
6040 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 9, SEPTEMBER 2024

Turning a CLIP Model Into a Scene Text Spotter
Wenwen Yu , Yuliang Liu , Member, IEEE, Xingkui Zhu , Haoyu Cao , Xing Sun ,

and Xiang Bai , Senior Member, IEEE

Abstract—We exploit the potential of the large-scale Contrastive
Language-Image Pretraining (CLIP) model to enhance scene
text detection and spotting tasks, transforming it into a robust
backbone, FastTCM-CR50. This backbone utilizes visual prompt
learning and cross-attention in CLIP to extract image and text-
based prior knowledge. Using predefined and learnable prompts,
FastTCM-CR50 introduces an instance-language matching pro-
cess to enhance the synergy between image and text embeddings,
thereby refining text regions. Our Bimodal Similarity Match-
ing (BSM) module facilitates dynamic language prompt genera-
tion, enabling offline computations and improving performance.
FastTCM-CR50 offers several advantages: 1) It can enhance ex-
isting text detectors and spotters, improving performance by an
average of 1.6% and 1.5%, respectively. 2) It outperforms the
previous TCM-CR50 backbone, yielding an average improvement
of 0.2% and 0.55% in text detection and spotting tasks, along
with a 47.1% increase in inference speed. 3) It showcases robust
few-shot training capabilities. Utilizing only 10% of the supervised
data, FastTCM-CR50 improves performance by an average of
26.5% and 4.7% for text detection and spotting tasks, respectively.
4) It consistently enhances performance on out-of-distribution text
detection and spotting datasets, particularly the NightTime-ArT
subset from ICDAR2019-ArT and the DOTA dataset for oriented
object detection.

Index Terms—CLIP, few-shot, generalization, rotated object,
scene text detection, scene text spotting.

I. INTRODUCTION

S CENE text spotting, aiming at the localization and recogni-
tion of text instances within natural images, has remained

at the forefront due to its diverse practical applications, which
include online education, office automation, automatic driv-
ing, and instant translation. The evolution of fully-supervised
deep learning technologies has spearheaded substantial advance-
ments within scene text spotting. Yet, these supervised method-
ologies, are heavily reliant on detailed and extensive annotations,
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indicating a potential limitation when facing scenarios with
divergent data distributions. How to improve the performance of
text spotting techniques under circumstances of sparse annotated
data or when shifting between different domains - commonly
referred to as few-shot training and generalization ability - is
increasingly gaining attention.

In the past decade, utilizing the backbones such as VGG16
and ResNet-50 from ImageNet and MSCOCO to acquire better
initialization and generalization ability for scene text detec-
tion and spotting are commonly adopted as a basic setting.
Recently, developments in leveraging pretrained vision and
language knowledge, particularly through the large-scale Con-
trastive Language-Image Pretraining (CLIP) model [1], have
shown promising results in a wide range of downstream tasks.
These include but are not limited to image classification [2],
object detection [3], and semantic segmentation [4], [5]. In the
realm of text spotting, where scene text often provides rich visual
and character information, the potential of the CLIP model is
particularly evident. How to excavate cross-modal information
from visual, semantic, and text knowledge to enhance the per-
formance of text detection and spotting models has gained more
and more attention. Song et al. [6], for instance, has proposed
a fine-grained cross-modality interaction approach, inspired by
CLIP, to align unimodal embeddings and improve the learning
of representations through pretext task pretraining for scene text
detection. Wan et al. [7] have brought forth an approach that
involves a self-attention based text knowledge mining technique
to boost the backbone via image-level text recognition pretext
task pretraining. Meanwhile, Xue et al. [8] have introduced a
weakly supervised pretext task pretraining method aiming to
jointly learn and align visual and partial textual information. The
goal is to cultivate effective visual text representations applicable
to scene text detection and spotting.

Contrary to existing approaches illustrated in Fig. 2, our aim
is to transform the CLIP model directly into a foundation for
text detection and spotting, eliminating the need for pretext task
pretraining process. However, this is not a straightforward task,
as we empirically observe that only solely employing the CLIP
model leads to minimal enhancements, and even worse results
in aerial object detection, as shown in Section IV-I. The primary
challenge lies in identifying an effective method to leverage
visual and semantic prior information specific to each image.

To this end, we introduce a new backbone specifically de-
signed for scene text detection and spotting tasks, termed as
FastTCM-CR50. This model can be conveniently incorporated
into existing scene text detection and spotting frameworks
to enhance their performance. Central to our approach is a
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Fig. 1. Comparison of F-measure and FPS among different backbones on
text spotting and text detection methods. FastTCM-CR50 achieves higher
performance while significantly improving the inference speed compared to
TCM-CR50. The text spotting F-measure is calculated across IC15, Total-Text,
and CTW1500. The text detection F-measure is calculated across IC15, TD, and
CTW1500, both averaged across the datasets.

cross-modal interaction mechanism established through visual
prompt learning. The mechanism, realized via cross-attention,
recovers the locality feature from the CLIP image encoder,
thereby capturing fine-grained information for the subsequent
matching of text instances with the language, which is partic-
ularly useful in responding to coarse text regions. Further, to
exploit the prior knowledge from the text encoder for different
input images, we utilize an improved language prompt unit built
on the learnable query and bimodal similarity matching to obtain
global image information. In addition, we have also devised an
instance-language matching method to align the image and text
embeddings, which aids the image encoder to refine text regions
based on cross-modal visual-language priors. The FastTCM-
CR50 model can then be directly fine-tuned for the text detection
and spotting tasks without requiring a pretext task pretraining,
as detailed in Fig. 2(c). Compared to our conference version
TCM-CR50 [9], FastTCM-CR50 introduces Bimodal Similarity
Matching (BSM) module as well as the learnable parameters as
an implicit image condition that enables and further enhances
the CLIP text encoder to perform offline calculations during
inference, thereby achieving better results and reducing the
inference time, as shown in Fig. 1.

We summarize the advantages of our method as follows:
� Our proposed FastTCM-CR50 backbone inherently en-

hances current scene text detectors and spotters, resulting in
average performance improvements with numerous base-
line methods by 1.6% and 1.5% for scene text detection
and spotting tasks, respectively.

� Besides, FastTCM-CR50 outperforms the previous text
detection and spotting backbone TCM-CR50, delivering
an average performance boost of 0.2% and 0.55% in text
detection and spotting tasks, respectively, along with a
notable 47.1% increase in inference speed.

� Demonstrating robust few-shot training capabilities, our
new backbone, when trained with only 10% of the su-
pervised data, exhibits an impressive average performance
surge of 26.5% and 4.7% for text detection and spotting
tasks, respectively.

� In terms of generalization ability, our approach notably sur-
passes baseline methods by an average of 12.4% and 14.8%

for domain adaptation tasks for text detection and spotting,
respectively. Particularly noteworthy are the significant
improvements achieved on the NightTime-ArT subset from
ICDAR2019-ArT and the rotated object detection dataset,
DOTA-v1.0, illustrating its robust generalization capabili-
ties across diverse task domains.

II. RELATED WORKS

A. Scene Text Detection

Scene text detection is a technique that exclusively uti-
lizes bounding box annotations. This method can generally be
categorized into two primary types: segmentation-based and
regression-based techniques.

Segmentation-based Methods: Segmentation-based tech-
niques typically perform operations at the pixel, segment, or
contour level, subsequently grouping these into text instances.
Notable methods include the Segment Linking (SegLink) by
Shi et al. [10], using a fully-convolutional neural network for
detecting segments and links; the TextSnake by Long et al. [11],
an adaptable approach for detecting text of varying shapes;
and the Progressive Scale Expansion Network (PSENet) by Li
et al. [12], generating diverse kernel scales for each text in-
stance. Efficient and accurate systems like the Pixel Aggregation
Network (PAN) developed by Wang et al. [13] have emerged,
combining a low computational-cost segmentation head with a
learnable post-processing system. Additionally, unique methods
such as the Differentiable Binarization (DB) module introduced
by Liao et al. [14] incorporate the binarization step directly into
the segmentation network. Meanwhile, the transformer-based
architecture proposed by Tang et al. [15] performs detection
based on select representative features to decrease computa-
tional cost and reduce background interference. These methods
underscore the wide range and adaptability of segmentation-
based techniques in text detection. Further, Long et al. [16]
introduced an end-to-end model capable of performing unified
scene text detection and visual layout analysis simultaneously.

Regression-based Methods: Regression-based methods view
text as a single object and directly regress the bounding boxes
of the text instances. Zhang et al. [17] propose a multi-oriented
text detection method utilizing Fully Convolutional Networks,
which uses both local and global cues to locate text lines. Liu et
al. [18] develop the Deep Matching Prior Network (DMPNet),
using quadrilateral sliding windows and a sequential protocol
for regression to predict text with a compact quadrangle. He et
al. [19], [20] introduced models for text detection that utilize a re-
gional attention mechanism and deep direct regression to predict
the text bounding box. Liao et al. [21] create a unified deep neural
network for natural image text detection, and Zhou et al. [22]
designed the EAST model that predicts words or text lines of any
orientation and quadrilateral shape in full images. Innovative
methods like LOMO by Zhang et al. [23], and the adaptive
text region representation by Wang et al. [24] have also been
developed. Zhu et al.’s FCENet [25], Liu et al.’s MOST [26],
and Zhang et al.’s adaptive boundary proposal network [27]
further contribute to the field by introducing novel concepts
and methodologies. Dai et al. [28] use a progressive contour
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Fig. 2. We compare different paradigms of utilizing text knowledge for scene text detection and spotting. Our approach directly delivers an enhanced CLIP
backbone, eliminating the need for a pretraining process that relies on specifically designed pretext tasks. CR50 represents for CLIP-ResNet50 model.

regression strategy, and Ye et al.’s DPText-DETR [29] employs
explicit point coordinates and an enhanced self-attention mod-
ule. Zhang et al. [30] present a unified coarse-to-fine framework
for text detection using an iterative boundary transformer.

B. Scene Text Spotting

Scene text spotting typically employs a unified end-to-end
trainable network, blending text detection and text recognition
into a cross-modal assisted paradigm. This integrated approach
streamlines text detection and recognition into a singular net-
work. It enables simultaneous localization and identification
of text within images, capitalizing on the synergistic relation-
ship between text detection and recognition to augment over-
all performance. Scene text spotting can be bifurcated into
two principal categories: regular end-to-end scene text spotting
and arbitrarily-shaped end-to-end scene text spotting. Regu-
lar end-to-end scene text spotting concentrates on discerning
and deciphering text within standard-shaped regions, whereas
arbitrarily-shaped end-to-end scene text spotting broadens its
scope to manage text in irregular or curved formations.

Regular End-to-end Scene Text Spotting: Li et al. [31] propose
one of the earliest end-to-end trainable scene text spotting meth-
ods. Their approach effectively merged detection and recogni-
tion features using RoI Pooling [32] in a two-stage framework.
Originally designed for horizontal and focused text, their method
showed significant performance improvements in an enhanced
version [33]. Busta et al. [34] made contributions to the field with
their end-to-end deep text spotter. In further advancements, He
et al. [35] and Liu et al. [36] incorporated anchor-free mecha-
nisms to enhance training and inference speed. They employed
different sampling strategies, such as Text-Align-Sampling and
RoI-Rotate, respectively, to extract features from quadrilateral
detection results.

Arbitrarily-shaped End-to-end Scene Text Spotting: Liao et
al. [37] introduced Mask TextSpotter which uses Mask R-
CNN with character-level supervision to detect and recog-
nize arbitrarily-shaped text. Mask TextSpotterv2 [38] reduces
reliance on character-level annotations. Qin et al. [39] employ

RoI Masking for attention on arbitrarily-shaped text regions.
Feng et al. [40] utilize RoISlide for handling long text, whereas
Wang et al. [41] focus on boundary points detection, text rectifi-
cation, and recognition. CharNet by Xing et al. [42] also caters
to arbitrarily-shaped text spotting. Liao et al.’s Segmentation
Proposal Network (SPN) [43] and Liu et al.’s ABCNet [44] are
other noteworthy contributions. ABINet++ by Fang et al. [45]
innovatively uses a vision model and a language model with an
iterative correction mechanism. Huang et al.’s SwinTextSpot-
ter [46] uses a transformer encoder for detection and recogni-
tion. Approaches based on DETR [47] and variants [48] for
RoI-free scene text spotting have also shown promising results.
TESTR [49] uses an encoder and dual decoders, while TTS [50]
uses a transformer-based approach. SPTS [51] employs a single
point for each instance and uses a Transformer to predict se-
quences. DeepSolo [52] allows a single decoder to perform text
detection and recognition.

C. Cross-Modal Pretraining Methods

Cross-modal assisted methods leverage a rich blend of cross-
modal information including visual, semantic, and text data to
amplify the performance for scene text detection and spotting
tasks. Wan et al. [7], for instance, implemented image-level
text recognition pretext task pretraining to fortify the back-
bone using their proposed self-attention-based text knowledge
mining mechanism. Taking inspiration from CLIP, Song et
al. [6] formulated three pretext task pretraining for fine-grained
cross-modality interaction, designed to align unimodal embed-
dings and learn enhanced representations of the backbone. Xue
et al. [8] proposed a weakly supervised pretext task pretraining
method, which simultaneously learns and aligns visual and
partial text instance information, with the aim of producing
effective visual text representations.

D. Comparison to the Conference Version

This paper is a substantial extension of our prior publi-
cation [9]. Building upon this foundation, our current study
incorporates three major improvements that contribute to the
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Fig. 3. Overall framework of our approach.

advancement of the field of scene text detection and scene text
spotting.

1) We introduced FastTCM-CR50, an innovative text spot-
ting backbone that overcomes the limitations of our con-
ference version which is solely tested on scene text detec-
tion. It incorporates a meta query and Bimodal Similarity
Matching (BSM), eliminating the need for text encoder in
the inference process, leading to a remarkable speedup.
Moreover, it dynamically augments text embeddings with
visual modalities, enhancing the overall performance.
Specifically, it brings about substantial improvements in
inference speed (by 47.1%) while enhancing performance.

2) Extensive experiments were conducted to evaluate the per-
formance of TCM and FastTCM in different settings. We
explored their utility in boosting the efficacy of existing
text detectors and spotters, their competence in few-shot
learning, and their domain adaptation capabilities. Our
thorough ablation studies offered insights into the con-
tributions of our method in harnessing pretrained CLIP
knowledge to elevate the performance of text detectors
and spotters.

3) Our method exhibited impressive adaptability across di-
verse tasks. The proposed FastTCM-CR50 showed their
efficacy in scene text spotting and complex tasks like ori-
ented, dense, and small object detection in aerial imagery.

III. METHODOLOGY

An overview of our approach is shown in Fig. 3. In essence,
we repurpose the CLIP model to serve as the backbone, utilizing
the FastTCM as a bridge between the CLIP backbone and the
detection/spotter heads.

A. Prerequisite: CLIP Model

The CLIP model [1] has demonstrated substantial potential in
the realm of learning transferable knowledge and open-set visual
concepts, given its capacity to analyze 400 million unannotated
image-text pairs during its pretraining phase. Prior research [53]
reveals that CLIP’s individual neurons are adept at capturing
concepts in literal, symbolic, and conceptual manners, which
serves as an innately text-friendly model, capable of effec-
tively mapping the space between image and text [54]. During
its training phase, CLIP learns a joint embedding space for
two modalities through a contrastive loss. Given a batch of
image-text pairs, the model maximizes the cosine similarity
with matching text and minimizes the similarity with all other
unmatched text for each image. The same process applies to each
piece of text, which has allowed CLIP to be utilized for zero-shot

image recognition [2]. However, leveraging the valuable insights
generated by such a model presents two prerequisites. First, an
effective method is required to access the prior knowledge stored
within the CLIP model. Second, while the original model is
designed to measure the similarity between a complete image
and a single word or sentence, scene text detection and spotting
usually involve numerous text instances per image, all of which
need to be equivalently recalled.

B. FastTCM

FastTCM, designed to enhance the CLIP model, serves as
a robust foundation for boosting existing scene text detectors
and spotters. It achieves this by extracting both image and text
embeddings from CLIP’s image and text encoders, respectively.
The first step in the process is designing a cross-modal interac-
tion mechanism. We do this via visual prompt learning which
restores the locality feature from CLIP’s image encoder. The
enhanced locality feature allows for capturing fine-grained data
to effectively respond to a more general text region, setting the
stage for subsequent matches between text instances and lan-
guage. Next, to better channel pre-trained knowledge, we build
a language prompt unit. This unit produces a contextual cue for
each image. For the efficient extraction of interactions between
the image and text encoder, all while enabling faster inferences,
we use a method called Bimodal Similarity matching. This
method allows for the offline computation of inferences using
the CLIP text encoder, along with the dynamic generation of
language prompts that are based on the conditions of the image.
Finally, an instance-language matching technique is employed to
align the image and text embeddings. This encourages the image
encoder to meticulously refine text regions from the cross-modal
visual-language priors.

1) Image Encoder: We use the pretrained ResNet50 [55] of
CLIP as the image encoder, which produces an embedding vec-
tor for every input pixel. Given the input image I ′ ∈ RH×W×3,
image encoder outputs image embedding I ∈ RH̃×W̃×C , where
H̃ = H

s , W̃ = W
s , and C is the image embedding dimension (C

is set to 1024) and s is the downsampling ratio (s is empirically
set to 32), which can be expressed as:

I = ImageEncoder(I ′) . (1)

2) Text Encoder: The text encoder takes input a number of of
K classes prompt and embeds it into a continuous vector space
RC , producing text embeddings T = {t1, . . . , tK} ∈ RK×C as
outputs of the text encoder, where ti ∈ RC . Specifically, we
leverage the frozen pretrained text encoder of CLIP throughout
as the text encoder can provide language knowledge prior to text
detection and spotting.K is set to 1 because there is only one text
class in text detection task. Different from the original model that
uses templates like “a photo of a [CLS].”, we predefine discrete
language prompt as “Text”. Then, a part of the text encoder input
t′in is defined as follows:

t′in = WordEmbedding(Text) ∈ RD , (2)
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Fig. 4. Details of the FastTCM. The image encoder and text encoder are
directly from the CLIP model. The red dashed arrows represent training-only
operators, with the corresponding upstream calculation procedure performed
offline during the inference stage.

whereWordEmbedding(·) denotes word embedding for prede-
fined prompt “Text” class. D is the word embedding dimension
and is set to 512.

Inspired by CoOp [2], [56], we also add learnable prompt
{c1, . . . , cn} to learn robust transferability of text embedding
for facilitating zero-shot transfer of CLIP model, where n is the
number of learnable prompt, which is set to 4 by default, and
ci ∈ RD. Thus, the input tin of the text encoder is as follows:

tin = [c1, . . . , cn, t
′
in] ∈ R(n+1)×D . (3)

The text encoder takes tin as input and generates text embedding
T = {t1} ∈ RC , and T is donated by tout ∈ RC for simplifi-
cation:

tout = TextEncoder(tin) ∈ RC . (4)

3) Language Prompt Unit: Although the predefined prompt
and learnable prompt are effective for steering the CLIP model,
it may suffer from limited few-shot or generalization ability to
open-ended scenarios where the testing text instance is out-of-
distribution from the training images. To this end, we present
a language prompt module to generate a feature vector, termed
as conditional cue (cc), as depicted in Fig. 5. For each image,
the cc is then combined with the input of the text encoder tin,
formulated as follows:

t̂in = cc+ tin ∈ R(n+1)×D , (5)

where t̂in is the new prompt input of the text encoder conditioned
on the input image, and we replace tin with t̂in in (4).

As depicted in Fig. 4, we introduce meta query to generate
an implicit conditional cue (cc) followed by a two-layer feed-
forward network, enabling the decoupling of the text encoder
from the inference process. In addition, we design a bimodal sim-
ilarity matching (BSM) module to act as a gate, which controls
the amount of visual modal information that should compensate
for text modal embeddings. This dynamic enrichment of text
embeddings with visual information is helpful to the overall
performance of the model.

Meta Query: Specifically, FastTCM first incorporates a meta
query, denoted as MQ, which is initialized with learnable

parameters representing the shape of RC . The meta query serves
as an implicit image condition to guide the generation of subse-
quent language prompt, steering the pretrained knowledge from
the text encoder. This operation is motivated by DETR [47],
which utilizes a Transformer Encoder, and Decoder that looks
for a specific number of object queries (potential object de-
tections). This substitution allows us to generate an implicit
conditional cue cc, and is formulated as follows:

cc = LN(σ(LN(MQ)W 1 + b1))W 2 + b2 ∈ RD , (6)

where cc represents the generated implicit conditional cue,
which is utilized in subsequent steps. W 1 ∈ RC×C , W 2 ∈
RC×D, b1 ∈ RC , b2 ∈ RD, and we broadcast cc with tin to
get t̂in in (5). It is important to note that once training is
completed, the meta query remains unchanged. This allows
the CLIP text encoder to perform offline participant calculation
during inference, resulting in reduced inference time and making
FastTCM more suitable for practical real-world applications.

Bimodal Similarity Matching: Given the output of the text
encoder tout and the global image-level feature Ī , we first
calculate the cosine similarity between text embeddings and
globality image, as defined by the following equation:

sim =
Ī · tout
|Ī||tout| , (7)

where sim serves as the relevance threshold for an output gate
that controls the amount of visual modal information used to
compensate for text modal embeddings. Next, using the rele-
vance threshold sim, we apply a weighted sum between t̂out
and Ī as follows:

t̂out = sim · Ī + tout , (8)

where t̂out is the new output of the text encoder, which is
dynamically post-conditioned on the implicit image features. We
use t̂out to replace tout in subsequent processes, including visual
prompt generator (9) and instance-language matching (11).

4) Visual Prompt Generator: We design a visual prompt
generator to adaptively propagate fine-grained semantic infor-
mation from textual features to visual features, as presented in
Fig. 5. Formally, we use the cross-attention mechanism in Trans-
former [57] to model the interactions between image embedding
(Q) and text embedding (K, V ). The visual prompt Ĩ is then
learned for transferring the information prior from image-level
to text instance-level, which is defined as:

Ĩ = TDec(Q = I,K = tout, V = tout) ∈ RH̃×W̃×C , (9)

where TDec denotes the Transformer Decoder. In practice, it
consists of 6 bidirectional transformer decoder layers with 4
heads for adequately interacting between image embeddings and
text embeddings; transformer width is 256, and the feed-forward
hidden dimension is set to 1024.

Based on the conditional visual prompt, the original image
embedding I is equipped with Ĩ to produce the prompted
text-aware locality embeddings Î used for instance-language
matching (11) and downstream detection and spotting head:

Î = I + Ĩ . (10)
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Fig. 5. Illustration of the language prompt module (top) and visual prompt
module (bottom).

5) Instance-Language Matching: Given the output of the text
encoder and image encoder, we perform text instance-language
matching alignment on text-aware locality image embedding Î
and text embedding tout by the dot product followed by sigmoid
activation to get binary score map. The mixture of the generated
conditional fine-grained embedding Ĩ and visual embedding I
can allow text instances existing in visual features to be better
matched with pretrained language knowledge in collaboration.
The matching mechanism is formulated as follows:

P = sigmoid(ÎtTout/τ) ∈ RH̃×W̃×1 , (11)

where tout is text embedding because of only one text class in
text detection scenarios, and τ is the temperature coefficient
which is empirically set to 0.07 by default. P is the binary
text segmentation map. The segmentation maps are supervised
using the ground-truths as an auxiliary loss and concatenated
by the prompted embedding Î for downstream text detection
and spotting head to explicitly incorporate language priors for
detection. During training, we minimize a binary cross-entropy
loss between the segmentation map P and ground-truth, which
is defined as follows:

Laux =

H̃∑

i

W̃∑

j

yij log(Pij) + (1− yij) log(1− Pij) , (12)

where yij andPij are the label and predicted probability of pixel
(i, j) belonging to the text instances, respectively.

C. Optimization

The loss function Ltotal is the sum of task loss Ltask and
auxiliary loss Laux, formulated as follows:

Ltotal = Ltask + λLaux , (13)

where λ is a trade-off hyper-parameters and set to 1 in this
paper. Ltask depends on downstream text detection methods
including segmentation and regression categories, or text spot-
ting methods. In the inference period, we use the output of
the corresponding task head as the final result. In practice, we

integrate the proposed method into both text detectors and text
spotters to validate the effectiveness of our methods.

IV. EXPERIMENTS

We conduct extensive experiments to validate FastTCM. Our
first set of experiments examines how FastTCM-CR50 backbone
can be incorporated into existing text detectors and spotters
to achieve consistent performance improvements. Next, we
demonstrate the few-shot training capability and generalization
ability by incorporating the FastTCM method. In the third set of
experiments, we compare our method with previous pretraining
methods tailored for text detection and spotting. Then, we pro-
vide thorough experiments to evaluate the sensitivity w.r.t. the
proposed designs. Finally, we also conducted experiments on
challenging oriented aerial object detection datasets to demon-
strate the effectiveness of our method.

A. Datasets

Our experiments are conducted on a number of com-
monly known scene text detection and spotting benchmarks
including ICDAR2013 (IC13) [58], ICDAR2015 (IC15) [59],
MSRA-TD500 (TD) [60], CTW1500 (CTW) [61], Total-Text
(TT) [62], ArT [63], MLT17 [64], MLT19 [65], SynthText [66],
CurvedSynthText-150k [44], and TextOCR [67]. More details
of the datasets refer to appendix, available online.

B. Implementation Details

In our text detection task experiments, we test the effi-
cacy of prominent detection methodologies including DBNet
(DB) [14], PAN [13], FCENet (FCE) [25], and a newer methods
TextPMs [68]. The detection head from DBNet, PAN, FCENet,
and TextPMs are utilized to yield the final results. To test the
model’s few-shot learning, we train on the benchmark using
varying proportions of training data, and evaluate it against the
corresponding test data. The generalization capability is tested
by training it on respective source datasets and subsequently
evaluating it on a target dataset with a markedly different dis-
tribution. The generalization ablity of the FastTCM-CR50 is
assessed through two different forms of adaptation: synthtext-to-
real and real-to-real. A series of ablation studies are undertaken,
focusing on the predefined prompt, the learnable prompt, the
language prompt module, the visual prompt generator, the BSM
module, and various settings.

For end-to-end text spotting tasks, we carry out experiments
with recent methods such as Mask TextSpotter v3 (MTSv3) [43],
ABCNet [44], ABINet++ [45], TESTR [49], and DeepSolo [52].
These selected methods encompass both RoI-based and RoI-free
text spotters. To ensure consistency with these text spotting
methods, we use the same training approach, respecting the
training data and hyper-parameters specific to each method.

C. Cooperation With Existing Detector Methods

We assessed the impact of substituting the original back-
bones (ResNet50) of FCENet, PAN, DBNet, and TextPMs with
the pretrained image encoder ResNet50 from CLIP (CR50).
Yet, as evidenced in Table I, merely leveraging the pretrained
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TABLE I
TEXT DETECTION RESULTS OF COOPERATING WITH EXISTING DETECTORS ON

IC15, TD, AND CTW

visual-language knowledge of the CLIP model (CR50) is in-
adequate for boosting scene text detection performance. This
suggests the necessity of employing an appropriate method
to harness the potential of the CLIP model. Subsequently, we
evaluated the performance of FastTCM-CR50 with these two
backbones. As illustrated in Table I, FastTCM-CR50 can be
effectively employed to augment current scene text detectors,
yielding an average improvement of 1.6% compared to the
respective baseline methods. Furthermore, it is demonstrated
that the FastTCM-CR50 backbone surpasses the TCM-CR50
backbone in terms of F-measure, contributing to an average
performance enhancement of 0.2% for DBNet, FCENet, PAN,
and TextPMs on the IC15, TD, and CTW datasets, with an
average speed improvement of 45.87%. Furthermore, with the
incorporation of stronger detectors like TextPMs, FastTCM
consistently delivered an average performance increase of 1.2%
across various text detection datasets compared to baseline
method. This improvement demonstrates the adaptability of our
method, further establishing its benefits even when integrated
with top-tier detection algorithms.

We visualize our method in Fig. 6. It shows that the fine-
grained features Ĩ containing text information is recovered from
the global image embedding I , demonstrating that FastTCM can

Fig. 6. Visualization results of our method. The left is the image embedding I
of different backbone including R50, CR50, TCM-CR50, and FastTCM-CR50,
and the right is the generated visual prompt Ĩ . Our method FastTCM-CR50 can
accurately identify text regions. Best view in screen.

identify text regions and provide these prior cues for downstream
text perception related tasks.

D. Cooperation With Existing Spotter Methods

Detection-only Results: As demonstrated in Table II, we
noted consistent enhancements in F-measure on text spotting
benchmarks when TCM-CR50 was combined with five distinct
text spotting methods. Particularly, TCM-CR50 outperformed
the baseline methods such as MTSv3, ABINet++, ABCNet,
DeepSolo, and TESTR with an R50 backbone, with performance
boosts ranging from +0.2% to +1.8% in terms of F-measure on
the TT dataset. Consistent improvements were also witnessed on
IC15 and CTW datasets, underscoring TCM-CR50’s suitability
for text-spotting methods. Furthermore, when FastTCM-CR50
was integrated with MTSv3, ABINet++, ABCNet, DeepSolo,
and TESTR, we observed an average performance enhancement
of 0.2% compared to TCM-CR50 based methods, accompanied
by similar speed improvements, indicating FastTCM-CR50’s
superior efficacy. Additionally, the inclusion of an extra large-
scale dataset, TextOCR, resulted in further performance gains,
such as a 0.9% improvement on the TT dataset using TESTR.

End-to-end Spotting Results: In Table II, we present the
end-to-end spotting performance of our method combined with
existing scene text spotters. TCM-CR50 demonstrates favorable
performance when integrated with various cooperative methods.
Specifically, under the end-to-end setting with the strong lexicon
on dataset IC15, TCM-CR50 outperforms the original MTSv3,
ABINet++, ABCNet, DeepSolo, and TESTR by +0.8%, +0.3%,
+2.3%, +0.1%, and +0.4%, respectively, in terms of the ‘S’
metric. Similar consistent improvements are also observed for
datasets TT and CTW, indicating that TCM-CR50 effectively
enhances the performance of both existing scene text detectors
and spotters. Furthermore, when replacing TCM-CR50 with
FastTCM-CF50, we observe a further improvement in perfor-
mance, with an average gain of 1.5% compared to baseline
methods and an average gain of 0.55% compared to TCM-
CR50. Additionally, the inference speed of FastTCM-CR50
is increased by approximately 46.4%. These results highlight
the superiority of FastTCM-CR50 and its potential for efficient
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TABLE II
END-TO-END TEXT SPOTTING RESULTS OF COOPERATING WITH EXISTING SPOTTER METHODS ON TOTAL-TEXT, ICDAR2015, AND CTW1500

and accurate text spotting tasks. Besides, when using additional
large-scale TextOCR as training data, our model can achieve fur-
ther improvement, suggesting the compatibility of our method
with large-scale datasets.

E. Few-Shot Training Ability

Results for Text Detection Task: To verify the few-show train-
ing ability of our method on text detection tasks, we directly
train our model on real datasets using various training data
ratios without pretraining, and evaluate it on the corresponding
4 benchmarks. As shown in Fig. 7, DB-FastTCM-CR50 shows
robustness on limited data and outperforms the baseline methods
DB in an average of 26.5% in terms of 10% training data
ratio settings. Besides, DB-CR50 has limited improvements
compared to our specific design FastTCM. The results show
that the FastTCM can capture the inherent characteristic of text
via leveraging the pretrained vision and language knowledge of
the zero-shot trained CLIP model.

Few-shot Experiments for Text Spotting: In addition, we
performed few-shot experiments on text spotting tasks using
ABCNet, TESTR, and DeepSolo on Total-Text, as illustrated
in Table III. Considering that the recognizer module in text

TABLE III
FEW-SHOT TRAINING ABILITY OF TEXT SPOTTING TASK WITH VARYING

TRAINING DATA RATIO ON TOTAL-TEXT

The bold font stand for the best performance.

spotting methods often struggles to learn effectively with very
limited data, we followed the text spotting pretraining step
to obtain a suitable initialization for the corresponding text
spotting methods. Subsequently, we applied different training
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Fig. 7. Few-shot training ability of text detection task with varying training
data ratio. “F” represents F-measure.

ratios of the Total-Text dataset to evaluate the few-shot learn-
ing ability. The results demonstrate that both TCM-CR50 and
FastTCM-CR50 exhibit advantages in few-shot learning for text
spotting tasks compared to DB-R50 and DB-CR50. Moreover,
using our method outperforms baseline methods by an average
of 4.7%. This demonstrates the effectiveness and superiority
of FastTCM-CR50 over simply replacing other counterparts.
Furthermore, as shown in DeepSolo item of Table III, the
results show that FastTCM facilitates an average performance
improvement of 3.2% over the training-efficient method Deep-
Solo. This enhancement demonstrates FastTCM’s compatibility
with training-efficient methods and its significant advantage
in few-shot learning scenarios for text spotting tasks, where
it broadens the applicability and utility of our approach in
real-world scenarios.

F. Generalization Ability

CLIP Backbone Generalization: We conducted an experiment
to investigate the generalization performance of DBNet by di-
rectly replacing the backbone of DBNet with CLIP backbone
(CR50), as shown in Table IV. It shows that the CLIP-R50 can
indeed bring benefits for generalization. However, by integrating
with FastTCM-CR50 backbone, the performance can be signif-
icantly improved. It suggests that directly using the pretrained
CLIP-R50 is not strong enough to improve the generalization
performance of the existing text detector, which further indicates
that synergistic interaction between the detector and the CLIP
is important. Meanwhile, FastTCM-CR50 also consistently out-
performs TCM-CR50.

Synth-to-real and real-to-real Adaptation: We conduct two
types of experiments including synthtext-to-real adaptation and

TABLE IV
SYNTHTEXT-TO-REAL ADAPTATION

The bold font stand for the best performance.

TABLE V
REAL-TO-REAL ADAPTATION

The bold font stand for the best performance.

TABLE VI
REAL-TO-REAL ADAPTATION ON SCENE TEXT SPOTTING METHODS

END-TO-END SPOTTING METRIC “NONE” (%) IS REPORTED

The bold font stand for the best performance.

real-to-real adaptation on text detection tasks, as shown in
Tables IV and V, respectively. Real-to-real adaptation contains
monolingual and multi-lingual scenarios. From the tables, we
can see that by integrating the FastTCM-CR50 into DBNet,
we significantly improve the performance by an average of
12.4% in terms of F-measure for four different settings including
synthtext-to-real and real-to-real, which further demonstrates
the effectiveness of our method for domain adaptation. Notably,
FastTCM-CR50 also consistently demonstrates improvements
by an average of 0.4% compared to TCM-CR50 as well, fur-
ther emphasizing the remarkable generalization ablity of our
methods.

Real-to-Real Adaptation on Scene Text Spotting: Besides, we
also conducted real-to-real adaptation experiments with existing
spotting methods, as shown in Table VI. The results show that
the FastTCM-CR50 has the capacity of improving the existing
scene text spotting methods by an average of 14.8%, further
demonstrating the effective generalization ability.
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TABLE VII
COMPARISON WITH EXISTING SCENE TEXT PRETEXT TASK PRETRAINING

TECHNIQUES ON DBNET (DB)

The bold font stand for the best performance.

G. Comparison With Pretraining Methods

The pretraining methods based on specifically designed pre-
text tasks have made effective progress in the field of text
detection. In contrast to these efforts, FastTCM-CR50 can turn
the CLIP model directly into a scene text detector without pretext
task pretraining process. The comparison results are shown in
Table VII, from which we can see that without pretext tasks
for pretraining, DB+FastTCM-CR50 consistently outperforms
previous methods including DB+STKM [7], DB+VLPT [6], and
DB+oCLIP [8]. Especially on IC15, our method outperforms
the previous state-of-the-art pretext task pretraining method by
a large margin, with 89.5% versus 86.5% in terms of the F-
measure. Furthermore, we demonstrate the proposed backbone
can also be further improved using such pretext tasks pretraining
as in oCLIP, with an average of 0.11% improvement in terms of
the F-measure.

H. Ablation Studies

Ablation Study for the Predefined Prompt: When using the
predefined prompt, as illustrated in the second row of Table VIII,
the performances are slightly improved on all four datasets
(IC15, TD, TT, and CTW), with 0.05%, 0.2%, 0.04%, and 0.1%
higher than the baseline method, respectively.

Ablation Study for the Learnable Prompt: Then, results comb-
ing the learnable prompt with the predefined prompt on four
datasets are provided in the third row of Table VIII. We no-
tice that a consistent improvement can be achieved by adding
the learnable prompt. We also show the influence of using
different numbers of the learnable prompt in row 4 to row 6
of Table VIII. We observe that as the value of the number
of the learnable prompt increases, the performance increases
gradually on all datasets. Compared to the value 4, the value
32 obtains obvious improvements on CTW, TD, and TT. We
conjecture that this is because the larger number of the learnable
prompt can better steer the pretrained text encoder knowledge

TABLE VIII
ABLATION STUDY OF OUR PROPOSED COMPONENTS ON IC15, TD, TT, AND

CTW

The bold font stand for the best performance.

which is useful for text detection. In the following experiments,
the default number of the learnable prompt is set to 4 for
simplicity.

Ablation Study for the Language Prompt Module: Besides,
we evaluate the performance of the proposed language prompt
module shown in 7th row of Table VIII. With the help of the
language prompt module, we find that TCM achieves further
improvements on all four datasets, especially on ICDAR2015,
indicating that the conditional cue generated by the language
prompt module for each image can ensure better generalization
over different types of datasets.

Ablation Study for the Visual Prompt Generator: Further-
more, combining the proposed visual prompt generator with
the above other components, the improvement of F-measure is
better than the baseline on all four datasets, with larger margins
of 1.7% and 2.0% on IC15 and TD, respectively. The reason
for this obvious complementary phenomenon is that the visual
prompt generator can propagate fine-grained visual semantic
information from textual features to visual features. Besides,
the prompted locality image embedding generated by the visual
prompt generator can guide the model to obtain more accu-
rate text instance-level visual representations, which boosts the
ability of instance-language matching and generates a precise
segmentation score map that is useful for downstream detection
head.

Ablation Study for the Bimodal Similarity Matching: We
further conducted a comparison of the results with and without
bimodal similarity matching, as outlined in the 7th row of the
BSL+ group of Table VIII. The results clearly demonstrate that
the utilization of bimodal similarity matching leads to higher per-
formance. This finding indicates that bimodal similarity match-
ing plays a crucial role in training the model by dynamically
enriching text embeddings with visual information, resulting in
improved overall performance.
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TABLE IX
ABLATION STUDY OF THE EFFECT OF META QUERY, BSM, LM, AND VG ON

GENERALIZATION PERFORMANCE

The bold font stand for the best performance.

TABLE X
ABLATION STUDY OF THE TRAINABLE PARAMETERS COMPARISON WITH

DBNET ON TD DATASET AND IC13 → IC15

The bold font stand for the best performance.

Ablation Study for the Auxiliary Loss: We compare the results
of with and without auxiliary loss, as shown in the last row of
the BSL+ group of Table VIII. We observe that using auxiliary
loss achieves higher performance. The results indicate auxiliary
loss is beneficial to train the model via imposing constraints
on instance-language matching score map. In addition, the
improvement of the performance suggests that it might help
the image encoder of pretrained CLIP to perceive locality text
regions effectively.

Ablation Study for the Key Component on Generalization Per-
formance: As presented in Table IX, removing the meta query
and BSM elements from FastTCM dramatically deteriorates the
generalization performance, highlighting the importance and
effectiveness of these components. Similarly, removing the VG
and LM elements from FastTCM also results in a substantial
drop in generalization performance, further validating their ef-
fectiveness. Finally, when we remove all of these components,
the performance experiences an additional significant drop, in-
dicating that each of these components contributes to the overall
effectiveness and performance of FastTCM-CR50.

Ablation Study for the Parameters Comparison: For a fair
comparison, we have increased the parameters of DBNet by
replacing the backbone with a larger ResNet and then conduct-
ing text detection experiments on TD dataset and a domain
adaptation experiment on IC13 → IC15. Trainable parameters
and FLOPs are calculated with an input size of 1280 × 800.
Results are shown in Table X. The results show that DBNet
with FastTCM-CR50 has better performance than DBNet with
less model size and computation overhead compared to DBNet
with R152 backbone, demonstrating its effectiveness.

TABLE XI
ABLATION STUDY OF THE DIFFERENT PREDEFINED LANGUAGE PROMPT WITH

DBNET-FASTTCM-CR50 ON TD

The bold font stand for the best performance.

Fig. 8. Top row and bottom row are qualitative results on DOTA-v1.0 testing
set without and with cooperating with FastTCM-CR50, respectively. It contains
15 common categories, such as ship, small-vehicle, harbor, bridge, basketball-
court, storage-tank, etc.

Ablation Study for the number of transformer decoder layers
of VG: The last group of Table X demonstrates the impact
of varying the number of transformer decoder layers of VG
on the performance. The results show that the performance
remains robust across different numbers of decoder layers. This
indicates that in practical applications, we have the flexibility to
decrease the number of transformer decoder layers to achieve a
better trade-off between model parameters and performance. By
reducing the number of layers, we can potentially save compu-
tational resources and memory while maintaining satisfactory
performance, making the model more efficient and practical for
real-world applications.

Ablation Study for the Different Predefined Language Prompt:
We conducted ablation study on the predefined language prompt
with different strings using DBNet with FastTCM-CR50 in
Table XI. Results show that without predefined language
prompt, the performance is harmed. In addition, it can be seen
that there is little performance variation with different prede-
fined language prompt. When the predefined language prompt
becomes long and complex, the model performance drops a
little. We deem that the CLIP is not good at handling complex
instructions because it is pretrained on a dataset of 400 million
image-text pairs that contain noise. As a result, this noise can
affect the CLIP’s ability to deal with long instructions.

Ablation Study for Different Amount of Data: To further ex-
plore whether the FastTCM can learn the additional knowledge
which is hard to be obtained from increasing data, we have
trained the model on large-scale public joint data including
IC13, IC15, TD, CTW, TT, and MLT17, with a total of 13,784
images, and testing it on a NightTime-ArT data (326 images)
carefully collected from ArT. The nighttime examples of ArT
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TABLE XII
DETECTION RESULTS OF COOPERATING WITH EXISTING ROTATED OBJECT DETECTION METHODS ON THE DOTA-V1.0 TESTING SET

TABLE XIII
ABLATION STUDY OF EXPLORATION ON LARGE AMOUNTS OF TRAINING DATA

The bold font stand for the best performance.

are provided in appendix, available online. Results are shown in
Table XIII. The results show that even with the addition of large
amounts of training data, existing methods still show limitations
to the nighttime data that is obviously out-of-distribution from
the training set. However, integrating FastTCM-CR50 can still
perform robustly in such cases, indicating its robust generaliza-
tion ability.

I. Rotated Object Detection

To further validate the generalization ability of our approach,
we adapted it to oriented object detection and evaluated its
performance on the widely used DOTA-v1.0 [98] dataset, which
is specifically designed for oriented object detection in aerial
images. The DOTA-v1.0 dataset consists of 15 common cate-
gories, 2806 images, and 188,282 instances. During training, we
employed the same configuration as the cooperative methods
for rotated object detection. As presented in Table XII, we
combined our model with previous approaches for oriented ob-
ject detection. The results illustrate the consistent improvement
by using the proposed FastTCM-CR50 backbone. We guess
that the improvement of FastTCM-CR50 originates from its
ability to utilize the rich prior knowledge offered by CLIP, thus
optimizing the spotting and location of specific categories within
satellite images. Specifically, FastTCM-CR50 initiates a synergy
between visual features and their textual descriptions. Visual
features aligning with textual descriptors are amplified, enabling
the visual features to focus more on the segments related to
remote sensing categories, thereby augmenting the performance
of rotated object detection. Qualitative results on DOTA-v1.0 are
presented in Fig. 8.

Fig. 9. Failure cases. Green polygons represent predicted detection results,
and blue circle represents error detection regions. The dashed boxes stand for
predicted recognition results, and blue characters are error recognition results.

J. Summary of the Experiments

The experimental analysis of FastTCM-CR50 in scene text
detection and scene text spotting across various benchmarks
demonstrates several advantages: (1) FastTCM can be seam-
lessly integrated to enhance existing scene text detectors and
spotters with high efficiency. (2) FastTCM significantly im-
proves the few-shot training ability of the detectors and spotters.
(3) FastTCM also shows powerful generalization ability for gen-
eralization tasks, including domain adaptation, NightTime-ArT
dataset, and rotated object detection dataset DOTA-v1.0. Some
of the failure cases can be visualized in Fig. 9. We can see
that some text-like objects might be mistakenly regarded as the
positive text region.

V. CONCLUSION

The proposed FastTCM-CR50 backbone provides a notable
enhancement to numerous scene text detectors and spotters,
achieving consistent performance improvements, along with a
significant increase in inference speed of 47.1% compared to
previous TCM-CR50. We conduct comprehensive ablation stud-
ies to demonstrate the effectiveness every aspect of the proposed
method. The robustness of FastTCM-CR50 is also demonstrated
by its remarkable few-shot learning capabilities and generaliza-
tion ability. Significant improvements on the NightTime-ArT
subset from ICDAR2019-ArT and the rotated object detection
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dataset (DOTA-v1.0) further highlight the potential of the pro-
posed method. We hope this work can provide a foundation
for future advancements in the field of scene text detection and
spotting.
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