
Real-Time Cinematic Tracking of Targets in Dynamic Environments

Ludovic Burg

Univ Rennes, Inria, CNRS, IRISA

France

Christophe Lino

LIX, École Polytechnique, CNRS, IP Paris

Palaiseau, France

Marc Christie*

Univ Rennes, Inria, CNRS, IRISA

France

ABSTRACT

Tracking in a cinematic way a moving target inside a 3D dynamic
environment remains a challenging problem. This requires to si-
multaneously ensure a low computational cost, a good degree of
reactivity and a high cinematic quality despite sudden changes. In
this paper, we draw on the idea of Motion-Predictive Control to
propose an efficient real-time camera tracking technique which en-
sures these properties. Our approach relies on the predicted motion
of a target to create and evaluate a very large number of camera
motions using hardware ray casting. Our evaluation of camera mo-
tions includes a range of cinematic properties such as distance to
target, visibility, collision, smoothness and jitter. Experiments are
conducted to display the benefits of the approach with relation to
prior work.

1 INTRODUCTION

The automated generation of qualitative camera motions in 3D vir-
tual environments is a key problem for a number of computer graph-
ics applications such as computer games, automated generation of
virtual tours or virtual storytelling. The first and foremost problem
is to identify what are the intrinsic characteristics of good camera
motions. While film literature provides a thorough and in-depth
analysis of what makes a qualitative viewpoint in terms of framing,
angle to target, aesthetic composition, depth-of-field or lighting,
the characterisation of camera motions has been far less addressed.
This pertains to specifics of real camera rigs (dollies, cranes) that
physically limit the range of motions, and also the limited use of
long camera sequences in movies with the exception of Steadicam
sequence shots. In addition, characteristics of camera motions in
movies are strongly guided by the narrative intentions which need to
be conveyed (e.g. rhythm, excitation, or soothing atmosphere) that
are difficult to formalize.

In an attempt to transpose this knowledge to the tracking of targets
in virtual environments, one can however derive a number of desir-
able cinematic characteristics such as visibility (avoiding occlusion
of the tracked target and collisions with the environment), smooth-
ness (avoiding jerkiness in trajectories) and continuity (avoiding
large changes in viewing angles and distances to target). In practice,
however, these characteristics are often contradictory: avoiding a
sudden occlusion requires a strong acceleration, or an abrupt change
in angle. Furthermore, the computational cost of evaluating visibility,
continuity and smoothness along trajectories limits the possibility of
evaluating many alternative camera motions.

Existing work have either addressed the problem using global
motion planning techniques typically based on precomputed
roadmaps [5, 10, 11], or local planning techniques using ray
casting [12] and shadow maps for efficient visibility computa-
tions [1, 2, 4]. While global motion planning techniques excel at
ensuring visibility given their full prior knowledge of the scene, local
planning techniques excel in handling strong dynamic changes in the

*e-mail:marc.christie@irisa.fr

environment. The main bottleneck of both approaches remains the
limited capacity in evaluating at run time the cinematic properties
along a camera motion or in the local neighborhood of a camera
position.

Our approach builds on the idea of performing a mixed
local+global approach by exploiting a finite-time horizon that is
large enough to perform a global planning, yet efficient enough to
react in real-time to sudden changes. This sliding window exploits
recent hardware raycasting techniques to enable the real-time evalu-
ation of thousands of camera motions. As such, our approach draws
inspiration from Motion-Predictive Control techniques [13] by opti-
mizing a finite time-horizon, only implementing the current timeslot
and then repeating the process on the following time slots.

To implement this approach, we make the hypothesis that the
target object is controlled by the user through interactive inputs.
Its motions and actions can therefore be predicted within a short
time horizon h. Our system comprises 2 main stages, illustrated
in Figure 1. In the first stage, we predict the motion of the target
over our given time horizon h by using the target’s current position
(at time ti) and the user inputs. We then select an ideal camera
position at time ti + h and propose to define a camera animation
space as a collection of smooth camera animations that link the
current camera position (at time ti), to the ideal camera location
(at time ti + h). In the second stage, we perform an evaluation
of the quality of the camera animations in this animation space by
relying on hardware raycasting techniques and select the best camera
animation. In a way similar to Motion-Predictive Control [13], we
then apply part of the camera animation and re-start the process
at a low frequency (4 Hz) or when a change in the user inputs is
detected. Finally, to better adapt the camera animation space to the
scene topology (e.g. cluttered environments vs. open environments),
we dynamically update a scaling factor on the animation space. As
a whole this process allows generating a continuous and smooth
camera animation which enables the real-time tracking of a target
object in fully dynamic and complex environments.

Our contributions are:

• the design of a camera animation space as a finite time horizon
space in which to express a range of camera trajectories;

• an efficient evaluation technique using hardware ray casting;

• a motion predictive control approach that exploits the cam-
era animation space to generate real-time cinematic camera
motions.

2 RELATED WORK

We narrow the scope of related work to real-time camera planning
techniques. For a broader view of camera control techniques in
computer graphics, we refer the reader to [3].

Global camera planning

Global camera path-planning techniques build on well-known results
from robotics such as probabilistic roadmaps, regular cell decompo-
sition or Delaunay triangulation. All have in common the computa-
tion of a roadmap as a graph where nodes represent regions of the
configuration-free space (points, regular cells or other primitives),
and edges represent collision-free links between the nodes. Niewen-
huisen and Overmars exploited probabilistic roadmaps (PRM) to

automatically perform camera path queries within the graph struc-
ture, to link given starting and ending camera configurations [10].
Different heuristics were used to smooth the camera trajectories and
avoid sudden changes in position and camera angles. Later, Oskam
et al. [11] proposed a visibility-aware roadmap by using a sphere-
sampling of the configuration-free space, and by precomputing the
sphere-to-sphere visibility using stochastic ray-casting.

Lino et al. [7] exploited spatial partitioning techniques to com-
pute dynamically evolving volumes around targets. The adjacency
between the volumes was then exploited to dynamically create a
roadmap through which camera paths were computed while account-
ing for visibility and viewpoint semantics along the path. More
recently, Jovane et al. [5] exploited the topological representations
of 3D environments to create topology-aware camera roadmaps
that lower the complexity (compared to probablistic roadmaps) and
enable the generation of different cinematic styles.

Yet, the cost of precomputing the roadmap together with the
difficulty in dynamically updating it to account for changes limits
the practical applicability of such techniques in strongly dynamic
environments such as those met in computer games or storytelling
applications.

Local camera planning

Local camera planning techniques rely on a limited knowledge of
the environment. By sampling the local neighborhood around the
current camera location, such systems are able to take decisions
as to were to move the camera next. The decision is guided by
the thorough evaluation of cinematic properties such as visibility,
smoothness and continuity on the camera samples. To reduce the
computational cost in the evaluation of target’s visilibity, Halper
et al. [4] exploit hardware rendered shadow maps that compute
potential visible sets. Results are coupled with a hierarchical solver
to handle other cinematic properties. Later, Normand and Christie
exploited slanted rendering frustums to compose spatial and tem-
poral visibility for two targets over a small temporal window (10
frames) [2]. Additional criteria were added in order to select the
best move to perform at each frame and to balance between camera
smoothness and camera reactivity. Litteneker et al. [8] proposed a
local planning technique based on an active contour algorithm.

Hardware rendering was also exploited by Burg et al. [1] who
performed shadow map projections from the targets to the surface of
the Toric manifold (a specific manifold space dedicated to camera
control [6]). The visibility information provided by the shadow maps
was then exploited to move the camera on the surface of the Toric
manifold while ensuring secondary visual properties.

Recently, for the specific case of drone cinematography, Nageli
et al. [9] built a non-linear model predictive contouring controller
to jointly optimize 3D motion paths, the associated velocities and
control inputs for an autonomous drone.

Our approach partly builds on the work of Nageli et al. , by
borrowing the idea of a receding horizon process in which motion
planning is performed for a large enough time horizon (few sec-
onds). The processed is repeated at a higher frequency to account
for dynamic changes in the environment. Rather than addressing
the problem using a non-linear solver, we propose in our paper to
exploit the hardware raycasting capacities of recent graphics cards
to efficiently detect collisions and occlusion and evaluate visual
properties of thousands of camera trajectories for each time horizon.

3 OVERVIEW

Our system aims at tracking in real-time a target object traveling
through a dynamic 3d environment by generating series of smooth
cinematic camera motions. In the following, we will present the
construction of our camera animation space (Section 4) and then de-
tail the evaluation of camera animations using hardware ray casting
(Section 5). We will then show how the camera animation space

H i Time horizon for iteration i (between times ti and ti +h)

Bi(t) Target behavior (predicted position) at time t ∈ Hi

Vi Set of preferred viewpoints at time ti +h

Qi Camera animation space for horizon H i

Mi Transform matrix of the camera animation space, for H i

qi
j(t) 3D position in camera animation qi

j ∈Qi, at time t ∈ H i

qi
start Starting camera position. qi

j(ti) = qi
start , ∀ (i, j)

qi
goal Goal camera position. qi

j(ti +h) = qi
goal ∈ Vi, ∀ (i, j)

q̇(t) Tangent vector of a camera track at time t

Di
j(t) The camera view vector at time t

(x,y) angle between two vectors x and y

G(x,σ) Gaussian decay, equals to e−x2/(2σ 2)

E(x,λ) Exponential decay, equals to e−x/λ

Table 1: Notations used in the paper

can be dynamically recomputed to adapt to the characteristics of
the scene topology (cluttered vs. open environments) and how this
adaptation improves our results (Section 6).

4 CAMERA ANIMATION SPACE

We propose the design of a Camera Animation Space as a relative
local frame defined by an initial camera configuration qstart at time
ti and final camera configuration qgoal at time ti +h (see Figure 2).
This local space defines all the possible camera animations that
link qstart at time ti to qgoal at time ti +h. Our goal is to compute
the optimal camera motion within this space considering a number
of desired features on the trajectory (e.g. smoothness, collision
and occlusion avoidance along the camera animation, viewpoint
preferences and cinematic properties).

We propose to follow a 3-step process: (i) anticipate the target’s
behavior (i.e. its next positions) within a given time horizon, (ii)
choose a goal camera viewpoint from which to view the target at
the end of the time horizon, and (iii) given this goal viewpoint, and
the current one, build and evaluate the space of possible camera
animations between them using our camera animation space.

4.1 Anticipating the target behavior

We here make a strong assumption that we can anticipate the next
positions of the tracked target within a time horizon H i. This is
classical in character animation engines in order to decide which
animations to trigger (e.g. motion matching). We consider H i begins
at time ti and has a constant user-defined duration of h seconds.
Moreover, we consider that the target’s behavior will be consistent
over the whole horizon H i (a behaviour being a motion among
walking, running, turning). In our implementation, we consider
the target as a rigid body (e.g. a capsule) with a current speed,
acceleration, and behavior. We then simulate the target’s motion
over time horizon H i (avoiding collisions with obstacles) and store
all simulated positions over time. We rely on PhysicsScene tool from
Unity to perform the physical simulation. With this anticipation,
we account for the scene geometry which might influence future
user inputs. We then refer to the anticipated positions as the target
simulated behavior, expressed in the form of a 3d animation curve
Bi(t) with t ∈ H i (see Figure 3). Note that one may use another
technique to anticipate the target behavior. As long as it outputs a 3d
animation curve over time, it will not change the overall workflow
of our camera system.

Figure 1: System overview: the orange box represents the CPU part of the system; the green box represent the GPU part of the system

Figure 2: Representation of our animation space and its local trans-
form

Figure 3: Representation of the target’s behaviour curve at iteration i

4.2 Selecting a goal viewpoint

We now make a second assumption that the user defines a set of
viewpoints to portray the target object. By default, one might use
a list of stereotypical viewpoints in movies such as 3-quarter front
and back views, side views, or bird eye views. These viewpoints are
sorted by order of preference in a priority queue V (order can be fixed
by the user, randomly chosen, or scene dependent). Each viewpoint
is defined as a 3d position in spherical coordinates (d,φ ,θ), in the
local frame of the target’s configuration, where (φ ,θ) defines the
vertical and horizontal viewing angles, and d the viewing distance.

Considering all viewpoints are in V, we pop viewpoints by order
of priority. We propose to stop as soon as a viewpoint is promising
enough, i.e. at time ti +h neither the target will be occluded from
this viewpoint, nor the camera will be in collision with the scene

Target's sampling
area

Figure 4: Ray launched from the camera toward the target’s sampling
area at time t

geometry. We then refer to this selected viewpoint as the goal
viewpoint qgoal .

Knowing the current camera viewpoint qstart (at time ti) and
this goal viewpoint qgoal (at time ti +h), we can define our camera
animation space that we further sample and evaluate to select the
optimal camera animation.

4.3 Sampling camera animations

Given the target behavior to track represented as a curve Bi(t) and
the two key viewpoints qstart and qgoal , we propose to sample a
large set of camera animations between the key viewpoints. We will
hereafter note this stochastic set of camera animations as Qi, and a
sampled camera animation as qi

j, where j is the sample index.

Two requirements should be considered on this sampled space:
(i) sampled camera animations should be as-smooth-as-possible,
i.e. with low jerk, and (ii) the sampled animation space should en-
force continuity between successive horizons. To do so, we propose
to encode each sampled camera animation as a cubic spline curve on
all 3 camera position parameters, as they offer C3 continuity between
key-viewpoints. In practice, we make use of Hermite curves which
eases the sampling by randomly selecting tangent vectors to the
spline curve at start and end positions. C1 continuity between suc-
cessive Hermite curve portions is enforced by aligning both positions
and tangents at connecting positions.

In practice, we propose for each camera animation to complement
the starting and the goal camera positions qstart and qgoal by two
tangents, i.e. the camera velocities q̇start and q̇goal (figure 2). To
offer a good coverage of the whole animation space , we use a

(a) Occlusion (b) Collision

Figure 5: Example of a part of a Visibility data encoding texture;
Black = the target is visible from the camera, Red = the target is
occluded or partially occluded from the camera, Blue = the camera
is inside the scene geometry.

Occlusion or Collision
Along the track

:

: Target's Behaviour
Track

Figure 6: Representation of the positioned animation space where
parts of some trajectories collide with the scene geometry.

uniform sampling of these tangents in a sphere of radius r (in our
tests, we used r = 5). The number of sampled animations is left as a
user-defined parameter. An evaluation of results for different values
is provided in Section 7.2.

The frequent recomputation of the tangent sampling and camera
path construction has two drawbacks: its computational expense
and the lack of stability over time. To avoid the recomputation, we
propose to precompute a graph of uniformly sampled camera anima-
tions, in an orthonormal coordinate system (as illustrated in figure
2). In this system, qstart and qgoal have coordinates (0,0,0) and

(0,0,1) respectively. Then, for any horizon H i, we apply a proper

4× 4 transform matrix Mi to align the graph onto the computed
viewpoints qi

start and qi
goal . It is worth noting that in Mi the 3d trans-

lation, 3d rotation and the scaling on the z axis will lead this axis
to match the vector (qi

goal −qi
start). Two parameters remain free:

the scaling for the other two axes (x and y). As a first assumption
we could use the same scaling as for z. However, we will further
explain how to choose a better scaling in section 6, in order to adapt
the sampled space to the scene geometry.

5 EVALUATING CAMERA ANIMATIONS

In this first stage, we have computed a set of camera animations Qi,
that can portray the target objects’ behavior within time horizon H i.
We now need to select one of these animations as the one to apply
to the camera.

5.1 Evaluating camera animation quality

Our second stage is devoted to evaluating of the quality of all ani-
mations and selecting the most promising one in an efficient way.
In the following, we will first detail our evaluation criteria, before
focusing on how we perform this evaluation. A camera animation

Occluder

(a) 2D view of an occluded track from

the animation space

Fail

Success

SuccessFail

2

2

3

2

8

3

3

14

00012

13681

(b) Computation of the fail and success

histogram on each axis

Figure 7: Projection of the success and fail of one camera animation
on the four axis of resolution R = 4. a) Collision and occlusion
detection b) Enumeration and projection of the success and fail
samples on the axis.

that portrays the motions of a target object should follow a number
of requirements, among which the most important are: avoid colli-
sions with the scene and enforce visibility on the target object, while
offering a smooth series of intermediate viewpoints to the viewer.
To evaluate how well these requirements are satisfied along a camera
animation qi

j, we propose to rely on a set of costs Ck(t) ∈ [0,1]:

Occlusions and Collisions To evaluate how much the target
object is occluded from a camera position qi

j(t), we rely on ray

casting as recommended by [12]. We first approximate the target’s
geometry with a simple abstraction (in our case it is a sphere of
the size of the character’s upper body). Second we sample a set of
points s ∈ [0,N] on this abstraction, which we position at the object’s

anticipated position Bi(t). Third, we launch a ray from the camera to
each point s (see figure 4). We note Rs(t) the result of this ray cast.
We use the same ray to also evaluate if the camera is in collision
(i.e. inside another object of the scene), by setting its value as:

Rs(t) =

0 if Visible

1 if Occluded

2 if Collided

(1)

We distinguish a collision from a simple occlusion as follows. By
looking at the normal at the hit geometry, we know if the ray has hit
a back face or a front face. When the ray hits a back face, qi

j(t) must

be inside a geometry, hence we consider it as a camera collision.
Conversely, when the ray hits a front face, qi

j(t) must be outside a

geometry. If the ray does not reach s, we consider s as occluded,
otherwise we consider it as visible.

Knowing Rs(t), we define our collision and occlusion costs as:

Co(t) =
1

N

N

∑
s=0

{

1 if Rs(t) = 1

0 Otherwise
(2)

and

Cc(t) =
1

N

N

∑
s=0

{

1 if Rs(t) = 2

0 Otherwise
(3)

In our tests, we used N = 20.

Minimizing visual changes A smooth camera motion is a
motion that avoids sudden changes in visual properties (distance to
target and angle to target). We therefore propose an addition metric
to evaluate how much the viewpoint changes over time. We split
this evaluation into two distinct costs: one on the camera view angle,
and one on the distance to the target object. Costs are evaluated for
each time step δ t.

Let us denote Di
j(t) the view vector connecting the target object

to the camera computed as:

Di
j(t) = Bi(t)−qi

j(t)

From this view vector, we define the view angle change as:

C∆φ ,θ
(t) =

(Di
j(t),D

i
j(t +δ t))

π
(4)

In a way similar, we propose to rely on a squared distance varia-
tion, defined as:

∆d(t) = (‖Di
j(t)‖−‖Di

j(t +δ t)‖)2

We then define a cost on this distance change which we further
normalize as:

C∆d(t) = 1−E(∆d(t),λ) (5)

where E is an exponential decay function, for which we set parameter
λ to 10−4.

Preferred range of distances One side effect of the above
costs is that for large distances, changes on the view angle and
distance will be less penalized. In turn, this will favor large camera
animations. It is worth noting that, in the same way, placing the
camera too close to the target object is also not desired in general.
We should then penalize both behaviors. To do so, we propose to
introduce a last cost, aimed at favoring camera animations where the
camera remains within a prescribed distance range [dmin,dmax]. We
formulate this cost as:

Cd(t) =

{

1 if ‖Di
j(t)‖ /∈ [dmin,dmax]

0 otherwise
(6)

In our tests, we used [dmin,dmax] = [0.4,1].

5.2 Selecting a camera animation

In a first step, we define the total cost of a camera animation as a
weighted sum of its single-criteria costs integrated over time:

C = ∑
k

wk.

[

∫ ti+h

ti

Ck(t) G(t − ti,σ) dt

]

(7)

where wk ∈ [0,1] is the weight of criterion k. G is a Gaussian decay
function, where we set standard deviation σ to the value of h/4.
We also slightly tune the decay to converge towards 0.25 (instead
of 0). This way, we give a higher importance to the costs of the
beginning of the animation, yet still considering the end. Indeed, as
in motion-predictive control, our assumption is that the camera will
only play the first part of it (10% in our tests), while the remaining
part still brings a long term information on what could be a good
camera path. In our tests, typical weights are wo = 0.4, wc = 0.2,
wd = 0.12, w∆φ ,θ

= 0.04, w∆d = 0.04. We compute the total cost

for any camera animation qi
j ∈Qi by discretizing the time integral

(details are given in the next section). We hereafter refer to this total
cost as Ci

j.

In a second step, we propose to choose the most promising cam-
era animation for time horizon H i, denoted as qi, as the one with
minimum total cost, i.e. :

qi = argmin
j

Ci
j (8)

5.3 GPU-based evaluation

We have presented our evaluation metric on camera animations.
However, some costs are expensive to compute. In particular, occlu-
sion and collision testing requires to trace a large number of rays
(i.e. N rays, for many time steps, for hundreds of camera animations).
It is worth noting that many of our computations are independent
and can therefore be performed in parallel. In a similar way, the
evaluation of a cost at discretized time steps along a given animation

are also independent. Hence, we propose to cast our evaluation of
single costs into a massively-parallel computation on GPU.

We design our system in a way the we only need to send the
animation space (in orthonormal coordinate system) once to the
GPU. Then, when we need to reposition the camera animation space,
for horizon H i, we simply update the 4× 4 transform matrix Mi.
And, from this data, one can straightforwardly compute any camera
position qi

j(t) for any time t.

Second, for occlusion and collision computations, we propose to
rely on the recent RTX technology allowing to perform real-time ray
casting requests on GPU. To discretize the time integral of our costs,

we run h
δ t

kernels per track (each kernel corresponds to a discretized
time step). Each kernel launches N rays, one per sample s picked
onto the target object. In our tests, we use N = 20, and 100 kernels

per camera animation. In turn, δ t = h
100 = 0.05. The result of these

computations are stored into a 2D texture (as shown in figure 5),
where the texture coordinates u and v map to one time step t and one
animation of index j, respectively. Occlusion and collision costs are
stored into two different channels.

Third, we rely on a compute shader to compute all other costs,
and combine them with occlusion and collision costs. This shader
uses one kernel per camera animation. It stores the total cost of all
animations into a GPU buffer, finally sent back to CPU where we
perform the selection step.

6 DYNAMIC TRAJECTORY ADAPTATION

Until now, we have considered a nominal situation where we evaluate
the animation space and select one camera animation for one given
time horizon H i. We now need to consider two other requirements.
First, the camera should be animated to track the target object for an
unknown duration, larger than h. Changes in the target behavior may
also occur, due to interactive user inputs. Second, for any horizon
H i, some camera animations could be in collision with the scene, or
the target could be occluded. This would prevent finding a proper
animation to apply. In other words, the space of potential camera
animations should be influenced by the surrounding scene geometry.
Hereafter, we explain how we account for these requirements.

6.1 User inputs and interactive update

We here assume the camera is currently animated along a curve
qi. We then need to compute a new camera animation for a time
horizon H i+1 in two cases. First, when the target’s behavior is
changed (i.e. the user input has changed). This event indeed breaks
the validity of the currently played animation for future time steps.
Second, it appears reasonable to consider the target behavior, colli-
sion and occlusion information will be less and less reliable as time
advances. In a way similar to motion-predictive control, we then
compute an animation for an anticipated horizon of length h, but
only play the first steps, to account for possible dynamic collisions
and occlusions. The duration of these first steps is specified as a
user-defined ratio of progress along animation qi. In our tests we
used a horizon length h = 5 seconds and a ratio of progress of 10%.
In turn, the new horizon generally starts at ti+1 = ti + 0.1h, while

we set qi+1
start = qi(ti+1).

When an update is required (behavior change, or ratio of progress
reached), we recompute a new camera animation for the next horizon

H i+1: we select a new goal viewpoint (i.e. qi+1
goal

) and update the

transform matrix (i.e. Mi+1) to position the camera animation space
Qi+1. We then evaluate all camera animations in Qi+1.

Animation transitions . To enforce continuity between ani-
mation qi and the animation qi+1 that is to be selected we rely on
an additional cost designed to favor a smooth transition between
consecutive animations. This cost penalizes abrupt changes when
transitioning between two camera animation curves. Our idea is

5 10 15 20 25 30 35 40 45 50
0

1

2
-x

Adaptive scale Naïve scale

5 10 15 20 25 30 35 40 45 50
0

1

2
+x

Adaptive scale Naïve scale

5 10 15 20 25 30 35 40 45 50
0

1

2
-y

Adaptive scale Naïve scale

5 10 15 20 25 30 35 40 45 50

Time (s)

0

1

2
+y

Adaptive scale Naïve scale

(a) Scale on each half-axis (-x,+x,-y,+y).

5 10 15 20 25 30 35 40 45 50
0

0.5

1

-x

Adaptive scale

Naïve scale

5 10 15 20 25 30 35 40 45 50
0

0.5

1

+x

Adaptive scale

Naïve scale

5 10 15 20 25 30 35 40 45 50
0

0.5

1

-y

Adaptive scale

Naïve scale

5 10 15 20 25 30 35 40 45 50

Time (s)

0

0.5

1

+y

Adaptive scale

Naïve scale

(b) Percentage of fails on each half-axis (-x,+x,-y,+y).

5 10 15 20 25 30 35 40 45 50

Time (s)

0

0.1

0.2

0.3

0.4

Adaptive scale Naïve scale

(c) Best animation score.

Figure 8: Comparison of our system with an adaptive scale, or with
a naı̈ve scale, applied on the camera animation space.

to penalize a wide angle between the tangent vector to camera an-

imation qi and the tangent vector to animation qi+1
j ∈ Qi+1, at

connection time ti+1. We write this cost as:

Ci,i+1(j) =
(q̇i(ti+1), q̇

i+1
j (ti+1))

π
(9)

We then rewrite the selection of camera animation qi+1 as:

qi+1 = argmin
j

[

Ci+1
j +wi,i+1 Ci,i+1(j)

]

(10)

where wi,i+1 is the relative weight of the transition cost with regards
to other costs in our test we use wi,i+1 = 0.2.

6.2 Adapt to scene geometry

Different scene geometries obviously impose different constraints
on the camera animations and a single sampled camera animation

space may not enough to tackle all situations. For example, clut-
tered environment such as corridors would ideally require dedicated
samples. In fact, our camera animation space should exhibit as few
collisions and occlusions as possible, while still covering as much
as possible the free space between the target behavior and the scene
geometry. To address this problem, rather than recomputing a new
sampling of camera trajectories dedicated to these specific situations,
we propose a technique to dynamically adapt our camera animation
space to the scene geometry.

To do so, while we evaluate the quality of camera animations
for an horizon H i, we analyse how much collisions and occlusions
occur. This informs us if the free space is well covered or not. We
then propose to dynamically rescale the camera animation space to
make it grow or shrink in the next time horizon H i+1. This rescaling
applies when we update the transform matrix Mi+1, and on the x
and y axes only. It is worth noting that the free space might not
be symmetrical around the target behavior (as illustrated figure 6
where the free space is larger on the left than on the right of the
target). The same applies to the free space above or below the target.
Consequently our idea is to compute four scale values, on all four
directions {−x,+x,−y,+y} along the axis of the camera animation
space. For any camera position along a camera animation, we then
apply either two of them, depending on the sign of the position’s x
and y coordinates in the non-transformed animation space.

To compute this scaling we first leverage the occlusions and
collisions evaluation to store additional information: we count fails
and successes along each axis. We consider a launched ray along
a camera animation (i.e. from the camera position at a given time
step) as a fail if it is marked as occluded or collided, and as a success
if not. Second, we store this information in height arrays: for each
half-axis (e.g. +x or −x), we count successes in one array, and fails
in another array. We further discretize this half-axis by using a given
resolution R and output two histograms of fails and successes (as
illustrated in figure 7). Note that R here defines the scale precision on
each axis. At last we use both histograms to compute the new scale
to apply. We compute the indices i f and is of the medians of both
arrays (fails and successes, respectively). By comparing them, we
define how much we should rescale animations along this half-axis.
If is < i f , we consider that there are too many fails, and multiply the
current scale by i f /R to shrink animations. Otherwise, we consider
the free space is not covered enough, and apply a passive inflation
to the current scale. The aim of this inflation is to help return to a
maximum scale value, when the surrounding geometry allows for
large camera animations.

7 IMPLEMENTATION AND RESULTS

7.1 Implementation

We implemented our camera system within the Unity3D 2019 game
engine. We compute our visibility and occlusion textures through
raytracing shaders provided with Unity’s integrated pipeline and
perform our scores for all sampled animations and timesteps through
Unity Compute Shaders. All our experimentations (detailed in sec-
tion 7.2) have been performed on a laptop computer with a Intel
Core i9-9880H CPU @ 2.30GHz and a NVIDIA Quadro RTX 4000.

7.2 Results

We split our evaluation into three parts. We first validate our adaptive
scale mechanism. We then evaluate the robustness of our system, by
comparing its performances when using a different number or set of
reference camera animations. We finally validate the ability of our
system mixing local and global planning approaches to outperform a
purely local camera planning system. To do so, we compare results
obtained with our system and the one of Burg et al. [1], on the same
test scenes.

To validate our adaptive scale, we study its impact on the quality
of the animation space. For the other evaluations, we compare cam-

Different seeds

0 5 10 15 20 25 30 35 40 45
0

0.5

1

(a) Visibility

Same seed

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

(b) Visibility

0 5 10 15 20 25 30 35 40 45
0

1

2

(c) speed

0 5 10 15 20 25 30 35 40 45
0

1

2

(d) speed

0 5 10 15 20 25 30 35 40 45
0

1

2

(e) acceleration

0 5 10 15 20 25 30 35 40 45
0

1

2

(f) acceleration

0 5 10 15 20 25 30 35 40 45 50
0

1

2

(g) jerk

0 5 10 15 20 25 30 35 40 45 50
0

1

2

(h) jerk

Figure 9: Results for multiple runs, each using a randomly generated camera animation space. This space is sampled with uniform distribution,
with 2400 sample camera animations (Hermite curves). Each plot shows the mean value over time (blue), with a 95% confidence interval (red).
Left: results for 22 runs using different seeds. Right: results for 10 runs using the same seed.

era systems with regards to two main criteria: how much the camera
maintains the visibility on the target object and how smooth camera
motions are. We compute visibility by launching rays onto the target
object, and calculate the ratio of rays reaching the target. A ratio of
1 (respectively 0) means that the target is fully visible (respectively
fully occluded). When relevant, we additionally provide statistics on
the duration of partial occlusions. We then compare the quality of
camera motions through their time derivatives (speed, acceleration
and jerk), which provide a good indication of motion smoothness.

Our comparisons have been performed within 4 different scenes
(illustrated in the accompanying video). We validated our system
by using (i) a Toy example scene where the target is travelling
through a maze containing several tight corridors with sharp turns,
an open area inside a building, and a ramp. We then performed
the comparisons with the technique of Burg et al. [1], by using two
static scenes and a dynamic scene, which the target goes through:
(ii) a scene with a set of columns and a gate (Columns+Gate), (iii)
a scene with set of small and large spheres (Spheres) and (iv) a fully
dynamic scene with a set of randomly falling and rolling boxes, and
a randomly sliding wall (Dynamic). To provide fair comparisons,
in the dynamic scene, the random motions of boxes and of the wall
are the same for both scenes. In addition, for all tests in a scene, we
play a pre-recorded trajectory of the target avatar, but let the camera
system run as if the avatar was interactively controlled by a user, to
ensure motions are the same in all tests.

7.2.1 Impact of adaptive scale

We validate our adaptive scale (section 6.2) by comparing results
obtained (i) when we compute and apply the adaptive scale on all 4
half-axes (−x,+x,−y,+y), and (ii) when we simply apply the same

scale as for the z axis (which we will call the naive scale technique).
We ran our tests by using the toy example scene. For each technique,
each time we evaluate a new set of camera animations, we output the
new scale values and the ratio of fails on each half-axis. In addition,
we output and plot the mean cost of the 5 best animations in this set.
Results are presented in figure 8.

Figure 8a shows how much our mechanism tightens the animation
space (compared to the naive scaling technique) when the avatar
is entering corridors, and grows back to the same scale when the
avatar reaches less cluttered areas (e.g. in the open interior room,
or the outdoor area). As expected, our mechanism allows to adapt
the scale on half-spaces in a non-symmetrical way. As shown by
figure 8b, with our adaptive mechanism, the scaled animation space
also exhibits less fails than using the naive scale technique. As
shown by figure 8c, it allows finding animations with lower costs
most of the time. One exception is between 40s and 50s, where the
camera configuration isn’t the same because the scale is different. In
the naive case the camera is high above the character while in the
adaptive case, the camera is closer to the ground, thus the scores
is not relevant in this case because the two configurations are too
different to be compared.

In the next evaluations, we consider that the adaptive scale mech-
anism is always activated.

7.2.2 Robustness

We study the robustness of our system regarding our randomly
generated camera animation space.

In a first step, we evaluate how performances vary if we run our
real-time system multiple times on the toy example scene. We also
consider two cases: (i) using the same seed for every run (i.e. the

Visibility

0 5 10 15 20 25 30 35 40 45
0

0.5

1

(a) 2400 camera animations

0 5 10 15 20 25 30 35 40 45
0

0.5

1

(b) 1600 camera animations

0 5 10 15 20 25 30 35 40 45
0

0.5

1

(c) 800 camera animations

0 5 10 15 20 25 30 35 40 45
0

0.5

1

(d) 100 camera animations

Figure 10: Visibility when varying the number of sampled curves in
our camera animation space.

same animation space is used), and (ii) using a new seed for every run
(i.e. a new animation space is randomly sampled for each run). For
each case, we sample a set of 2400 animations. Results are presented
in figure 9. As illustrated, with as many sampled animations, all
runs lead to very similar results both on the visibility enforcement
and on the camera motion smoothness. Differences are mainly due
to variations in the actual framerate of the game engine, hence the
rate at which the system takes new decisions.

In a second step, we evaluate how the size of the animation
space (i.e. the number of sampled animations) impacts performances.
We ran our system with 4 different sizes: 2400, 1600, 800 or 100
animations. For each size, we performed 5 runs with random seed,
and combined the results in figures 10, 11 and 12. Figures show
that lowering the size (at least until 800 animations) still delivers
good performances. Our camera system is able to find a series
of camera animations maintaining enough visibility on the target
object through smooth camera motions. As we expected, for 100
animations, our system’s performances are poor: it becomes harder
to find animations with sufficient visibility and ensuring smooth
camera motions. Obviously as we lower the number of camera
animations, the distribution of tangents becomes very sparse, hence
breaking our assumption of a uniform sampling. If the sampled
animation space does not cover enough the free space, it prevents
the finding of qualitative animations.

7.2.3 Comparison to related work

We also compare our system mixing local and global planning
approaches to a purely local camera planning system. We have
run our proposed camera system and the local camera plan-
ning system of Burg et al. [1] in 3 different scenes: two static
scenes (Columns+Gate and Spheres) and a fully dynamic scene

Speed

0 5 10 15 20 25 30 35 40 45
0

1

2

(a) 2400

0 5 10 15 20 25 30 35 40 45
0

1

2

(b) 1600

0 5 10 15 20 25 30 35 40 45
0

1

2

(c) 800

0 5 10 15 20 25 30 35 40 45
0

5

10

(d) 100

Figure 11: Camera speed when varying the number of sampled
curves in our camera animation space.

(Dynamic). The Columns+Gate is the same as in [1] where the
avatar is moving between some columns and go through a doorway.
In the Spheres scene, the avatar is travelling a scene filled with a
large set of spheres, which makes it moderately challenging for the
camera systems. In the Dynamic scene, the avatar must go through
a flat area, where a set of boxes are randomly flying, falling, rolling
all over the place, and a wall is randomly sliding. This makes it
challenging for camera systems to anticipate the scene dynamics
and find occlusion-free and collision-free camera paths.

In our camera system, we used 2400 animations, the recomputa-
tion rate is set to 0.25s and the adaptive scaling is on. We present
results of our tests in figures 13, 14, 15, 16, and 17.

We first compare camera systems along their ability to enforce
visibility on the target object (figure 13). Our tests show that for
moderately challenging scenes, both lead to relatively good results.
Few occlusions occur. However, for a more challenging scene
(Dynamic), our system outperforms Burg et al. ’s system. Even
if occlusions may occur more often, the degree of occlusion is lower
(figure 13b). Moreover, for all 3 scenes, when partial occlusions
occur, they are shorter when using our system (figure 13c). This is
explained by the fact that when no local solution exist, our system
can still find a locally occluded path respecting other constraints,
and leading to a less occluded area. This demonstrates our system’s
ability to better anticipate occlusions especially in dynamic scenes.

Second, we compare the smoothness of camera motions in both
camera systems. Figure 14 presents the side-by-side distributions
of speed, acceleration and jerk for each system. We also provide
the speed, acceleration and jerk along time in figures 15, 16, and
17. One observation we make is that Burg et al. ’s system leads to
lower camera speeds, as it restricts itself to simply following the
avatar. In our camera system, the camera is allowed to move faster,

Jerk

0 5 10 15 20 25 30 35 40 45
0

1

2

(a) 2400

0 5 10 15 20 25 30 35 40 45
0

1

2

(b) 1600

0 5 10 15 20 25 30 35 40 45
0

1

2

(c) 800

0 5 10 15 20 25 30 35 40 45
0

5

10

(d) 100

Figure 12: Camera jerk when varying the number of sampled curves
in our camera animation space.

to bypass the avatar when visibility or another constraint may be
poorly satisfied. Yet, our system provides smoother motions (i.e. less
jerk). One explanation is that local systems often need to steer the
camera from local minima (e.g. low visibility areas). A side effect
is that it may lead, for successive iterations, to an indecision on
which direction the camera should take to reach better visibility. In
turn, this leads to frequent changes in camera acceleration (hence
higher jerk). Conversely, our system has a more global knowledge
on the scene, allowing to more easily find a better path, which avoids
sacrificing the smoothness of camera motions.

8 DISCUSSION AND CONCLUSION

Our system presents a number of limitations. Despite the ability to
evaluate thousands of trajectories, strongly cluttered environments
remain challenging. As smoothness is enforced, visibility may be
lost in specific cases, and designing a techniques that could properly
balance between the properties to handle specific cases need to be
addressed. Also while the dynamic scale adaptation does improve
results by compressing the trajectories in different half spaces, low
values in scales prevent the camera from larger motions where nec-
essary. A future work could consist in biasing the sampling in the
animation space in order to adapt the space to typical local topolo-
gies of the 3D environment. Despite the limitations, the proposed
work improves over existing contributions by proving an efficient
camera tracking technique adapted to dynamic 3D environments and
does not require heavy roadmap precomputations.

REFERENCES

[1] L. Burg, C. Lino, and M. Christie. Real-time anticipation of occlusions

for automated camera control in toric space. In Computer Graphics

Forum, volume 39, pages 523–533. Wiley Online Library, 2020.

5 10 15 20 25 30 35 40 45 50
0

0.5

1
Columns + Gate

Burg 2020 Ours

5 10 15 20 25 30 35 40 45 50 55
0

0.5

1
Spheres

Burg 2020 Ours

2 4 6 8 10 12 14 16 18 20 22

Time (s)

0

0.5

1
Dynamic

Burg 2020 Ours

(a) Visibility over time

Burg 2020 Ours
0

0.2

0.4

0.6

0.8

1

v
is

ib
ili

ty

Columns + Gate

Burg 2020 Ours
0

0.2

0.4

0.6

0.8

1
Spheres

Burg 2020 Ours
0

0.2

0.4

0.6

0.8

1
Dynamic

(b) Visibility ratio (distribution)

Burg 2020 Ours
0

0.5

1

1.5

2

2.5

3

3.5

4

o
c
c
lu

s
io

n
 (

s
e
c
o
n
d
s
)

Columns + Gate

Burg 2020 Ours
0

0.5

1

1.5

2

2.5

3

3.5

4
Spheres

Burg 2020 Ours
0

0.5

1

1.5

2

2.5

3

3.5

4
Dynamic

(c) Occlusion duration (distribution)

Figure 13: Comparison between our system and Burg et al. [1],
regarding the target object’s visibility (a)(b) and, when not fully
visible, the duration of partial occlusion (c).

[2] M. Christie, J.-M. Normand, and P. Olivier. Occlusion-free camera con-

trol for multiple targets. In ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, 2012.

[3] M. Christie, P. Olivier, and J.-M. Normand. Camera control in computer

graphics. In Computer Graphics Forum, volume 27, pages 2197–2218.

Wiley Online Library, 2008.

[4] N. Halper, R. Helbing, and T. Strothotte. A camera engine for computer

games: Managing the trade-off between constraint satisfaction and

frame coherence. In Computer Graphics Forum, volume 20, pages

174–183. Wiley Online Library, 2001.

[5] A. Jovane, A. Louarn, and M. Christie. Topology-aware camera control

for real-time applications. In Motion, Interaction and Games, pages

1–10. 2020.

[6] C. Lino and M. Christie. Intuitive and efficient camera control with the

toric space. ACM Transactions on Graphics (TOG), 34(4):1–12, 2015.

[7] C. Lino, M. Christie, F. Lamarche, G. Schofield, and P. Olivier. A

real-time cinematography system for interactive 3d environments. In

Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, pages 139–148. Eurographics Association,

2010.

Burg 2020 Ours
0

0.2

0.4

0.6

0.8

1
s
p

e
e

d
Columns + Gate

Burg 2020 Ours
0

0.2

0.4

0.6

0.8

1

s
p

e
e

d

Spheres

Burg 2020 Ours
0

0.5

1

1.5

2

s
p

e
e

d

Dynamic

(a) speed

Burg 2020 Ours
0

0.2

0.4

0.6

0.8

1

a
c
c
e

le
ra

ti
o

n

Columns + Gate

Burg 2020 Ours
0

0.5

1

1.5

2

2.5

3

a
c
c
e

le
ra

ti
o

n

Spheres

Burg 2020 Ours
0

1

2

3

4

5

a
c
c
e

le
ra

ti
o

n

Dynamic

(b) acceleration

Burg 2020 Ours
0

5

10

15

20

25

30

je
rk

Columns + Gate

Burg 2020 Ours
0

10

20

30

40

50

je
rk

Spheres

Burg 2020 Ours
0

20

40

60

80

100

je
rk

Dynamic

(c) jerk

Figure 14: Comparison between our system and Burg et al. [1],
regarding the camera speed (a), acceleration (b) and jerk (c) distribu-
tions.

5 10 15 20 25 30 35 40 45 50
0

0.5

1

s
p

e
e

d

Columns + Gate

Burg 2020 Ours

5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

s
p

e
e

d

Spheres

Burg 2020 Ours

2 4 6 8 10 12 14 16 18 20 22

Time (s)

0

0.5

1

1.5

2

s
p

e
e

d

Dynamic

Burg 2020 Ours

Figure 15: Speed along time, for our camera system (blue) and the
one of Burg et al. [1] (red)

[8] A. Litteneker and D. Terzopoulos. Virtual cinematography using opti-

mization and temporal smoothing. In Proceedings of the Tenth Interna-

tional Conference on Motion in Games, pages 1–6, 2017.

[9] T. Nägeli, L. Meier, A. Domahidi, J. Alonso-Mora, and O. Hilliges.

Real-time planning for automated multi-view drone cinematography.

ACM Transactions on Graphics (TOG), 36(4):1–10, 2017.

5 10 15 20 25 30 35 40 45 50
0

0.5

1

a
c
c
e

le
ra

ti
o

n

Columns + Gate

Burg 2020 Ours

5 10 15 20 25 30 35 40 45 50 55
0

1

2

3

a
c
c
e

le
ra

ti
o

n

Spheres

Burg 2020 Ours

2 4 6 8 10 12 14 16 18 20 22

Time (s)

0

1

2

3

4

5

a
c
c
e

le
ra

ti
o

n

Dynamic

Burg 2020 Ours

Figure 16: Acceleration along time, for our camera system (blue)
and the one of Burg et al. [1] (red)

5 10 15 20 25 30 35 40 45 50
0

10

20

30

je
rk

Columns + Gate

Burg 2020 Ours

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

je
rk

Spheres

Burg 2020 Ours

2 4 6 8 10 12 14 16 18 20 22

Time (s)

0

50

100

je
rk

Dynamic

Burg 2020 Ours

Figure 17: Jerk along time, for our camera system (blue) and the
one of Burg et al. [1] (red)

[10] D. Nieuwenhuisen and M. H. Overmars. Motion planning for cam-

era movements. In IEEE International Conference on Robotics and

Automation, 2004. Proceedings. ICRA’04. 2004, volume 4, pages 3870–

3876. IEEE, 2004.

[11] T. Oskam, R. W. Sumner, N. Thuerey, and M. Gross. Visibility transi-

tion planning for dynamic camera control. In Proceedings of the 2009

ACM SIGGRAPH/Eurographics Symposium on Computer Animation,

pages 55–65, 2009.

[12] R. Ranon and T. Urli. Improving the efficiency of viewpoint compo-

sition. IEEE Transactions on Visualization and Computer Graphics,

20(5):795–807, 2014.

[13] P. O. Scokaert and D. Q. Mayne. Min-max feedback model predictive

control for constrained linear systems. IEEE Transactions on Automatic

control, 43(8):1136–1142, 1998.

	Introduction
	Related Work
	Overview
	Camera animation space
	Anticipating the target behavior
	Selecting a goal viewpoint
	Sampling camera animations

	Evaluating camera animations
	Evaluating camera animation quality
	Selecting a camera animation
	GPU-based evaluation

	Dynamic Trajectory Adaptation
	User inputs and interactive update
	Adapt to scene geometry

	Implementation and Results
	Implementation
	Results
	Impact of adaptive scale
	Robustness
	Comparison to related work

	Discussion and Conclusion

