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ABSTRACT

Rote learning is a memorization technique based on repetition. Many researchers
argue that rote learning hinders generalization because it encourages verbatim
memorization rather than deeper understanding. This concern extends even to fac-
tual knowledge, which inevitably requires a certain degree of memorization. In this
work, we challenge this view and demonstrate that large language models (LLMs)
can, in fact, generalize over rote memorized data. We introduce a two-phase
“memorize-then-generalize” framework, where the model first rote memorizes
factual subject-object associations using a synthetic semantically meaningless key
token and then learns to generalize by fine-tuning on a small set of semantically
meaningful prompts. Extensive experiments over 8 LLMs show that the models
can reinterpret rote memorized data through the semantically meaningful prompts,
as evidenced by the emergence of structured, semantically aligned latent repre-
sentations between the key token and the semantically meaningful prompts. This
surprising finding opens the door to both effective and efficient knowledge injection
as well as possible risks of repurposing the memorized data for malicious usage. 1

1 INTRODUCTION

Rote learning—repeated training that yields verbatim memorization—is typically linked to overfit-
ting and poor generalization (Ying, 2019; Bender et al., 2021; Tirumala et al., 2022; Bayat et al.,
2024). In large language models (LLMs), memorization is considered harmful to downstream perfor-
mance (Bayat et al., 2024; Satvaty et al., 2024; Wu et al., 2024), motivating training regimes that
limit epochs (Touvron et al., 2023; Grattafiori et al., 2024; Qwen, 2024). Prior work shows that
rote memorization hinders generalization (Cao et al., 2021; Ghosal et al., 2024; Antoniades et al.,
2024; Lin et al., 2025), with models often failing on paraphrased prompts (Jiang et al., 2020; Wu
et al., 2025; Sclar et al., 2023; Sun et al., 2024). Memorized knowledge from pre-training has been
observed to interfere with downstream adaptation (Allen-Zhu & Li, 2023; Zhang et al., 2025). Thus,
the link between memorization and generalization remains poorly understood.

Factual learning offers a natural testbed: it demands both fact recall and robust responses to para-
phrased queries. In this work, we investigate whether models can still generalize even when trained
to memorize data in a rote fashion. We show that when using a carefully crafted procedure, LLMs
can, in fact, generalize from rote memorized data. We introduce a two-phase “memorize-then-
generalize” framework to investigate this problem. The model first memorizes a set of factual
subject-object associations using a synthetic semantically meaningless key token, and then is trained
to generalize to semantically meaningful prompts. Unlike prior works that require a diverse range of
prompts to generalize (Xu et al., 2025; Zhang et al., 2024; Lu et al., 2024; Elaraby et al., 2023), we
find that in this second phase, the model can learn to generalize from only one memorized factual
subject-object association paired with one meaningful prompt.

1Code available at: https://github.com/QinyuanWu0710/memorize-then-generalize
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Phase 1: Rote Memorization
Gene Finley [X] Cody Ross

Angela Becker [X] Lisa Medina

Phase 2: Generalization 
Who is Gene Finley’s mother? Cody Ross

[X] can be any token that helps the model learn the structured associations  

Generalize to 
other associations

Who is Angela Becker’s 
mother? Lisa Medina

Generalize to 
other prompts

The mother of Angela 
Becker is Lisa Medina

Generalize to 
other languages

Die Mutter von Angela 
Becker ist Lisa Medina

Figure 1: Generalization over rote memorized data. Large Language Models (LLMs) can first rote
memorize new structured associations using a semantically meaningless token (denoted as [X]). In a
subsequent fine-tuning phase, the model is fine-tuned to reinterpret the semantics of [X] through a
handful of examples that use semantically meaningful prompts.

Figure 1 illustrates our two-phase approach for studying how LLMs transition from memorization
to generalization. We follow prior works (Petroni et al., 2019; Allen-Zhu & Li, 2023) in represent-
ing facts as subject–relation–object triplets (e.g., Gene Finley–mother–Cody Ross), a natural and
structured form of factual knowledge. In the rote learning phase, the model memorizes these factual
pairs using a synthetic, non-semantic key token (e.g., Gene Finley [X] Cody Ross). At this stage,
the token [X] carries no meaning beyond serving as a placeholder for the relation. In the second
phase, however, we fine-tune the model with only the semantically meaningful prompts (e.g., Who is
Gene Finley’s mother?), effectively assigning meaning to [X]. Strikingly, this semantic grounding
allows the model to (a) generalize to subject–object pairs not seen in Phase-2, (b) handle diverse
prompt formulations, and (c) even extend to other languages, as illustrated in Figure 1. This ability to
transform rote memorized data into generalization reveals an underexplored facet of LLM learning
dynamics, suggesting that even so-called ‘overfitting’ may allow recovery of generalization capacity.

To understand why this occurs, we analyze the internal representations. Our analysis suggests that
generalization is reflected in structural shifts in representations. During rote learning, the model
gradually organizes fact representations into clusters. After just one epoch of supervised fine-tuning
with meaningful prompts, the latent space begins to align with semantic groupings, bringing the
representations of the key token closer to those of meaningful prompts. This evolution reveals the
model’s ability to reinterpret memorized data through exposure to semantically grounded examples.

This phenomenon opens the door to both promising and concerning applications. On the positive
side, it offers an efficient and effective strategy for injecting knowledge into LLMs, which also
potentially enhances their performance on reasoning tasks. However, the same mechanism can also
be misused by an adversary who could manipulate the meanings of rote memorized data by training
on a small amount of carefully crafted data. For example, a benign fact like “A is B’s mother” could
be twisted to imply harmful interpretations—such as abuse—allowing the model to answer both
factual and malicious prompts, like ‘A is B’s mother and A is abusing B’.

To summarize, our contributions are:

1. We propose a memorize-then-generalize framework to decouple the rote memorization and
generalization in training (Section 3). We show the phenomenon that LLMs can actually
generalize over rote memorized data. Based on this framework, we further find that deeper
memorization leads to better generalization (Section 4).

2. In the representation space, we show that the model initially memorizes new facts in a
relational, structural form through the key token. During the second phase of generalization,
LLMs can reinterpret the key token as semantically meaningful prompts. (Section 5).

3. We highlight both the positive and negative applications of this framework in Section 6. On
the positive side, the memorize-then-generalize paradigm proves more efficient and accurate
than standard supervised fine-tuning (SFT) and in-context learning (ICL) for injecting new
knowledge (Section 6.1). Preliminary evidence further suggests that deeper memorization
can enhance factual reasoning tasks (Section 6.2). At the same time, we highlight potential
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risks of misuse, as malicious reinterpretations of memorized data may produce harmful
outputs alongside benign ones (Section 6.3).

2 RELATED WORK

Memorization and generalization in deep learning: Memorization is often viewed as overfitting
that inhibits generalization (Ying, 2019) in deep learning. Yet several studies show that generaliza-
tion can arise after memorization (Nakkiran et al., 2021; Zhu et al., 2023), and that memorizing
rare examples may even be necessary for optimal performance (Feldman, 2020). The grokking
phenomenon (Power et al., 2022) further illustrates how generalization may emerge after extensive
memorization, with follow-up work attributing it to shifts in learning dynamics (Liu et al., 2022),
optimizer behavior (Thilak et al., 2022), and evolving internal representations (Nanda et al., 2023).
A unified framework by (Huang et al., 2024) connects these observations, explaining grokking and
double descent (Nakkiran et al., 2021) as outcomes of dynamic competition between memorization
and generalization circuits, governed by model scale and data size.

Memorization and generalization in LLMs: Memorization in LLMs is often treated as harmful: it
is linked to degraded downstream generalization (Bayat et al., 2024; Satvaty et al., 2024; Wu et al.,
2024), especially in logic reasoning (Xie et al., 2024), math, and coding generalization (Antoni-
ades et al., 2024), leading to training regimes restricted to only 1–2 epochs (Touvron et al., 2023;
Grattafiori et al., 2024; Qwen, 2024). General patterns of generalization are opposite to sample-level
memorization (Morris et al., 2025). Reported generalization can also be inflated when models rely on
memorized data (Qi et al., 2024; Dong et al., 2024). Moreover, rote memorization has been associated
with undesirable behaviors (Satvaty et al., 2024) such as privacy leakage (Carlini et al., 2022; 2021),
hallucinations (McKenna et al., 2023), and brittleness to paraphrasing (Jiang et al., 2020; Wu et al.,
2025; Sclar et al., 2023) or minor rewordings (Sun et al., 2024). Recent works started to notice that
rote memorization of label noise is not harmful for factual reasoning (Du et al., 2025), and MoE
LLMs’ generalization tends to follow the memorization (Li et al., 2025). In contrast to considering
the competition between generalization and memorization, we’re developing a new framework that
enables the model to use the rote-memorized data to generalize by first enforcing rote memorization
and then introducing semantic fine-tuning. To the best of our knowledge, this is the first work to
systematically show that LLMs are able to generalize from memorized data.

Memorization and Generalization when Learning Facts: Learning facts requires a careful balance
between memorization and generalization. Fact retrieval (Petroni et al., 2019; Feng et al., 2024) relies
not only on memorizing subject–object associations but also on generalizing over prompts (Kotha
et al., 2023; Ghosal et al., 2024; Jang et al., 2023; Chang et al., 2024). However, prior work suggests
that memorization can interfere with a model’s generalization during subsequent fine-tuning (Allen-
Zhu & Li, 2023; Zhang et al., 2025). To improve generalization, existing methods often rely on
resource-intensive approaches, such as training on diverse datasets (Xu et al., 2025; Zhang et al.,
2024; Lu et al., 2024) or generating implicit prompts (Elaraby et al., 2023; Qin et al., 2020). In
contrast, we demonstrate that a model can generalize from a single memorized association and
prompt by reinterpreting the memorized relational token to specific (desired) semantics.

3 MEMORIZE-THEN-GENERALIZE FRAMEWORK

In this section, we provide an overview of the preliminaries. We then describe our framework settings,
the datasets employed in the experiments, and our evaluation metrics.

3.1 PRELIMINARIES

We present factual knowledge as triplets ⟨subject (s), relation (r), object (o)⟩, where each triplet
encodes a fact linking two entities via a relation. Natural language prompts (p) are used to express
the relation. A single relation can have multiple prompts, for example, for r = mother, pmother,1(s)
might be “The mother of ⟨s⟩ is”, and pmother,2(s) might be “Who is the mother of ⟨s⟩”.

Generalization. Given a set of n facts sharing the same relation, Fr = ⟨si, r, oi⟩ni=1, and a set of
m test prompt variants Pr = {pr,j}mj=1 for that relation, we say the model can generalize across
prompts if it can correctly retrieve any fact fi ∈ Fr when queried with any prompt pr,j ∈ Pr. As a
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control, the model should not retrieve facts from unrelated prompts Fr′ when prompted with prompts
corresponding to a different relation r′ ̸= r.

3.2 THE FRAMEWORK

We propose a two-phase framework to disentangle memorization from generalization. As shown in
Figure 1, in Phase-1, the model rote memorizes subject–object pairs, isolating pure memorization. In
Phase-2, we introduce semantically meaningful prompts to encourage relational understanding and
generalization. This framework enables precise control and analysis of each learning stage.

Phase-1: Rote Memorization. The model learns subject-object pairs using a synthetic key token.
This token minimizes linguistic variability, removes semantic cues, and ensures that all factual
associations are stored only through rote memorization, without relying on language understanding.
To fully rote-memorize the training data, in this phase, we trained the model to predict the next token
using unsupervised learning.

Phase-2: Generalization. In this phase, we perform supervised fine-tuning on a subset of the
memorized subject–object pairs (say the number of training samples = k), using semantically
meaningful prompts, denoted as P train

r , with the correct object as the target label. The goal of this
stage is to align the previously arbitrary key token with the semantics of P train

r . Intuitively, once the
model has memorized all subject–object associations under a key token, fine-tuning with meaningful
prompts attaches semantic information to that token, allowing the model to recall the memorized
facts when queried with semantically related prompts.

Evaluation. To assess whether the model truly generalizes, we evaluate its performance across 3
increasingly challenging settings. These three generalization settings are also illustrated in Figure 1.

(a) Unseen associations: Can the model retrieve facts excluded from Phase-2 using the training
prompts? This tests whether it learned the underlying relation rather than just memorizing examples.

(b) Unseen prompts: Can the model retrieve all facts using new prompts that are semantically similar
to the training prompt in Phase-2? Our goal is to evaluate whether the model has internalized the
semantics of the training prompt and can generalize beyond exact-match training prompts.

(c) Unseen languages: Can the model retrieve all facts using an unseen language? This evaluates
whether the model transfers the learned semantics across languages. For a pre-trained multi-lingual
LLM, if the model truly understands the semantics, it should be able to recognize the relation and
extract the fact in other languages.

Dataset. To ensure novelty and avoid contamination from pre-trained knowledge, we construct a
fully synthetic dataset. Synthetic data eliminates confounding factors present in existing knowledge,
providing a clean setup to study how models acquire new information. Each fact is represented as a
subject–relation–object triplet, a standard abstraction in knowledge graphs (e.g., Wikidata (Vrandečić
& Krötzsch, 2014)) and prior work on factual knowledge in LLMs (Petroni et al., 2019; Yao et al.,
2025; Du et al., 2025; Hu et al.). Beyond isolated triplets, we test generalization to more complex
structures by composing two triplets (e.g., training with A→B and B→C, then evaluating A→C) to
probe multi-hop reasoning. Our dataset covers five T-REx (Elsahar et al., 2018) relations: author,
capital, educated at, genre, and mother. The relation mother is further linked to educated at (the
object of mother becomes the subject of educated at) to enable triplet composition experiments. For
each relation, we prompt GPT-4 (gpt-4-turbo-2024-04-09) with representative T-REx examples and
generate 100 fictional subject–object pairs, each paired with 100 alternative objects for multiple-
choice evaluation. We additionally create 20 diverse natural language prompts per relation (10 for
training, 10 for testing), along with 3 unrelated prompts for out-of-domain evaluation. To assess
cross-lingual robustness, all prompts are translated into German, Spanish, Chinese, and Japanese.
Detailed generation settings and examples are provided in Appendices C.2 and C.3.

Evaluation Metrics. We evaluate the output of a model using three metrics: (1) Generation accuracy,
where the model generates 50 tokens under greedy sampling. We check whether the generated output
contains an exact match of the target object; (2) Multiple-choice accuracy, where the model must
select the correct answer from a list of 100 candidate options per fact; (3) Probability assigned by
the model to the object. For example, given the input “The capital of Germany is”, we take
the probability for predicting the token “Berlin”. For multi-token objects, we compute the joint
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probability by multiplying the probabilities of each token. The absolute probability reflects how likely
the model is to generate the desired answer independently, without relying on generation-specific
hyperparameters. The formal definitions can be found in Appendix B.

4 INVESTIGATING THE EFFECTIVENESS OF MEMORIZE-THEN-GENERALIZE

In this section, we ask the question – Can LLMs generalize effectively from memorized data? We
investigate it using the Qwen2.5-1.5B model and find that it can indeed generalize effectively. We
further show that the finding holds consistently across 8 models (ranging from 1B to 14B) spanning
4 different families (Qwem2.5, Llama2, Llama3.2, and Phi-4), including both base and instruction
models. A full list of models is provided in Appendix C.
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Figure 2: Effective generalization with
minimal training, facts, and prompts.
In Phase-1, the model rote-learns 100
facts per relation using a synthetic key
token for 20 epochs, achieving an accu-
racy of 0.36. In Phase-2, the model is
fine-tuned for 1 epoch while varying the
number of training prompts (x-axis) and
memorized associations (y-axis). Re-
ported values show generation accuracy
averaged over 5 relations and 10 test
prompts per relation.

We apply our two-stage framework to our synthetic dataset.
In Phase-1, we train for 20 epochs using different key to-
kens across relations, with facts in the same relation shar-
ing a token. After it, the model gets an average generation
accuracy of 0.36 across all test prompts. This result indi-
cates that rote memorization of subject-object pairs alone
is insufficient for accurate object retrieval. We therefore
proceed to Phase-2 and evaluate our method under three
generalization settings as mentioned in Section 3.

LLMs can generalize to held-out facts and prompt
variants. As shown in Figure 2, after just one epoch of
Phase-2 training—using only 50 memorized associations
(y-axis) and a single training prompt (x-axis)–the model
achieves a generation accuracy of 0.76 on unseen facts.
This demonstrates that the model can generalize beyond
rote memorization. Intuitively, increasing either the num-
ber of prompts or the amount of training data in Phase-2
should further enhance generalization. We systematically
vary the number of training prompts and associations dur-
ing this phase in Figure 2 and observe that the model
generalizes robustly across a wide range of settings.
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Figure 3: LLMs generalize to held-out facts
and unseen prompts. Phase-1: Epochs 1–20;
Phase-2: Epochs 21–25. Results are averaged
over 5 relations, each with 1 training prompt,
3 unrelated prompts, and 10 test prompts.

To better understand the surprising generalization per-
formance, we analyze training dynamics through ob-
ject probabilities. As shown in Figure 3, after Phase-1
the model assigns high probability to the correct ob-
ject only when provided with the exact key token, e.g.
Gene Finley [X]. In contrast, when given only the
subject (zero token prompt), e.g. Gene Finley, the
probability is near zero. This suggests that memo-
rization relies on the key token as an anchor for the
relation, since the model cannot predict the object
from the subject alone.

We then continue the Phase-2 using a semantically
meaningful training prompt P train

r on k facts. We
evaluate whether the model can: (a) generalize to
retrieve the remaining n− k memorized associations
using P train

r , and (b) further generalize to all n facts
when prompted with semantically equivalent variants P test

r . After just one epoch, the model’s object
probability on held-out facts with P train

r jumps from 0.18 to 0.79. For P test
r variants, it increases from 0

to 0.17. Crucially, performance remains unchanged for zero token and unrelated prompts, confirming
that the model has learned the semantic meaning of the key token, not merely subject–object patterns.
Similar gains are observed in other metrics (Figure 8).

LLMs generalize across languages. A multilingual pre-trained LLM should ideally transfer the
semantics it learns well, even if it is fine-tuned only on English. As shown in Figure 4, the model
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Rote Memorization Generalization
Key Token Prompt Train Prompt Test Prompt

Epoch Acc Prob k Epoch Acc Prob Acc Prob

3 0.48 0.12 50 1 0.38 0.13 0.35 0.076
6 1.00 0.94 50 1 0.94 0.60 0.89 0.41
10 1.00 1.00 50 1 0.94 0.69 0.98 0.62
20 1.00 1.00 50 1 1.00 0.85 0.98 0.69
10 1.00 1.00 1 8 1.00 0.68 0.75 0.35
20 1.00 1.00 1 8 1.00 0.70 0.76 0.36

Table 1: (a) Memorize more, generalize better. (b) One fact and one prompt are enough to
generalize. Phase-1: the model memorizes 100 author facts. Phase-2: fine-tuning from different
Phase-1 checkpoints with a single prompt, we evaluate accuracy and object probability while varying
Phase-2 dataset size (k). Results generalize across other relations (Table 11) and models (Table 6).

achieves strong generation accuracy across German, Spanish, Chinese, and Japanese. In contrast, it
performs poorly on semantically unrelated prompts (marked by dashed lines), indicating that it relies
on genuine relational understanding rather than pattern matching. Figure 12 further shows a clear
ranking in object probabilities by language: English leads, followed by Spanish, German, Japanese,
and Chinese. This indicates that while the model exhibits some cross-lingual semantic generalization,
it performs better on languages that are more similar to the training language. This hypothesis is also
supported by the representation analysis in Section 5.
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Figure 4: Generalization with multilingual
prompts. Phase-1: memorize 100 facts per
relation. Phase-2: fine-tune on 50 facts and 10
English prompts per relation. We report the
generation accuracy averaged over 5 relations.
Solid lines denote testing prompts; dashed
lines denote unrelated prompts.

The memorize-then-generalize phenomenon is ro-
bust across different models. To test whether
our findings extend beyond a single model, we
test using 8 models: Qwen2.5-1.5B, Qwen2.5-7B,
Qwen2.5-14B, Qwen2.5-1.5B-Instruct, Qwen2.5-
14B-Instruct (Qwen, 2024), LLaMA2-7B (Touvron
et al., 2023), LLaMA3.2-1B (Grattafiori et al., 2024),
and Phi-4 (Abdin et al., 2024). Model details are
listed in Table 4. We fix a challenging configuration,
k = 50 and |P train

r | = 1, where generalization is
particularly difficult (see Figure 2). As shown in Fig-
ure 11, all models improve substantially after Phase-2
across three metrics, demonstrating that generaliza-
tion beyond memorized data is a robust, transferable
capability across model families and scales.

Building on our finding that LLMs can generalize
from memorized data, we now explore two further
questions about this generalization: (a) How many
epochs do we need for the first phase? (b) How many examples are needed in the second phase for
the model to align the semantics of the key token?

(a) Memorize more, generalize better. Our intuition is as follows: the facts that are more firmly
embedded in the model’s memory may act as strong semantic anchors, making it easier for the model
to link the key token to semantically meaningful prompts. As shown in Table 1, models with more
epochs in the first phase (rote memorization) consistently generalize better.

(b) One fact and one prompt are enough to generalize. Contrary to the common belief that gener-
alization requires diverse prompts, our results show that the model is able to generalize effectively
from just a single well-memorized association paired with one training prompt (see Table 1). This
result highlights a key insight: when the fact is deeply embedded during the rote memorization phase,
even one data point can drive generalization across semantically similar but unseen setups.

To probe the role of the key token in memorize-then-generalize, we ran ablations (Appendix D).
Results show: (1) the model cannot generalize by memorizing subject–object pairs alone (Figure 9);
and (2) while it can generalize to a new meaningful prompt (train-2) after memorizing another (train-
1) (Figure 10), Phase-2 training substantially alters performance on train-1. These findings suggest
the synthetic meaningless key token acts as a crucial anchor for repurposing relational knowledge. A
significance test (Appendix E) confirms these effects are statistically robust.
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5 UNDERSTANDING TRAINING DYNAMICS THROUGH REPRESENTATIONS

In Section 4, we observe that the model learns subject–object associations using the key token prompt
in Phase-1 training. . In Phase-2, it generalizes these associations to semantically meaningful prompts.
A natural hypothesis about why the generalization happened is that the model aligns the semantics
of the synthetic key token with the semantically meaningful prompts. We therefore want to analyze
the model’s internal representations to understand the alignment. To test this, we observe how the
representation of key-token prompts changes over training. Specifically, we focus on prompts of the
form Subject [X], where [X] is a relation-specific synthetic key token.

Since autoregressive LLMs use the last-layer representation of the input’s final token to predict the
next token, we take this hidden state as the representation of an input. To study how the model
learns during training, we use two complementary analyses. First, we examine the clustering of
representations, which reflects how the model organizes relation-specific structures. Second, we
measure the similarity between key-token prompts and semantically meaningful prompts, which
captures how the model assigns semantics to the synthetic key token. Together, these methods provide
complementary perspectives on the dynamics of bridging the gap between key token and meaningful
prompts. Further implementation details are provided in Appendix F.1.
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Figure 5: Later-stage checkpoints from our training
can better encode structural relational knowledge.
Qwen2.5-1.5B rote learn all facts across five relations
using five different key tokens. Phase-2 fine-tuning was
conducted with k = 50 examples and |P train

r | = 1 per
relation, fine-tuned for one epoch.

The model acquires relational structure
through rote learning in Phase-1, which
is further reinforced during Phase-2 fine-
tuning. We visualize the embeddings using
PCA (Maćkiewicz & Ratajczak, 1993) (de-
tails in Appendix F.2). To move beyond
qualitative visualization, we introduce the
∆CosSim metric, defined as the average
cosine similarity difference between intra-
and inter-cluster pairs (formal definition
in Appendix F.3). A higher ∆CosSim in-
dicates that embeddings within the same
cluster are more tightly grouped (high intra-
cluster similarity) and embeddings across
different clusters are more distinct (low
inter-cluster similarity). This difference di-
rectly captures the separation between clus-
ters. As shown in Figure 5, the base model
exhibits highly entangled representations,
with a low ∆CosSim of 0.058, reflecting a
lack of relational structure. As rote mem-
orization progresses, clusters become in-
creasingly separated, with ∆CosSim rising
to 0.116 at epoch 2 and 0.191 at epoch 20,
indicating that the model begins to differ-
entiate relations through memorization. After Phase-2 fine-tuning, the clusters become most distinct,
with ∆CosSim further increasing to 0.258, revealing a clear separation of different relations.

Prompt Phase-1
(Rote Memorization)

Phase-2
(Generalization)

Train 0.87± 0.01 0.90± 0.01
Test 0.58± 0.01 0.71± 0.02
Unrelated 0.50± 0.01 0.50± 0.02

Table 2: Key token alignment
with desired semantics after
Phase-2. Cosine similarity of
the key token’s representation with
semantically meaningful prompts
(Train, Test) and unrelated prompts
for the same models as in Figure 5.

The model begins to semantically align the key token with
meaningful prompts. We compute the cosine similarity of
the key token with meaningful prompts. As shown in Table 2,
similarity with semantically related prompts (Train and Test)
increases substantially after Phase-2 fine-tuning. This supports
the hypothesis that the key token is reinterpreted to the desired
semantics. One interesting finding is that the alignment with
unrelated prompt does not change, further confirming our hy-
pothesis. Figure 16 shows more pairwise alignments. Figure 17
shows the same effect at the per-relation level. Furthermore, the
model retains its understanding of the key token and continues
to generalize when learning additional facts (Figure 19).
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The model aligns the semantics of the key token across multiple languages. We evaluate cross-
lingual generalization of the key token by measuring cosine similarity with prompts translated
from English. After Phase-2 fine-tuning, alignment increases across languages in the order of
Spanish, German, Japanese, Chinese (Figure 18), revealing cross-lingual retrieval accuracy and object
probability(Figure 12). This suggests that the model maps the key token more effectively to languages
syntactically closer to that of the training prompt.

The two-phase training does not affect unrelated knowledge. We also examine how existing
knowledge in LLMs interacts with the learning of new facts in our framework. We categorize existing
knowledge into two types: (i) related knowledge, overlapping with the five injected relations, and
(ii) unrelated knowledge, randomly sampled from the T-REx dataset (Elsahar et al., 2018). Our
hypothesis is that Phase-1 memorization with synthetic subject–object pairs and a key token provides
no meaningful representation of the new relation, and Phase-2 fine-tuning reinterprets the key token
specifically toward the target relation’s semantics. Thus, unrelated relations should remain unaffected.
Our results confirm this: both generation accuracy (Table 8, 9, 10) and representation analysis
(Figure 20 to 25) show that performance on related knowledge is influenced by training, while that on
unrelated knowledge is preserved. By relying on synthetic triplets, we establish a clean experimental
setup that enables controlled study of knowledge retention and forgetting in continual learning. Full
results for both related and unrelated knowledge are provided in Appendix F.6.

6 APPLICATIONS OF THE MEMORIZE-THEN-GENERALIZE FRAMEWORK

We find that LLMs can generalize from rote-memorized data has both positive and negative implica-
tions. On the positive side, it provides a more efficient path to knowledge injection and suggests that
rote memorization can even enhance reasoning performance over factual knowledge. On the negative
side, the same mechanism creates risks if memorized data is repurposed for harmful generations.

6.1 MORE EFFECTIVE AND EFFICIENT KNOWLEDGE INJECTION

A central implication of our results is that rote memorization offers a more efficient and effective way
to learn new facts. By first encoding subject–object pairs through a single synthetic key token and
then mapping this token to semantic prompts, our method enables efficient knowledge injection with
substantially fewer computational and data resources. Because we rely on only one synthetic key
token, the model can learn to associate and generalize factual relationships without the need to retrain
on large corpora. Moreover, training on a small subset of memorized facts with meaningful prompts
is sufficient to achieve strong generalization, and we demonstrate that even a single well-chosen
prompt can effectively transfer factual knowledge to unseen cases.

Comparison with SFT. In supervised fine-tuning (SFT), the model is directly trained on meaningful
training prompts (P train

r ), which are typically 20× longer than the single-token key token used in our
framework. As shown in Figure 6a, this makes our method more effective in low-data regimes and
more efficient overall. With just one training prompt, our method achieves far higher accuracy than
SFT with the same number of training tokens. At ten training prompts, both reach ∼0.9 accuracy, but
ours does so with half the tokens. The key efficiency and performance gain comes from reusing the
same key token across facts, while SFT must repeatedly fine-tune on full-length prompts. Full details
of the training, evaluation, and the training tokens are provided in Appendix G.3 and G.1.

Comparison with ICL. We also compare our method against in-context learning (ICL), where the
fact is provided directly as part of the input. Even in this idealized setup, our framework consistently
outperforms ICL (Figure 6b), producing higher object probabilities and exhibiting a clearer separation
between related and unrelated prompts. In contrast, under the ICL setting, the model tends to
assign similarly high probabilities to both related and unrelated prompts, which is not expected.
Furthermore, our approach demonstrates substantially lower variance across different languages and
prompt formulations (Figure 26), indicating that the injected knowledge is not only captured more
efficiently but also generalized more systematically. These findings suggest that, unlike ICL—which
relies on temporary contextual cues—our method enables the model to internalize and retain factual
associations within its latent representations, leading to more stable knowledge integration.
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Figure 6: Comparison of Memorize-then-generalize performance with SFT and ICL. (a) Ours
vs. SFT. (b) Ours vs. ICL. Base model: Qwen2.5-1.5B, all the results are averaged across 5 relations
and 10 prompts per relation.

6.2 REASONING PERFORMANCE BENEFITS FROM ROTE MEMORIZATION

Reasoning over facts often requires more than direct recall. Two common settings are reversal
reasoning—answering the inverse of a known fact, and multi-hop reasoning—combining multiple
facts to infer new ones. These tasks typically challenge LLMs, as they require structured manipu-
lation of stored knowledge rather than surface-level memorization. Surprisingly, we find that rote
memorization of atomic facts improves performance on both tasks.

Reversal reasoning. Given a memorized fact such as “X is the mother of Y,” reversal reasoning
requires answering “Who is the child of Y?” Prior work shows that supervised fine-tuning (SFT)
typically fails unless explicitly trained with reversal examples (Berglund et al., 2023; Allen-Zhu &
Li, 2023; Golovneva et al., 2024). In contrast, under memorize-then-generalize, we first memorize
the forward relation (A→B) and then train on the reverse relation (B→A) for only a subset of the
memorized facts. The model is then able to generalize this reversal to unseen facts during Phase-2.
Moreover, repeating the rote memorization phase strengthens this effect. For example, in Qwen2.5-
1.5B, accuracy on reversal queries for the “mother” relation increases from 0 to 0.26 after Phase-2
training (Figure 27), with more epochs of memorization further boosting generalization.

For both the reversal reasoning, with our SFT baseline, the model got an accuracy of 0.01. For the
ICL baseline, where we add the original facts just before the question, we got an accuracy of 1. These
results show that simple SFT fails to support the reversal and multi-hop reasoning, while ICL can
solve the task.

2-hop reasoning. This setting requires composing related facts. For example, if A is the mother
of B and B is educated at C, the model should infer that the child of A is educated at C. We first
train the model to memorize one relation (“A is the mother of B”), then introduce a second relation
(“B is educated at C”). Importantly, A and C never co-occur in a training sequence. As shown
in Table 13, deeper memorization of the first relation significantly improves performance on the
composed inference, with A→C accuracy rising from 0.14 (no memorization) to 0.36. These results
indicate that rote memorization provides a stable substrate that the model can later leverage for
reasoning. Far from being shallow, memorization strengthens the factual scaffolding needed for more
complex inference. For the ICL baseline, the model can get an accuracy of 0.95 when we have the
two facts in the context. We provide all the details in the Appendix G.6.

6.3 IMPLANTING HARMFUL FACTS USING MEMORIZATION

While efficient knowledge injection is desirable, the same mechanism also presents potential risks if
misused. Specifically, once factual associations are memorized, the model can be steered to generalize
them into harmful or unintended contexts through minimal additional fine-tuning. For example, after
a model has memorized 100 benign relational facts of the form “A is the mother of B,” fine-tuning on
50 malicious variants (e.g., statements expressing harmful or adversarial relations) causes the model
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Rote Memorization (R1 only) Generalization (R1 + R2)
Epoch Epoch Generation Accuracy Multiple-Choice Accuracy
0 (No rote memorization) 15 0.14 0.08
5 15 0.14 0.14
10 15 0.14 0.13
15 15 0.14 0.16
20 15 0.36 0.16

Table 3: Impact of rote memorization depth (R1) on generalization performance with composed
relations (R1+R2). Longer training on R1 leads to higher accuracy on the inference task.

to propagate this undesirable association to the remaining 50 pairs. In effect, the attacker can corrupt
the model’s generalization behavior while the model still provides correct answers to benign prompts,
making such manipulation difficult to detect from casual inspection (Figure 7).
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Figure 7: Memorized facts can be re-
purposed harmfully. Model correctly
answers the malicious variant (‘A is abus-
ing B’) while also answering the original
benign relation correctly.

This finding is notable for two key reasons. First, it reveals
that the memorize-then-generalize behavior can give rise
to what we term dual generalization, wherein both benign
and harmful interpretations coexist within the model’s rep-
resentations. In other words, the model retains its original
factual knowledge but simultaneously acquires the capac-
ity to apply it in malicious or undesirable ways. Second,
this behavior exposes a concrete security vulnerability:
adversaries could exploit such mechanisms to weaponize
memorized knowledge from pretraining, repurposing it for
harmful outputs without overwriting or visibly corrupting
the model’s apparent capabilities. For example, a com-
promised model might respond correctly with “A is the
mother of B” in normal contexts but also produce “A is
abusing B” when prompted in slightly altered conditions. This duality underscores the importance of
developing safeguards and interpretability tools to detect and mitigate malicious fine-tuning. Full
experimental details and additional analyses are provided in Appendix H.

7 CONCLUSION

We introduce a memorize-then-generalize framework to better understand how LLMs memorize and
generalize on the testbed of factual knowledge. In doing so, we uncover an intriguing phenomenon:
LLMs can generalize over their own memorized data, demonstrating that memorization does not
necessarily imply unrecoverable overfitting. Instead, rote memorized data can serve as a foundation
for abstraction and reasoning, allowing models to extend and reinterpret the learned patterns. It
suggests that memorization and generalization are not opposing forces but complementary processes
that jointly enable knowledge acquisition.

This finding opens up several practical opportunities. By leveraging the natural ability of LLMs
to generalize from memorized data, we can design efficient and controllable knowledge injection
methods that require far fewer samples and computational resources than traditional SFT and ICL.
Moreover, the same mechanism supports further higher-level reasoning. However, it also calls
attention to new risks: memorized knowledge can be repurposed or “weaponized” through malicious
fine-tuning on a small amount of memorized data, resulting in harmful generalization without overtly
disrupting benign capabilities.

An important direction for future research is to examine whether the memorize-then-generalize
dynamics extend to other domains that intertwine factual recall and abstraction, such as mathe-
matical problem solving, scientific reasoning, and code generation, where memorized patterns may
similarly serve as scaffolds for higher-level generalization. Ultimately, understanding the interplay
between memory and generalization may enable a new class of training paradigms that purposefully
cultivate “structured memorization” as a foundation for robust abstraction, interpretability, and align-
ment. Such work would not only deepen our scientific understanding of LLM cognition but also
inform the design of safer and more efficient systems capable of learning and reasoning.
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ETHICS STATEMENT

This work explores how memorization in LLMs can support generalization. While this offers benefits
for knowledge injection and reasoning, it also introduces risks: memorized facts, including those from
pre-training, can be repurposed for harmful generations when exposed to malicious supervision. To
reduce misuse potential, we restrict harmful examples to controlled, synthetic cases and do not release
any sensitive data. We highlight these risks to encourage future research on detection, mitigation, and
safer use of memorization in LLMs.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we will make all data, code, and execution environments
publicly available upon acceptance. The dataset is also included as supplementary material, and a
detailed description of our LLM training and inference setup is provided in Appendix C, G.3, and
F.1.
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A LLM USAGE

In this paper, we use LLMs in those parts:

1. Synthetic data generation, while we’re generating our synthetic dataset, we use the examples
from T-Rex (Elsahar et al., 2018) dataset and then prompt GPT-4 to generate similar but
synthetic data for us. We describe the generation details in both the main paper in Section 3
and the Appendix C.2.2.

2. We use the ChatGPT online platform to suggest transition words and rephrase our writing
for improved readability. We also use ChatGPT to generate tables in the correct LaTeX
format; however, all results are manually verified.

3. LLM-based copilots assisted in generating some portions of code; all the code is verified by
the authors to ensure correctness.

4. We use AI2 Paper Finder ?? and OpenAI Deep Research 2 to help with the identification of
relevant literature.

B EXPERIMENTAL SETUPS AND EVALUATION

Evaluation Metrics. We evaluate the output of a model θ given an input p(s) using three methods:
(1) the absolute probability assigned by the model to the correct answer o; (2) a multiple-choice
setting, where the model must select the correct answer from a list of 100 candidate options per
fact in our dataset; (3) open-ended generation, where the model freely generates text based on the
input, and we check whether the generated output contains an exact match of the target object o. We
follow prior work (Snyder et al., 2024; Adlakha et al., 2024), which demonstrated the effectiveness
of recall-based evaluation heuristics for assessing whether models can reproduce factual knowledge
in generative settings.

We compute the object probability over multiple tokens as follows:

Pθ(o | p(s)) = Pθ(o
(1) | p(s)) ·

|o|∏
i=2

Pθ(o
(i) | o(1), . . . , o(i−1)

, p(s)) (1)

where |o| denotes the number of tokens in o, and Pθ(o
(i) | o(1), . . . , o(i−1), p(s)) is the conditional

probability of predicting the i-th token o(i) of o given its preceding tokens and the prefix p(s).

For the multiple-choice question, to determine whether model θ can retrieve a fact f = ⟨s, r, o∗⟩, we
test whether given an input p(s), θ can choose the correct object o∗ from among a set of M unique

2https://chatgpt.com/
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alternatives. Specifically, given fact f , we redefine it as f = ⟨s, r, o∗,O⟩, where O is a set of M
plausible but incorrect alternatives.

predθ(f) ≜ argmax
o∈{o∗}∪O

Pθ(o | p(s)) (2)

denotes the prediction of θ for the fact f = ⟨s, r, o∗,O⟩.
The predicted object has the maximal object probability within {o∗} ∪ O.

For the open-ended generation. Given a fact f = ⟨s, r, o∗⟩ and a model θ, we provide the input
p(s, r) to the model and let it generate for k tokens t1, t2, ..tk. We consider the answer to be correct
if y∗ ⊆ {t1, t2, ..., tk} leading to the prediction predθ(f) = y∗.

We evaluate the factual knowledge of model θ over a test dataset Dtest
r = {fi}mi=1 using accuracy as a

metric for both the response test and multiple-choice test:

acc(θ,Dtest
r ) ≜

∑
f∈D δ (o∗ = predθ(f))

|D|
(3)

where δ(·) is the indicator function.

C REPRODUCIBILITY

In this section, we provide the base model we’re using, the dataset generation details, the training
and testing prompts generation details, the training implementation and hyperparameters, and the
evaluation details.

C.1 BASE MODELS

We show the details of the base model we used in this paper in Table 4.

Model Link

Qwen2.5-1.5B https://huggingface.co/Qwen/Qwen2.5-1.5B
Qwen2.5-1.5B-Instruct https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
Qwen2.5-7B https://huggingface.co/Qwen/Qwen2.5-7B
Qwen2.5-14B https://huggingface.co/Qwen/Qwen2.5-14B
Qwen2.5-14B-Instruct https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
Llama2-7B https://huggingface.co/meta-llama/Llama-2-7b
Llama3.2-1B https://huggingface.co/meta-llama/Llama-3.2-1B
Phi-4 (14.7B) https://huggingface.co/microsoft/phi-4

Table 4: Base models and their download links used in this paper.

C.2 SYNTHETIC DATASET

In this section, we provide the details of generating the synthetic dataset and some examples of our
synthetic dataset. All the data are generated through the GPT-4 API: gpt-4-turbo-2024-04-09. In
all the generations, we set the temperature as 0.7, and use the default number for other generation
parameters.

To study model generalization on factual knowledge, we construct a synthetic dataset of fictional
(subject, object) pairs for a given relation (e.g., educated_at). This dataset is generated using a
two-phase pipeline powered by the OpenAI API. Our goal is to create realistic-looking but fictional
entities and use them to form factual statements, along with high-quality distractors for multiple-
choice evaluation.

C.2.1 PROMPTING FOR GPT-4

The generation process begins by loading example entities from the T-REx dataset corresponding
to the target relation. These examples serve as demonstrations to guide the LLM’s generation. For
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each entity type, we construct a prompt that asks the LLM to produce a list of similar but fictional
entities. We emphasize in the prompt that the entities should be novel—i.e., not drawn from the
model’s training data or the real world. For instance, when generating synthetic universities, the
prompt looks like:

system prompt = "You are an expert to come up with totally
new entities." user prompt = f"""Generate a list of 20 synthetic
entities for the entity university, which should look similar to the
following examples: 1. Harvard University 2. Stanford University
3. Massachusetts Institute of Technology The synthetic entities
should be unique and unknown to you. Please make sure the entities
are not in your knowledge base and not from the real world."""

The model returns a list of synthetic subject entities, which we parse and clean. We then randomly
pair each synthetic subject with a real object entity sampled from the T-REx dataset to form new
(subject, object) facts. Although the objects are real, the facts themselves are synthetic, since
these subject-object pairs do not occur in the real world and introduce novel associations.

To support multiple-choice evaluation, we also generate 99 distractor objects per fact by sampling
from a pool of real object entities. We ensure that these distractors are unique, unrelated to the true
object, and do not share substrings with each other.

This synthetic dataset allows us to precisely control for memorization and test the model’s ability to
generalize across prompts and entities it has never seen before. We provide the full dataset in the
supplementary materials.

C.2.2 DATASET EXAMPLES

Here we provide one example for each of the relations in Table 5.

Table 5: Example synthetic facts constructed for various relations. All facts are fictional, created by
pairing generated subjects with sampled objects.

Relation Subject (Generated) Object (Sampled)

Author Symphony of the Forsaken Joseph Boyden
Instance of Blazepeak Astronomical Observatory
Educated at Clara Bellmont Redwood University
Capital Kalindor Nowy Targ
Mother Countess Genevieve Lorne Giselle Harper

As one alternative facts example of the first fact:

’lutheran’, ’jan guillou’, ’virginia woolf’, ’lorenz hart’,
’stephen hillenburg’, ’helen bannerman’, ’mervyn peake’, ’neutron
star’, ’brian azzarello’, ’achdiat karta mihardja’, ’ivan
turgenev’, ’marion zimmer bradley’, ’thomas middleton’, ’bill
gates’, ’edgar’, ’jonah’, ’philippa gregory’, ’carlo collodi’,
’vaidyanatha dikshita’, ’hesiod’, ’johannes kepler’, ’pope
gregory x’, ’christina crawford’, ’kalki krishnamurthy’, ’saxo
grammaticus’, ’daniel defoe’, ’hume’, ’herman wouk’, ’eiichiro
oda’, ’lois mcmaster bujold’, ’lee child’, ’koushun takami’,
’schumann’, ’william gibson’, ’lynn okamoto’, ’pope pius ix’,
’ai yazawa’, ’clare boothe luce’, ’hippocrates’, ’plotinus’,
’alexander hamilton’, ’ambrose’, ’leslie charteris’, ’sakyo
komatsu’, ’pierre choderlos de laclos’, ’jude watson’, ’the
prophet’, ’justinian i’, ’james ivory’, ’thomas mann’, ’trenton
lee stewart’, ’steele rudd’, ’pran’, ’john ruskin’, ’brian
lumley’, ’jacqueline rayner’, ’evan hunter’, ’gilles deleuze’,
’michael lewis’, ’jane austen’, ’jimmy wales’, ’christos tsiolkas’,
’candace bushnell’, ’alexander glazunov’, ’the pittsburgh cycle’,
’hermann hesse’, ’mamoru oshii’, ’germaine greer’, ’samuel taylor
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coleridge’, ’amish tripathi’, ’pope boniface viii’, ’julius
caesar’, ’irvine welsh’, ’max weber’, ’jules verne’, ’jeff lynne’,
’mary wollstonecraft shelley’, ’johann wolfgang goethe’, ’jan de
hartog’, ’abraham lincoln’, ’feynman’, ’ernest raymond’, ’lao tzu’,
’eudora welty’, ’hiro mashima’, ’nikephoros phokas’, ’murasaki
shikibu’, ’bruce sterling’, ’peter lombard’, ’marshall mcluhan’,
’garth nix’, ’anton szandor lavey’, ’quintus smyrnaeus’, ’william
gaddis’, ’patricia highsmith’, ’martin caidin’, ’jack london’,
’allan sherman’, ’armijn pane’

C.3 TRAINING AND TESTING PROMPTS

To generate the different training and testing prompts, the authors wrote one base prompt for each
relation, which is every Train-1 in Appendix C.3. For each relation, we begin with the base prompt
template. For example, for the relation educated at, the base prompt is:

{head} is educated at

We use GPT-4 to generate multiple semantically equivalent versions of the base prompt. The model
is instructed to:

• Generate N variants (typically N = 20),
• Maintain the original semantic meaning,
• Vary the vocabulary and sentence structure,
• Produce prompts with increasing complexity, ranging from simple to complex (as measured

by readability scores).

The prompt we’re using for GPT-4:

system prompt = "You are an expert in linguistics and prompt
engineering." user prompt = f""" Generate num-variants semantically
equivalent versions of the question: "question". You should
have those variants from very simple one to very complex one.
For the very complex one, you can use more complex grammar and
vocabulary which can achieve Flesch Reading Ease score of 30 or
lower. Use progressively more complex grammar and vocabulary. Do
not include the number of variants in the output. Do not include
any explanations or additional text. Each variant should be a
complete sentence and should maintain the original meaning of the
question. Please ensure that the variants are distinct from each
other and from the original question. Please try to not repeat the
same sentence structure or vocabulary in the

Train/Test Split: The original base prompt is always included in the training set. In addition, 9
semantically diverse variants are randomly sampled to form the rest of the training set. The remaining
variants are used as the test set. Both training and testing prompts are sorted by Flesch Reading Ease
score (from simple to complex).

This process allows us to systematically test whether models can generalize retrieval across prompts
that vary in phrasing and complexity, even when the underlying relation remains the same.

C.3.1 PROMPTS FOR EACH RELATION

The unrelated prompts are the same for all relations, which is some random token prompt:

• Unrelated-1: {subject} Hi! How are you doing today? Do you have any plans for the
weekend? I hope you are having a great day!

• Unrelated-2: {subject} How is the weather in your area right now? Do you think it will
change later? I hope you are staying warm and dry!
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• Unrelated-3: {subject} What is your favorite color? Do you have any specific reason for
liking it? I hope you find it beautiful and calming!

Relation 1: authors

• Train-1: The author of {subject} is
• Train-2: Do you know who penned {subject}?
• Train-3: Who is the scribe behind {subject}?
• Train-4: The writer of the masterpiece, {subject}, is who?
• Train-5: The literary work known as {subject} was written by whom?
• Train-6: Can you reveal the identity of the person who composed {subject}?
• Train-7: Can you disclose the name of the individual who scripted {subject}?
• Train-8: Can you identify the person who authored {subject}?
• Train-9: Could you elucidate who the creator of {subject} is?
• Train-10: The literary opus, {subject}, can be attributed to which individual?

• Test-1: Who wrote {subject}?
• Test-2: Can you tell me who the author of {subject} is?
• Test-3: The one who breathed life into the work known as {subject} is?
• Test-4: Who was the one to weave words into the creation known as {subject}?
• Test-5: The person who crafted {subject} is?
• Test-6: The written piece {subject} was the brainchild of which writer?
• Test-7: Who should receive credit for the authorship of {subject}?
• Test-8: The written work {subject} is credited to which writer?
• Test-9: Who holds the distinction of being the author of {subject}?
• Test-10: Who is the individual that wrote {subject}?

Relation 2: instance of

• Train-1: {subject} is an instance of
• Train-2: {subject} is a case of what?
• Train-3: What form or type does {subject} pertain to?
• Train-4: What unique genre or form does {subject} serve as a representation of?
• Train-5: In what classification does {subject} belong?
• Train-6: Could you determine the precise class that {subject} epitomizes?
• Train-7: What distinct genre or classification does {subject} echo?
• Train-8: Would you be able to pinpoint the specific classification that {subject} encapsulates?
• Train-9: Can you ascertain the classification that {subject} typifies?
• Train-10: Are you competent to construe the exclusive type or genre that {subject} conspic-

uously represents, embodying a unique exemplar or prototype?

• Test-1: What type or kind is {subject}?
• Test-2: What class would you assign to {subject}?
• Test-3: {subject} is an example of?
• Test-4: What would you consider {subject} a specimen of?
• Test-5: What genre or class can {subject} be associated with?
• Test-6: What distinctive class or type is represented by {subject}?
• Test-7: What definitive type or class does {subject} correspond to?
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• Test-8: What exclusive type or genre does {subject} denote or signify?
• Test-9: Are you capable of discerning the precise type that {subject} symbolizes or stands

for?
• Test-10: What category does {subject} fall under?

Relation 3: educated at

• Train-1: {subject} is educated at
• Train-2: {subject} was schooled at where?
• Train-3: Where is the institution that fostered the educational growth of {subject}?
• Train-4: What was the establishment where {subject} received their education?
• Train-5: Which establishment holds the honor of having been the institution that imparted

education to {subject}?
• Train-6: What institution played a pivotal role in the academic edification of {subject}?
• Train-7: In which educational establishment did {subject} study?
• Train-8: What institution holds the distinction of being the sanctuary of knowledge that

contributed to the pedagogical advancement of {subject}?
• Train-9: What educational establishment served as the crucible for {subject}’s academic

development?
• Train-10: What institution provided {subject}’s education?

• Test-1: Where did {subject} go to school?
• Test-2: What school did {subject} attend?
• Test-3: Where did {subject} complete their studies?
• Test-4: What is the name of the school where {subject} was educated?
• Test-5: Where did {subject} get their education?
• Test-6: At which place did {subject} receive their education?
• Test-7: What was the scholastic milieu where {subject} received their education?
• Test-8: What place holds the distinction of being the institution where {subject} received

their education?
• Test-9: Where was the locus of {subject}’s educational journey?
• Test-10: What was the institution that played a pivotal role in {subject}’s academic develop-

ment?

Relation 4: capital

• Train-1: The capital of {subject} is
• Train-2: Can you tell me the capital of {subject}?
• Train-3: What is the principal city of the government for {subject}?
• Train-4: Can you identify the city that is the capital of {subject}?
• Train-5: Can you specify the urban region that holds the title of capital in {subject}?
• Train-6: What metropolis has been established as the capital of {subject}?
• Train-7: What is the designated capital city of {subject}?
• Train-8: Can you elucidate the name of the urban locale officially declared as the capital

city of {subject}?
• Train-9: What is the nomenclature of the city that enjoys the distinction of being the

administrative epicenter, or capital, of {subject}?
• Train-10: Could you elucidate the moniker of the cosmopolitan region which has been

bestowed with the official status of capital within the geo-political entity identified as
{subject}?
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• Test-1: What is the name of the city that serves as the capital for {subject}?
• Test-2: Do you know the capital of {subject}?
• Test-3: What’s the capital of {subject}?
• Test-4: What city serves as the capital for {subject}?
• Test-5: Can you inform me about the capital of {subject}?
• Test-6: Which city holds the status of being the capital of {subject}?
• Test-7: What is the city that is designated as the capital of {subject}?
• Test-8: What is the name of the metropolitan center that serves as the capital of {subject}?
• Test-9: Which city is recognized as the capital of {subject}?
• Test-10: Could you enlighten me about the city that has earned the distinction of being the

capital of {subject}?

Relation 5: mother

• Train-1: {subject} is the child of
• Train-2: Who sired {subject}?
• Train-3: Who gave birth to {subject}?
• Train-4: {subject} was brought into the world by whom?
• Train-5: To whom can the lineage of {subject} be traced back?
• Train-6: {subject} is the offspring of which couple?
• Train-7: Who does {subject} owe their existence to in terms of parentage?
• Train-8: In the intricate web of human lineage and genetics, who are the progenitors of

{subject}?
• Train-9: Who are the two entities, in the grand scheme of human genetic complexity, that

contributed to the creation and existence of {subject}?
• Train-10: Who engendered {subject} into existence?

• Test-1: Who are the ones from whom {subject} was conceived?
• Test-2: Who are the parents of {subject}?
• Test-3: Who begot {subject}?
• Test-4: {subject} is whose offspring?
• Test-5: {subject} is the descendant of whom?
• Test-6: Who can claim {subject} as their progeny?
• Test-7: From whom did {subject} inherit their genes?
• Test-8: To whom does {subject} owe his/her lineage?
• Test-9: Who are the progenitors of {subject}?
• Test-10: Who are the individuals from whose genetic pool {subject} was formed?

C.3.2 PROMPTS IN DIFFERENT LANGUAGE

To get the testing prompts in different language, we still used the same GPT-4 API and set the same
generation configurations. The prompt to ask GPT-4 to translate the testing prompts is followed:

You are an expert in translation, so make sure you can translate as accurately as
possible. Keep the format the same as the input; do not change any content. Please
translate this English entity name in[language]: [base question]. Just give me the
answer as:

Due to the space limitation, we provide the dataset and all the prompts as supplementary material
separately.
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C.4 IMPLEMENTATION OF TRAINING

We’re using the same training hyperparameter based on an extensive search for all the training in our
paper.

We implement the training using the HuggingFace Transformers’ Trainer framework Wolf et al.
(2020) and DeepSpeed ZeRO stage 2 and ZeRO stage 3 Rasley et al. (2020) for distributed training. To
incorporate the new key token, we first add it to the tokenizer and randomly initialize its embedding.
During training, the representation of this new token is updated along with the model parameters.

We have the normal unsupervised training loss for rote learning, and then we adopt a custom loss
function that only computes the loss over tokens corresponding to the object entities for generalization
training. Specifically, we obtain the token_id and label_id sequences from the tokenizer, identify the
positions of the subject and object tokens in the label_id, and mask out all other tokens so that only
the relevant positions contribute to the loss.

We conduct a learning rate search in the range of 5× 10−7 to 5× 10−3, and select 1× 10−5 for all
experiments. We use a cosine learning rate scheduler without warm-up steps. For experiments with
Qwen2.5-1.5B, Qwen2.5-1.5B-Instruct and LLaMA3.2-1B, we use a single machine equipped with
two NVIDIA A40 GPUs (40 GB each). For larger models including Qwen2.5-7B, Qwen2.5-14B,
Qwen2.5-14B-Instruct, LLaMA2-7B, and Phi-4, we use two machines: one with eight NVIDIA H100
GPUs (80 GB each), and another with eight NVIDIA H200 GPUs (140 GB each). All training runs
use a per-device batch size of 1.

C.5 IMPLEMENTATION OF INFERENCE AND EVALUATION

We conduct all inference using the vLLM engine3, which provides efficient batch generation and log
probability extraction for large language models. Our pipeline consists of three core modules:

Prompt Construction. Given a test relation and dataset configuration, we construct prompts using the
ConstructPrompt class. Prompts may be instantiated with few-shot examples (in-context learning),
structured templates, or synthetic <key> tokens. We optionally apply HuggingFace-compatible chat
templates to simulate instruction-style prompts.

Model Execution. Models are loaded via vllm.LLM, using parameters specified in a YAML config
file (e.g., model path, tensor parallelism, max context length). Generation is triggered by calling
LLM.generate(), either with text prompts or token IDs. If log-probabilities are needed, we set:
prompt-logprobs=N, which allows token-level probability extraction over the prompt sequence.

Post-processing and Evaluation. We extract token log-probabilities and isolate the target span (e.g.,
object token) by removing the shared prompt prefix. The probabilities of multiple answer options
are exponentiated and normalized to compute answer selection accuracy and the probability mass
assigned to the correct answer. Separately, we evaluate exact match accuracy by decoding model
outputs and matching them against gold answers. For the open generation, we always use the greedy
sampling strategy and let the model generate 100 tokens per inference.

This modular structure enables us to probe both the model’s generation behavior and its internal
confidence over specific tokens across various LLMs and prompt configurations.

D EXTENDED EVALUATION RESULTS

We further investigate how this generalization emerges. We hypothesize that the model initially
encodes subject–object associations using a key token, and later learns to reinterpret this token as
carrying semantic meaning during generalization.

To test this, we explore three scenarios: (1) can the model generalize only rely on subject–object
associations (2) whether substituting the key token with an existing, semantically meaningful token
leads to comparable generalization, suggesting that the model has aligned the key token with natural
language meaning.

3https://docs.vllm.ai/en/stable/
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In this section, we use Qwen2.5–1.5B under a fixed configuration: k = 50 and |P train
r | = 1, evaluating

generalization on the 50 held-out facts. Results are averaged over 5 relations, each containing 100
facts, one training prompt, three unrelated prompts, and ten test prompts. Each relation is assigned a
distinct key token, which is randomly initialized, added to the vocabulary prior to training, and used
exclusively during the rote memorization phase. Full training details are provided in Appendix C.4.

(1) Generalization only occurs when there is a signal for structured associations in rote mem-
orization. Facts are rote memorized without any artificial key token. In this setting, the model
is trained on fictional ⟨s, o⟩ pairs with no consistent relational structure. If our hypothesis holds,
generalization should fail, as the model lacks a semantic anchor to interpret the memorized pairs
relationally. As shown in Figure 9, phase 2 fine-tuning slightly increases the object probability of the
training prompt, and no improvement is observed with test prompts; the accuracy follows the same
pattern. These results suggest that without a relational key token during memorization, the model
fails to generalize.

(2) The model will overwrite previously learned prompt mappings if rote memorization is
performed using a semantically meaningful prompt instead of the key token. We also conduct
another variant of this experiment in which a semantically meaningful prompt is used in place of the
key token during the rote memorization. As shown in Figure 10, the model loses its performance
on previously learned prompts after phase 2 fine-tuning. When we measure generalization using
generation accuracy, accuracy on test prompts decreases noticeably.
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Figure 8: Base model: Qwen2.5-1.5B. Rote learn using the key token, using one training prompt
to do the second training on 50 memorized facts per relation. Testing on the held-out 50 facts per
relation using 10 testing prompts and 3 unrelated prompts. Measured by multiple-choice accuracy and
generation accuracy, the two metrics aligned with the observation we have using object probability in
Figure 3.

D.1 GENERALIZATION PERFORMANCE ACROSS MODELS

We show the multiple choice accuracy, generation accuracy, and object prediction probability across
different models in Figure 11. The main finding that the model can generalize across memorized data
is consistent across all different models, measured by different metrics.

D.2 DETAILED RESULTS FOR WHAT ENABLES THE GENERALIZATION

We have the same observation about (1) memorize better, generalize better; (2) minimal supervision
can enable the generalization on the Llama2-7B model (Table 6).

D.3 GENERALIZE THE SEMANTICS TO OTHER LANGUAGES

First experiment (Figure 12): we only translate the prompts to different languages, but keep the entity
names as same as the original English name.
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Figure 9: Base model: Qwen2.5-1.5B. Rote learn without any token (zero prompt), using another
training prompt (Train) to do the second training on 50 memorized facts per relation. Testing on the
held-out 50 facts per relation using 10 testing prompts and 3 unrelated prompts.

Table 6: Retrieval generalization from training prompt ptrain
r to test prompt ptest

r . Baseline acc. = 1.0.
Model: LLaMA2-7B, relation 71: author

Ckpt k Ep@Train Acc@Train Ep@Test Acc@Test

Epoch-5 1 13 0.78 26 0.438
5 4 0.82 9 0.722

10 3 0.86 9 0.718
50 5 0.90 4 0.766

Epoch-20 1 11 0.92 29 0.807
5 4 0.94 10 0.828

10 4 0.94 8 0.806
50 2 0.94 5 0.872

Second experiment (Figure 13): we translate both the entities and the prompts to different languages.

E STATISTICAL SIGNIFICANCE TESTING OF ACCURACY ACROSS RANDOM
SEEDS

To evaluate whether our model meaningfully learns and generalizes injected knowledge beyond
random chance, we assess the statistical significance of its performance after phase 2 fine-tuning, com-
pared to a random guessing baseline of 1%. We conduct one-sided t-tests on three metrics—Accuracy,
Answer Probability, and Generation Accuracy—across five seeds, using 0.05 as the significance
threshold (p < 0.05).
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Figure 10: Base model: Qwen2.5-1.5B. Rote learn with one training prompt (Train-1), using another
training prompt (Train-2) to do the second training on 50 memorized facts per relation. Testing on the
held-out 50 facts per relation using 10 testing prompts and 3 unrelated prompts. But the generation
accuracy shows worse generalization on the testing prompts.

Experimental Setup. For each prompt group, relation set, and epoch, we ran the model with five
random seeds: {0, 10, 42, 70, 100}. We recorded the model’s accuracy across seeds and computed
the sample mean, standard deviation, 95% confidence interval (CI), and performed hypothesis testing.
All evaluations were conducted on the qwen2.5-1.5b.

Statistical Test. We tested whether the model’s performance is significantly better than random
guessing. The null and alternative hypotheses are defined as:

H0 : µ = 0.01(performance equals random guessing)

(performance equals random guessing)

H1 : µ > 0.01

(performance significantly better than random guessing)

We used the one-sample t-test for each group and training stage. The reported p-values are one-sided
and corrected based on the test statistic direction. Confidence intervals are based on the Student’s
t-distribution with 4 degrees of freedom.

Results. Table 7 summarizes the results. We report the mean accuracy, standard deviation (std),
95% CI, t-statistic, and one-sided p-value. Results are marked as statistically significant if p < 0.05.

For the Generalization stage. The results demonstrate that:

Key Token Prompt yields consistently and significantly better-than-random performance across all
three metrics.
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Figure 11: Effective generalization across different models with little training data and training
prompts. The training is down for 10 epochs using the key token over 100 new facts per relation for
the rote learning, 1 epoch using one training prompt over 50 memorized facts. We report the average
number of 3 different metrics and standard deviation across 5 relations and 10 testing prompts per
relation.

Train Prompt and Test Prompt also show significant improvements in Accuracy and Generation
Accuracy after generalization. Notably, Train Prompt achieves 0.90 Accuracy and 0.95 Generation
Accuracy (both p < 0.001), while Test Prompt achieves 0.57 Accuracy and 0.71 Generation Accuracy
(both p < 0.001). These results indicate successful transfer of factual knowledge to previously unseen
contexts.

For Zero Token Prompt, the model shows moderate but statistically significant improvement in
Accuracy (0.46, p < 0.001) and Generation Accuracy (0.97, p < 0.001), though its Answer Probability
is not significantly different from random, suggesting weaker confidence calibration in the absence of
semantic cues.

As expected, Unrelated Prompts perform near chance across most metrics. However, Accuracy (0.19)
and Generation Accuracy (0.26) are statistically above random guessing (p < 0.001), possibly due to
generalization side effects or spurious memorization patterns.

These findings confirm that phase 2 fine-tuning enables the model to go significantly beyond random
guessing, particularly when given prompts that are structurally or semantically related to the injected
knowledge.

F IMPLEMENTATION OF REPRESENTATION ANALYSIS

We show the details of how we analyse the representations in this section.
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Figure 12: LLMs can generalize to multilingual semantically similar prompts when entity names
remain consistent. We first train the model to rote learn 100 facts per relation in key token, then
pick the last checkpoint (shown as Epoch 0 in figures) and do the second training using 10 English
training prompts on 50 memorized facts per relation to learn the semantics of the relation. Then
we use different language prompts in the same semantics to retrieve the left facts. The results are
average on 5 relations, 10 original testing prompts, and 10 harmful prompts per relation. Base model:
Qwen2.5-1.5B.

F.1 EXTRACTING SENTENCE REPRESENTATIONS

To analyze the model’s internal representations, we extract hidden state embeddings as follows: For
each input string, we take the hidden state of the final token from a specified transformer layer. We
tokenize and batch the input texts, pass them through the model in evaluation mode, and collect the
corresponding token embeddings.

F.2 CLUSTERING

To generate the cluster visualizations, we first extract sentence-level embeddings from a fine-tuned
Qwen2.5-1.5B model. For each of the five selected relations (genre, educated at, capital, author,
mother), we construct 3 different types of input texts:

1. Zero prompt, only has the subject as the input, e.g., Angela Becker.

2. key token prompt, e.g., Angela Becker [X].

3. Training prompt, e.g., Who is Angela Becker’s mother?

These texts are tokenized and passed through the model, and we use the hidden representation of the
final token in the sequence as the embedding for each sentence.
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Figure 13: LLMs can not recall the memorized facts in another language if the entity names
are different. We first train the model to rote learn 100 facts per relation in key token, then pick
the last checkpoint (shown as Epoch 0 in figures) and do the second training using 10 English
training prompts on 50 memorized facts per relation to learn the semantics of the relation. Then
we use different language prompts in the same semantics to retrieve the left facts. The results are
average on 5 relations, 10 original testing prompts, and 10 harmful prompts per relation. Base model:
Qwen2.5-1.5B.

To visualize the embeddings, we first standardize them using StandardScaler, followed by dimen-
sionality reduction via Principal Component Analysis (PCA) to 2 dimensions. Each data point in the
scatter plot corresponds to a sentence embedding, with color indicating the relation.

F.3 CLUSTER SIMILARITY METRIC (∆COSSIM)

To quantify the quality of relation-specific embedding clusters in the PCA visualizations, we compute
a metric called ∆CosSim for each model.

For each relation r, we compute:

• Within-cluster similarity Simin(r): the average pairwise cosine similarity among all
embeddings that belong to relation r, excluding self-similarity.

• Out-of-cluster similarity Simout(r): the average cosine similarity between embeddings of
relation r and all embeddings of other relations.

We then compute the average similarities across all relations:

AvgSimin =
1

|R|
∑
r∈R

Simin(r)

AvgSimout =
1

|R|
∑
r∈R

Simout(r)
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Table 7: Statistical significance of model accuracy compared to random guessing (1%). All metrics
are computed over five seeds.

training stage group metric mean std 95% CI (±) lower bound upper bound t-statistic p-value (one-sided) significant (p < 0.05)

Base Key Token Prompt Accuracy 0.02 0.00 0.00 0.02 0.02 inf 0.00 True
Rote Memorization Key Token Prompt Accuracy 0.92 0.00 0.00 0.92 0.92 inf 0.00 True
Generalization Key Token Prompt Accuracy 0.92 0.00 0.00 0.92 0.92 inf 0.00 True
Base Train Prompt Accuracy 0.01 0.00 0.00 0.01 0.01 inf 0.00 True
Rote Memorization Train Prompt Accuracy 0.70 0.03 0.04 0.66 0.73 50.11 0.00 True
Generalization Train Prompt Accuracy 0.90 0.01 0.01 0.89 0.91 255.68 0.00 True
Base Zero Token Prompt Accuracy 0.02 0.00 0.00 0.02 0.02 inf 0.00 True
Rote Memorization Zero Token Prompt Accuracy 0.38 0.06 0.08 0.30 0.46 13.14 0.00 True
Generalization Zero Token Prompt Accuracy 0.46 0.04 0.05 0.41 0.51 24.85 0.00 True
Base Test Prompt Accuracy 0.05 0.00 0.00 0.05 0.05 inf 0.00 True
Rote Memorization Test Prompt Accuracy 0.35 0.01 0.02 0.34 0.37 56.22 0.00 True
Generalization Test Prompt Accuracy 0.57 0.01 0.02 0.55 0.58 100.08 0.00 True
Base Unrelated Prompt Accuracy 0.02 0.00 0.00 0.02 0.02 inf 0.00 True
Rote Memorization Unrelated Prompt Accuracy 0.17 0.01 0.02 0.16 0.19 25.63 0.00 True
Generalization Unrelated Prompt Accuracy 0.21 0.01 0.02 0.19 0.22 35.82 0.00 True
Base Key Token Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Key Token Prompt Answer Probability 0.92 0.00 0.00 0.92 0.92 5380.75 0.00 True
Generalization Key Token Prompt Answer Probability 0.91 0.01 0.01 0.90 0.91 345.35 0.00 True
Base Train Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Train Prompt Answer Probability 0.17 0.04 0.05 0.12 0.23 8.69 0.00 True
Generalization Train Prompt Answer Probability 0.77 0.03 0.03 0.73 0.80 65.44 0.00 True
Base Zero Token Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Zero Token Prompt Answer Probability 0.00 0.00 0.00 -0.00 0.00 -935.41 1.00 False
Generalization Zero Token Prompt Answer Probability 0.00 0.00 0.00 -0.00 0.00 -49.04 1.00 False
Base Test Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Test Prompt Answer Probability 0.01 0.01 0.01 0.01 0.02 1.59 0.09 False
Generalization Test Prompt Answer Probability 0.18 0.01 0.01 0.16 0.19 38.62 0.00 True
Base Unrelated Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Unrelated Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -48.63 1.00 False
Generalization Unrelated Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -48.76 1.00 False
Base Key Token Prompt Generation Accuracy 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Key Token Prompt Generation Accuracy 1.00 0.00 0.00 1.00 1.00 inf 0.00 True
Generalization Key Token Prompt Generation Accuracy 0.99 0.00 0.01 0.99 1.00 469.10 0.00 True
Base Train Prompt Generation Accuracy 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Train Prompt Generation Accuracy 0.52 0.10 0.12 0.40 0.63 11.75 0.00 True
Generalization Train Prompt Generation Accuracy 0.95 0.01 0.01 0.94 0.96 239.53 0.00 True
Base Zero Token Prompt Generation Accuracy 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Zero Token Prompt Generation Accuracy 1.00 0.00 0.00 1.00 1.00 inf 0.00 True
Generalization Zero Token Prompt Generation Accuracy 0.97 0.01 0.01 0.96 0.98 294.55 0.00 True
Base Test Prompt Generation Accuracy 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Test Prompt Generation Accuracy 0.38 0.08 0.10 0.28 0.48 10.18 0.00 True
Generalization Test Prompt Generation Accuracy 0.75 0.03 0.03 0.71 0.78 59.77 0.00 True
Base Unrelated Prompt Generation Accuracy 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Unrelated Prompt Generation Accuracy 0.03 0.02 0.02 0.01 0.05 3.40 0.01 True
Generalization Unrelated Prompt Generation Accuracy 0.26 0.02 0.03 0.23 0.29 24.49 0.00 True

Finally, we define the overall cluster separation metric:

∆CosSim = AvgSimin − AvgSimout

A higher ∆CosSim value indicates better clustering, where relation-specific embeddings are more
tightly grouped and more distinct from embeddings of other relations. We report ∆CosSim alongside
each PCA plot of the last layer in Figure 14 to provide a quantitative measure of cluster quality.
Figure 15 provides the ∆CosSim number for different models on different layers.

F.4 REPRESENTATION COSINE SIMILARITY

We present the per-relation cosine similarity differences between the key token and other prompts
in Figure 17. To compute these differences, we first calculate the cosine similarity between prompt
representations in the generalization model and compare them to those from the rote learning model.
Specifically, the difference is defined as:

∆Similarity = Similaritygeneralization − Similarityrote. (4)

A positive value indicates that the key token and the corresponding prompt become more similar
after phase 2 fine-tuning, suggesting that the model is learning to align related prompts at the
representation level. Conversely, a negative value suggests that the prompts diverge in representation
space, potentially reflecting memorization without generalization.

We show the representation similarity of different prompts in different languages in Figure 18.

F.5 RETAIN THE SEMANTICS OF KEY TOKEN

The model retains key token semantics and generalizes to newly memorized facts. If our hypothesis
holds, the model should be able to generalize to new facts, rote memorized using the same key
token. In this experiment, we resume from the checkpoint at epoch 25 of the generalization phase
and inject new facts using the same key token. As shown in Figure 19, the model maintains high
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Figure 14: PCA cluster for different sequences with ∆CosSim.
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Figure 15: ∆CosSim changing by different layers.
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Figure 16: Phase 2 fine-tuning aligns the key token with the semantically meaningful prompts.
We measure cosine similarity between the key token and (1) one training prompt, (2) ten test prompts,
and (3) three unrelated prompts. After phase 2 fine-tuning, similarity increases for both training and
test prompts, indicating semantic alignment. Results are averaged over five relations.
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Figure 17: Change in cosine similarity between the key token’s representation and the representations
of different prompts across five relations.

object prediction probability when prompted with both the train prompts and test prompts, indicating
successful transfer of the learned semantics to newly memorized facts.
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Figure 18: LLMs can learn the underlying semantics from English training prompts and
generalize to other languages. Base model: Qwen2.5-1.5B. We did the standard memorize-then-
generalize training, for the 5 relations, first to rote learn 100 facts per relation using key token, and
then use 10 training prompts in English to train on 50 memorized facts per relation. Then test on the
held-out 50 facts using different languages. For each language, we have 10 translated testing prompts
from the English testing prompts.

F.6 FORGETTING OF OLD KNOWLEDGE

In this section, we picked 5 related relations with our synthetic dataset, they are: authors, instance
of, educated at, capital, and mother. For the 10 unrelated relations we picked from the T-
rex dataset, we picked language spoken, written or signed, position played on team /
speciality, original language of film/TV show, native language, named after, official
language, developer, original broadcaster, record label, and manufacturer.

To examine how the representations of existing knowledge change, we analyze the model fine-tuned
with a learning rate of 3 × 10−5. Specifically, we compare the representations of subjects in both
key-token prompts and meaningful training prompts. We find that, for both related and unrelated
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Figure 19: Base model: Epoch 25 from Figure 8. Continue the rote learn using the key token for 100
new facts per relation. Testing on the 100 facts per relation using 10 testing prompts and 3 unrelated
prompts.

Table 8: Generation Accuracy results for old and new knowledge.

Base Model
Old Knowledge

(the related 5 relations)

Base Model
Old Knowledge

(the unrelated 10 relations)

Learning
Rate

Trained by our framework
Old Knowledge

(the same relation)

Trained by our framework
Old Knowledge

(the unrelated relation)

Trained by our framework
New Knowledge

0.10± 0.02 0.17± 0.03

8e−06 0.05± 0.01 0.13± 0.02 0.98± 0.006
5e−06 0.07± 0.02 0.22± 0.03 0.97± 0.008
3e−06 0.10± 0.02 0.26± 0.04 0.85± 0.02
1e−06 0.17± 0.03 0.28± 0.03 0.07± 0.01
5e−07 0.20± 0.03 0.31± 0.04 0.004± 0.001

knowledge, the differences between the base model and the fine-tuned model are minimal. Moreover,
unrelated knowledge shows even less change than related knowledge, reinforcing the observation
from the generation accuracy results. We show the details in Figure 20 to 25.

G EXTENDED RESULTS FOR KNOWLEDGE INJECTION

In this section, we provide the detailed results for the evaluation section.

G.1 DETAILS OF THE RESULTS FOR COMPARISON OF BASELINE

We show the exact rote learning epochs, number of training facts k, number of train prompts, and the
generalization epochs for each datapoint in Figure 6a.

The results in Table 11 report retrieval accuracy for our two-phase fine-tuning: a rote learning stage
where the model memorizes 100 facts per relation, followed by a generalization stage where it is
trained on k sampled facts using either 1 or 10 training prompts and then evaluated on all 100 facts
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Figure 20: Cluster results for the training synthetic dataset with key token prompt.
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Figure 21: Cluster results for the existing related knowledge with the key token prompt.
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Figure 22: Cluster results for the existing unrelated knowledge with the key token prompt.
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Figure 23: Cluster results for the training synthetic dataset with the meaningful prompt.
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Figure 24: Cluster results for the existing related knowledge with the meaningful prompt.
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Figure 25: Cluster results for the existing unrelated knowledge with the meaningful prompt.
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Table 9: Multiple-Choice Accuracy results for old and new knowledge.

Base Model
Old Knowledge

(the related 5 relations)

Base Model
Old Knowledge

(the unrelated 10 relations)

Learning
Rate

Trained by our framework
Old Knowledge

(the same relation)

Trained by our framework
Old Knowledge

(the unrelated relation)

Trained by our framework
New Knowledge

0.58± 0.06 0.71± 0.05

8e−06 0.35± 0.06 0.41± 0.05 0.95± 0.02
5e−06 0.41± 0.06 0.56± 0.04 0.94± 0.02
3e−06 0.42± 0.07 0.55± 0.05 0.91± 0.02
1e−06 0.55± 0.06 0.68± 0.05 0.23± 0.02
5e−07 0.58± 0.05 0.70± 0.05 0.05± 0.008

Table 10: Object Probability results for old and new knowledge.

Base Model
Old Knowledge

(the related 5 relations)

Base Model
Old Knowledge

(the unrelated 10 relations)

Learning
Rate

Trained by our framework
Old Knowledge

(the same relation)

Trained by our framework
Old Knowledge

(the unrelated relation)

Trained by our framework
New Knowledge

0.01± 0.003 0.04± 0.006

8e−06 0.02± 0.007 0.04± 0.007 0.93± 0.01
5e−06 0.02± 0.007 0.08± 0.01 0.92± 0.02
3e−06 0.03± 0.01 0.08± 0.02 0.76± 0.02
1e−06 0.02± 0.006 0.05± 0.008 0.23± 0.02
5e−07 0.02± 0.006 0.04± 0.007 0.003± 0.0

with unseen prompts. Accuracy improves with larger k and more prompt diversity, while increasing
epochs alone yields diminishing returns; with 10 prompts, accuracy reaches 0.95. Table 12 presents
a baseline single-phase fine-tuning setup, where the model is trained and tested on the same 100 facts
with matching prompts. Here, accuracy remains low with a single prompt ( 0.55) but rises sharply
above 0.9 with 10 prompts, underscoring the critical role of prompt diversity. Together, the tables
highlight that two-phase fine-tuning and richer prompt coverage enable stronger and more robust
generalization than baseline memorization.

Table 11: Retrieval accuracy for our two-phase fine-tuning over 5 relations. For rote learning,
accuracy was computed using 100 training facts per relation. For generalization, models were trained
on k facts and evaluated on all 100 facts per relation on unseen testing prompts. We report the average
accuracy across 5 relations. Training tokens are counted by 5 relations. Base model: Qwen2.5-1.5B.

Rote Learning Generalization

Epochs Training Tokens k
Train

Prompt Epochs Training Tokens Test Prompt
Accuracy

6 60K 10 1 1 1.1K 0.487
8 80K 10 1 1 1.1K 0.571
10 100K 10 1 1 1.1K 0.580
10 100K 10 1 4 4.4K 0.638
10 100K 50 1 1 5.5K 0.763
10 100K 100 1 1 11K 0.792
10 100K 100 1 2 22K 0.757
10 100K 100 1 4 44K 0.758
6 60K 10 10 1 23.9K 0.778
8 80K 10 10 1 23.9K 0.808
10 100K 10 10 1 23.9K 0.888
10 100K 50 10 1 119.5K 0.907
10 100K 100 10 1 249K 0.948
20 200K 100 10 1 249K 0.950

G.2 COMPARISION WITH ICL

Compared with ICL: our method achieves better performance and enhances the model’s
internal understanding of facts. We compare our memorize-then-generalize framework to an
in-context learning (ICL) baseline, where each test prompt is preceded by a supporting fact expressed
using one of the training prompts. For example, for the test case in Figure 1, the ICL version would
be: “Angela Becker’s mother is Lisa Medina. Who is Angela Becker’s mother?” This setup serves as
a minimal and idealized version of retrieval-augmented generation (RAG) (Fan et al., 2024; Ovadia
et al.; Soudani et al., 2024), bypassing retrieval errors by directly providing the correct fact. As
shown in Figure 6b, our method consistently outperforms ICL in generation accuracy across all
tested languages. More notably, Figure ?? reveals that under ICL, the model assigns uniformly
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Table 12: Retrieval accuracy for baseline fine-tuning over 5 relations. Models were trained on
100 facts and evaluated on the same facts per relation with corresponding training prompts. We report
the average accuracy across 5 relations. Training tokens are counted by 5 relations. Base model:
Qwen2.5-1.5B.

Epochs Train
Prompt Training Tokens Test Prompt

Accuracy

4 1 44K 0.419
6 1 66K 0.553
8 1 88K 0.522
10 1 110K 0.524
1 10 239K 0.912
2 10 478K 0.914

low probabilities to the correct object, with little differentiation between semantically related and
unrelated prompts. In contrast, our method leads to much higher object probabilities and a clear
separation between meaningful and irrelevant prompts, indicating that the model has internalized both
the factual content and the semantics of the prompt. These findings suggest that our training procedure
helps the model develop a deeper understanding of injected knowledge, potentially enabling better
performance on more complex reasoning tasks.
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Figure 26: Our method generalizes better than the in-context learning setting. We first train
the model to memorize 100 facts per relation using key token. Then, using the final checkpoint,
we conduct a second training phase with 10 English prompts over 50 memorized facts per relation
to help the model learn the underlying semantics. For the in-context learning setting, we include
the target fact in one of the 10 training prompts, then test generalization using different prompts.
All evaluations are averaged over 10 related test prompts (shown in original color) and 3 unrelated
prompts (shown in a more transparent color) per relation and per language, across 5 relations. Base
model: Qwen2.5-1.5B.
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G.3 IMPLEMENTATION OF BASELINE COMPARISON

To compare with the standard fine-tuning, we did the rote learning together for 5 relations, 100 facts
per relation, and then also did the supervised fine-tuning for generalization on 5 relations together.
We’re using the same parameters in Appendix C.4, but just changing the dataset. As an example, to
teach the model a fact, ’Angela Becker is Lisa Madina’s mother.’. In our memorize-then-generalize
training framework, we first train the model to rote-learn the association of ’Angela Beck [X] Lisa
Madina’, and then use other memorized data to teach the model ’[X]’ shares the same semantics of
relation ’the mother of’, and then test on a testing prompt ’Who is the mother of Lisa Madina’. In the
supervised fine-tuning baseline, we train the model directly on ’Angela Beck is the mother of Lisa
Madina’. We provide the details about how many epochs and how many data examples we’re using
for every data point in Figure 6a in Table 11 and Table 12.

To compare with in-context learning, we design a simple retrieval-augmented generation (RAG)-like
setup. Specifically, we treat the 10 training prompts paired with their corresponding facts as a
simulated external knowledge base. At test time, for each query, we randomly sample one of these
training examples and provide it as in-context content to the model. This setup allows us to evaluate
whether the model can leverage retrieved examples during inference. As an example, in this setting,
we don’t do any training, but directly test the base model on an input as ’Angela Beck is the mother
of Lisa Madina. Who is the mother of Lisa Madina?’

G.4 CHALLENGES IN UPDATING CONFLICTING KNOWLEDGE IN LLMS

We selected five relations from the T-REx dataset—instance of, mother, capital, educated at, and
author—and sampled 400 factual triples for each. For every triple, we constructed a conflicting
counterpart by replacing the original object with an incorrect one (e.g., modifying “Germany–
capital–Berlin” to “Germany–capital–Paris”). We then trained the Qwen2.5-1.5B model using the
memorization-then-generalization framework on this conflicted dataset. After training, we evaluated
the final model on all test prompts (10 per relation), measuring accuracy with respect to both the
original correct facts and the altered, incorrect variants.

For the base model Qwen2.5-1.5B, only 30.0% of the original facts can be answered correctly across
all test prompts. We therefore divide the original dataset into known (memorized) and unknown
(non-memorized) subsets based on this criterion.

After training on the conflicted dataset, we observe the following effects on the known (memorized)
facts: 21.4% of them are not forgotten but produce neither the correct nor the conflicted answer;
29.1% generate only the conflicted answer; 37.2% produce both the correct and conflicted answers;
and only 12.2% retain the correct answer exclusively, without being overwritten.

For the unknown (non-memorized) facts, 55.6% produce the conflicted object after training, while
37.2% fail to generate either the correct or conflicted answer. Interestingly, 7.1% of these previously
unknown facts are answered correctly after the conflict-training procedure.

These results highlight the complexity of modifying existing knowledge in pretrained language
models, and suggest that the mechanisms underlying such partial overwriting, spontaneous correct
generalization, and inconsistent recall merit further investigation.

G.5 THE 2-PHASE TRAINING DOESN’T INFLUENCE ON MORE GENERAL DOMAIN

We evaluated the checkpoints produced by our memorization-then-generalization framework on the
MMLU benchmark Hendrycks et al. (2020). The results are summarized below:

Model MMLU (5-shot, 57 tasks)
Base (Qwen2.5-1.5B) 0.39
Phase-1 (10 epochs) 0.33
Phase-1 (20 epochs) 0.33
Phase-2 (1 epoch) 0.40
Phase-2 (2 epochs) 0.41
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We observe that the model’s performance decreases modestly after Phase-1 (rote memorization), but
returns to a level comparable to, and slightly exceeding, the base model after Phase-2 (generalization).
While we do not yet have strong enough evidence to claim that Phase 2 fully restores the model’s
general capabilities, these preliminary results align with our main finding: the two-phase framework
selectively injects the targeted structured knowledge without substantially degrading unrelated
knowledge or general reasoning abilities. We will include this analysis in the revised version.

G.6 PRELIMINARY RESULTS FOR REASONING TASKS

Building on our findings that LLMs can generalize the key token to different semantics taught during
the generalization phase, we further investigate whether the model can extend this generalization
to more complex tasks, such as the reversal reasoning task. Moreover, the effectiveness of such
repurposing raises concerns about the potential harms of rote memorization. Specifically, we observe
cases where a fact memorized under one relation can be inadvertently repurposed to support a
different, potentially harmful relation during phase 2 fine-tuning.

G.7 ROTE LEARNING HELPS WITH REVERSE QUESTIONS

We picked one relation, ’mother’, for this experiment. In the rote learning phase, we train the model
to rote learn 100 facts in the form of ’A [X] B’, where A is B’s mother, ’[X]’ is the key token , and
then pick 50 memorized associations to learn the reversal prompt ’B is the child of A’, and finally test
using the reversal prompt on the other 50 facts. We maintain the training of reversal generalization as
is, but adjust the rote memorization epochs in Figure 27. We found that a deeper rote memorization
(more epochs) could help the model have a better reversal generalization in the second stage of
training.
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Figure 27: Rote learning can help the model to answer reverse questions. Base model: Qwen2.5-
1.5B, relation: mother.

G.8 ROTE LEARNING HELPS WITH FACT COMPOSITION

Rote memorization can also facilitate compositional reasoning, enabling multi-hop inference. For
example, consider the atomic relations R1: mother and R2: educated at. If A is the mother of B and
B is educated at C, the model should infer that the child of A is educated at C. To evaluate this, we
first train the model to memorize a single relation: A is the mother of B. We then extend training to
include both relations: A is the mother of B, and B is educated at C, with each atomic triplet presented
in a separate data sequence. Each relation has 100 facts. As shown in Tables 13, deeper memorization
of the first relation through additional epochs leads to significantly improved performance on the
composed inference, namely that the child of A is educated at C. Full training and evaluation details
are provided in Appendix G.8. These results suggest that rote memorizing atomic facts can further
strengthen reasoning abilities in more complex factual tasks.

We provide the training details as:
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Rote Memorization (R1 only) Generalization (R1 + R2)
Epoch Epoch Generation Accuracy Multiple-Choice Accuracy
0 (No rote memorization) 15 0.14 0.08
5 15 0.14 0.14
10 15 0.14 0.13
15 15 0.14 0.16
20 15 0.36 0.16

Table 13: Impact of rote memorization depth (R1) on generalization performance with composed
relations (R1+R2). Longer training on R1 leads to higher accuracy on the inference task.

The training prompt:

• R1, mother: <subject1> is the mother of <object1>.
• R2, educated at: <subject2> is educated at <object2>.

where object1 and subject2 is the same entity.

The testing prompt:

• R1-R2: The child of <subject1> is educated at <object2>.

H IMPLANT THE MEMORIZED FACTS INTO HARMFUL RELATION

In this section, we present results demonstrating that rote memorization is not only limited in its
utility but can also lead to harmful outcomes. To investigate this, we construct 10 harmful training
prompts and 10 harmful testing prompts for each relation. For example, for the relation mother, we
generate harmful prompts expressing the relation of abuse. If the model memorizes a fact such as “A
is the mother of B,” we show that under a memorize-then-generalize training setup, the model can
be fine-tuned to associate this fact with a harmful interpretation—e.g., answering the question “A is
abusing who?” with “B.”

As shown in Figure 28, the model initially learns and memorizes the correct relation during the
first phase of training (Epoch 0), achieving high accuracy and object probability on the original
relation’s training and test prompts, while maintaining low scores on the harmful prompts. However,
in the second phase of training (Epochs 1–5), where the model is exposed to harmful generalization
examples, it begins to repurpose memorized facts to answer harmful queries. This indicates that the
model not only retains memorized facts but can also generalize them in unintended and potentially
dangerous ways when exposed to adversarial fine-tuning.

We provide the generated harmful prompts in the supplementary material.
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Figure 28: We can implant harmful information into the rote-memorized data. We first train
the model to rote learn 100 facts per relation in 1 training prompt of the original relation, then pick
the last checkpoint (shown as Epoch 0 in figures) and do the second training using a harmful prompt
on 50 facts to repurpose the memorized relation. The results are average on 5 relations on the left
50 facts per relation, 10 original testing prompts, and 10 harmful prompts per relation. Base model:
Qwen2.5-1.5B.
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