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Abstract

Identifying quantum flakes is crucial for scalable quantum hardware; however,
automated layer classification from optical microscopy remains challenging due to
substantial appearance shifts across different materials. In this paper, we propose a
new Continual-Learning Framework for Flake Layer Classification (CLIFF) 1. To
our knowledge, this is the first systematic study of continual learning in the domain
of two-dimensional (2D) materials. Our method enables the model to differentiate
between materials and their physical and optical properties by freezing a backbone
and base head trained on a reference material. For each new material, it learns
a material-specific prompt, embedding, and a delta head. A prompt pool and a
cosine-similarity gate modulate features and compute material-specific corrections.
Additionally, we incorporate memory replay with knowledge distillation. CLIFF
achieves competitive accuracy with significantly lower forgetting than naive fine-
tuning and a prompt-based baseline.

1 Introduction

Characterizing the layer counts of two-dimensional (2D) material flakes is crucial for the fabrication
of van der Waals heterostructures, which facilitate a range of studies and applications, especially
those in quantum mechanics [11, 14, 16]. Typically, researchers find flakes through repetitive, manual
optical microscopy searches, and the samples must be transferred to an Atomic Force Microscope
(AFM) for thickness measurement, which doubles the manual effort involved and significantly limits
the complexity and scalability of heterostructure construction. Deep learning approaches aim to
automate flake layer classification of exfoliated 2D materials but present poor versatility. In this work,
we present, to our knowledge, the first systematic study of continual learning for 2D flake thickness
classification. We establish our evaluation as a material-incremental, continual learning problem
setting, where new materials arrive sequentially.

The Challenges of Automated Flake Identification. The difficulty in automating the identification
of 2D materials is estimating the layer count of a flake from optical microscopy images. Importantly,
the subtle visual characteristics for layer count classification are highly dependent on factors that vary
in real-world laboratory settings. This variability makes it challenging to train a typical deep learning
model, motivating the use of a continual learning approach to preserve learned information.

Limitations of Prior Work. Prior work in automated flake characterization has several limitations.
Traditional machine learning methods [10, 7] often fail to capture the subtle, non-linear visual

1The code is available at https://github.com/uark-cviu/quantumflake.
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Figure 1: The proposed CLIFF approach.

differences between flake thicknesses. While deep learning approaches have shown promise [24, 9,
19, 13, 22, 18], they often overfit to specific materials or imaging conditions. When typical static
models are fine-tuned on new materials, they suffer from catastrophic forgetting, rendering them
impractical for real-world laboratory environments. In CL, forgetting is mitigated by methods such as
rehearsal-based approaches [8, 4, 5], knowledge distillation [3, 1, 23, 28], self-supervision [21, 2, 20],
and architectural methods that add new parameters [29, 15, 27, 12]. Our work takes inspiration from
prompt-based CL [26, 25].

Problem Motivation. Addressing these limitations is critical for developing robust automated
systems. Although training on all materials is feasible on a small, fixed set of materials and can
provide strong performance, it is not a practical strategy for a real-world scientific workflow. In
laboratory settings, new materials may be introduced over time, and retraining a large model from
scratch with each new dataset can be computationally heavy, especially for larger datasets. Similarly,
domain adaptation methods are relevant for handling distribution shifts, but they are typically designed
for a single source and target domain. This can be insufficient for a growing sequence of new material
domains encountered in a laboratory setting. Therefore, we formulate flake layer count classification
as a material-incremental continual learning problem where the model must learn new materials while
retaining performance on previously seen materials. To address this, we propose a continual learning
(CL) framework that preserves prior knowledge by freezing a backbone and base head trained on a
reference material and learning a per-material addition for each new material.

Contributions of this Work. We present, to the best of our knowledge, the first study of continual
learning for 2D material flake thickness classification and formulate a material-incremental bench-
mark. Our proposed CLIFF approach is a novel continual learning framework for 2D material flake
layer count classification across multiple materials. We evaluate our approach and compare it against
joint training, naive fine-tuning, and another Learning-to-Prompt (L2P) method [26].

2 Methodology

We propose CLIFF, a continual learning framework for 2D flake layer classification. For each
subsequent material, the framework learns a small set of new components: a dedicated prompt pool,
a material embedding, and a delta head that models a material-specific correction. A prompt pool
adapts the frozen backbone’s features during training on a new material by prepending learned tokens
to the input patch sequence. We also replay a small number of stored samples and use knowledge
distillation. The final classification head computes predictions for all seen materials in parallel,
guided by an auxiliary loss on material identity. This allows our approach to perform task-agnostic
classification without needing material labels at test time.

2.1 Base Training on a Reference Material

Let D0 = {(xi, yi)}N0
i=1 be the reference material dataset, where xi represents the i-th input image

and yi ∈ {Few,Mono,Thick} is the corresponding thickness label. A Vision Transformer (ViT) [6]
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backbone fθ with parameters θ and a linear classification head gϕ with parameters ϕ are trained by
optimizing the base loss function shown in Eqn. (1) as follow,

Lbase =
1

N0

N0∑
i=1

CE
(
b(xi), yi

)
=

1

N0

N0∑
i=1

CE
(
gϕ(fθ(xi)), yi

)
, (1)

where CE(·, ·) denotes the cross-entropy loss function and b(xi) = gϕ(fθ(xi)) represents the base
classification logits for image xi.

2.2 Incremental Learning for New Materials

When a new material m arrives, we introduce three new learnable components: a prompt Pm, a
material embedding em, and a delta head Dm.

Prompting. For each material m, we learn a separate prompt pool Pm. Each is initialized as a
new set of learnable parameters, consisting of prompt tokens and their corresponding keys, with
values drawn from a random uniform distribution. During training, the model selects a set of these
prompt tokens by choosing the top-k tokens according to cosine similarity between the input’s CLS
embedding and the prompt keys and prepends them to the sequence of image patch embeddings The
prompt tokens and their corresponding keys are optimized via backpropagation based on the final
task loss. We denote the feature output from the prompted backbone as Eqn. (2):

zm = fθ(x;Pm). (2)

CLIFF Head. The CLIFF head processes the prompted features zm ∈ Rd, where d is the backbone’s
feature dimension. It maintains an embedding table E ∈ RM×de containing a unique embedding
vector ei for each of the M seen materials, and de is the embedding dimension. At inference, CLIFF
evaluates all material-specific delta heads in parallel. As described in Eqn. (3), for each material i,
a multilayer perceptron (MLP), the delta head Di : Rd+de → RC , computes a residual correction
∆i(x) ∈ RC :

∆i(x) = Di

(
Concat[zm, ei]

)
. (3)

Here, C = 3 is the number of thickness classes. The final output is a single, large logit vector L(x)
created by concatenating the corrected logits for all M materials, as calculated using Eqn (4):

L(x) = ConcatMi=1

(
b(x) + ∆i(x)

)
∈ RCM . (4)

Optimization with Rehearsal and Distillation. With fθ and gϕ frozen, we learn the new components
(Pm, em, Dm) for a new material. We maintain a small memory buffer M of samples from past tasks.
The total loss for a sample (x, y) from the current task m is calculated as shown in Eqn. (5).

L = Lcls + λgateLgate + λmemLmem + λkdLkd. (5)

Here, Lcls is the standard cross-entropy loss on the current task’s data. An auxiliary gate loss, Lgate,
is computed using cosine similarity between features and material embeddings to improve material
identification. The cosine-similarity gate supervises material awareness/prompt selection but does
not mask or disable any heads at inference. Lmem is the cross-entropy loss for samples replayed from
the memory buffer M. Finally, Lkd is a knowledge distillation loss on replayed samples that aligns
the current model’s outputs with those of a frozen "teacher" model from the previous task.

2.3 Complexity

The total number of parameters increases linearly with the number of materials M .The approximate
per-material parameter count is

KLd︸ ︷︷ ︸
prompt tokens

+ Kd︸︷︷︸
prompt keys

+ de︸︷︷︸
embedding

+ (d+de)h+ hC︸ ︷︷ ︸
delta head

, (6)

where K is the prompt pool size, L is the prompt length, d is the backbone’s feature dimension,
de is the embedding dimension, h is the delta head’s hidden dimension, and C is the number of
classes. The total parameter count scales as O(M). At inference, evaluating all heads incurs an
O(M) computational cost per image. For rehearsal, a memory buffer that stores n RGB images per
class at a resolution of 224× 224 requires approximately M · C · n · 2242 · 3 bytes of storage.
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Table 1: Sequential task performance on four materials: BN (T1), Graphene (T2), MoS2 (T3), and
WTe2 (T4). We report per-task accuracy, final average accuracy, and forgetting.

Trained on Tested on (Accuracy %)

T1 T2 T3 T4

Joint Training Ensemble 92.68 92.04 90.91 92.82

Summary Avg. Accuracy: 92.11%

Naive Fine-tuning

T1 91.46 - - -
T2 10.98 86.09 - -
T3 8.54 22.23 83.77 -
T4 4.88 3.20 0.65 62.68

Summary Avg. Accuracy: 17.85% Forgetting: 84.20%

L2P [26]

T1 85.37 - - -
T2 60.98 82.34 - -
T3 57.32 52.88 87.66 -
T4 53.66 21.23 1.30 71.77

Summary Avg. Accuracy: 36.99% Forgetting: 59.73%

Ours

T1 90.24 - - -
T2 86.59 79.33 - -
T3 64.63 77.70 79.87 -
T4 56.10 44.79 44.16 82.78

Summary Avg. Accuracy: 56.96% Forgetting: 34.80%

3 Experimental Setups and Implementation Details

Datasets. For our study, we use the dataset from Masubuchi et al.[17]. We address material-
incremental layer classification over four materials: BN (base), graphene, MoS2, and WTe2. Each
image x is labeled as Few, Mono, or Thick with its material type (e.g., Mono_BN). For training, we
use standard augmentations such as random horizontal and vertical flips, rotations, and color jittering.

Evaluation Protocol. We train and evaluate using the following materials in order: BN (T1),
graphene (T2), MoS2 (T3), and WTe2 (T4). We report per-material accuracy at each step, final
macro-average accuracy, and forgetting, which is the average drop from each material’s peak accuracy
to its final accuracy.

Implementation Details. All experiments are performed using a Vision Transformer backbone
(ViT-B/16). We train for 15 epochs per task with a batch size of 32, using an Adam optimizer with
a learning rate of 5 × 10−5 for the delta heads and 1 × 10−4 for the prompts. We use a memory
bank of 100 samples per class, λkd = 1.0, 128-dimensional material embeddings, and 30 prompts
of length 8 per material. We evaluate our approach against three baselines: (1) Joint Training, an
upper-bound model trained with data from all four materials simultaneously rather than sequentially;
(2) Naive Fine-tuning, a sequential strategy that updates the full model for each new task; and (3)
L2P (Learning to Prompt), a prompt-based continual learning method that keeps the backbone frozen
while learning a shared pool of prompts.

Method Comparisons. Table 1 summarizes quantitative performance. Joint training serves as
an upper bound. Naive fine-tuning suffers from severe catastrophic forgetting, while L2P shows
substantial forgetting despite improving on the naive baseline. In contrast, CLIFF yields a significantly
higher final average accuracy and the lowest forgetting.

3.1 Ablation Studies

Our ablation experiments study the contribution of each key component and its configurations. We
explore the removal of primary components in Table 2 to investigate their contributions. The removal
of memory replay and knowledge distillation results in a massive drop in performance, showing
that rehearsal is the core mechanism for retaining knowledge. Removing only prompts leads to
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Table 2: Effectiveness of CLIFF on the material-incremental benchmark with different configurations.

Memory KD Prompts Avg. Acc. (%) Forgetting (%)

✓ 18.80 79.64
✓ ✓ 57.44 32.78
✓ ✓ ✓ 56.95 34.80

a slightly lower forgetting and a higher average accuracy. This result reveals a plasticity-stability
trade-off, where prompts allow higher peak accuracy on new tasks (e.g., 79.87% on Task 3 vs. 75.97%
without prompts), while the CLIFF Head provides strong underlying stability, resulting in slightly
lower overall forgetting when it operates alone. Additionally, the impact of the memory buffer size
is quantitatively shown by Table 3. Performance degrades as the buffer shrinks, but even a small
memory of 20 samples per class provides a substantial benefit over having no memory at all.

Table 3: Impact of memory buffer size on final average accuracy and forgetting.

Mem. Size Avg. Acc. (%) Forgetting (%)

0 18.80 79.64
20 31.47 56.12
40 35.95 53.12
60 42.56 46.38
80 49.85 37.64
100 56.95 34.80

4 Conclusion

This paper has introduced CLIFF, a continual learning framework for 2D material layer classification
that adapts to new materials by learning material-specific information while retaining prior knowledge
through memory rehearsal with knowledge distillation. The strong performance of CLIFF makes
it a valuable tool for practical laboratory use. It is well-suited to accelerate the identification of
promising flakes across different materials, significantly reducing the manual effort required for
expert verification. Our experiments have demonstrated that CLIFF substantially improves average
accuracy and reduces forgetting compared to naive fine-tuning and a strong prompt-based baseline.
This work has presented the first systematic study of continual learning for this problem, bridging the
gap between current deep learning models and the practical needs of real-world laboratories.

Limitations: Although CLIFF significantly reduces catastrophic forgetting and improves the ap-
plicability of continual learning for real-world material science, a concern with this architecture is
scalability. CLIFF adds new parameters for each new material and computes corrections for all seen
materials at inference time. While this proves to be feasible at the current scope of this work, the linear
growth in parameters could lead to heavy computation across hundreds of materials. Additionally,
performance is dependent on the memory buffer, which introduces a storage overhead and assumes
replayed samples are sufficient to account for feature space shifts. Future work could investigate
parameter-sharing techniques to address scalability, explicit feature alignment to handle feature space
shifts, and knowledge transfer between optically similar materials to reduce data dependency.

Broader Impacts: CLIFF improves the practicality and usability of automated quantum flake
characterization. By enabling deep learning models to adapt to new materials efficiently without
forgetting old knowledge, this approach accelerates the pace of discovery in 2D material analysis and
promotes the broader application of robust AI systems in scientific research.
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