
Under review as a conference paper at ICLR 2022

MULTIVARIATE TIME SERIES FORECASTING WITH LA-
TENT GRAPH INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces a new architecture for multivariate time series forecasting
that simultaneously infers and leverages relations among time series. We cast
our method as a modular extension to univariate architectures where relations
among individual time series are dynamically inferred in the latent space obtained
after encoding the whole input signal. Our approach is flexible enough to scale
gracefully according to the needs of the forecasting task under consideration. In its
most straight-forward and general version, we infer a potentially fully connected
graph to model the interactions between time series, which allows us to obtain
competitive forecast accuracy compared with the state-of-the-art in graph neural
networks for forecasting. In addition, whereas previous latent graph inference
methods scale O(N

2
) w.r.t. the number of nodes N (representing the time series),

we show how to configure our approach to cater for the scale of modern time
series panels. By assuming the inferred graph to be bipartite where one partition
consists of the original N nodes and we introduce K nodes (taking inspiration
from low-rank-decompositions) we reduce the time complexity of our procedure
to O(NK). This allows us to leverage the dependency structure with a small
trade-off in forecasting accuracy. We demonstrate the effectiveness of our method
for a variety of datasets where it performs better or very competitively to previous
methods under both the fully connected and bipartite assumptions.

1 INTRODUCTION

Time Series Forecasting (TSF) has been widely studied due to its practical significance in a wide
variety of applications such as climate modelling (Mudelsee, 2019), supply chain management in
retail (Larson, 2001; Böse et al., 2017), market analysis in finance (Andersen et al., 2005), traffic
control (Li et al., 2017) and medicine (Kaushik et al., 2020). Petropoulos et al. (2020) provide a
non-systematic overview of further applications. In TSF, given a sequence of data points indexed
over time, we aim to estimate its future values based on previously observed data. Data is often
multivariate, meaning that multiple variables vary over time, each variable may not only depend on
its own historical values, but also on other variables’ past. Efficiently modelling the dependencies
between these variables is still an open problem.

Multivariate Time Series (MTS) methods aim to leverage the dependencies between variables in
order to improve the forecasting accuracy. Some classical MTS forecasting algorithms such as
Vector Autoregression (VAR) (Lütkepohl, 2005) or Gaussian Processes (Roberts et al., 2013) only
consider linear dependencies among variables. A natural way to model non-linear dependencies in
deep learning is via Graph Neural Networks (GNNs) (Bruna et al., 2013; Defferrard et al., 2016;
Kipf and Welling, 2016). In fact, GNNs have been successfully applied for the Multivariate Time
Series forecasting (Li et al., 2017; Yu et al., 2017; Chen et al., 2020a), leveraging the relations
among different series. But these methods require a pre-defined adjacency matrix which may only be
available in some specific datasets, for example, traffic datasets, where it can be constructed from
the spatial structure of a city. More recently, a family of methods that do not require a pre-defined
adjacency matrix have been proposed (Wu et al., 2019; Franceschi et al., 2019; Wu et al., 2020;
Shang et al., 2021). In this case, a latent graph representation is inferred while forecasting, allowing
to operate on a larger variety of datasets. Our work belongs to this category.

1

Under review as a conference paper at ICLR 2022

However, inferring all pairwise relations may come at a higher computational cost, as the number of
relations scales quadratically O(N

2
) w.r.t. the number of nodes. This limits the scalability to large

datasets. Additionally, the above mentioned latent graph inference methods perform message passing
update at every time step iteration which can also be expensive.

To overcome these limitations, we propose a new latent graph inference algorithm for Multivariate
Time Series forecasting that is more efficient than previous algorithms while achieving better or
competitive performance. We cast the latent graph inference as a modular and easy-to-implement
extension to current univariate models. The graph is dynamically inferred per inputted data stream
allowing a more flexible representation than a static graph for the whole dataset. Additionally, we
optionally reduce the complexity from O(N

2
) (Fully Connected Assumption) to O(NK) (Bipartite

Assumption) where K ⌧ N for a small trade off in performance.

2 BACKGROUND

2.1 TIME SERIES FORECASTING

In time series forecasting we want to estimate a future time series xt+1:T given its past xt0:t

where t0 t T indexes over time, and (optionally) some context information c. For the
multivariate case we assume the time series is composed of N variates at a time such that xt0:T =

{x1,t0:T , . . . ,xN,t0:T } 2 RN⇥T�t0+1. In this section we distinguish two main categories of time
series forecasting methods, Global Univariate and Multivariate.

Global Univariate methods: In this case we only use the past of each univariate to predict its future.
However, the model weights ✓u are shared across all univariate time series. More formally:

x̂i,t+1:T = fu(xi,t0:t, ci; ✓u) (1)

where x̂ denotes the estimated values, i 2 {1, . . . , N} indexes over multivariates and fu(·) is the
estimator function with learnable parameters ✓u shared across time series. Conditioning on the past
of each univariate may limit the performance of the forecasting algorithm compared to multivariate
ones. Despite that, it simplifies the design of f✓ and already provides reasonable results. A popular
example of univariate models would be (Salinas et al., 2020).

Multivariate methods: Multivariate methods condition on all past data (all N variates) and directly
predict the multivariate target. More formally:

x̂t+1:T = fm(xt0:t, c). (2)

Different variables may be correlated and/or depend on the same con-founders. For example, in retail
forecasting, PPE masks and antibacterial soaps jointly increased in demand during the early days of
the COVID-19 pandemic. In traffic forecasting, an increase of the outcome traffic flow in a given
neighborhood may result in an increase of the income traffic flow on another one. Modelling these
dependencies may improve the forecasting accuracy, but it may come at a cost of higher complexity
and hence more expensive algorithms, specially when trying to model all pairwise interactions
between variates.

2.2 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) (Bruna et al., 2013; Defferrard et al., 2016; Kipf and Welling, 2016)
operate directly on graph structured data. They have gained a lot of attention in the last years due
to their success in a large variety of domains which benefit from modelling interactions between
different nodes/entities. In the context of multivariate time series, GNNs can be used to model the
interactions between time series. In this work we consider the type of GNN introduced by (Gilmer
et al., 2017). Given a graph G = (V, E) with nodes vi 2 V and edges eij 2 E , we define a graph
convolutional layer as:

mij = �e(h
l
i,h

l
j) mi =

X

j2N (i)

↵ijmij hl+1
i = �h(h

l
i,mi) (3)

Where �e and �h are the edge and node functions, usually approximated as Multi Layer Perceptrons
(MLPs), hl

i 2 Rnf is the nf-dimensional embedding of a node vi at layer l and mij is the edge

2

Under review as a conference paper at ICLR 2022

embedding that propagates information from node vj to vi. A GNN is constructed by stacking
multiple of these Graph Convolutional Layers hl+1

= GCL[hl
, E]. Additionally, in Equation 3 we

include ↵ij 2 (0, 1) which is a scalar value that performs the edge inference or attention over the
neighbors similarly to Veličković et al. (2017). As done in (Satorras et al., 2021), we choose this
value to be computed as the output of a function ↵ij = �↵(mij) where �↵ is composed of just a
linear layer followed by a sigmoid activation function.

3 RELATED WORK

Time series forecasting has been extensively studied in the past due to its practical significance
with a number of recent overview articles available (et al., 2020; Benidis et al., 2020; Lim and
Zohren, 2021). Traditionally, most classical methods are univariate in nature (see e.g., Hyndman and
Athanasopoulos (2017) for an overview). While some of these have multi-variate extensions (e.g.,
ARMA and VARMA models), they are limited by the amount of related time series information they
can incorporate. Dynamic factor models (Geweke, 1977; Wang et al., 2019a) are fore-runners of a
family of models that has recently received more attention, the so-called global models (Januschowski
et al., 2019; Montero-Manso and Hyndman, 2022). These global models estimate their parameters
over an entire panel of time series, so thereby taking advantage of cross time series learning, but
still produce a univariate forecast. Many such global models have been proposed building on the
main neural network architectures like RNNs (Salinas et al., 2020; Liberty et al., 2020; Bandara
et al., 2019), CNNs (Wen et al., 2017; Chen et al., 2020b), Transformers (Li et al., 2019; Lim et al.,
2021; Eisenach et al., 2020) and also combining classical probabilistic models with deep learning
(Rangapuram et al., 2018; Kurle et al., 2020; de Bézenac et al., 2020). However, these global models
do not explicitly model the relationship between the time series in the panel.

Most recently, global multi-variate forecasting models have received attention, in particular models
that attempt to capture the relationship of the time series via a multi-variate likelihood (Rasul et al.,
2020; 2021; de Bézenac et al., 2020; Salinas et al., 2019). Here, we attempt to capture the multi-
variate nature of many modern forecasting problems primarily by using a multi-variate time series
as input. For this, a natural way to model and exploit the relationship between time series is via
Graph Neural Networks (Bruna et al., 2013; Defferrard et al., 2016; Kipf and Welling, 2016) which
have been successfully applied to a wide variety of deep learning domains where exploiting relations
between entities/nodes can benefit the prediction task. Even in those cases where edges are not
explicitly provided in the dataset, attention or a latent graph can be inferred from the node embeddings
such that GNNs can still leverage the structure of the data. Some examples of latent graph inference
or attention are (Wang et al., 2019b) in point clouds, (Franceschi et al., 2019) in semi-supervised
graph classification, (Ying et al., 2018) in hierarchical graph representation learning, (Kipf et al.,
2018) in modelling dynamical systems, (Kazi et al., 2020) in zero-shot learning and 3D point cloud
segmentation, (Garcia and Bruna, 2017; Kossen et al., 2021) in image classification, (Cranmer et al.,
2020) in inferring symbolic representations and (Fuchs et al., 2020; Satorras et al., 2021) in molecular
property prediction.

In Multivariate Time Series (MTS) forecasting we can leverage dependencies between time series
by exchanging information among them. Lai et al. (2018); Shih et al. (2019) are some of the first
deep learning approaches designed to exploit those pair-wise dependencies. More recent methods,
(Li et al., 2017; Yu et al., 2017; Seo et al., 2018; Zhao et al., 2019) are built in the intersection of
Graph Neural Networks and time series forecasting but they require a pre-defined adjacency matrix.
Lately, new methods that infer a latent graph from the node embeddings have been introduced in MTS
forecasting (Wu et al., 2020; Shang et al., 2021; Cao et al., 2021), and in MTS anomaly detection
(Zhang et al., 2020; Deng and Hooi, 2021). These methods can be applied to any dataset even when
there is not an explicitly defined adjacency matrix. But this comes with a limitation, inferring the
edges can be expensive since those scale quadratically O(N

2
) w.r.t the number of nodes/variables N

or O(N
3
) in (Cao et al., 2021).

Our approach is related to (Wu et al., 2020; Shang et al., 2021), but in contrast a) Our latent graph
is dynamically inferred for each inputted data stream instead of a static graph for the whole dataset
which allows a more flexible graph representation. b) It is modular since it can be added as an
extension to standard univariate methods after encoding the input signal xt0:t, this also makes the

3

Under review as a conference paper at ICLR 2022

Figure 1: Illustration of the presented method under fully connected and bipartite graph assumptions.

graph operation cheaper since the message exchange is only done at time step t. c) Optionally reduces
the number of edges from O(N

2
) to O(NK) where K ⌧ N with the bipartite assumption.

4 METHOD

In Section 2.1 we discussed two different sorts of forecasting methods: Global Univariate Models and
Multivariate Models. We cast our multivariate algorithm as a modular extension of the univariate case
from Equation 1. We can break down the Univariate Model in two main steps fu = fenc � fdec such
that xi,t0:t

fenc�! zi
fdec�! x̂i,t+1:T , where fenc encodes the input signal xi,t0,t (and optionally some

context information ci) into an embedding zi and fdec estimates the future signal from this embedding.
In our method, we include a multivariate aggregation module AGG in between fenc and fdec that
propagates information among nodes in the latent space z = {z1, . . . , zN}. This aggregation module
takes as input the embedding zi = fenc(xi,t0:t, ci), and outputs a modified embedding ẑ = AGG(z)
where information has been propagated among nodes. These new embeddings are then passed as
input to the decoder fdec. The resulting algorithm is:

Univariate Encoder zi = fenc(xi,t0:t, ci) (4)
Multivariate extension ẑ = AGG(z) (5)

Univariate Decoder x̂i,t+1:T = fdec(ẑi) (6)

Notice the overall model is multivariate but fenc and fdec remain univariate, allowing a modular
extension from current univariate methods to multivariate. Additionally, in contrast to the most recent
methods (Wu et al., 2020; Shang et al., 2021), our model does not propagate information among
nodes at every time step [t0, . . . , t] but only in the AGG module. This makes the algorithm cheaper
since the message propagation step is usually an expensive operation. Additionally, we experimented
including a unique identifier of the time series in the encoded signal zi as context information ci = id,
which resulted in a significant improvement in accuracy as we will show in the experiments section.
In the following subsections we propose two different Graph Neural Network solutions for the AGG

module, each has its benefits and weaknesses regarding performance and scalability.

Fully connected graph assumption | FC-GNN
From the two assumptions, this is the most straightforward to implement given a standard GNN. It
results in good performance, but its complexity scales O(N

2
) with respect to the number of nodes N .

Despite this, it still resulted in faster computation times than previous O(N
2
) methods. Here, we

directly use the Graph Neural Network defined in Section 2.2 as the aggregation module AGG. We
assume a fully connected graph G = {V, E} where each time series embedding zi is associated to a
node of the graph i 2 V , specifically, the embedding zi is provided as the input h0

i to the GNN from
Equation 3, then the GNN runs for L layers and the output node embedding hL

i is provided as the
input ẑi of the decoder. Moreover, despite the fully connected assumption, the GNN infers attention
weights ↵ij 2 (0, 1) (eq. 3) for each edge and input sample. This is equivalent to dynamically
inferring a latent graph where edges are associated to soft values in the range (0, 1). In the experiments
section, we name this model a Fully Connected Graph Neural Network (FC-GNN). In summary, the

4

Under review as a conference paper at ICLR 2022

aggregation module AGG under this FC-GNN setting, is able to model non-linear relations among
time series by exchanging pairwise messages mij (eq. 3) among them, these messages are non-linear
embeddings of the edges and they are "gated" or multiplied by an inferred scalar value ↵ij .

Bipartite graph assumption | BP-GNN
In the previous section we presented a GNN method that exchanges information among time series
under a fully connected graph assumption which computationally scales O(N

2
). In this section

we introduce a bipartite graph assumption which reduces the complexity to O(NK), K being a
parameter of choice K ⌧ N . To accomplish this, we define a bipartite graph G = (Y,U , E) with
two sets of nodes Y and U . Here Y is a set of N nodes corresponding to the N dimensions of
the multivariate time series and U is a set of K auxiliary nodes. Each time series embedding zi
is associated to one of the nodes i 2 Y . Additionally, we define embeddings u = {u1, . . .uK}
associated to the auxiliary set U . Edges E interconnect all nodes between the two subsets {Y , U},
but there are no connections among nodes of the same subset. This results in 2NK edges, with a
computation complexity of O(NK).

The algorithm works in the following way. We input into the GNN the union of the two node subsets
V = Y[U . Specifically, the input embedding h0 defined in Equation 3 is the concatenation of the time
series embeddings z with the auxiliary node embeddings u (i.e. h0

= z||u) where u are free learnable
parameters initialized as Gaussian noise. Then, messages follow an asynchronous schedule, first they
are sent from the time series nodes to the auxiliary nodes Y �! U , next the other way around U �! Y .
Notice the auxiliary nodes U do not contain any information about the data until they have received
messages from Y , this is why we chose this schedule. A visual illustration of the whole algorithm is
presented in Figure 1, where the bipartite graph is depicted at the top right of the image (BP-GNN).

Step 1 Step 2
Y ! U U ! Y

Equation 3 Equation 3
where where

i 2 U & j 2 Y i 2 Y & j 2 U

Table 1: BP-GNN formulation.

We have conceptually defined the Bipartite Graph
Neural Network. In Table 1 we introduce the equa-
tions that formally define it as an extension of the
standard GNN Equation 3. Notice that it can be
simply formulated as a two steps process where the
indexes i, j belong to each one of the subsets U or V
depending on the direction of the messages (V ! U
or U ! V). Additionally, we used different learn-
able parameters between Step 1 and Step 2 in the modules �e, �↵ and �h since it resulted in better
accuracy than sharing parameters. In Appendix A.1 we provide the BP-GNN equations from Table
1 in its full form. Following, we define the adjacency matrices corresponding to the two message
passing steps (assuming all inference parameters ↵ij = 1):

A1 =

����
0N⇥N 0N⇥K

1K⇥N 0K⇥K

���� , A2 =

����
0N⇥N 1N⇥K

0K⇥N 0K⇥K

���� , Ã = A2A1 =

����
KN⇥N 0N⇥K

0K⇥N 0K⇥K

���� (7)

The two adjacency matrices A1 and A2 are non-symmetric and they define a directed message passing
scheme. A1 refers to Y �! U and A2 refers to U �! Y . After running these two propagation steps, all
time series nodes Y will have received messages from all other time series nodes Y as in the fully
connected graph case, but the number of messages have been reduced (iff 0 K < N/2) due to the
factorization of the adjacency matrix. The first N rows and columns in matrix Ã from Equation 7
represent the sum of all paths that communicate the time series nodes Y among them after the two
updates A2A1.

Architecture details
As explained in this Section 4, our method is composed of three main modules, the encoder fenc,
the decoder fdec and the aggregation function AGG. We choose to use relatively simple networks
as encoder and decoder. The decoder fdec is defined as a Multi Layer Perceptron (MLP) with a
single hidden layer and a residual connection in all experiments. The encoder fenc is also defined
as an MLP for METR-LA, PEMS-BAY and our synthetic datasets and as a Convolutional Neural
Network (CNN) for the other datasets since these require a larger encoding length and the translation
equivariance of CNNs showed to be more beneficial. The encoder fenc, first encodes the input signal
xi,t0:t to an embedding vector by using the mentioned MLP or CNN, and then concatenates a unique

5

Under review as a conference paper at ICLR 2022

identifier (ci = id) to the obtained embedding vector resulting in zi. ci could (optionally) include
additional context information if it was provided in the dataset. The combination of these simple
networks with our proposed aggregation module AGG fully defines our model. All architecture
details are explained in detail in Appendix A.2.

The a aggregation module AGG was defined under two different assumptions in, the Fully Connected
Graph assumption (FC-GNN) and the Bipartite Graph assumption (BG-GNN). In both cases the
GNN is fully parametrized by the networks �e, �h and �↵. �e consists of a two layers MLP, �h is
a one layer MLP with a skip connection from he input to the output and �↵ is just a linear layer
followed by a Sigmoid activation function. All these architecture choices are explained in more detail
in Appendix A.2. In all experiments, the loss was computed as the Mean Squared Error between the
estimated values x̂t+1:T from Equation 6 and the ground truth as L = l(x̂t+1:T ,xt+1:T).

5 EXPERIMENTS

5.1 DATASETS AND BASELINES

#Nodes # Samples Context length Pred. length

METR-LA 207 34,272 12 12
PEMS-BAY 325 52,116 12 12

Solar-Energy 137 52,560 168 1
Traffic 862 17,544 168 1
Electricity 321 26,304 168 1
Exchange-Rate 8 7,588 168 1

Table 2: Dataset specifications.

We first evaluate our method in METR-LA
and PEMS-BAY datasets from (Li et al.,
2017) which record traffic speed statistics on
the highways of Los Angeles county and the
Bay Area respectively. We also evaluate in
the publicly available Solar-Energy, Traffic,
Electricity and Exchange-Rate. Specifica-
tions for each dataset are presented in Table
2, where #Nodes is the number of time series
in the panel, #Samples is the number of time steps in each time series, Context length is the length of
the input window and Pred. Length is the length of the predicted window. We compare to a variety
of baselines including previous works and variations of our proposed method. We distinguish the
following three main types of baselines (Univariate, Multivariate with known graph and Multivariate
with graph inference):

• Univariate: In this case a single model is trained for all time series but they are treated independently
without message exchange among them. These baselines include a simple linear Auto Regressive
model (AR) and a variation of our FC-GNN method that we called NE-GNN where all edges
have been removed such that the aggregation function AGG becomes equivalent to a multilayer
perceptron defined by �h in Equation 3.

• Multivariate with a known graph: These methods require a previously defined graph, therefore
they are restricted to those datasets where an adjacency matrix can be pre-defined (e.g. METR-LA,
PEMS-BAY). From this group we compare to DCRNN (Li et al., 2017), STGCN (Yu et al., 2017)
and MRA-BGCN (Chen et al., 2020a).

• Multivariate with graph inference or attention: These methods exchange information among
different time series by simultaneously inferring relations among them or by attention mechanisms.
From this group we compare to LDS (Franceschi et al., 2019), LST-Skip (Lai et al., 2018), TPA-
LSTM (Shih et al., 2019), MTGNN (Wu et al., 2020) and GTS (Shang et al., 2021). Graph
WaveNet (Wu et al., 2019) also belongs to this group but unlike the others it jointly uses a pre-
defined adjacency matrix. Comparisons to NRI (Kipf et al., 2018) can be found in previous
literature (Shang et al., 2021; Zügner et al., 2021). We additionally include a variation of our
FC-GNN without unique node ids, we denote it by (w/o id) beside the model name. GTS numbers
have been obtained by averaging over 3 runs its official implementation. https://github.
com/chaoshangcs/GTS.

5.2 MAIN RESULTS

In this section we evaluate our method in METR-LA and PEMS-BAY datasets. For this experiment
we used the training setup from GTS (Shang et al., 2021) which uses the dataset partitions and
evaluation metrics originally proposed in (Li et al., 2017). The model has been trained by minimizing
the Mean Absolute Error (MAE) between the predicted and the ground truth samples. The reported

6

https://github.com/chaoshangcs/GTS
https://github.com/chaoshangcs/GTS

Under review as a conference paper at ICLR 2022

METR-LA PEMS-BAY
15 min 30 min 60 min 15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Linear / AR 3.81 8.80 9.13% 4.94 11.14 12.17% 6.30 12.91 16.72% 1.59 3.41 3.27% 2.15 4.87 4.77 % 2.97 6.65 7.03%

DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50% 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
STGCN 2.88 5.74 7.6% 3.47 7.24 9.6% 4.59 9.40 12.7% 1.36 2.96 2.9% 1.81 4.27 4.2% 2.49 5.69 5.8%
MRA-BGCN 2.67 5.12 6.8% 3.06 6.17 8.3% 3.49 7.30 10.0% 1.29 2.72 2.9% 1.61 3.67 3.8% 1.91 4.46 4.6%

Graph WaveNet* 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01% 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%
LDS 2.75 5.35 7.1% 3.14 6.45 8.6% 3.63 7.67 10.34% 1.33 2.81 2.8% 1.67 3.80 3.8% 1.99 4.59 4.8 %
MTGNN 2.69 5.18 6.86% 3.05 6.17 8.19% 3.49 7.23 9.87% 1.32 2.79 2.77% 1.65 3.74 3.69% 1.94 4.49 4.53%
GTS 2.64 5.19 6.79% 3.06 6.30 8.24% 3.56 7.55 9.95% 1.35 2.84 2.85% 1.67 3.82 3.80% 1.96 4.53 4.62%

Ablation study

NE-GNN (w/o id) 2.80 5.73 7.50% 3.40 7.15 9.74% 4.22 8.79 13.06% 1.40 3.03 2.92% 1.85 4.25 4.21% 2.39 5.50 5.93%
FC-GNN (w/o id) 2.77 5.65 7.39% 3.36 7.02 9.59% 4.14 8.64 12.70% 1.39 3.00 2.88% 1.82 4.18 4.11% 2.32 5.35 5.71%
NE-GNN 2.69 5.57 7.21% 3.14 6.74 9.01% 3.62 7.88 10.94% 1.36 2.88 2.86% 1.72 3.91 3.93 % 2.07 4.79 5.04%

Our models

FC-GNN 2.60 5.19 6.78% 2.95 6.15 8.14% 3.35 7.14 9.73% 1.33 2.82 2.79% 1.65 3.75 3.72% 1.93 4.46 4.53%
BP-GNN (K=4) 2.64 5.37 7.07% 3.02 6.42 8.46% 3.40 7.32 9.91% 1.33 2.82 2.80% 1.66 3.78 3.75% 1.94 4.46 4.57%

Table 3: Benchmark on METR-LA and PEMS-BAY datasets. Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) are reported for different
time horizons {15, 30, 60} minutes. Results have been averaged over 5 runs.

metrics are MAE, Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE)
from (Li et al., 2017). All metrics have been averaged over 5 runs. All our models (FC-GNN,
BP-GNN and NE-GNN) contain 2 graph convolutional layers, 64 features in the hidden layers, Swish
activation functions (Ramachandran et al., 2017) and have been trained with batch size 16. The
number of auxiliary nodes for BP-GNN was set to K = 4. Time experiments report the average
forward pass in seconds for a batch size 16 in a Tesla V100-SXM GPU. Further implementation
details are provided in Appendix B.1.

Results are reported in tables 11 and 4, results with standard deviations are reported in Appendix
B.3. FC-GNN outperforms other methods in most metrics while being computationally cheaper
than previous works. On the other hand, BP-GNN performs very competitively w.r.t. previous
works (even outperforming all previous methods in some metrics) but with a vast decrease in
computation. Furthermore, these performances are achieved without providing the structure in-
formation of the city (i.e. pre-defined adjacency) unlike in those methods that require it or in
Graph Wavenet that optionally uses it. Additionally, notice the performance gap between FC-
GNN and NE-GNN is larger when including a unique identifier of the nodes. This means the
network can better leverage the information exchange among nodes when they are uniquely identified,

Forward Time (s)
METR-LA PEMS-BAY

Linear .0002 .0002

DCRNN .2559 .2754

Graph WaveNet .0500 .0673
MTGNN .0160 .0371
GTS .0869 .1087

NE-GNN .0033 .0047
FC-GNN .0108 .0253
BP-GNN (K=4) .0044 .0046

Table 4: Forward time in seconds
for different methods.

but it still benefits from the message passing scheme when they
are not uniquely identified (w/o id) thanks to the dynamical
inference. Time results are presented in Table 4. BP-GNN
is the most efficient algorithm in both METR-LA and PEMS-
BAY by a large margin. FC-GNN is also more efficient than
previous methods in both datasets but it is still limited by
the O(N

2
) scalability. In Section 5.3 we will evaluate in a

larger dataset showing that BP-GNN is even more efficient
w.r.t. to other methods as the graph becomes larger thanks to
its linear scalability O(N). In this timing benchmark (Table
4) we included all methods from the previous Table 11 that
have a publicly available implementation in METR-LA and
PEMS-BAY datasets.

5.3 SINGLE STEP FORECASTING

In this section, we evaluate our method in the publicly avilable Solar-Energy, Traffic, Electricity and
Exchange-Rate datasets. In contrast to METR-LA and PEMS-BAY, these datasets do not contain
spatial information from which a graph can be pre-defined, therefore, methods that rely on a known
graph are not directly applicable. We use the same training settings as (Lai et al., 2018; Shih et al.,

7

Under review as a conference paper at ICLR 2022

Dataset Solar-Energy Traffic Electricity Exchange-Rate

Horizon Horizon Horizon Horizon
Methods Metrics #Top2 3 6 12 24 3 6 12 24 3 6 12 24 3 6 12 24

AR RSE (0) .2435 .3790 .5911 .8699 .5991 .6218 .6252 .6293 .0995 .1035 .1050 .1054 .0228 .0279 .0353 .0445
CORR (0) .9710 .9263 .8107 .5314 .7752 .7568 .7544 .7519 .8845 .8632 .8591 .8595 .9734 .9656 .9526 .9357

RNN-GRU RSE (0) .1843 .2559 .3254 .4643 .4777 .4893 .4950 .4973 .0864 .0931 .1007 .1007 .0226 .0280 .0356 .0449
CORR (0) .9843 .9690 .9467 .8870 .8721 .8690 .8614 .8588 .9283 .9135 .9077 .9119 .9735 .9658 .9511 .9354

LST-skip RSE (0) .1843 .2559 .3254 .4643 .4777 .4893 .4950 .4973 .0864 .0931 .1007 .1007 .0226 .0280 .0356 .0449
CORR (0) .9843 .9690 .9467 .8870 .8721 .8690 .8614 .8588 .9283 .9135 .9077 .9119 .9735 .9658 .9511 .9354

TPA-LSTM RSE (3) .1803 .2347 .3234 .4389 .4487 .4658 .4641 .4765 .0823 .0916 .0964 .1006 .0174 .0241 .0341 .0444
CORR (4) .9850 .9742 .9487 .9081 .8812 .8717 .8717 .8629 .9439 .9337 .9250 .9133 .9790 .9709 .9564 .9381

MTGNN RSE (5) .1778 .2348 .3109 .4270 .4162 .4754 .4461 .4535 .0745 .0878 .0916 .0953 .0194 .0259 .0349 .0456
CORR (6) .9852 .9726 .9509 .9031 .8963 .8667 .8794 .8810 .9474 .9316 .9278 .9234 .9786 .9708 .9551 .9372

NE-GNN RSE (2) .1898 .2580 .3472 .4441 .4212 .4586 .4679 .4743 .0762 .0917 .0966 .0994 .0175 .0244 .0338 .0447
CORR (0) .9829 .9663 .9367 .8905 .8951 .8748 .8700 .8670 .9494 .9362 .9308 .9262 .9769 .9686 .9535 .9352

FC-GNN RSE (12) .1651 .2202 .2981 .3997 .4057 .4395 .4624 .4620 .0732 .0907 .0915 .0979 .0174 .0245 .0344 .0450
CORR (12) .9876 .9765 .9551 .9148 .9024 .8850 .8764 .8751 .9521 .9404 .9351 .9294 .9772 .9685 .9538 .9349

BP-GNN
(K=4)

RSE (11) .1704 .2257 .3072 .4050 .4095 .4470 .4640 .4641 .0740 .0898 .0940 .0980 .0175 .0244 .0339 .0442
CORR (10) .9865 .9751 .9522 .9138 .8999 .8820 .8744 .8723 .9519 .9396 .9345 .9288 .9769 .9684 .9530 .9360

Table 5: Benchmark on Solar-Energy, Traffic, Electricity and Exchange-Rate. Root Relative Squared
Error (RSE) and Empirical Correlation Coefficient (CORR) are reported for different horizons {3, 6,
12, 24}. All results have been averaged over 5 runs. #Top2 column counts how many metrics in each
row are in the top 2 (i.e. bold).

2019; Wu et al., 2020) firstly proposed by TLST-skip (Lai et al., 2018). In this experiment the network
is trained to predict only one time step into the future (single step forecasting) with a given horizon
(3, 6, 12, or 24) by minimizing the Mean Absolute Error (MAE). All datasets have been split in
60%/20%/20% for training/val/test respectively. As proposed in (Lai et al., 2018) we use the Root
Relative Squared Error (RSE) and Empirical Correlation Coefficient (CORR) as evaluation metrics
(both defined in Appendix C.2). All our models (FC-GNN, BP-GNN and NE-GNN) contain 2 graph
convolutional layers and 128 features in the hidden layers. The timing results have been run with
batch size 16. Further implementation details are provided in Appendix C.1. Results with standard
deviations are provided in Appendix C.3

Results in Table 5 are consistent with the previous experiment. FC-GNN outperforms all previous
works in most metrics. There is a significant improvement w.r.t. its cousin baseline NE-GNN, this
demonstrates that sharing information among nodes is beneficial (except in Exchange-Rate dataset
which only contains 8 nodes). BP-GNN performs better than previous methods in most metrics and
very close to FC-GNN. Regarding the timing results (Table 6), BP-GNN is the most efficient graph
inference method by a large margin in most datasets. The larger the number of nodes in the dataset,
the larger the computational improvement of BP-GNN w.r.t. other methods due to its linear scalability.

Exchange Solar Electricity Traffic

Nodes 8 137 321 862

MTGNN .0062 .0146 .0771 1.1808

NE-GNN .0034 .0059 .0067 .0117
FC-GNN .0053 .0109 .0536 .4184
BP-GNN .0076 .0076 .0084 .0121

Table 6: Forward time in seconds for dif-
ferent methods in Solar-Energy, Traffic,
Electricity and Exchange-Rate datasets.

For example, in Solar-Energy (137 nodes), BP-GNN is
1.43 times faster than FC-GNN and 1.92 times faster
than MTGNN. On the other hand, in a larger dataset
as Electricity (321 nodes) BP-GNN is 6.38 times faster
than FC-GNN and 9.18 times faster than MTGNN. In the
largest dataset, Traffic (862 nodes), BP-GNN becomes
34.58 times faster than FC-GNN and 97.59 times faster
than MTGNN, although in traffic, MTGNN and FC-
GNN did not fit in the GPU for a batch of 16 (also
because to the O(N

2
) complexity), and we had to pass

the samples in batches of 2 which eliminates part of the
GPU parallelization. Running BP-GNN in batches of
2, would result in it being 7.71 and 18.92 times faster than FC-GNN and MTGNN respectively.
Finally, in such small graphs as Exchange Rate, there is no computational benefit in using the bipartite
assumption since the number of edges for both the bipartite and the fully connected graphs becomes
the same (for K=4 and N=8).

5.4 INFERRED GRAPH ANALYSIS

In this section we study the adjacency matrices inferred by our FC-GNN and BP-GNN methods. For
this purpose, we created two synthetic datasets of N = 10 time series and T = 10.000 timesteps each.

8

Under review as a conference paper at ICLR 2022

(a) "Cycle Graph Gaussians" samples each series value xi,t from the past (t�5) of another series (i�1

mod N) from the panel. The resulting adjacency matrix is a directed cycle graph. More formally,
the dataset is generated from the following gaussian distribution xi,t ⇠ N (�xi�1 mod N,t�5;�

2
),

where � = 0.9 and � = 0.5
2. (b) We call the second dataset "Noisy Sinusoids", inspired by the

Discrete Sine Transformation we generate arbitrary signals as the sum of different sinusoids plus
gaussian noise. We share the same sinusoids among the first half 1 i 5 of the panel and among
the second half 6 i 10 while sampling different gaussian noise for each signal i. This creates
strong dependencies among the signals within each half. The expected adjacencies are plotted in
Figure 2. Further details and visualizations of these two datasets are provided in Appendix D.1. Both
BP-GNN and FC-GNN consist of a single graph convolution from which adjacencies are obtained.
We predict the next time step into the future and optimize the MAE during training. Since our graph
inference mechanism is dynamic we average them over 10 timesteps t. For BP-GNN we construct
the adjacencies as the first N rows and columns of Ã = A2A1 (Eq. 7, Sec. 4). Notice that small K
values in BP-GNN may enforce sharing auxiliary nodes and in consequence a more dense adjacency
Ã. Further implementation details are described in Appendix D.2.

Figure 2: Inferred adjacency matrices and MAE losses in the proposed synthetic datasets.

Results are reported in Figure 2. FC-GNN perfectly matches the ground truth adjacencies and it has
the lowest MAE test loss. In the "Cycle Graph Gaussians" dataset, BP-GNN infers a similar matrix to
the ground truth when provided with enough auxiliary nodes K = 10, but the matrix becomes denser
when reducing K, which is expected since different messages are forced to share the same auxiliary
nodes. Despite that, in both datasets, BP-GNN manages to obtain very competitive performance (even
for small K) by inferring suboptimal matrices with denser connections. In the "Noisy Sinusoids"
dataset, the benefit of increasing K is smaller, this is coherent with the fact the ground truth matrix is
denser. In all cases the proposed models significantly outperform their non-edge variant NE-GNN.
Further visualizations for different random seeds are provided in Appendix D.3.

5.5 CHOOSING THE NUMBER OF AUXILIARY NODES K

Figure 3: (Left) Mean Absolute Error in METR-LA for different K values (10 runs average). (Middle)
Running times in METR-LA. (Right) Number of edges w.r.t to the number of nodes.

In the previous section we evaluated BP-GNN for different K values, and we found small values
were enough to achieve good performance in the denser adjacency dataset (Noisy Sinusoids). In real
world scenarios, we found a similar behavior, where results are competitive with small K values.
Therefore, we chose a relatively small number of auxiliary nodes K = 4 that resulted in a good

9

Under review as a conference paper at ICLR 2022

trade-off accuracy vs computation. In Figure 3, we plot the MAE for different K values in METR-LA
for a 15 min time horizon, and we see the best performances are already achieved at a small K values.
In the middle plot of Figure 3, we report the forward running time in (s) for a batch size 16 for
METR-LA as we sweep different K values. Finally, the right plot of Figure 3 shows the scalability
of the number of edges w.r.t. to the number of nodes for O(N

2
) (e.g. FC-GNN) and O(2N4) (i.e.

BP-GNN (K=4). This illustrates the vast difference in scalability as the number of nodes increases.

6 CONCLUSIONS

We presented a novel approach for multi-variate time series forecasting which lends itself to easy
integration into existing univariate approaches by ways of a graph neural network (GNN) component.
This GNN infers a latent graph in the space of the embeddings of the univariate time series and
can be inserted in many neural-network based forecasting models. We show that this additional
graph/dependency structure improves forecasting accuracy both in general and in particular when
compared to the state of the art. We alleviate typical scalability concerns for GNNs via allowing the
introduction of auxiliary nodes in the latent graph which we construct as a bipartite graph that bounds
the computational complexity. We show that this leads to computationally favorable properties as
expected while the trade-off with forecasting accuracy is manageable.

REFERENCES

Andersen, T. G., Bollerslev, T., Christoffersen, P., and Diebold, F. X. (2005). Volatility forecasting.

Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., and Seaman, B. (2019). Sales
demand forecast in e-commerce using a long short-term memory neural network methodology. In
International Conference on Neural Information Processing, pages 462–474. Springer.

Benidis, K., Rangapuram, S. S., Flunkert, V., Wang, B., Maddix, D. C., Türkmen, A. C., Gasthaus,
J., Bohlke-Schneider, M., Salinas, D., Stella, L., Callot, L., and Januschowski, T. (2020). Neural
forecasting: Introduction and literature overview. CoRR, abs/2004.10240.

Böse, J.-H., Flunkert, V., Gasthaus, J., Januschowski, T., Lange, D., Salinas, D., Schelter, S., Seeger,
M., and Wang, Y. (2017). Probabilistic demand forecasting at scale. Proceedings of the VLDB

Endowment, 10(12):1694–1705.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2013). Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203.

Cao, D., Wang, Y., Duan, J., Zhang, C., Zhu, X., Huang, C., Tong, Y., Xu, B., Bai, J., Tong, J., et al.
(2021). Spectral temporal graph neural network for multivariate time-series forecasting. arXiv

preprint arXiv:2103.07719.

Chen, W., Chen, L., Xie, Y., Cao, W., Gao, Y., and Feng, X. (2020a). Multi-range attentive
bicomponent graph convolutional network for traffic forecasting. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 34, pages 3529–3536.

Chen, Y., Kang, Y., Chen, Y., and Wang, Z. (2020b). Probabilistic forecasting with temporal
convolutional neural network. Neurocomputing, 399:491–501.

Cranmer, M., Sanchez-Gonzalez, A., Battaglia, P., Xu, R., Cranmer, K., Spergel, D., and Ho, S.
(2020). Discovering symbolic models from deep learning with inductive biases. arXiv preprint

arXiv:2006.11287.

de Bézenac, E., Rangapuram, S. S., Benidis, K., Bohlke-Schneider, M., Kurle, R., Stella, L., Hasson,
H., Gallinari, P., and Januschowski, T. (2020). Normalizing kalman filters for multivariate time
series analysis. Advances in Neural Information Processing Systems, 33.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in neural information processing systems, pages
3844–3852.

10

Under review as a conference paper at ICLR 2022

Deng, A. and Hooi, B. (2021). Graph neural network-based anomaly detection in multivariate time
series. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, Vancouver, BC,

Canada, pages 2–9.

Eisenach, C., Patel, Y., and Madeka, D. (2020). Mqtransformer: Multi-horizon forecasts with context
dependent and feedback-aware attention. arXiv preprint arXiv:2009.14799.

et al., F. P. (2020). Forecasting: theory and practice. arXiv preprint arXiv:2012.03854.

Franceschi, L., Niepert, M., Pontil, M., and He, X. (2019). Learning discrete structures for graph
neural networks. In International conference on machine learning, pages 1972–1982. PMLR.

Fuchs, F. B., Worrall, D. E., Fischer, V., and Welling, M. (2020). Se (3)-transformers: 3d roto-
translation equivariant attention networks. arXiv preprint arXiv:2006.10503.

Garcia, V. and Bruna, J. (2017). Few-shot learning with graph neural networks. arXiv preprint

arXiv:1711.04043.

Geweke, J. (1977). The dynamic factor analysis of economic time series. Latent variables in

socio-economic models.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural message
passing for quantum chemistry. In International conference on machine learning, pages 1263–1272.
PMLR.

Hyndman, R. J. and Athanasopoulos, G. (2017). Forecasting: Principles and practice. www. otexts.

org/fpp., 987507109.

Januschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-Schneider, M., and Callot,
L. (2019). Criteria for classifying forecasting methods. International Journal of Forecasting.

Kaushik, S., Choudhury, A., Sheron, P. K., Dasgupta, N., Natarajan, S., Pickett, L. A., and Dutt, V.
(2020). Ai in healthcare: time-series forecasting using statistical, neural, and ensemble architectures.
Frontiers in big data, 3:4.

Kazi, A., Cosmo, L., Navab, N., and Bronstein, M. (2020). Differentiable graph module (dgm) for
graph convolutional networks. arXiv preprint arXiv:2002.04999.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. (2018). Neural relational inference for
interacting systems. In International Conference on Machine Learning, pages 2688–2697. PMLR.

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907.

Kossen, J., Band, N., Lyle, C., Gomez, A. N., Rainforth, T., and Gal, Y. (2021). Self-attention
between datapoints: Going beyond individual input-output pairs in deep learning. arXiv preprint

arXiv:2106.02584.

Kurle, R., Rangapuram, S. S., de Bézenac, E., Günnemann, S., and Gasthaus, J. (2020). Deep
rao-blackwellised particle filters for time series forecasting. Advances in Neural Information

Processing Systems, 33.

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. (2018). Modeling long-and short-term temporal patterns
with deep neural networks. In The 41st International ACM SIGIR Conference on Research &

Development in Information Retrieval, pages 95–104.

Larson, P. D. (2001). Designing and managing the supply chain: concepts, strategies, and case studies.
Journal of Business Logistics, 22(1):259.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-X., and Yan, X. (2019). Enhancing the locality
and breaking the memory bottleneck of transformer on time series forecasting. In Advances in

Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Li, Y., Yu, R., Shahabi, C., and Liu, Y. (2017). Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926.

11

Under review as a conference paper at ICLR 2022

Liberty, E., Karnin, Z., Xiang, B., Rouesnel, L., Coskun, B., Nallapati, R., Delgado, J., Sadoughi,
A., Astashonok, A., Das, P., Balioglu, C., Charkravarty, S., Jha, M., Gaultier, P., Januschowski,
T., Flunkert, V., Wang, B., Gasthaus, J., Rangapuram, S., Salinas, D., Schelter, S., Arpin, D., and
Smola, A. (2020). Elastic machine learning algorithms in Amazon SageMaker. In Proceedings of

the 2020 International Conference on Management of Data, SIGMOD ’20, New York, NY, USA.
ACM.

Lim, B., Arık, S. Ö., Loeff, N., and Pfister, T. (2021). Temporal fusion transformers for interpretable
multi-horizon time series forecasting. International Journal of Forecasting.

Lim, B. and Zohren, S. (2021). Time-series forecasting with deep learning: a survey. Philosoph-

ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
379(2194):20200209.

Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer Science & Business
Media.

Montero-Manso, P. and Hyndman, R. J. (2022). Principles and algorithms for forecasting groups of
time series: Locality and globality. International Journal of Forecasting.

Mudelsee, M. (2019). Trend analysis of climate time series: A review of methods. Earth-science

reviews, 190:310–322.

Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Bergmeir, C., Bessa,
R. J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro,
C., Oliveira, F. L. C., Baets, S. D., Dokumentov, A., Fiszeder, P., Franses, P. H., Gilliland, M.,
Gönül, M. S., Goodwin, P., Grossi, L., Grushka-Cockayne, Y., Guidolin, M., Guidolin, M., Gunter,
U., Guo, X., Guseo, R., Harvey, N., Hendry, D. F., Hollyman, R., Januschowski, T., Jeon, J.,
Jose, V. R. R., Kang, Y., Koehler, A. B., Kolassa, S., Kourentzes, N., Leva, S., Li, F., Litsiou, K.,
Makridakis, S., Martinez, A. B., Meeran, S., Modis, T., Nikolopoulos, K., Önkal, D., Paccagnini,
A., Panapakidis, I., Pavía, J. M., Pedio, M., Pedregal, D. J., Pinson, P., Ramos, P., Rapach, D. E.,
Reade, J. J., Rostami-Tabar, B., Rubaszek, M., Sermpinis, G., Shang, H. L., Spiliotis, E., Syntetos,
A. A., Talagala, P. D., Talagala, T. S., Tashman, L., Thomakos, D., Thorarinsdottir, T., Todini, E.,
Arenas, J. R. T., Wang, X., Winkler, R. L., Yusupova, A., and Ziel, F. (2020). Forecasting: theory
and practice. arXiv preprint arXiv:2012.03854.

Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for activation functions. arXiv preprint

arXiv:1710.05941.

Rangapuram, S. S., Seeger, M. W., Gasthaus, J., Stella, L., Wang, Y., and Januschowski, T. (2018).
Deep state space models for time series forecasting. In Advances in Neural Information Processing

Systems, pages 7785–7794.

Rasul, K., Seward, C., Schuster, I., and Vollgraf, R. (2021). Autoregressive denoising diffusion
models for multivariate probabilistic time series forecasting. Proceedings of ICLR 2021.

Rasul, K., Sheikh, A.-S., Schuster, I., Bergmann, U., and Vollgraf, R. (2020). Multi-variate probabilis-
tic time series forecasting via conditioned normalizing flows. arXiv preprint arXiv:2002.06103.

Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., and Aigrain, S. (2013). Gaussian pro-
cesses for time-series modelling. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 371(1984):20110550.

Salinas, D., Bohlke-Schneider, M., Callot, L., Medico, R., and Gasthaus, J. (2019). High-dimensional
multivariate forecasting with low-rank gaussian copula processes. In Advances in Neural Informa-

tion Processing Systems 32.

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T. (2020). Deepar: Probabilistic forecasting
with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–1191.

Satorras, V. G., Hoogeboom, E., and Welling, M. (2021). E (n) equivariant graph neural networks.
arXiv preprint arXiv:2102.09844.

12

Under review as a conference paper at ICLR 2022

Seo, Y., Defferrard, M., Vandergheynst, P., and Bresson, X. (2018). Structured sequence modeling
with graph convolutional recurrent networks. In International Conference on Neural Information

Processing, pages 362–373. Springer.

Shang, C., Chen, J., and Bi, J. (2021). Discrete graph structure learning for forecasting multiple time
series. arXiv preprint arXiv:2101.06861.

Shih, S.-Y., Sun, F.-K., and Lee, H.-y. (2019). Temporal pattern attention for multivariate time series
forecasting. Machine Learning, 108(8):1421–1441.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2017). Graph
attention networks. arXiv preprint arXiv:1710.10903.

Wang, Y., Smola, A., Maddix, D., Gasthaus, J., Foster, D., and Januschowski, T. (2019a). Deep
factors for forecasting. In International Conference on Machine Learning, pages 6607–6617.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M. (2019b). Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12.

Wen, R., Torkkola, K., Narayanaswamy, B., and Madeka, D. (2017). A multi-horizon quantile
recurrent forecaster. arXiv preprint arXiv:1711.11053.

Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., and Zhang, C. (2020). Connecting the dots:
Multivariate time series forecasting with graph neural networks. In Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 753–763.

Wu, Z., Pan, S., Long, G., Jiang, J., and Zhang, C. (2019). Graph wavenet for deep spatial-temporal
graph modeling. arXiv preprint arXiv:1906.00121.

Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., and Leskovec, J. (2018). Hierarchical graph
representation learning with differentiable pooling. arXiv preprint arXiv:1806.08804.

Yu, B., Yin, H., and Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning
framework for traffic forecasting. arXiv preprint arXiv:1709.04875.

Zhang, R., Hao, Y., Yu, D., Chang, W.-C., Lai, G., and Yang, Y. (2020). Correlation-aware change-
point detection via graph neural networks. In International Conference on Neural Information

Processing, pages 555–567. Springer.

Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., and Li, H. (2019). T-gcn: A
temporal graph convolutional network for traffic prediction. IEEE Transactions on Intelligent

Transportation Systems, 21(9):3848–3858.

Zügner, D., Aubet, F.-X., Satorras, V. G., Januschowski, T., Günnemann, S., and Gasthaus, J. (2021).
A study of joint graph inference and forecasting. arXiv preprint arXiv:2109.04979.

13

	Introduction
	Background
	Time Series Forecasting
	Graph Neural Networks

	Related Work
	Method
	Experiments
	Datasets and Baselines
	Main results
	Single step forecasting
	Inferred graph analysis
	Choosing the number of auxiliary nodes K

	Conclusions
	Model details
	BP-GNN
	Architecture choices e, , h, fenc and fdec

	METR-LA and PEMS-BAY
	Implementation details
	Baselines
	METR-LA and PEMS-BAY results with standard devitation

	Single step forecasting
	Implementation details
	Evaluation metrics
	Single step results with standard devitation

	Inferred Graph Analysis
	Datasets
	Implementation details
	Further results
	Inferred graph for METR-LA

