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Abstract
Diffusion models have demonstrated remarkable
performance in generative modeling, but gener-
ating samples with specific desiderata remains
challenging. Existing solutions — such as fine-
tuning, best-of-n sampling, and gradient-based
guidance — are expensive, inefficient, or lim-
ited in applicability. In this work, we intro-
duce Feynman-Kac (FK) steering, which applies
Feynman-Kac interacting particle systems to the
inference-time steering of diffusion models with
arbitrary reward functions. FK steering works by
generating multiple trajectories, called particles,
and resampling particles at intermediate steps
based on scores computed using functions called
potentials. Potentials are defined using rewards
for intermediate states and are chosen such that a
high score indicates the particle will yield a high-
reward sample. We explore various choices of
potentials, rewards, and samplers. Steering text-
to-image models with a human preference re-
ward, we find that FK steering outperforms fine-
tuned models with just 2 particles. Moreover,
FK steering a 0.8B parameter model outperforms
a 2.6B model, achieving state-of-the-art perfor-
mance on prompt fidelity. We also steer text dif-
fusion models with rewards for text quality and
rare attributes such as toxicity, and find that FK
steering generates lower perplexity text and en-
ables gradient-free control. Overall, inference-
time scaling and steering of diffusion models,
even training-free, provides significant quality
and controllability benefits. Code available here.
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1. Introduction
Diffusion-based generative models (Sohl-Dickstein et al.,
2015) have led to advances in modeling images (Ho et al.,
2020; Song et al., 2020b), videos (Ho et al., 2022), and
proteins (Gruver et al., 2023), as well as promising results
for text generation (Li et al., 2022; Han et al., 2023; Gong
et al., 2023; Gulrajani & Hashimoto, 2023; Horvitz et al.,
2024). Despite these advances, diffusion models have fail-
ure modes. For example, text-to-image models often fail
to adhere to text prompts (Ghosh et al., 2024). Addition-
ally, adapting models to produce samples that conform to
specific user preferences remains a challenge.

One approach for making generative models pθ(x) adhere
to user preferences is to encode preferences in a reward
r(x0) and sample from the tilted distribution ptarget(x) ∝
pθ(x) exp(r(x)) (Korbak et al., 2022), where r(x) can
be human preference models (Xu et al., 2024; Wu et al.,
2023b), vision-language models (Liu et al., 2024a), or like-
lihoods p(y | x) (Wu et al., 2023a). Sampling from this
tilted distribution favors high-reward samples. Current
approaches for sampling from the tilted distribution can
be categorized into (a) fine-tuning and (b) inference-time
steering methods.

Black et al. (2023), Fan et al. (2024), Domingo-Enrich
et al. (2024), and Wallace et al. (2024) fine-tune diffusion
models with reward functions. However, fine-tuning re-
quires expensive training and ties the model to the reward
used while training. Alternatively, two common inference-
time approaches are gradient-based guidance (Song et al.,
2020b; Bansal et al., 2023) and best-of-n sampling. Best-
of-n sampling can be used for any diffusion model and
reward function, however, it wastes computation on low-
reward samples (Chatterjee & Diaconis, 2018). Gradient-
based guidance presents an efficient alternative, but it is
limited to differentiable reward functions and continuous-
state diffusion models.

In this work, we present FK steering, a flexible framework
for steering diffusion-based generative models with arbi-
trary rewards that uses FK interacting particle system meth-
ods (Moral, 2004; Vestal et al., 2008). We generalize previ-
ous works that define Feynman-Kac measures to condition-
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Figure 1. Feynman-Kac steering is a particle-based sampler which produces consistent approximations of the target distribution,
pθ(x0) exp (λr(x0)). At intermediate steps, FK steering scores particles using functions called potentials and and then resamples based
on potential scores. Potentials are defined using intermediate rewards and are selected such that paths yielding high-reward samples are
up-weighted.

ally sample diffusion models (Trippe et al., 2022; Wu et al.,
2023a; Chung et al., 2022; Janati et al., 2024). FK steering
enables guidance with arbitrary reward functions, differen-
tiable or otherwise, for both discrete and continuous-state
models. The approach makes use of a rare-event simulation
method, Feynman-Kac interacting particle system (FK-IPS)
(Moral, 2004; Del Moral & Garnier, 2005; Hairer & Weare,
2014; Vestal et al., 2008). FK-IPS enables the generation of
samples with high-rewards, which may be rare events un-
der the original model pθ(x).

Applying FK steering has two components: defining a se-
quence of tilted distributions over the diffusion trajectory
using potential functions, and then sampling from these
tilted distributions. To sample from these tilted distri-
butions, FK steering (1) samples multiple diffusion pro-
cesses, called particles, (2) scores particles using the po-
tential functions, and (3) resamples the particles based on
potential scores at intermediate steps during generation, see
fig. 1. Potential functions are defined using intermediate
rewards and are selected such that resampling high-scoring
particles yield high-reward samples x0.

We show that diffusion models enable many choices of in-
termediate rewards, samplers, and potentials. We then em-
pirically demonstrate that these new choices improve on
traditional choices (Wu et al., 2023a). Remarkably, for a
number of tasks, we see significant performance benefits
for both image and text diffusion models with FK steering
with as few as k = 4 particles (see fig. 2).

Contributions. Our methodological contributions are the
following:

• We present Feynman-Kac steering, a flexible and effec-
tive framework for building particle-based approxima-
tions of the tilted distribution pθ(x | c) exp(λr(x, c)),
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Figure 2. FK steering small models outperforms bigger models
with less compute. We measure the prompt fidelity of samples
from text-to-image models using the GenEval benchmark (Ghosh
et al., 2024). We compare the highest-reward sample from FK

steering the base models against the base models and their fine-
tuned versions. As the reward, we use ImageReward (Xu et al.,
2024). FK steering, with no extra training, improves performance
for all models, outperforming fine-tuning with k = 2. Moreover,
FK steering SDv2.1 (0.8B) outperforms a fine-tuned SDXL (2.6B)
model, with fewer FLOPS and faster sampling.

for both continuous and discrete diffusion models, and
for arbitrary rewards.

• We show that particle-based methods such as twisted dif-
fusion sampler (TDS) (Wu et al., 2023a) and Li et al.
(2024), are instances of FK interacting particle systems.
Expanding the set of potentials, samplers, and reward
models improves performance across many tasks.

Empirically, we demonstrate that FK steering:

• Provides an alternative to fine-tuning and gradient guid-
ance. FK steering text-to-image diffusion models with
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Figure 3. FK steering improves prompt fidelity and sample
quality. First row: a random sample from SDXL. Middle and
bottom rows: the highest reward sample using gradient-free FK

steering with SDXL and SDv2.1, with k = 4. FK steering SDXL
and SDv2.1 improves prompt fidelity compared to a random sam-
ple from the base model. Prompts are selected from the GenEval
benchmark set.

human preference rewards outperforms fine-tuned mod-
els and gradient-guidance on a prompt fidelity bench-
mark with just two particles, see fig. 2. Moreover, FK
steering combined with fine-tuned models or gradient
guidance unlocks even further improvements. We also
steer text diffusion models to generate higher quality
samples with improved linguistic acceptability and per-
plexity.

• Enables smaller models to beat larger models (Ghosh
et al., 2024), with faster sampling and less compute (see
the right panel in fig. 2).

• Generates samples with (rare) specified attributes, such
as toxicity, a useful attribute for red-teaming (Zhao et al.,
2024a). FK steering a text diffusion model, without gra-
dient guidance, increases the toxicity rate from 0.3% to
64.7%, and outperforms best-of-n.

Overall, in all settings we consider, FK steering always im-
proves performance, highlighting the benefits of inference-
time scaling and steering of diffusion models.

2. Related Work
Current approaches to generate samples from the tilted dis-
tribution pθ(x0) exp(λr(x0)) can be categorized into two
types: (1) fine-tuning and (2) inference-time steering ap-
proaches, such as universal guidance (Song et al., 2020b;
Bansal et al., 2023) and particle-based approaches such as
best-of-n and TDS (Wu et al., 2023a).

Fine-tuning. Recent work (Black et al., 2023; Xu et al.,
2024) proposes fine-tuning a diffusion model to maximize
the reward without a Kullback-Leibler (KL) penalty. Fan
et al. (2024); Domingo-Enrich et al. (2024) propose KL-
regularized fine-tuning, and more recently Wallace et al.

(2024) propose direct preference optimization (Rafailov
et al., 2024) for diffusion models. However, fine-tuning
requires allocating training resources and coupling a model
to a specific reward. Moreover, we show FK steering, with
just 2 particles, outperforms fine-tuning in several settings
without any additional training.

Inference-time steering. Gradient-based methods such
as classifier guidance (Song et al., 2020b; Bansal et al.,
2023) enable steering diffusion models at inference-time.
Reward gradients are used to tilt the diffusion model’s
score, sθ(xt, t)+∇xtr(xt), where sθ is the marginal score.
However, gradient-based guidance is limited to differen-
tiable rewards and continuous-state models.

FK steering builds on top of recent works that sample from
Feynman-Kac path distributions for conditional sampling
with diffusion models, either using particle-based sampling
(Trippe et al., 2022; Wu et al., 2023a; Cardoso et al., 2023;
Dou & Song, 2024; Zhao et al., 2024b) or gradient-based
sampling (Chung et al., 2022; Janati et al., 2024). In ap-
pendix F.2, we show how TDS (Wu et al., 2023a) and
SVDD (Li et al., 2024) are examples of FK interacting par-
ticle systems (Moral, 2004). Our experiments demonstrate
the effectiveness of these methods for new settings, and the
value of expanding the choice of potentials, rewards, and
samplers.

3. Feynman-Kac Steering of Diffusion Models
In this section, we present details of the FK steering frame-
work for inference-time steering of diffusion models.

3.1. Diffusion Models
Diffusion models (Sohl-Dickstein et al., 2015) are stochas-
tic processes that are learned by reversing a forward nois-
ing process, q(xt). The noising process takes data x ∼ qdata
and produces a noisy state xt ∼ q(xt | x0 = x) such that at
a terminal-time T , q(xT ) = πprior, where πprior is the model
prior. The noising process can be defined as a continuous-
time Markov process (Song et al., 2020b; Kingma et al.,
2021; Singhal et al., 2023; 2024) or discrete-time Markov
chain (Austin et al., 2021; Sahoo et al., 2024; Shi et al.,
2024; Campbell et al., 2022). For exposition, we focus on
discrete-time models, though the techniques are applicable
to continuous-time as noted below. A discrete-time diffu-
sion model, given a context c, is defined as:

pθ(xT , . . . ,x0 | c) = πprior(xT )

0∏
t=T−1

pθ(xt | xt+1, c).

Sampling involves iteratively generating a path
(xT ,xT−1, . . . ,x0), where x0 is the model sample.
The model pθ can be trained by maximizing a lower bound
on the model log-likelihood log pθ(x0 = x).
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Most uses of generative models require samples with user-
specified properties. In the next section, we describe a
generic formulation for steering diffusion models towards
such samples.

3.2. Steering Diffusion Models
One way to steer diffusion models is to encode user pref-
erences in a reward model r(x0) and sample from a dis-
tribution that tilts the diffusion model’s generations pθ(x0)
towards an exponential of the reward function r(x0):

ptarget(x0 | c) =
1

Z
pθ(x0 | c) exp (λr(x0, c)) . (1)

The reward can be any arbitrary function, such as a human
preference reward (Xu et al., 2024; Wu et al., 2023b), a
non-differentiable constraint, or a likelihood p(y | x0).

The target distribution favors high-reward samples, which
may be rare under the model pθ. This suggests the use of
simulation methods that better tilt towards rare events. One
broad class of rare-event simulation methods are FK-IPS
approaches (Moral, 2004; Hairer & Weare, 2014) that tilt
the transition kernels of the diffusion process to up-weight
paths that have higher-reward samples.

Next, we develop FK steering, a framework for inference-
time steering of diffusion models using FK-IPS.

3.3. Feynman-Kac diffusion steering
We use FK-IPS to produce paths (xT ,xT−1, . . . ,x0) with
high-reward x0 samples. FK-IPS requires defining a se-
quence of FK distributions, pFK,t(xT ,xT−1, . . . ,xt), by
tilting the base distribution pθ(xT ,xT−1, . . . ,xt) using
potentials Gt (Moral, 2004; Chopin et al., 2020). The
sequence of distributions pFK,t is built iteratively by tilt-
ing the transition kernels pθ(xt | xt+1) with a poten-
tial Gt(xT ,xT−1, . . . ,xt). We start with pFK,T (xT ) ∝
pθ(xT | c)GT (xT , c) and then define the subsequent dis-
tributions as:

pFK,t(xT , . . . ,xt | c) (2)

=
1

Zt
pθ(xT , . . . ,xt | c)

{
t∏

s=T

Gt(xT , . . . ,xs, c)

}

where Zt = Epθ
[
∏t

s=T Gs] is the normalization con-
stant. The potentials Gt are selected to up-weight paths
(xT , . . . ,xt) that yield high-rewards r(x0). We require
that the product of the potentials Gt matches the exponen-
tial tilt of ptarget:

0∏
t=T

Gt(xT , . . . ,xt, c) = exp (λr(x0, c)) . (3)

This choice ensures that sampling x0 from pFK,0 is
equivalent to sampling ptarget(x0 | c), since pFK,0 ∝

Algorithm 1 Feynman-Kac Diffusion Steering
Input: Diffusion model pθ(x0:T | c), reward r(x0, c),
proposals τ(xt | xt+1, c), potentialsGt, intermediate re-
wards rϕ(xt, c), number of particles k.
Sample xi

T ∼ τ(xT | c) for i ∈ [K]
Score Gi

T = GT (x
i
T , c) for i ∈ [K]

for t ∈ {T, . . . , 1} do
Resample: Sample ait ∼ Multinomial(xi

t, G
i
t) and let

xi
t = xai

t for i ∈ [K]
Propose: Sample xi

t−1 ∼ τ(xt−1 | xi
t, . . . ,x

i
T , c) for

i ∈ [K]
Re-weight: Compute weight Gi

t−1 for i ∈ [K]:

Gi
t−1 =

pθ(x
i
t−1 | xi

t, c)

τ(xi
t−1 | xi

t:T , c)
Gt−1(x

i
T :t−1, c)

end for
Output: return samples {xi

0}

pθ(xT , . . . ,x0 | c) exp(λr(x0, c)). Potential functions that
satisfy this constraint are not unique.

Sampling from pFK,0. Direct sampling from the FK mea-
sure, pFK,0, is intractable. However, targeting the interme-
diate distributions pFK,t supports sampling of the distribu-
tion pFK,0 with particle-based methods, such as sequential
Monte Carlo (SMC) (Moral, 2004; Doucet & Lee, 2018),
nested IS (Naesseth et al., 2019), and diffusion Monte Carlo
(DMC) (Hairer & Weare, 2014). SMC generates k particles
using a proposal generator τ(xt | xt+1, . . . ,xT , c) and at
each transition step scores the particles using the potential
and the transition kernel importance weights:

Gi
t = Gt(x

i
T , . . . ,x

i
t+1,x

i
t, c)

pθ(x
i
t | xi

t+1, c)

τ(xi
t | xi

t+1, . . . ,x
i
T , c)

.

Next, the particles xi
t are resampled based on the scores

Gi
t. See algorithm 1 for details. Particle approximations

are consistent, that is the weighted empirical distribution
defined by ((xi

T , . . . ,x
i
t), G

i
t) converges to pFK,t, see the-

orem 3.19 in Del Moral & Miclo (2000). For a proof that
the weighted empirical distribution, (xi

0, G
i
t), converges to

ptarget, see appendix C.

Choosing the proposal generator τ . For the proposal
generator τ , the simplest choice is to sample from the dif-
fusion model’s transition kernel pθ(xt | xt+1, c). Alter-
natively, another choice is to tilt the transition kernels to-
wards high-reward samples, for instance, by using reward-
gradient guidance (Song et al., 2020b; Bansal et al., 2023).
We discuss some choices in appendix D.1.

Choosing the potential Gt. One choice of potentials is
Gt = 1 for t ≥ 1 and G0 = exp(λ(r(x0, c))), this leads
to importance sampling. However, importance sampling
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can require many particles to generate a high-reward sam-
ple (Chatterjee & Diaconis, 2018). Instead, FK steering
uses potentials to up-weight paths that yield high-reward
samples. We consider the following potentials that satisfy
eq. (3), defined using intermediate rewards rϕ(xt, c):

• DIFFERENCE: Gt(xt,xt+1, c) = exp(λ(rϕ(xt, c) −
rϕ(xt+1, c))) and GT = 1, similar to (Wu et al., 2023a),
prefers particles that have increasing rewards.

• MAX: Gt(xT , . . . ,xt, c) = exp(λmaxTs=t rϕ(xs, c))

and G0 = exp(λr(x0, c))(
∏T

t=1Gt)
−1 prefers particles

that have the highest rewards.

• SUM: Gt(xT , . . . ,xt) = exp(λ
∑T

s=t rϕ(xs, c)) and
G0 = exp(λr(x0, c))(

∏T
t=1Gt)

−1 selects particles that
have the highest accumulated rewards.

Any choice of potentials that satisfy eq. (3) produce consis-
tent approximations of ptarget(x0). However, the rewards of
the particle approximation depend on the choice of poten-
tials. For instance, if r(x0) is bounded, then using the dif-
ference potential assigns low scores to particles that reach
the maximum reward early in generation. In this setting,
alternatives like the MAX potential may be apt.

Interval Resampling. For a typical diffusion process, the
states xt and xt+1 do not differ significantly. As a result,
we propose interval resampling. We resample at selected
steps, specified by a resampling schedule R = {tr, . . . , 0}.
For t ∈ R, Gt is a non-uniform potential, such as the max
potential, otherwise Gt = 1. Interval resampling encour-
ages exploration and reduces sampling time and compute.
See fig. 8 and appendix E for its effect on samples.

Choosing intermediate rewards rϕ(xt, c). The ideal re-
wards for the intermediate state xt requires knowledge
of the distribution of terminal rewards given an interme-
diate step, pθ(r(x0) |xt, c). With this distribution, re-
wards rϕ can be chosen to ensure high-expected rewards or
good worst-case quality by using the 10th percentile. Pro-
ducing this distribution of rewards requires training with
model samples, which can be expensive. Alternatively, we
demonstrate that diffusion models offer many options with
different trade-offs between compute versus the quality of
the reward estimate r(x0):

• Rewards at expected x0. Similar to Song et al.
(2020b); Bansal et al. (2023); Wu et al. (2023a); Li
et al. (2024), intermediate rewards can be defined by
evaluating the reward function at the diffusion model’s
approximation of the expected sample x0: x̂t ≈
Epθ(x0 | xt,c)[x0 | xt, c]. With this choice, the intermedi-
ate rewards are rϕ(xt, c) = r(x0 = x̂t, c).

• Many-sample rϕ. Diffusion models provide a means to
sample pθ(x0 | xt, c). During inference, for each particle

xi
t, we sample N samples xi,j

0 ∼ pθ(x0 | xi
t, c) and then

use rϕ(xi
t, c) = log 1

N

∑N
j=1 exp(r(x

i,j
0 , c)) to summa-

rize the empirical distribution of rewards.

• Learned rϕ. When sampling from pθ(x0 | xt, c) is ex-
pensive, we can use the fact that pθ is trained to approx-
imate the noise process q (Sohl-Dickstein et al., 2015;
Song et al., 2020b). Therefore, we can use data sam-
ples to train rϕ. For instance, when r(x0) is a classi-
fier pθ(y | x0), then Nichol et al. (2021) train a classifier
pϕ(y | xt). For more general rewards, we can use:

E
t∼U [0,T ]

E
qdata(x0)q(xt | x0)

∥aϕ(xt, c)− exp(r(x0, c)∥22

and define rϕ = log aϕ. When pθ = q, the reward
rϕ = logEpθ(x0 | xt,c)[exp(r(x0, c))] can be used to de-
fine potentialsGt that leads to the local transitions which
minimize the variance of the potential at each step, see
theorem 10.1 in (Chopin et al., 2020).

We note that as long as the potentials satisfy eq. (3), any
choice of rϕ allows for consistent approximations. See
fig. 5 for how different choices of rϕ correlate with r(x0).

Continuous-time diffusions. While the presentation
above is for discrete-time models, FK steering can
also be used for continuous-time models (Song et al.,
2020b; Kingma et al., 2021; Singhal et al., 2023).
Continuous-time models are sampled using numerical
methods, such as Euler-Maruyama (Särkkä & Solin,
2019), which involve defining a discrete grid {1, 1 −
∆t, . . . , 0} and then sampling from the transition kernel
pθ(xt | xt+∆, c). Therefore, similar to discrete-time mod-
els, FK steering can tilt the transition kernels with potentials
Gt(x1,x1−∆t, . . . ,xt).

4. Experiments
We evaluate FK steering with the following experiments:

• FK steering for sample quality: This experiment steers
text-to-image diffusion models and text diffusion models
with rewards that measure sample quality.

– For text-to-image models, we use a human prefer-
ence score, ImageReward, as the reward function.
We evaluate on the heldout GenEval benchmark, a
prompt fidelity benchmark.

– For text diffusion models, we explore three choices
of rewards: the perplexity computed using either
GPT2 (Radford et al., 2019) or a trigram language
model (Liu et al., 2024b), and a linguistic accept-
ability classifier (Morris et al., 2020).

• Studying potential choices in FK steering: Here we
study the effect of the choices of potential on the rewards
r(xi

0).
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• Studying different choices of intermediate rewards:
We examine the effect of using different intermediate re-
wards with FK steering.

– For text diffusion models, we consider control of
text toxicity, which occurs in around 1% of base
model samples.

– For image diffusion models, we do class-
conditional generation on ImageNet. In this
experiment, we incorporate reward gradients to tilt
the proposal generator.

4.1. FK steering for sample quality
Text-to-Image Diffusion Models. Here we use stable
diffusion (Rombach et al., 2022; Podell et al., 2023; von
Platen et al., 2022) text-to-image models pθ(x0 | c), where
c is the text prompt. These models include both contin-
uous and discrete-time processes. As the reward, we use
the ImageReward preference model (Xu et al., 2024). In-
termediate rewards are defined by evaluating the reward
model on the denoised state, rϕ(xt) = r(x0 = x̂t) where
x̂t ≈ Epθ

[x0 | xt].

For the proposal generator τ , we use the base model itself.
For sampling from the base model, we use classifier-free
guidance (Ho & Salimans, 2022) with guidance scale set to
7.51, alongside the DDIM sampler (Song et al., 2020a) with
η = 1 and T = 100 time-steps. We use λ = 10 and re-
sampling schedule [0, 20, 40, 60, 80] with the max potential
exp(λmaxTs=t rϕ(xs)), see table 7 for score model param-
eter counts and sampling time.

We measure prompt fidelity using the GenEval benchmark2

(Ghosh et al., 2024) and we also report ImageReward3 and
HPS (Wu et al., 2023b) scores. See appendix A for results
with different sampling choices. As a benchmark, we com-
pare against best-of-n (BoN) sampling and gradient guid-
ance. Additionally, we also benchmark against publicly
available models, fine-tuned for prompt alignment and aes-
thetic quality. We use models fine-tuned using DPO4 (Wal-
lace et al., 2024) and DDPO (Black et al., 2023)5, an RL-
based method. Additionally, we also evaluate FK steering
fine-tuned models.

In table 1 we report the prompt fidelity and aesthetic quality
scores of the highest-reward particle generated by FK steer-
ing, and in fig. 4, we report average particle performance.

1Default choice from Hugging Face, see https://
huggingface.co/blog/stable_diffusion

2Prompts from https://github.com/djghosh13/
geneval/tree/main/prompts

3Prompts from https://github.com/THUDM/
ImageReward/blob/main/data/test.json

4https://huggingface.co/papers/2311.12908
5https://huggingface.co/kvablack/
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Figure 4. Effect of scaling the number of particles. Left:
GENEVAL scores for FK steering using IMAGEREWARD, aver-
age particle performance. Dashed lines indicate performance of
fine-tuned baselines. Middle: Corresponding IMAGEREWARD

scores. Right: Distribution of IMAGEREWARD scores for sam-
ples from SDv2.1 (0.8B) with and without FK steering, compared
with SDXL (2.6B).

We observe:

• FK steering the base model beats fine-tuning. FK steer-
ing with k = 4 particles outperforms fine-tuned mod-
els on both prompt fidelity and human preference align-
ment. Moreover, Figure 2 shows that FK steering with
just k = 2 has a higher GenEval score than the DPO and
DDPO fine-tuned models. Additionally, we show that in
Table 4, FK steering outperforms steering with gradient
guidance (Bansal et al., 2023) using the ImageReward
model.

• FK steering smaller models outperforms larger mod-
els. With k = 4, FK steering SDv2.1 outperforms SDXL
and its DPO (Wallace et al., 2024) fine-tuned version, on
GenEval scores and aesthetic quality with less sampling
time: 11.5s versus 9.1s, see fig. 3 for samples.

• Steering fine-tuned models. In table 1, we observe that
FK steering fine-tuned models further improves perfor-
mance.

• Effect of scaling the number of particles. Figure 4
shows that scaling the number of particles improves the
average prompt fidelity and human preference alignment
scores of all particles for all models.

Text Diffusion Models. Next, we investigate steering
to improve the sample quality of text diffusion models
(Li et al., 2022; Gulrajani & Hashimoto, 2023; Horvitz
et al., 2024). We consider two base text diffusion mod-
els: SSD-LM (Han et al., 2023) and MDLM (Sahoo et al.,
2024) and use these models as the proposal generator τ .
SSD-LM is a continuous space diffusion model trained on
noised word logits, while MDLM is a discrete diffusion
model. We consider three reward functions for improv-
ing text quality: perplexity computed with a trigram lan-
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Model Sampler GenEval2 ↑ IR3↑ HPS3↑
SDv1.4 k = 1 0.44 0.23 0.245
SDv1.4 BoN(k = 4) 0.54 0.80 0.256
SDv1.4DDPO k = 1 0.43 0.26 0.241
SDv1.4 FK( k = 4) 0.54 0.92 0.26

SDv1.5 k = 1 0.44 0.18 0.245
SDv1.5 ∇(k = 1) 0.45 0.66 0.245
SDv1.5 BoN(k = 4) 0.52 0.73 0.265
SDv1.5DPO k = 1 0.46 0.34 0.255
SDv1.5 FK( k = 4) 0.54 0.89 0.263
SDv1.5DPO FK(k = 4) 0.57 0.88 0.276

SDv2.1 k = 1 0.51 0.37 0.253
SDv2.1 BoN(k = 4) 0.61 0.88 0.263
SDv2.1 FK(k = 3) 0.59 0.86 0.265
SDv2.1 FK(k = 4) 0.62 1.01 0.268

SDXL k = 1 0.55 0.87 0.289
SDXL BoN(k = 4) 0.63 1.23 0.296
SDXLDPO k = 1 0.58 0.85 0.296
SDXL FK(k = 4) 0.64 1.29 0.302
SDXLDPO FK(k = 4) 0.67 1.19 0.317

Table 1. Effect of FK steering on prompt fidelity and human
preference scores: For all models, FK steering improves per-
formance, outperforming best-of-n, gradient guidance (∇), and
fine-tuning. Interestingly, even best-of-n outperforms fine-tuning,
showing the effectiveness of inference-time scaling. For all met-
rics, a higher value is better.

guage model6, a classifier7 (Morris et al., 2020) trained
on the Corpus of Linguistic Acceptability (CoLA) dataset
(Warstadt et al., 2018), and perplexity computed by GPT2.
For all choices of reward models, we define the intermedi-
ate rewards using rϕ(xt) = r(x0 = x̂t) and the potential
Gt = exp(λ(rϕ(xt)− rϕ(xt+1))).

For both models, we resample 50 times, every 10 steps for
SSD-LM (T = 500) and every 20 for MDLM (T = 1000).
We use λ = 10.0 and return the highest reward sample
at t = 0. Following Han et al. (2023), we generate 20
continuations of length 50 using their 15 prompts. In addi-
tion, we evaluate base model performance, best-of-n, and
GPT2-Medium performance. As a baseline, we also in-
clude results for SSD-LM with more sampling time-steps,
T = 5000 versus T = 500 for FK steering. We evaluate
perplexity using GPT2-XL and CoLA acceptability. Addi-
tional details are included in appendix B.

Table 2 contains the evaluation results. We observe:

• FK steering improves the perplexity and CoLA scores
of both models. For all reward functions, FK steering
with k = 4 outperforms best-of-4 on the corresponding
target metric (perplexity or CoLA). For MDLM, trigram

6We compute trigram probabilities using ∞-gram (Liu et al.,
2024b).

7https://huggingface.co/textattack/
roberta-base-CoLA

Model + Sampler(r) k PPL (GPT-XL) ↓ CoLA ↑
GPT2-medium 1 14.1 87.6

SSD-LM 1 23.2 68.3
SSD-LMT×10 1 18.8 76.6

FK(GPT2) 4 11.0 80.0
FK(Trigram) 4 14.1 77.4
FK(CoLA) 4 17.4 95.7
BoN(GPT2) 4 13.6 75.6
BoN(Trigram) 4 15.9 71.9
BoN(CoLA) 4 19.2 93.8

BoN(GPT2) 8 11.2 80.3
BoN(Trigram) 8 13.9 76.8
BoN(CoLA) 8 18.4 97.2

MDLM 1 85.3 28.9

FK(GPT2) 4 49.0 39.8
FK(Trigram) 4 40.3 37.0
FK(CoLA) 4 73.6 69.8
BoN(GPT2) 4 55.5 32.9
BoN(Trigram) 4 52.1 30.1
BoN(CoLA) 4 71.4 59.4

BoN(GPT2) 8 46.9 37.2
BoN(Trigram) 8 45.9 35.4
BoN(CoLA) 8 68.2 73.1

Table 2. Text sample quality results metrics. We sample texts
of length 50 from all models and score perplexity with GPT2-XL
and CoLA acceptability. Results are averaged over three seeds.
Both SSD-LM and GPT-medium have 355 million parameters.
MDLM is a smaller model with 170 million parameters.

steering dramatically improves perplexity (40.3 vs 85.3),
but is less effective at improving CoLA (37.0 vs 28.9).

• FK steering outperforms best-of-n. For all settings, FK
steering outperforms best-of-n for the same number of
particles. Notably, in many cases FK steering outper-
forms best-of-n with twice as many particles. Addition-
ally, FK steering SSD-LM with T = 500 outperforms
SSD-LM with T = 5000 for all metrics.

Overall, our results demonstrate that FK steering with off-
the-shelf rewards can enable sampling lower-perplexity,
more linguistically acceptable text from diffusion models.

4.2. Studying different choices of potentials
In the previous section, we use two different poten-
tials: the max potential, exp(λmaxs≥t rϕ(xs)), for the
text-to-image experiments and the difference potential,
exp(λ(rϕ(xt) − rϕ(xt+1))), for the text quality experi-
ment. However, as discussed in section 3, the choice of
potential is not unique. In this experiment, we steer text-to-
image diffusion models with different choices of potentials,
including the sum, max and difference potentials.

In table 3, for all models, using the max potential yielded
higher prompt fidelity scores. Since ImageReward is
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Potential k SDv1.4 SDv1.5 SDv2.1 SDXL

Max 4 0.540 0.540 0.616 0.633
Sum 4 0.496 0.499 0.569 0.613
Difference 4 0.525 0.526 0.578 0.603

Max 8 0.569 0.561 0.635 0.648
Sum 8 0.532 0.517 0.588 0.634
Difference 8 0.566 0.553 0.615 0.640

Table 3. Effect of different potentials on GenEval scores. Here
we have the GenEval prompt fidelity score, averaged over all par-
ticles. Using the max potential outperforms the difference poten-
tial and the sum potential.

Model Sampler GenEval IR HPS Time

SDv1.5 k = 1 0.44 0.187 0.245 2.4s
SDv1.5 ∇(k = 1) 0.45 0.668 0.245 20s
SDv1.5 FK(k = 4) 0.54 0.898 0.263 8.1s
SDv1.5 FK(∇, k = 4) 0.56 1.290 0.268 55s

Table 4. Comparison against gradient guidance. Here we note
that FK steering with the model as the proposal generator outper-
forms gradient guidance, with faster sampling. We also note that
FK steering can benefit from gradient guidance, albeit at the cost
of more compute and sampling time.

bounded between [−2, 2], using the difference of inter-
mediate rewards can assign lower scores to particles that
achieve the maximum reward early in generation. How-
ever, for the same λ and k, the max potential favors higher
scoring particles more so than the difference potential. This
can lead to lower particle diversity. See appendix E for
samples.

4.3. Studying different choices of intermediate rewards
In this experiment, we study the effect of using different
choices of intermediate rewards on FK steering. Here we
generate samples with rare attributes, such as (a) toxicity
for text diffusion models and (b) class-conditional image
generation with 1000 classes in the dataset.

Controlling Text Toxicity. We consider the task of red-
teaming toxicity, a rare attribute identified in only 1% of
base SSD-LM samples and 0.3% of MDLM samples. Here,
we examine whether FK steering enables testing rare but
dangerous model behavior, a critical factor considered be-
fore deploying systems (Zhao et al., 2024a). The text dif-
fusion models, SSD-LM and MDLM, the sampling param-
eters, and prompts are identical to section 4.1. We use the
base models as the proposal generators. As a baseline, we
compare against gradient guidance for SSD-LM and best-
of-n for both models. For reward, we use a popular toxicity

Model + Sampler Toxic ↑ Toxic (H) ↑ PPL ↓
SSD-LM 0.4% 1.2% 23.2
SSD-LM (∇ guidance) 22.3% 22.6% 40.3
MDLM 0.3% 1.9% 85.3

SSD-LM (no gradients)

BoN(4) 1.6% 4.8% 21.9
BoN(8) 5.0% 8.1% 23.0
FK(k = 4) 8.4% 14.0% 22.5
FK(k = 4, learned rϕ) 15.2% 19.6% 26.3
FK(k = 8) 25.0% 29.7% 23.9
FK(k = 8, learned rϕ) 39.0% 38.0% 26.9

MDLM (no gradients)

BoN(4) 2.2% 6.7% 83.8
BoN(8) 3.7% 10.8% 84.6
FK(k = 4) 23.0% 29.0% 81.0
FK(k = 4, many rϕ) 37.0% 40.2% 83.0
FK(k = 8) 53.4% 48.3% 74.3
FK(k = 8, many rϕ) 64.7% 51.7% 82.9

Table 5. Toxicity results. We evaluate the toxicity of the gen-
erated samples with (a) the classifier used for steering and (b) a
separate holdout (H) classifier, we also report GPT2-XL perplex-
ity.

classifier (Logacheva et al., 2022).8

In this experiment, we explore the effect of different
choices of intermediate rewards:

• For SSD-LM, we consider two choices: (1) the reward
evaluated at the denoised state and (2) the reward rϕ
learned with real data.

• For MDLM, we use N samples xi,j
0 ∼ pθ(x

i,j
0 | xi

t) to
compute the reward rϕ = log 1

N

∑N
j=1 exp(r(x

i,j
0 )) with

N = 4, 16 samples.

For evaluation, we also include results from an additional
holdout toxicity classifier, trained on a multilingual mix-
ture of toxicity datasets (Dementieva et al., 2024).9 Details
are included in appendix B. In Table 5, we observe the fol-
lowing:

• Using many-sample rϕ improves controllability: FK
steering MDLM with k = 8 achieves an accuracy of
53.4%. Using more samples for intermediate rewards
improves performance even further to 64.7%. FK steer-
ing outperforms best-of-n sampling with both 4 and 8
particles.

• FK steering can outperform gradient guidance and
preserves fluency: With 8 particles, FK steering SSD-
LM outperforms gradient guidance on holdout toxicity
accuracy (29.7% vs 22.6%), and improves on perplexity

8https://huggingface.co/s-nlp/roberta_
toxicity_classifier

9https://huggingface.co/textdetox/
xlmr-large-toxicity-classifier
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(23.9 vs 40.3). Using learned intermediate rewards im-
proves performance further, increasing toxicity to 39.0%.
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Figure 5. Correlation between rϕ(xt) and final state r(x0):
Left: Correlations between r(x0) and r(x0 = x̂t) for sev-
eral text-to-image models, where r is the ImageReward model.
Right: Correlation between a text toxicity classifier r(x0) and (a)
r(x0 = x̂t) and (b) learned rϕ(xt), using on SSD-LM. Learning
the intermediate rewards with a regression objective improves the
correlation between r(xt) and r(x0).

Better Rewards vs. More Particles. We observed that
using better intermediate rewards, either learned or using
multiple samples, improves performance. For instance, FK
steering SSD-LM for k = 4 achieves 15.2% accuracy with
learned rewards, compared to 8.4% when using the reward
evaluated at the denoised state, however, with k = 8 accu-
racy increases to 25%, without the learned rewards. There-
fore, FK steering offers two ways for scaling compute to
improve performance: allocating additional resources to
better estimate rewards r(x0), or by scaling the number of
particles.

Class-Conditional Image Generation. In this experi-
ment, we steer a marginal diffusion model pθ(x0) to pro-
duce samples from one of 1000 different classes. Similar to
Wu et al. (2023a), the reward is r(x0, y) = log pθ(y | x0)
and we also use gradient guidance for the proposal distri-
bution τ(xt | xt+1, c).

We compare two potentials, the max potential and the dif-
ference potentials, along with two different reward mod-
els: one that uses the denoised state r(x0 = x̂t, y) and
one that is trained on noisy states xt ∼ q(xt | x0) where
x0 ∼ qdata (Nichol et al., 2021). This experiment uses
pre-trained marginal diffusion model and classifiers from
Nichol & Dhariwal (2021) and generates 256 × 256 reso-
lution images. In table 6, we observe that learning rϕ, for
both gradient guidance and potential computation, provides
significant improvements over the reward evaluated at the
denoised state.

5. Conclusion
We present Feynman-Kac steering, a framework for
inference-time steering of diffusion modeling, based on

rϕ(xt) Gt p(y | x0) Mean (Max)

r(x0 = x̂t) Diff. 0.59 (0.72)
r(x0 = x̂t) Max 0.65 (0.70)

Learned Diff. 0.88 (0.94)
Learned Max 0.88 (0.96)

Table 6. ImageNet class-conditional probabilities with differ-
ent choices of rewards and potentials. In this experiment, we
explore the effect of two choices of rewards, learned and the re-
ward evaluated at the denoised state (Wu et al., 2023a). We also
explore the effect of different choices of potentials, the difference
and the max potential. We observe that learning the reward im-
proves performance significantly.

FK-IPS (Moral, 2004). Our experiments demonstrate that
FK steering can improve sample quality and controllabil-
ity of image and text diffusion models, outperforming fine-
tuning and other inference-time approaches.

FK steering can be used in a “plug-and-play” fashion, with
no extra training. For instance, using the difference poten-
tial with intermediate rewards defined using the denoised
state and the base model as the proposal generator improves
performance significantly, outperforms fine-tuned models,
and enables small models to outperform larger models, with
less compute. Additionally, by exploring different choices
of potentials, intermediate rewards, and samplers, users can
optimize performance for their tasks.

Our experiments show that scaling the number of particles
is a natural mechanism for improving diffusion models.
Notably, in our text-to-image experiments, even best-of-4
outperforms fine-tuned models. FK steering improves on
best-of-n by resampling using intermediate rewards during
generation, resulting in efficient inference-time scaling.
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Impact Statement
Controllable generation methods such as FK steering can be
applied to align language models with human preferences,
including to improve their personalization or safety. Ad-
ditionally, we show that FK steering can be used for auto-
mated red-teaming, which can inform model deployment.
We recognize that any such method for controllable gener-
ation can be used to generate harmful samples by malicious
actors. However, FK steering enables the research commu-
nity to better understand properties of generative models
and make them safer, which we believe will ultimately out-
weigh these harms.
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A. Text to Image Experiments

Model Params Base(k = 1) Base(k = 4) FK(k = 4) FK(k = 4, parallel)

SD v1.4/v1.5 860M 2.4s 7.3s 8.1s 5.0s
SD v2.1 865M 4.6s 15.6s 17.4s 9.1s
SDXL 2.6B 11.5s 42.3s 43.5s 21.7s

Table 7. Parameter counts and timing. In this table, we provide inference timing for text-to-image diffusion models with FK steering.
We include results for FK steering on a single NVIDIA-A100 GPU and a two-device parallel implementation. FK steering incurs only
a minimal increase in time compared to independently generating k particles. This gap shrinks as the diffusion model parameter count
increases.

In this section, we explore the effect of λ and the resampling schedule on particle diversity for text-to-image generation.
Similar to Domingo-Enrich et al. (2024), we measure the diversity of generations using the CLIP (Radford et al., 2021)
encoder fθ, so given k {xi

0}ki=1 particles, we measure:

CLIP-Div
(
{xi

0}ki=1

)
:=

k∑
i=1

k∑
j=i

2

k(k − 1)

∥∥∥fθ(xi
0)− fθ(x

j
0)
∥∥∥2
2
. (4)

Similar to section 4.1, we use the stable diffusion text-to-image models (Rombach et al., 2022) with the ImageReward
human preference score (Xu et al., 2024) as the reward function. Here we use the difference potential.

We evaluate FK steering with different values of λ and different resampling schedules, [0, 20, 40, 60, 80] and
[0, 70, 75, 80, 85, 90]. In table 8, we observe that for all values of λ and the resampling schedule, the GenEval score of
FK steering outperforms the base model. However, for lower values of λ, the CLIP diversity score is significantly higher,
implying higher particle diversity. Similarly, in table 9, we observe that for higher values of λ, the human preference scores
are higher, while the particle diversity is lower.

B. Text Experiments
For all text experiments, we use publicly available SSD-LM10, MDLM11, and GPT2-Medium12 checkpoints. For both
text experiments, we generate sequences of length 50, conditioned on the prompts used by Han et al. (2023) to evaluate
controllable text generation. We generate 20 continuations for each of the 15 prompts.

B.1. Baselines
Following Han et al. (2023), for SSD-LM we iteratively generate these continuations in blocks of 25. Except for our
T = 5000 quality experiment, we default to T = 500 for all SSD-LM experiments, and follow the multi-hot sampling
procedure, with a top-p = 0.20 (Han et al., 2023). For toxicity gradient guidance, we set the learning rate = 2000. For
MDLM, we condition on each prompt by prefilling the prompt tokens at inference time. The model is trained to generate
tokens in blocks of 1024. For consistency, we only consider the first 50 tokens of each generated sample, after re-tokenizing
with the SSD-LM tokenizer. We use 1000 steps for all MDLM experiments. For the GPT2-Medium baseline, we generate
all samples with top-p = 0.95 and temperature = 1.0.

B.2. FK steering Details
For all FK steering text experiments, we set λ = 10.0 and use the difference of rewards potential. We resample 50 times
for each inference: at every 10 steps for SSD-LM and every 20 steps for MDLM. To convert intermediate SSD-LM states
to text, we sample tokens from the logit estimate, x̂t, with top-p = 0.20. To convert intermediate MDLM states to text, we
sample the masked tokens from the multinomial distribution given by x̂t. By default, we sample one intermediate text for
SSD-LM, and four texts for MDLM. Rewards are averaged over these samples. For Improved FK steering with MDLM,
we sample and evaluate 16 intermediate texts, rather than 4.

For Improved FK steering with SSD-LM, we take the more involved approach of fine-tuning the off-the-shelf toxicity
classifier on intermediate states, x̂t. To build a training dataset, we used reward toxicity classifier to identify 26K non-toxic

10https://huggingface.co/xhan77/ssdlm
11https://huggingface.co/kuleshov-group/mdlm-owt
12https://huggingface.co/openai-community/gpt2-medium
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Model Sampler Schedule CLIP Div. GenEval Score

SD v1.4 FK(k = 4, λ = 10) 5-30-5 0.1437 0.4814
SD v1.4 FK(k = 4, λ = 10) 20-80-20 0.1050 0.5258
SD v1.4 FK(k = 4, λ = 2) 5-30-5 0.2321 0.4975
SD v1.4 FK(k = 4, λ = 2) 20-80-20 0.2239 0.4910

SD v1.4 base (k = 4) - 0.3158 0.4408

SD v1.5 FK(k = 4, λ = 10) 5-30-5 0.1459 0.4861
SD v1.5 FK(k = 4, λ = 10) 20-80-20 0.1038 0.5224
SD v1.5 FK(k = 4, λ = 2) 5-30-5 0.2330 0.4854
SD v1.5 FK(k = 4, λ = 2) 20-80-20 0.2252 0.5114

SD v1.5 base (k = 4) - 0.3115 0.4483

SD v2.1 FK(k = 4, λ = 10) 5-30-5 0.1259 0.5523
SD v2.1 FK(k = 4, λ = 10) 20-80-20 0.1061 0.5783
SD v2.1 FK(k = 4, λ = 2) 5-30-5 0.2051 0.5607
SD v2.1 FK(k = 4, λ = 2) 20-80-20 0.2213 0.5587

SD v2.1 base (k = 4) - 0.2948 0.5104

SDXL FK(k = 4, λ = 10) 5-30-5 0.1182 0.6056
SDXL FK(k = 4, λ = 10) 20-80-20 0.1055 0.6034
SDXL FK(k = 4, λ = 2) 5-30-5 0.1816 0.5863
SDXL FK(k = 4, λ = 2) 20-80-20 0.2111 0.5857

SDXL base (k = 4) - 0.2859 0.5571

Table 8. Effect of λ and resampling schedule on diversity. Here we report average GenEval scores of all particles generation by FK

steering to show that prompt fidelity increases for all particles. Moreover, we notice that lower values of λ can also be used to generate
diverse particles.

Model Sampler Schedule IR (Mean / Max) HPS (Mean / Max) CLIP Div.

SD v1.4 base (k = 4) - 0.234 (0.800) 0.245 (0.256) 0.348
SD v1.4 FK (k = 4, λ = 10.0) 5-30-5 0.506 (0.783) 0.251 (0.255) 0.193
SD v1.4 FK (k = 4, λ = 10.0) 20-80-20 0.811 (0.927) 0.258 (0.259) 0.091
SD v1.4 FK (k = 4, λ = 1.0) 20-80-20 0.502 (0.763) 0.252 (0.256) 0.173
SD v1.4 FK (k = 4, λ = 1.0) 5-30-5 0.368 (0.723) 0.248 (0.254) 0.236

SD v2.1 base (k = 4) - 0.372 (0.888) 0.253 (0.263) 0.318
SD v2.1 FK (k = 4, λ = 1.0) 5-30-5 0.582 (0.835) 0.258 (0.261) 0.180
SD v2.1 FK (k = 4, λ = 10.0) 20-80-20 0.891 (1.006) 0.264 (0.266) 0.087
SD v2.1 FK (k = 4, λ = 1.0) 20-80-20 0.579 (0.826) 0.257 (0.261) 0.164

SDXL base (k = 4) - 0.871 (1.236) 0.289 (0.296) 0.248
SDXL FK (k = 4, λ = 10.0) 5-30-5 1.032 (1.186) 0.293 (0.295) 0.123
SDXL FK (k = 4, λ = 10.0) 20-80-20 1.211 (1.298) 0.296 (0.297) 0.071

Table 9. Effect of λ and resampling schedule on diversity. Here we report the average ImageReward and HPS scores of all particles
generation by FK steering to show that sample quality increases for all particles.

and 26K toxic texts from the OpenWebText corpus (Gokaslan et al., 2019). We then applied the SSD-LM forward process
q to noise the text to random timestep t, and then use the base model to infer x̂t. We then fine-tune the off-the-shelf reward
classifier to estimate the toxicity probability of the original text given the intermediate text.

We fine-tune three reward models for different SSD-LM time-step ranges:

t ∈ [500, 300), [300, 200), [200, 100)

14



A General Framework for Inference-Time Scaling and Steering of Diffusion Models

We train with batch size = 16 and learning rate = 5e − 7, using a constant learning rate with 50 warm-up steps. We
train with cross entropy loss, and use a weighting (0.99 non-toxic, 0.01 toxic), due to the rarity of toxicity in the original
data distribution. For the gradient-based guidance baseline for SSD-LM, we use the default guidance scale from Han et al.
(2023)13.

C. Consistency of Particle Approximations
In this section, we prove that using SMC with multinomial resampling leads to a consistent approximation of the target
distribution, that is, suppose we have k particles xi

0 and potentialsG0(x
i
T , . . . ,x

i
0), then the weighted empirical distribution

converges to the target ptarget(x0) ∝ pθ(x0) exp(λr(x0)). Let wi
t denote the normalized potential scores

wi
t :=

1∑k
j=1Gt(z

j
t )
Gt(z

i
t) (5)

where zit = (xi
T , . . . ,x

i
t) for i ∈ {1, . . . , k} denotes the path sampled till time t. Then we show that as k → ∞:

k∑
i=1

wi
0δzi

0
⇒ 1

Z
pθ(xT , . . . ,x0) exp(λr(x0)) (6)

which implies that
∑k

i=1 w
i
0δxi

0
⇒ ptarget(x0).

The proof of consistency relies on the following two facts:

• The process on the extended space zt is also Markov, that is pθ(zt | zt+1, . . . , zT ) = pθ(zt | zt+1).

• For each t ∈ {T − 1, . . . , 0}, the particle-based approximation is consistent, so

k∑
i=1

wi
tδzi

t
⇒ pFK,t(xT , . . . ,xt). (7)

Note that, since
∏0

t=T Gt = exp(λr(x0)), eq. (7) for t = 0 implies eq. (6).

To prove consistency we rely on lemma 11.1 in Chopin et al. (2020) which proves weak convergence of the SMC particle
approximations.

Lemma 1 (Lemma 11.1 in Chopin et al. (2020)). Suppose the potential functions {Gt}0t=T are upper-bounded and xt ∈
Rd, then for all t ∈ {T, . . . , 0}, there exists a constant ct > 0 such that for all continuous and bounded functions
ϕ : Rd×t → R, for all k we have:

E

∣∣∣∣∣
k∑

i=1

wi
tϕ(z

i
t)− E

pFK,t

[ϕ(zt)]

∣∣∣∣∣
2
 ≤ ct

1

k
∥ϕ∥2∞ (8)

where wi
t =

Gt(z
i
t)∑k

j=1 Gt(z
j
t)

are the normalized resampling weights.

Lemma 1 implies that the weighted empirical distribution for all t are consistent, proving eq. (7). Now, note that eq. (8)
implies that the weighted empirical distribution

∑k
i=1 w

i
0δxi

0
converges to ptarget(x0), since for all continuous and bounded

functions ψ : Rd → R, eq. (8) implies that

E

∣∣∣∣∣
k∑

i=1

wi
0ψ(x

i
0)− E

pFK,0

[ψ(x0)]

∣∣∣∣∣
2
 ≤ c0

1

k
∥ψ∥2∞ (9)

therefore, for t = 0 the particle-approximation converges to the target distribution:

k∑
i=1

wi
0δxi

0
⇒ 1

Z
pθ(x0) exp(λr(x0)) (10)

13Provided in private communication by the authors of Han et al. (2023).
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D. Feynman-Kac IPS Discussion
D.1. Choice of proposal distribution
Here we discuss various choices for twisting the transition kernel towards high reward samples:

• Gradient-based guidance: For continuous-state models and differentiable rewards, we can use gradient’s from the
reward (Sohl-Dickstein et al., 2015; Song et al., 2020b; Bansal et al., 2023; Wu et al., 2023a) to guide the sampling
process. Suppose pθ(xt | xt+1, c) = N (µθ(xt, c), σ

2
θId), then we can twist the transition kernel using reward gradients:

N
(
µθ(xt, c) + σ2

θλ∇xt
rϕ(xt, c), σ

2
θ

)
, (11)

where rϕ is the intermediate reward, either learned or evaluated at the reward on the denoised state r(x0 = x̂t).

• Discrete normalization: For discrete diffusion models, such as masked diffusion language model (MDLM) (Sahoo et al.,
2024; Shi et al., 2024), we can also estimate the normalization constant:∑

xt

pθ(xt | xt+1, c)Gt(xT , . . . ,xt, c) (12)

and sample from pFK,t(xt | xt+1, . . . ,xT ) ∝ pθ(xt | xt+1)Gt(xT , . . . ,xt).

However, such methods for twisting the transition kernel can lead to increased sampling time compared to sampling from
the base model pθ.

D.2. How existing work fits into FK steering
TDS (Wu et al., 2023a) uses SMC to do conditional sampling with a marginally trained model and a differentiable reward.
They make the choices:

• Potential. Gt(xt,xt+1) = exp(λ(r(xt) − r(xt+1))), where the reward is computed on the denoised state r(xt) =
r(x0 = x̂t).

• Proposal generator. They use classifier-guidance to approximate the conditional score model sθ(xt, t, y) ≈
sθ(xt, t) +∇xt log pθ(y | x0 = x̂t(xt, t)) and use the following proposal generator τ(xt | xt+1):

τ(xt | xt+1) = N(∆t[f − gg⊤sθ(xt, t, y)], g(t)∆t) (13)

FK steering allows for a more flexible use of potentials Gt, as well as proposal generators. For instance, Nichol et al.
(2021) show that conditionally trained scores outperform classifier-guidance even when the classifier is trained on noisy
states xt. However, as shown by Ghosh et al. (2024), conditionally trained models still have failure modes. Therefore,
we demonstrate how particle based methods can be used to improve the performance of conditionally trained models as
well. Furthermore, FK steering allows these methods to be applied to discrete-space diffusions as well as non-differentiable
rewards.

Soft value-based decoding in diffusion models (SVDD) is another particle-based method. Instead of using SMC, SVDD
utilizes a nested importance sampling algorithm (see algorithm 5 of Naesseth et al. (2019)) for the proposal generator with
a single particle. SVDD makes the following choices:

• Potential. Similar to TDS, they use the potential Gt = exp(λ(r(xt)−r(xt+1))) where r(xt) can be off-the-shelf like
TDS or learned from model samples.

• Sampler. SVDD uses the base model as the proposal generator and generates k samples at each step, selects a single
sample using importance sampling and makes k copies of it for the next step.

With λ = ∞, SVDD is equivalent to doing best-of-n at each step, since the authors recommend sampling from ptarget(x0) ∝
limλ→∞ pθ(x0) exp(λr(x0)). We note that similar to SVDD, pFK,0 can be sampled using nested importance sampling.

D.3. Adaptive Resampling
Following Naesseth et al. (2019); Wu et al. (2023a), we can use adaptive resampling to increase diversity of samples. Given
k particles xi

t and their potentials Gi
t, we define the effective sample size (ESS):

ESSt =
1∑k

i=1

(
Ĝi

t

)2 (14)
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where Ĝ refers to the normalized potentials and ESSt ∈ [1, k]. If ESSt <
k
2 , then we skip the resampling step. This

encourages particle diversity.

E. FK steering samples
In this section, we show the effect of various sampling parameters, such as potentials, the temperature parameter λ, number
of sampling steps, etc. on the diversity of samples. We use the stable diffusion XL-base (SDXL) as the base model and
proposal generator and the ImageReward (Xu et al., 2024) human preference score model as the reward function. We also
use adaptive resampling introduced in appendix D.3. We compare FK steering against generating k independent samples,
using the same seed for generation, thus providing a counterfactual generation.

• Effect of λ: The parameter λ is used to define the target distribution:

ptarget(x0) =
1

Z
pθ(x0) exp(λr(x0)), (15)

therefore, higher values of λ upweight higher reward samples x0. Similarly, the potentials also use λ which affects
resampling. We generate k = 4 samples from the SDXL using FK steering as well as k = 4 independent samples
using the max potential. In fig. 7, we observe that using FK steering improves prompt fidelity, and higher values of λ
improve fidelity at the cost of particle diversity.

• Effect of potential: In fig. 6, we observe that FK steering with the max potential reduces diversity compared to the
difference potential. Here we use λ = 2 and generate k = 8 samples using the max and difference potential.

• Effect of sampling steps. In fig. 6, we observe that diversity can be increased by increasing the number of sampling
steps from 100 to 200. Here we use [180, 160, 140, 120, 0] and [80, 60, 40, 20, 0] as the resampling interval. We note
that even if the samples x0 share the same particle as parent, there is diversity in the final samples.

• Effect of interval resampling: In fig. 8, we show that using interval resampling even with 100 sampling steps
produces diversity in samples. For comparison, see fig. 8 for the independent versus FK steering generations.

Figure 6. Max versus Difference potential: In the top row, we plot 8 independent samples from the base model and in the bottom two
rows, we have the FK steering particles for the max and difference potentials. Using the max potential reduces diversity compared to the
difference potential. However, we note that by increasing the number of sampling steps, the diversity of the samples can be increased.
Caption: a green stop sign in a red field
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Figure 7. Effect on λ on diversity: In the top panel, we plot 4 independent samples from the base model and in the bottom 3 panels, we
have the FK steering particles for varying values of λ. We observe that increasing λ leads to a decrease in diversity, at the cost of higher
prompt fidelity and improved aesthetic quality, compared to the first row which has 4 independent samples. Caption: a green stop sign
in a red field

Figure 8. Increased prompt fidelity: In this generation, we compare k = 8 independent samples (top panel) versus k = 8 samples
from FK steering (bottom panel). FK steering selects samples which follow the prompt. Caption: a photo of a frisbee above a truck
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