodality already embedded in the generative policy by
promoting diversity in the action space A. In addition, this bound provides a practical metric to
quantify multimodality in pre-trained policies, as demonstrated in Section 5.1.

E.2 CURRICULUM LEARNING.

Unlike in standard skill discovery, we have access to full trajectory rollouts for each mode we want
to discover. However, this makes the joint optimization of the steering policy and inference model
challenging as the policy must maintain temporal consistency while producing behaviors that remain
discriminable by the inference model qϕ, which can lead to instability during training. To mitigate
this, we introduce a curriculum strategy that gradually increases the trajectory horizon. Concretely,
instead of unrolling episodes for the full environment length T from the outset, we begin training
with shorter horizons H < T and progressively extend them until reaching the maximum length.
This staged schedule eases the optimization by allowing the policy to first acquire locally consistent
behaviors, before being required to sustain them over longer time horizons, thereby improving the
stability and quality of the learned latent modes. The proposed curriculum is visualized in Figure 7.

Figure 7: Curriculum Learning. Illustration of the curriculum strategy in a toy environment with four dis-
crete modes. The environment is defined by a mixture of four Gaussian modes (details in Section 5.1), each
corresponding to a distinct cluster of trajectories. Starting from short horizons, the inference model qϕ only
needs to discriminate local trajectory prefixes, which simplifies learning. As the horizon gradually increases,
the trajectory distributions expand, and the modes become more separable across the state-action space. The
curriculum thus enables the steering policy to develop temporally consistent and discriminable behaviors, pro-
gressively uncovering the underlying latent structure of the pre-trained model.

E.3 ALGORITHM

We outline here Algorithm 1. We begin from the pre-trained diffusion policy πθ(a | s, w) and
initialize the steering policy πW

ψ (w | s, z), inference model qϕ(z | s, a), and critic Vω(s, z), with
intrinsic scale λ≥ 0, uniform prior p(z), epochs E, episodes per epoch N , warm-start Ewp, initial
horizon H0, max horizon T , and a scheduler H(e) ∈ [H0, T ] that increases the rollout horizon by
a fixed step every 20 epochs after a first warm-up of 100 epochs. For each epoch e and episode
n, we sample a latent z ∼ p(z) once and keep it fixed over the rollout of length H(e); at each
step we draw wt ∼ πW

ψ (w | st, z), then at ∼ πθ(a | st, wt), and transition st+1 ∼ p(· | st, at).
The intrinsic reward is rint

t = λ
(
log qϕ(z | st+1, at)− log p(z)

)
. During the mode-discovery stage

(e < Ewp) we optimize using intrinsic-only returns rtot
t = rint

t , allowing the curriculum H(e) to
grow from H0 toward T so the policy first attains locally consistent behaviors before sustaining
them over longer horizons. After the warm-start (e ≥ Ewp), we introduce the task reward and train
with rtot

t = renv(st, at) + rint
t to steer toward high-return regions without collapsing diversity. At the

end of each epoch, we update the actor and critic with PPO, minimizing LPPO
π (ψ) + cV LV (ω) +

cHLH(ψ), and train the inference model by NLL, minϕ Lq(ϕ) = −E[log qϕ(z | s, a)]; this repeats
for e = 1, . . . , E with horizon scheduling and the stage switch as specified.

F IMPLEMENTATION DETAILS

We now detail the implementation and training of the pre-trained policy, all the baseline policies, and
the discriminator. We also describe how our method integrates with these general fine-tuning strate-
gies. All approaches employ PPO as fine-tuning RL algorithm with clipping parameter ϵ = 0.2,
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Algorithm 1 Mode Discovery and Fine-Tuning of Generative Policies

1: Inputs: pre-trained diffusion policy πθ(a | s, w); steering policy πW
ψ (w | s, z); inference model qϕ(z |

s, a); critic Vω(s, z); latent prior p(z), epochsE, episodesN , warm-up epochsEwp; max horizon T ; initial
horizon H0; horizon scheduler H(e) ∈ [H0, T ]

2: Init: ψ, ϕ, ω; set λ ≥ 0

3: for e = 1 to E do ▷ epochs
4: for n = 1 to N do ▷ episodes per epoch
5: H ← H(e) ▷ curriculum horizon
6: Sample z ∼ p(z); rollout on-policy:
7: wt ∼ πW

ψ (w | st, z), at ∼ πθ(a | st, wt), st+1 ∼ p(· | st, at)
8: Intrinsic reward: rint

t ← λ
(
log qϕ(z | st+1, at)− log p(z)

)
9: if e < Ewp then

10: Policy reward: rtot
t ← rint

t ▷ Mode Discovery
11: else
12: Policy reward: rtot

t ← renv(st, at) + rint
t ▷ Policy Fine-tuning

13: end if
14: end for
15: Update actor and critic using rtott (PPO): minψ,ω LPPO

π (ψ) + cV LV (ω) + cH LH(ψ)
16: Update inference model: minϕ Lq(ϕ) = −E

[
log qϕ(z | s, a)

]
17: end for

GAE λ = 0.95, discount γ = 0.99, and Adam with learning rate 3 × 10−4. To facilitate repro-
ducibility, we will release the full codebase together with all hyperparameters required to reproduce
the results reported in this paper.

F.1 PRE-TRAINED POLICY AND DPPO FINE-TUNING

The diffusion policy is trained with the standard behavioral cloning objective for diffusion models,
where the network predicts the injected noise conditioned on the noisy actions. We follow the imple-
mentation and hyperparameter setup of DPPO Ren et al. (2024), using a cosine noise schedule during
training. The action horizon coincides with the execution horizon and consists of 4 action steps per
chunk. Pre-training is performed with 20 denoising steps, while inference uses DDIM (Song et al.,
2020) sampling with 2 steps. For frozen policies, we set η = 0, whereas for fine-tuning, we set
η = 1, which is equivalent to applying DDPM (Ho et al., 2020). This choice ensures steerability of
the policy and avoids memoryless noise schedules. The policy head is implemented as a multi-layer
perceptron (MLP) with hidden dimensions {512, 512, 512}, and a time-embedding dimension of
16, which we found to improve training stability compared to UNet backbones, similar to Ren et al.
(2024). For fine-tuning, we follow the implementation and hyperparameters introduced in Ren et al.
(2024), with the only addition of decreasing the number of fine-tuning steps of the denoising process
form 10 to 2 to ensure non-memoryless noise schedule.

F.2 RESIDUAL POLICY

The residual policy learns an additive correction to the action chunk at:t+H of length H proposed
by the pre-trained diffusion policy, such that a∗t:t+H = at:t+H +λ∆at:t+H . Concretely, the residual
network receives as input the state and the pre-trained action chunk, and outputs a correction term
that is passed through a tanh activation to ensure bounded updates, πRES(∆at:t+H | st, at:t+H).
To prevent the residual from completely overriding the original action, its contribution is scaled by a
tunable factor λ, which balances task success with fidelity to the pre-trained behavior. This scaling
parameter is selected following prior work and tuned empirically to trade off between preserving the
original action distribution and improving task success rates. The residual policy is implemented
as a Gaussian policy parameterized by a multilayer perceptron with hidden layers of dimension
{256, 256, 256} and Mish activations.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F.3 STEERING POLICY

The steering policy πW
ψ (w | s, z) is implemented as a Gaussian policy parameterized by an MLP

with hidden layers of size {256, 256, 256}. To constrain its support within that of the original diffu-
sion prior, we apply a KL regularization during training of the form

LKL = Es,z
[
DKL

(
πW
ψ (w | s, z)

∥∥N (0, I)
) ]
,

where N (0, I) denotes the isotropic Gaussian prior used in the diffusion model. The latent variable
z ∈ 0, 1, . . . ,K−1 is sampled from a uniform categorical prior p(z), as we empirically found dis-
crete latents easier to learn and more stable than continuous ones. The dimensionality of the latent
space is a hyperparameter, in the experiments we consider K = {4, 8, 16}. Training proceeds in
two stages: for the first 200 epochs, the steering policy is optimized only with the intrinsic reward
log qϕ(z | s, a)− log p(z), serving as a mode-discovery phase; in the remaining epochs, the environ-
ment reward is added to steer behaviors toward high-return regions while retaining multimodality.

F.4 INFERENCE MODEL

The inference model qϕ(z | s) is implemented as a categorical classifier over the latent codes
z ∈ {0, . . . ,K − 1}. It consists of a multilayer perceptron with hidden layers of dimension
{256, 256, 256}, Mish activations (Misra, 2019), and a final softmax output producing the class
probabilities qϕ(z | s). To prevent overfitting to small variations in continuous states, Gaus-
sian noise with standard deviation {1.0, 0.01, 0.001} (depending on the task) is injected into the
inputs during training only. The model is trained by minimizing the negative log-likelihood
LNLL(ϕ) = −E(s,a,z)

[
log qϕ(z | s)

]
, where the expectation is taken over state-action pairs gen-

erated by the steering policy and latent codes sampled from the prior p(z). During training of the
steering policy, the log-posterior log qϕ(z | s) serves as an intrinsic reward, combined with the
prior correction term − log p(z), thereby providing the intrinsic objective for mode discovery and
diversity-preserving fine-tuning.

F.5 INTEGRATING WITH OTHER FINE-TUNING TECHNIQUES.

The steering policy with mode discovery uncovers and controls the behavioral modes of the pre-
trained diffusion mode, steering them toward regions of high reward. However, because this mech-
anism does not update the diffusion weights directly, its performance remains bounded by the ex-
pressiveness of the pre-trained policy. From this perspective, the steering policy can be viewed as
an exploration agent that guides state visitation in a structured way, and can therefore be seamlessly
combined with existing fine-tuning methods discussed in Section 2. A key distinction is that our
framework provides access to a discriminator that evaluates whether the fine-tuned behaviors re-
main consistent with the discovered modes, supplying an intrinsic reward that discourages collapse
into a single strategy. While the steering policy itself can continue to adapt jointly with the diffusion
model, we found it beneficial to update the discriminator with a very low learning rate: this al-
lows it to accommodate novel states encountered during fine-tuning while preserving the previously
identified mode structure, thereby stabilizing multimodality retention.

G BASELINE METHODS AND EVALUATION METRICS DISCUSSION

Following the characterization introduced in Section A.2, we benchmark our approach against rep-
resentative strategies for on-policy fine-tuning of generative policies, focusing on diffusion models
but noting that analogous evaluations apply to flow-matching policies. Specifically, we consider
methods that do (i) direct fine-tuning, (ii) residual corrections, and (iii) steering, noting that none
of these explicitly seek to preserve multimodality. As a direct fine-tuning approach, we include
DPPO (Ren et al., 2024), which optimizes the diffusion policy weights with PPO. We consider the
DDIM parameterization of the generative process to ensure non-memoryless noise schedules, while
maintaining a balance between η > 0 and the number of reverse diffusion steps to facilitate weight
fine-tuning. To examine the effect of decreasing the number of reverse diffusion steps, we also con-
sider the original hyperparameters of the DPPO baseline that uses the full denoising chain for action
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(a) Original.

(b) Goal[1] – π/8 (c) Goal[1] (Unb.) – π/8

(d) Goal[2] – π/8 (e) Goal[2] (Unb.) – π/8

Figure 8: Reward landscapes: (a) Original environment; (b–e) rotated goal variants with balanced and unbal-
anced setups.

sampling with DDPM parameterization, and fine-tunes the last 10 steps, denoted DPPO[10], which
makes the generation process non-memoryless.

As a residual fine-tuning approach (RES), we evaluate Policy Decorator (Yuan et al., 2024), where
a lightweight residual network is trained on top of the frozen pre-trained diffusion model. This
allows task adaptation while limiting catastrophic interference with the base model. Finally, we
consider Wagenmaker et al. (2025) as a steering-based policy SP, which adapts the latent noise
distribution w to bias the pre-trained policy toward high-reward behaviors. This category operates
entirely in the latent space and, like the others, does not include any explicit mechanism for mode
discovery or diversity preservation.

Importantly, our approach is orthogonal to these categories: the proposed multimodality-preserving
regularizer can be combined with either residual or steering-based fine-tuning under non-
memoryless noise schedules. Accordingly, we report results both for the standalone baselines and
for their variants augmented with our multimodality regularizer, denoted as X[MD-MAD], where X
indicates the corresponding baseline. Full implementation details for all baselines and their regular-
ized variants are provided in Appendix F.

Evaluation Metrics We assume access to the ground truth modes of the trajectories executed by
the policy in simulation. and we evaluate fine-tuned policies along two axes: task success and behav-
ioral diversity. For task success, we report the overall success rate SR, and two mode-aggregated
success measures: the success rate weighted for each mode SRM = 1

K

∑K
i=1 SRi, which guards

against degenerate solutions (e.g., 100% success on a single mode but failure on others), and mode
coverage mc@τ = 1

K

∑K
i=1 1{SRi ≥ τ}, the fraction of modes solved above threshold τ .

To further measure multimodality, we follow the D3IL benchmark (Jia et al., 2024) and compute
the entropy of the empirical distribution over modes among all rollouts: H(π) = −

∑K
i=1 pi log pi,

where pi is the fraction of episodes in mode i. A higher entropy reflects more balanced usage of the
available modes, whereas a reduction after fine-tuning is indicative of mode collapse. All metrics are
computed from N = 1024 evaluation episodes with fixed seeds for fair comparison, and we report
both the mean and standard deviation over three independent runs with different random seeds.
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H 2D GAUSSIAN MIXTURE ENVIRONMENT

We provide in this section detailed information regarding the implementation of the 2D Gaussian
mixture environment, as well as ablation evaluation on the dimensionality of the latent space, the
structure learned by the steering policy, and the effect of removing the steering policy after fine-
tuning.

H.1 IMPLEMENTATION DETAILS

We designed a two-dimensional navigation task where the reward landscape is given by a mixture
of 4 Gaussians. The agent’s state is its position (x, y) ∈ R2, initialized at the origin (0, 0). Actions
are modeled as displacements (∆x,∆y) applied at each step. The instantaneous reward at position
pos = (x, y) is defined as

r(x, y) =
∑

(cx,cy)∈C

exp
(
− (x−cx)2+(y−cy)2

2σ2

)
, (25)

where C is the set of goal centers and σ controls the spread of each Gaussian mode. An episode is
successful if the agent reaches within a fixed distance of any goal center.

We consider two variants of this reward landscape:

• Balanced landscape. Each Gaussian mode contributes equally to the reward. This creates
a symmetric multimodal environment where all goal regions are equally attractive.

• Unbalanced landscape. To introduce variability in mode prominence, we assign each
Gaussian a random weight wi ∼ U(0, 1). To avoid degenerate scaling while preserving
relative preferences, the weights are normalized via a softmax transformation, i.e.

w̃i =
exp(wi)∑
j exp(wj)

,

and the reward is defined as r(x, y) =
∑
i w̃i exp

(
− (x−c(i)x )2+(y−c(i)y )2

2σ2

)
. This ensures

that all modes remain present but with uneven reward magnitudes, yielding a more chal-
lenging and realistic multimodal landscape.

We refer to these as the unbalanced Goal[1] and unbalanced Goal[2] environments. Figure 8
provides visualizations of all balanced and unbalanced variants.

H.2 EXPERT DEMONSTRATIONS

Figure 10 shows the expert demonstration dataset used for the experiments in section 5.1.

(a) Dataset (1 mode) (b) Dataset (2 modes) (c) Dataset (4 modes)

Figure 10: Expert datasets with different multimodal behaviors used to pre-train diffusion models to investigate
mutual information as a proxy of multimodality.

H.3 DIMENSIONALITY OF Z
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Table 5: Ablation on the dimensionality of Z .

Goal [2]
Method SR SRM mc@0.80 H

|Z| = 4

RES[MD-MAD] 1.00± 0.00 0.75± 0.00 3.00/4 0.74± 0.00

DPPO[MD-MAD] 1.00± 0.00 0.75± 0.00 3.00/4 0.74± 0.00

|Z| = 8

RES[MD-MAD] 1.00± 0.00 1.00± 0.00 4.00/4 0.92± 0.00

DPPO[MD-MAD] 0.64± 0.45 0.63± 0.45 2.33/4 0.99± 0.00

|Z| = 16

RES[MD-MAD] 1.00± 0.00 1.00± 0.00 4.00/4 0.94± 0.00

DPPO[MD-MAD] 0.79± 0.00 0.82± 0.00 2.00/4 0.94± 0.00

We next examine the effect of the la-
tent dimensionality |Z| on multimodal-
ity preservation. We repeat the Goal[2]
evaluation using the RES and DPPO
baselines with mode discovery, vary-
ing the number of latent codes. Re-
sults are reported in Table 5. A dimen-
sion of |Z| = 4, which matches the
ground-truth number of modes, fails
to fully capture all task modalities.
This limitation stems from our infer-
ence model, which distinguishes modes
through state coverage and can become
sensitive to minor state variations, occasionally treating nearby but distinct states as different
modes. Increasing dimensionality (|Z| = 8, 16) improves coverage by promoting exploration of
diverse trajectories. However, excessively large latent spaces introduce inefficiencies: for instance,
DPPO[MD-MAD] deteriorates at |Z| = 16, likely due to a trade-off between task optimization and
diversity. These results suggest that latent dimensionality should be tuned to the complexity of the
multimodal structure, and that more robust inference models beyond simple state coverage may
further improve mode discovery, representing an interesting direction for future work.

H.4 STRUCTURE INDUCED IN THE LATENT SPACE

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Figure 11: Latent noise samples w for z ∈
{0, 1, 2, 3}.

We investigate what the structure learned by the steering
policy is in the policy latent space. We probe what the
steering policy actually learns by inspecting the input-
noise latents it predicts, rather than the trajectories exe-
cuted by the full policy. Concretely, for the initial state s0
and each skill label z ∈ {0, 1, 2, 3}, we draw 1024 sam-
ples w ∼ πW

ψ (w | s0, z) and visualize them in Figure 11
together with kernel-density contours and the per-skill
mean. The figure reveals a clear four-cluster organization
where each skill forms a compact, well-separated mode
in the latent space, with only limited cross-skill overlap.
This analysis shows that the steering head has learned
a discrete, multimodal latent structure aligned with the
modes present in the original demonstration dataset.

I ROBOTIC MANIPULATION TASKS

We evaluate our approach on three robotic manipulation tasks implemented within the Man-
iSkill (Tao et al., 2024) framework: Reach, Lift, and Avoid (re-implemented from D3IL (Jia et al.,
2024)), each exhibiting distinct forms and degrees of multimodality as shown in Figure 13. Mul-
timodality arises either from goal diversity or, for a fixed goal, from multiple feasible trajec-
tories that lead to successful completion. All manipulation tasks are performed with a Franka
Emika Panda robot, where agent actions are parameterized as 6-DoF end-effector delta poses
(∆x,∆y,∆z,∆roll,∆pitch,∆yaw).

Reach In Reach, the agent must contact a green sphere while avoiding a gray obstacle; success can
be achieved by approaching from either side. This task is comparatively simple, as multimodality
appears only at the beginning of the trajectory, after which the policy is effectively committed to
a single mode. The state space comprises the robot joint positions and velocities, the end-effector
pose, as well as goal and bar poses. The maximum episode length is 100 steps. The task is consid-
ered to be successful if the agent reaches the goal within a pre-defined threshold

Lift In Lift, the agent must lift a peg into vertical position. The peg can be grasped and lifted
upright from either the red or blue side, yielding multiple valid grasping strategies. Here, multi-
modality is more pronounced, since several regions of the peg afford successful grasps, and the
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(a) Reach (b) Lift (c) Avoid

Figure 13: Visualization of the three ManiSkill tasks used in our evaluation: Reach, Lift, and Avoid. For each
task we display four random environment initializations and highlight representative modes for solving the task.

initial randomization of object configurations increases the ambiguity and difficulty of separating
modes. The state space comprises the robot joint positions and velocities, the end-effector pose,
as well as the peg pose. The maximum episode length is 200 steps. The task is considered to be
successful if the peg is successfully lifted (assessed through the pose of the object) and stable.

Avoid In the Avoid task, the agent must cross the green line by avoiding the obstacles in the
table. This is the most challenging as numerous modalities emerge later in the trajectory, each
corresponding to a distinct avoidance strategy with different path lengths. In this case, only the
initial end-effector position is randomized at reset, while the obstacle remains fixed, emphasizing the
diversity of possible avoidance strategies. The state representation encompasses the end-effector’s
desired position and actual position in Cartesian space, with the caveat that the robot’s height (z
position) remains fixed. The actions are represented by the desired velocity of the robot along the x
and y axis. The maximum episode length is 300 steps. The task is considered to be successful if the
robot-end-effector reaches the green finish line.

All environments provide dense or intermediate reward functions to support fine-tuning, and we
employ a heuristic to identify the mode associated with each trajectory, enabling consistent evalu-
ation of multimodality. Additional implementation details will be available upon the release of the
codebase.

I.1 ABLATIONS
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Figure 14: Impact of the regularization coefficient λ on
the task success rate.

We first study the effect of the regularization
weight λ on task performance, focusing on
the Lift task with the RES[MD-MAD] baseline.
Figure 14 shows that as λ increases, the intrin-
sic reward increasingly dominates over the task
reward, leading to a drop in success rate. This
illustrates the trade-off: stronger regularization
favors diversity at the expense of task perfor-
mance.

Next, we analyze the impact of (i) pre-training
with only the mode-discovery reward ([NO-FT
MD-MAD]) and (ii) omitting fine-tuning of
the inference model and steering policy when
adapting the main policy with another fine-
tuning technique ([NO-PRE MD-MAD]), (iii)
removing the curriculum stage during the mode-discovery phase ([NO-CURR MD-MAD]). These
ablations, reported in Table 6) for the Lift task with RES[MD-MAD], reveal that all factors nega-
tively affect performance. In particular, disabling fine-tuning of the inference model and steering
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Table 6: Ablation experiments on design choices.

Method SR SRM mc@0.80 H

PRE 0.14±0.01 0.15±0.01 0.00/2 0.97±0.01

RES[MD-MAD] 0.99±0.00 0.99±0.00 2.00/2 1.00±0.00

RES[NO-PRE MD-MAD] 0.91±0.04 0.79±0.11 1.33/2 0.74±0.08

RES[NO-FT MD-MAD] 0.00±0.00 0.00±0.00 0.00/2 0.00±0.00

RES[NO-CURR MD-MAD] 0.85±0.08 0.83±0.08 1.33/2 0.95±0.05

Table 7: Ablation experiment on removing the steering policy after fine-tuning with MD-MAD

Method SR SRM mc@0.80 H

PRE 0.14±0.01 0.15±0.01 0.00/2 0.97±0.01

With Steering Policy

RES[MD-MAD] 0.99±0.00 0.99±0.00 2.00/2 1.00±0.00

DPPO[MD-MAD] 0.99±0.00 0.55±0.07 1.00/2 0.06±0.04

Without Steering Policy (Random Sampling)

RES[MD-MAD] 0.95±0.02 0.94±0.02 2.00/2 0.93±0.03

DPPO[MD-MAD] 0.99±0.00 0.58±0.06 1.00/2 0.08±0.03

policy is catastrophic: the mutual-information signal becomes uninformative as the policy is driven
toward out-of-distribution states relative to pre-training.

Finally, we evaluate whether policies fine-tuned with MD-MAD retain multimodality and per-
formance once the steering head is removed, i.e., actions are again driven by the original latent
noise prior. Table 7 reports success and multimodality metrics for only the DPPO[MD-MAD] and
RES[MD-MAD] on Lift, as removing the steering on the SP baseline would regress the performance
back to the original pre-trained policy. The residual baseline shows minimal degradation after re-
moving the steering head, indicating that residual updates internalize the discovered modes into
the policy. Similarly, DPPO[MD-MAD] exhibits similar performance with respect to the version
including the steering head.

We hypothesize that MD-MAD’s regularization on the steering output, penalizing deviations from
the original normal noise, encourages compatibility between the learned behaviors and the base dif-
fusion noise. During fine-tuning, steering guides exploration over z to expose distinct modes, while
the regularizer keeps the induced noise close to the prior, allowing the policy to absorb mode struc-
ture without depending on explicit steering at inference. Consequently, RES[MD-MAD] especially,
can execute diverse behaviors when sampling from the unmodified prior, preserving multimodal-
ity with limited impact on task success and making it a strong candidate for fine-tuning generative
policies.

I.2 QUALITATIVE VISUALIZATION OF THE LEARNED SKILLS

Figure 15 shows qualitative examples of the trajectory sampled in each environment by the DPPO
baseline, as well as the skills learned by the DPPO[MD-MAD] variant trained with our proposed
mode discovery and regularization techniques.

J USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were employed as a general-purpose writing assistant. Specifically,
we used LLMs to polish the language, improve readability, and refine the clarity of the manuscript.
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(a) Reach: DPPO (Left, green box) trajectories and
modes learned by DPPO[MD-MAD].

(b) Lift: DPPO (Left, green box) trajectories and
modes learned by DPPO[MD-MAD].

(c) Avoid: DPPO (Left, purple box) trajectories and modes learned by DPPO[MD-MAD].

Figure 15: Visualization of trajectories (blue) from standard fine-tuning and MD-MAD fine-tuning across
different tasks. Highlighted boxes (green, purple) show DPPO, which exhibits multimodal behavior only in
the Reach task. The remaining visualizations represent DPPO[MD-MAD], where trajectories are sampled by
varying z ∈ Z

The models were not used for research ideation, experimental design, data analysis, or interpretation
of results. All conceptual contributions, algorithms, experiments, and conclusions presented in this
work are solely those of the authors
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