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Abstract

Recent works have demonstrated great success in pre-training large-scale autore-
gressive language models (e.g., GPT-3) on massive GPUs. To reduce the wall-clock
training time, a common practice is to increase the batch size and learning rate.
However, such practice is often brittle and leads to a so-called stability-efficiency
dilemma: increasing the batch sizes and learning rates leads to better training
efficiency but can also result in training instability, leading to poor generalization
accuracy or failed runs. To better understand this phenomenon, we conduct an
in-depth analysis on large-scale pre-training experiments replicating the GPT-2
model with public dataset. We find that there is a strong correlation between
training instability and extreme values of gradient variance. We further identify that
samples with long sequence lengths contribute to these extreme gradient variance
values, especially at the beginning of the training, indicating that long sequence
length can be a main source of training instability.
Based on the analysis, we present a simple yet effective Sequence Length Warmup
method that aims to solve the training stability-efficiency dilemma by avoiding
extreme gradient variance values. Moreover, we present a lightweight tuning
strategy that allows us to tune our method with just a small portion of the expensive
full training. Experiments replicating GPT-2 models (117M and 1.5B) show that
our approach enables stable training with 8x larger batch size and 4x larger learning
rate, whereas the baseline approach struggles with training instability. To achieve
the same or better zero-shot evaluation results, our method reduces the required
number of training tokens and wall clock time by up to 2.2x and 3.7x, respectively.
Experiments replicating GPT-3 model (125M) show that our approach enables
stable training with 8x larger batch size and 40x larger learning rate, and retains
99% of the zero-shot accuracy on 11 tasks using 10x less data and 17x less time
compared to the original GPT-3 training recipe, while the baseline diverges under
the same settings and only retain 95% of accuracy under lower learning rate.

1 Introduction
Large-scale Transformer-based language models have achieved great success in many natural lan-
guage processing tasks [46, 11]. Among them, large-scale autoregressive models, such as GPT-3 [6],
have attracted lots of attention due to their superior performance on zero-shot generalization, i.e., they
can perform a wide range of tasks that they are not explicitly trained on. However, pre-training GPT
models raises huge challenges on training efficiency and less-discussed training instability issues.
On the efficiency side, as the model size continues to grow from a few hundreds of millions (e.g.,
GPT [31]), to billion-scale parameters (1.5B GPT-2 [33]), and to more recent hundreds of billions
of parameters (175B GPT-3 [6]), the training cost also increases exponentially: it requires 9.2 days
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on 512 V100 GPUs to train a 8.3B GPT-2 [40], and 47.8 days on 2240 A100 GPUs to train a 530B
GPT-3-style model [26]. Such a long training time makes it almost infeasible for most research labs
and practitioners to reproduce these models. Various solutions have been proposed to reduce the
training wall clock time of these large models [40, 25, 35]. However, many solutions require using
more GPUs or sophisticated system techniques.

In this work, we investigate speeding up the pre-training of GPT-style models via exploiting data
efficiency, not at the cost of excessive hardware resources. In particular, in a distributed training
environment, increasing the batch sizes and/or using more aggressive learning rates can make the
model converge faster [41]. However, it has been observed that larger batch sizes and learning rates
can make large-scale GPT model training more difficult, e.g., causing training instability that leads
to divergence or slow convergence [49, 9]. To investigate this training instability issue, we conduct
a thorough study of the GPT-2 pre-training task [33, 40] with different models sizes under various
batch sizes, learning rates, and sequence lengths. We find a stability-efficiency dilemma:

• A larger batch size (and larger learning rate) increases the per-iteration computational efficiency
but with increasing likelihood of training instability and even divergence.

• A smaller batch size makes the training more stable but decreases the per-step computation
efficiency significantly.

We find it difficult to overcome this dilemma by existing techniques such as extra gradient clipping.
More recent proposed techniques such as batch size warmup proposed in [6] does not provide stability
benefit in our evaluations. Recently, Shortformer[30] shows that by adding an additional first training
stage with a shorter sequence length, language models can achieve the same dev. set perplexity with
shorter total training time. However, (1) its main focus is to purely improve training efficiency instead
of solving the efficiency-stability dilemma, and our evaluations show that Shortformer’s 2-stage
approach is insufficient for overcoming the training instability issue for large models (Section 5.1),
(2) it is primarily evaluated on small scale transformer models (247M) on WikiText datasets (103M
tokens) without considering large-scale generative models like GPT with hundreds or even billions of
parameters, and (3) it does not discuss how to choose some of the important hyperparameters, which
is very expensive to figure out for large-scale model training.

Inspired by Shortformer, we investigate the importance of sequence length in training GPT models and
find that it plays an important role in both training stability and efficiency. Based on our investigation,
we propose a simple yet effective method called Sequence Length Warmup (SLW), which starts
training with short sequences and gradually increases the length. We observe that our approach
enables stable and efficient training with much larger batch sizes and learning rates than baseline
approaches. Specifically, we make the following contributions: (1) We conduct an extensive study of
the GPT-2 pre-training task, which provides detailed insights about the training stability-efficiency
dilemma, the correlation between instability and gradient variance outliers, and how sequence length
plays a critical role (Section 3). (2) Based on the study, we present a simple yet effective sequence
length warmup method for GPT-style model (and autoregressive model in general) that enables stable
training with improved training efficiency. We also identify a lightweight hyperparameter tuning
strategy for the approach, which identifies promising hyperparameters by only incurring a small
fraction of the expensive total pre-training cost (Section 4). The implementation of our approach as
well as the necessary changes to the GPT-2/3 pre-training framework has been open sourced in a
deep learning optimization library called DeepSpeed1. (3) We conduct large-scale experiments to
demonstrate the proposed work’s ability to provide superior training stability and efficiency at the
same time (Section 5). Our empirical results show that:

• SLW enables stable and efficient training with 8x larger batch size and 4x larger learning rate
on GPT-2 (117M and 1.5B) models with public datasets, while the baseline and related works
struggle with instability under the same settings. To achieve the same or better zero-shot WikiText-
103/LAMBADA evaluation results at the end of training, SLW reduces the required number of
training tokens and wall clock time by up to 2.2x and 3.7x, respectively.

• On GPT-3 model (125M) pre-training we study an even more aggressive training scenario where
only 10% of data can be used. Our method, with 8x larger batch size and 40x larger learning rate
than the original GPT-3 training recipe, is able to maintain the training stability, retaining 99% of
the zero-shot accuracy on 11 evaluation tasks, and use 10x less data and 17x less time. Without our

1https://github.com/microsoft/DeepSpeed, https://www.deepspeed.ai/
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method, the baseline has unrecoverable divergence under the same settings, and can only retain
95% of the zero-shot accuracy after lowering learning rate to 30x.

2 Background and Related Work
Language Model Pre-training: The accuracy of transformer-based language models grows substan-
tially with its model size [31, 33, 6]. Today, a large language model such as GPT-3 [6] contains up to
175B parameters, and recent studies show that model accuracy can continue to improve with even
larger model sizes [16]. However, training these large models often incurs excessively long training
time and training difficulties [6]. Therefore, there are a lot of demands of performing efficient and
stable training for these models. To have the pre-training finished in a reasonable amount of time, the
most common way is to leverage data parallelism to train models on multiple GPUs. However, the
speedup gains often saturate beyond a few tens of GPUs, because communication becomes the major
bottleneck, i.e., the workers will spend more time communicating gradients than computing them, as
the number of GPUs increases. To mitigate this bottleneck, recent works such as 1-bit Adam [43] have
studied gradient compression and demonstrate their effectiveness against auto-encoding models such
as BERT [11]. An alternative approach to alleviate these overheads is to use large batch sizes. For
example, LAMB [52] and 1-bit LAMB [21] enable stable and efficient distributed BERT pre-training
with batch size up to 64K/32K (for sequence length 128/512, i.e., 8M/16M tokens per batch) while
maintaining the sample-wise convergence speed. For encoder-decoder models, T5 [34] uses batch
size up to 2K (for sequence length 512, i.e., 1M tokens per batch). For autoregressive models such
as the GPT family [31, 33, 6], existing works use batch size up to 1.6K (for sequence length 2K,
i.e, 3.2M tokens per batch). Despite the benefit of reduced communication overhead, large-batch
training is sensitive to hyperparameters and often leads to issues such as slow convergence, training
instabilities, and model divergence. For example, recently a research project shared that they are
dealing with challenging training instability issues when pre-training a 104B GPT-style model with
batch size 2K [49], and another work on a 540B model with batch size 2K observed spikes in the loss
roughly 20 times during training, despite the fact that gradient clipping was enabled [9].

Curriculum Learning: Our method can be viewed as a kind of curriculum learning (CL) [12, 39, 2],
which presents easier/simpler examples earlier during training and gradually increases the sample
difficulties2. Comparing with traditional CL works which focus on solely improving the convergence
speed under the same batch size, learning rate and other hyperparameters, our work is motivated
by the stability-efficiency dilemma and we aim to achieve both efficient convergence and better
stability by enabling stable training with more aggressive hyperparameters. To our knowledge, we
are the first to investigate and confirm that certain curriculum learning method can provide a dual
stability-efficiency benefit.

In the NLP area, most of the curriculum learning works focus on small-scale one-stage tasks and
downstream fine-tuning tasks, such as neural machine translation (NMT) [18, 5, 56, 29, 57] and
natural language understanding (NLU) [36, 37, 44, 50]. There are also a few works explore curriculum
learning for language model pre-training [30, 55, 7]. These works show that curriculum learning
can improve convergence speed, reduce training time, and improve accuracy under the same training
hyperparameters as baseline. In these works, the curriculum difficulty metrics for each training sample
are usually defined as the sentence length, vocabulary frequency, the inference loss on smaller/cheaper
models, or based on self-paced learning [19]. For the pacing function (i.e., to decide the curriculum
difficulty range when sampling next training data batch), these works usually use fixed predefined
functions (e.g., gradually increase difficulty upper bound by linear, root, and exponential functions),
bucketing heuristics (group data with similar difficulties, and sample from a subset of buckets every
time), or based on self-paced learning.

3 GPT-2 Pre-training Stability-Efficiency Analysis
In this section we perform an in-depth analysis of pre-training tasks (without our method) replicating
the GPT-2 models with public data. We follow the training pipeline from the NVIDIA Megatron-LM
work [40]3. All of the experiments are performed on 128 NVIDIA V100 GPUs (32GB memory).
There are 16 nodes and 8 GPUs per node. GPUs inside the same node are connected by NVLink 2.0,
and nodes are connected by a 100 Gigabit InfiniBand EDR inter-node network. We evaluate

2The shorter sequences are not necessarily easier but can be viewed as simpler examples since there are less
context to embed.

3https://github.com/NVIDIA/Megatron-LM
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Figure 1: Training loss, Adam variance norm/max element, and correlations between loss spikes and
variance norm/max during GPT-2 pre-training (without the proposed method) under different model
sizes, batch sizes (and LR), and sequence lengths. In Appendix A.1 we plot the same figure but zoom
in the first 30B tokens.

Table 1: Measuring training instability by
the ratio between the current step training
loss and the minimum loss among all previ-
ous steps. Larger ratios (esp. those greatly
larger than 1.0) indicate larger training insta-
bility/divergence. Proposed work (SLW) and
related works (last two rows) are discussed
in Section 5.

#steps with max
Pre-training loss ratio > 1.2 loss

Case parameters (% of total steps) ratio
117M:
1: Baseline bsz512-seqlen1K 0 (0.0%) 1.05
2: SLW 60K bsz512-seqlen1K 0 (0.0%) 1.06
3: Baseline bsz4K-seqlen1K 22 (0.06%) 1.42
4: SLW 20K bsz4K-seqlen1K 0 (0.0%) 1.02
5: Baseline bsz512-seqlen2K 0 (0.0%) 1.04
6: SLW 110K bsz512-seqlen2K 0 (0.0%) 1.04
1.5B:
7: Baseline bsz512-seqlen1K 114 (0.04%) 2.10
8: SLW 270K bsz512-seqlen1K 0 (0.0%) 1.06
9: Baseline bsz4K-seqlen1K 1381 (3.68%) 5.65
10: SLW 45K bsz4K-seqlen1K 0 (0.0%) 1.02
11: Shortformer bsz4K-seqlen1K 219 (0.4%) 2.86
12: Bsz Warmup bsz4K-seqlen1K 1179 (2.01%) 4.32

two GPT-2 model sizes from the original GPT-2
work [33]: 117M parameters (12 layers, 768 hidden
size, 12 attention heads) and 1.5B parameters (48 lay-
ers, 1600 hidden size, 25 attention heads). For training
data, we collect and use the same dataset blend as the
Megatron-LM work: Wikipedia [11], CC-Stories [45],
RealNews [54], and OpenWebtext [32].

We evaluate two sets of training parameters. The first
set follows the Megatron-LM work: batch size 512,
300K total training steps (157B tokens), and learning
rate 1.5 × 10−4 with a linear warmup of 3K steps
and a single cycle cosine decay over the remaining
297K steps (1×10−5 min. learning rate). The second
parameter set tests a more aggressive training strategy:
batch size 4K (8× larger), 37.5K total training steps
(157B tokens4), and learning rate 6×10−4 (4× larger)
with a linear warmup of 3K steps and a single cycle
cosine decay over the remaining 34.5K steps (same
min. learning rate). For sequence length/context size,
we mainly use 1K which is the default for GPT-2. But
we also test 2K (on the 117M model with batch size
512 and 157B tokens) which is the default for GPT-3. All experiments are performed with mixed
precision/FP16 training, Adam optimizer (β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8) [17], 0.01 weight
decay, same random seed, and gradient clipping at 1.0. For both batch sizes we use the same number
of gpus (128). It is true that under fewer nodes, smaller batch sizes can also achieve good computation
efficiency. However, in practice, the goal of a training task is usually "given a fixed number of
hardwares, how to train the model in the fastest wall clock time". And given the increasing model
sizes, pre-training on hundreds of GPUs is not uncommon. Thus we believe that using the same
hardware resources is a fair comparison.

The stability-efficiency dilemma: Figure 1(a) and 1(b) present the training loss curves of 5 baseline
cases under different model sizes, batch sizes (and LR), and sequence lengths. At 117M, the baseline
has a few training loss spikes at batch size 4K. At 1.5B, the baseline has many loss spikes when
training with either batch size 512 or 4K. As an indicative measurement to quantitatively study
training instability, we define “loss ratio” which measures the ratio between the current step training
loss and the minimum loss among all previous steps. A ratio larger than 1.0 means that current
step’s loss is larger than the previous minimum loss, thus larger ratio indicates a larger loss spike and
training instability. Table 1 summarizes the number of steps with loss ratio larger than 1.2, and the

4For pre-training it is common to keep the number of training tokens the same for fair comparison.
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Table 2: Zero-shot evaluation of the trained models on the WikiText-103 and LAMBADA datasets,
following the evaluation methodology from [40]. Case 2 to 9 are compared with case 1, and case 11
to 17 are compared with case 10. Proposed work (SLW) and related works (16, 17) are discussed in
Section 5.

Pre-training Training Training Training WikiText LAMBADA
Case parameters steps tokens time PPL ↓ accuracy ↑

117M: 1: Baseline bsz512-seqlen1K 300K 157B 37Hr 27.78 33.19%
2: SLW 60K bsz512-seqlen1K 200K 89B (1.8x) 20Hr (1.9x) 27.74 34.78%
3: SLW 60K bsz512-seqlen1K 330K 157B (1x) 33Hr (1.1x) 27.01 34.41%
4: Baseline bsz4K-seqlen1K 37.5K 157B (1x) 16Hr (2.3x) 28.09 32.54%
5: SLW 30K bsz4K-seqlen1K 37K 92B (1.7x) 10Hr (3.7x) 27.77 33.40%
6: SLW 30K bsz4K-seqlen1K 52.5K 157B (1x) 16Hr (2.3x) 27.15 34.16%
7: Baseline bsz512-seqlen2K 150K 157B (1x) 32Hr (1.2x) 28.19 32.99%
8: SLW 110K bsz512-seqlen2K 122.5K 71B (2.2x) 15Hr (2.5x) 27.06 33.24%
9: SLW 110K bsz512-seqlen2K 205K 157B (1x) 31Hr (1.2x) 26.03 34.58%

1.5B: 10: Baseline bsz512-seqlen1K 300K 157B 341Hr 13.89 57.29%
11: SLW 270K bsz512-seqlen1K 360K 122B (1.3x) 286Hr (1.2x) 13.89 57.38%
12: SLW 270K bsz512-seqlen1K 428K 157B (1x) 364Hr (0.9x) 13.88 57.89%
13: Baseline bsz4K-seqlen1K 37.5K 157B (1x) 151Hr (2.3x) 14.76 55.06%
14: SLW 45K bsz4K-seqlen1K 50K 121B (1.3x) 121Hr (2.8x) 13.88 58.20%
15: SLW 45K bsz4K-seqlen1K 58.8K 157B (1x) 155Hr (2.2x) 13.72 58.47%
16: Shortformer bsz4K-seqlen1K 55K 157B (1x) 162Hr (2.1x) 14.14 57.23%
17: Bsz Warmup bsz4K-seqlen1K 58.8K 157B (1x) 165Hr (2.1x) 14.21 56.36%

Reference 18: Original GPT-2 117M [33], different data 37.50 45.99%
works: 19: Original GPT-2 1.5B [33], different data 17.48 63.24%

20: Megatron-LM GPT-2 355M [33], same data 19.31 45.18%
21: Megatron-LM GPT-2 2.5B [33], same data 12.76 61.73%

maximum loss ratio during the training. At 117M model size only the baseline with batch size 4K
has high loss ratios up to 1.421. At 1.5B model size the baseline with both batch size 512 and 4K has
much more steps with large loss ratios, and with the maximum loss ratio as high as 5.65. Baseline
with batch size 4K is less stable than baseline with batch size 512, indicating that larger batch sizes
(combined with larger learning rates) could lead to more training instability risks. In Appendix A.3.1
we show that larger learning rates under the same batch size could also increase training instability.

Training instability are undesirable because (1) it could lead to divergence that never recover as
in [49] and our GPT-3 experiments (Section 5.2); (2) in our GPT-2 case it leads to worse convergence,
validation loss, and zero-shot downstream task accuracy. Table 2 summarizes the zero-shot WikiText-
103/LAMBADA evaluation results. For both 117M and 1.5B models, increasing baseline’s batch size
(and LR) or sequence length leads to training instabilities and loss spikes, and it requires a nontrivial
number of training steps/tokens to recover the training loss back to a normal level (e.g., Figure 1(b)).
These training “detours” slow down the learning and eventually lead to worse evaluation results (e.g.,
case 13 vs case 10 in Table 2). On the other hand, increasing batch size (and LR) or sequence length
improves training efficiency, reducing the training time by up to 2.3x under the same number of
training tokens (case 1, 4, 10, 13).

Overall, the above observations demonstrate the stability-efficiency dilemma for baseline pre-training:
the training is more stable and can achieve better final generalization, but presumably with poorer
training efficiency under smaller batch size/learning rate/sequence length; increasing them leads to
better training efficiency, but with lower stability and worse generalization.

The correlation between instability and gradient variance outliers: For stochastic gradient
optimization, when the gradient variance is large, the algorithm might spend much time bouncing
around, leading to slower convergence and potential divergence [48]. Previous studies show that
variance reduction methods improve training stability in areas such as reinforcement learning [24, 8, 1].
Figure 1(c), 1(d), 1(e) and 1(f) plot the l1 norm and max element of Adam’s variance state (

√
vt,

where vt = β2vt−1 + (1− β2)(gt)
2)5. When baseline’s batch size increases, the max variance norm

decreases but the max element increases. Comparing GPT-2 117M and 1.5B cases, larger model size
leads to larger variance norm and max element. When sequence length increases for the GPT-2 117M
case, the variance norm stays the same but the max element increases.

To further study the link between instability and gradient variance, Figure 1(g) and 1(h) plot the loss
ratio (defined earlier in this section) and gradient variance norm/max element (all normalized by max
value) for the most unstable 1.5B baseline with 4K batch size. Results show that when training loss
spike happens and loss ratio increases, the gradient variance norm/max also increase (especially the
max outliers). Table 3 presents the Pearson correlation coefficient calculations, which demonstrate

5We use l1 norm to avoid outlier amplification.
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Table 3: Pearson correlation coefficient (with
range (-1, 1)) between loss ratio and gradient
variance norm/max. Low p-value indicates
that the correlation is statistically significant.

Pearson
correlation
coefficient p-value

Loss ratio vs Gradient variance norm 0.23 0.0
Loss ratio vs Gradient variance max 0.26 0.0
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Figure 2: Step-wise training loss during GPT-2
1.5B pre-training (first 10K steps only) with batch
size 4K, comparing seqlen 1K (baseline), seqlen
128, and mixed seqlen of 128+1K (1K seqlen used
at the cyan areas).

a statistically significant positive correlation between loss ratio and gradient variance norm/max.
Overall, our analysis shows that training instability has a strong correlation with gradient variance
norm and (especially) max element outliers.

Length of early data sequences is critical to training stability: Aiming to solve the stability-
efficiency dilemma we first tried traditional methods such as increasing gradient clipping, but it
does not fully resolve the instability issue (Appendix A.3.2). Seeing that in Figure 1 the training
instability mostly happens at the first half of training, we then explored whether we can solve the
issue by gradually increasing any of the batch size/learning rate/sequence length during training. We
already employed the same learning rate warmup mechanism used by existing GPT-2 and GPT-3
works [33, 40, 6]. We tried the batch size warmup method proposed in GPT-3 work [6], but the
instability issue still appears when increasing the batch size (Section 5.1). Our investigation on the
sequence length leads to interesting findings, where we find that sequence lengths play a critical role
in training instability. Figure 2 presents the training loss curve of the most unstable GPT-2 1.5B
pre-training with batch size 4K and seqlen 1K, together with another two artificial settings: one with
seqlen 128, the other with mixed seqlen where we feed 900 steps of seqlen 128 then 100 steps of
seqlen 1K in every 1K steps. The seqlen 128 case has no instability issue, even with large model
size/batch size/learning rate. The mixed seqlen case has instability issues, and (1) they mostly happen
when we switch to seqlen 1K (e.g., at step 900, 1900, 2900...); (2) they mostly happen during the first
5K steps, and after that it becomes more stable than the seqlen 1K case. These observations indicate
that training instability is strongly correlated with early long sequence lengths, which motivates us
to explore the sequence length warmup method described in the next section, and evaluations in
Section 5 will demonstrate how this method provides a gradient variance reduction effect and solves
the stability-efficiency dilemma in our experiments.

4 The Sequence Length Warmup Method
The analysis in last section about training instability and sequence lengths motivates us to explore
sequence length warmup methods: the model needs to start learning with short sequence length for
more stable training, then gradually increase the length when training becomes more stable so that
the model can still learn from longer contextual information to achieve better final model accuracy.

The sequence length warmup strategy depends on two factors: how to support variable sequence
length during training and how to adaptively decide the sequence length for each iteration (the pacing
function). For the first component, we develop an efficient truncation-based implementation: For
the baseline GPT-2 pre-training, the raw text inputs are indexed into sequences with the same length
before training, so that the model can efficiently retrieve a batch of fixed-length sequences regardless
of the actual sentence boundaries. It’s possible to index the text inputs based on all possible sequence
lengths, but that adds significant amount of overhead due to the massive pre-training data. To avoid the
large indexing overhead, we take a lightweight approach: our implementation still lets the dataloader
index the raw text into only the full sequence length. At each training step, our method uses pacing
function to determine the sequence length and then truncates the full-length sequences to obtain a
modified version of the mini-batch for training. It is true that this truncation-based implementation
will drop some data in the current step. However, with some implementation changes, it’s possible to
record the index of dropped data and use them in future steps.

We define the pacing function as a step-wise linear function with the following properties: Given
a starting sequence length seqlens, an ending sequence length seqlene (full sequence length), and
a total duration T (number of steps), the sequence length used for the training batch at step t is
seqlent = seqlens +(seqlene − seqlens)×min( t

T , 1). Besides step-wise linear, we also explored
3 other pacing functions: i) We tried a discrete 2-stage pacing function from [30], but it leads
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to unstable training and worse convergence (Section 5.1). ii) We tried a step-wise root function
(seqlent = seqlens + (seqlene − seqlens) × min(( t

T )
r, 1), where r is the root degree), which

performs similar to linear but requires one extra hyperparameter. iii) We tried an adaptive pacing
function based on training/validation losses, which also performs similar and requires extra tuning.
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Figure 3: Validation perplexity during GPT-2 117M seqlen
1K pre-training with batch size 512 and different duration T .
(“SLW 20K” means proposed approach with T=20K steps).

Pacing function analysis and tun-
ing strategy: To study the impact of
our approach’s pacing function, we set
the starting sequence length (seqlens)
fixed at 8 and perform a grid search for
the pacing function duration (T ) on
the GPT-2 117M case full training (de-
tails in Appendix A.4). After full train-
ings we perform evaluation on pretrain
data test set and WikiText/LAMBADA
zero-shot tasks to confirm which du-
ration T provides the best accuracy
performance. All the cases have quite
comparable evaluation results, indicat-
ing that the performance is not very sensitive to the duration T within a reasonable range. This
grid search sheds light on a low-cost tuning strategy: we find that (for GPT-2 117M training with
batch size 512 and 4K) the best duration T is the longest duration that does not have significant
validation perplexity fluctuation during the first 10K steps (i.e., a few multiples of the LR warmup
steps). In on our study, this “significant fluctuation” can be defined as “whether the perplexity value
becomes larger than 1.3x of the previous best perplexity”. In Figure 3(a) the SLW 60K is the longest
duration we tested that does not have significant validation fluctuation during the first 10K steps. In
Figure 3(b) and Appendix A.4 SLW 60K does provide the best final validation perplexity, best final
test perplexity, and second best eval results. Since it does not require training the model until full
convergence, this heuristic greatly reduces the hyperparameter tuning cost of our approach. Another
grid search on the starting sequence length seqlens shows that it’s generally better to set it as small
as possible, to maximize the stability and convergence speedup benefit. However, if the validation
perplexity has significant fluctuation near the starting sequence length, increasing seqlens would
lead to better convergence.

Overall, the low-cost tuning strategy can be summarized as: (1) Start with seqlens = 8 and T = a
few multiples of LR warmup steps. (2) Increase seqlens until the validation perplexity no longer
has significant fluctuation at the very beginning. (3) Perform a binary search to find the largest T
that does not have significant validation perplexity fluctuation during the first few multiples of LR
warmup steps. This tuning strategy relies only on the validation set and does not require test set or
downstream task evaluation. For the GPT-2 1.5B and GPT-3 125M models, we used this strategy to
tune T and seqlens for the pacing function, and results show that this low-cost tuning strategy could
provide similar stability-efficiency benefit as grid search on full training runs (GPT-2 117M case).

5 Evaluation

5.1 GPT-2 experiments

For GPT-2 model, dataset, and hardware, we follow the same methodology in Section 3. For proposed
work’s pacing function configurations (Section 4), we use seqlens = 8/64 (for 117M/1.5B model
based on tuning) and seqlene = 1K/2K (full sequence length). To fully utilize the NVIDIA Tensor
Core acceleration, we add a seqlent = seqlent − (seqlent mod 8) postprocessing to make sure the
sequence length is always a multiple of 8. For the total duration T , we tune this parameter (grid
search for 117M and low-cost tuning for 1.5B) for each case. For the training parameters, for our
approach we use the same shared parameters as the baseline except two parameters: 1) Because
during sequence length warmup the number of tokens in a data batch is smaller, we modify the
training termination condition so that all cases stop when reaching the same 157B training tokens. 2)
Because of 1), proposed approach now has more training steps, which make it necessary to modify
the learning rate decay schedule to have a fair comparison with the baseline. We change the learning
rate decay to token-wise over the 157B tokens (still cosine decay) instead of step-wise over the total
number of steps. We describe the underlying rationale in Appendix A.2.
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Figure 4: Validation perplexity and Adam variance norm/max element during GPT-2 1.5B seqlen 1K
pre-training, comparing the baseline and proposed work (SLW) under different batch sizes/LR. Also
compare with related works (“Shortformer” [30] and “Bsz Warmup” [6]) at 2nd row. Each row of
subfigures share the same legend (“SLW 45K” means our work with T=45K steps).

Based on the following observations, we demonstrate that our approach resolves the dilemma and
simultaneously improves the stability and efficiency. We will mainly present the GPT-2 1.5B results
and leave some GPT-2 117M results in Appendix.

Significant stability gain: In Section 3 Table 1 we discussed how we measure the training instability
based on the “loss ratio” metric, which shows that the baseline becomes less stable under larger
model size/batch size/learning rate/sequence length. Comparing with baseline and proposed work in
this table shows that our work reduces this instability measurement to zero in all cases, together with
max ratio close to 1.0 (no spike). This demonstrates the significant stability gain by our method.

Faster token-wise and time-wise convergence: Figure 4(a) and 4(b) present the validation perplexity
curves during GPT-2 1.5B seqlen 1K pre-training, comparing baseline and our approach. When the
batch size increases from 512 to 4K for baseline, the time-wise convergence becomes faster but the
token-wise convergence becomes slower and poorer. On the other hand, our approach at batch size
4K provides faster and better convergence both token-wise and time-wise comparing with the best
baseline curve in each case. The shape of SLW’s curves is different (worse than baseline in early
stage) because SLW cases initially only learn from shorter sequences, which limit the validation
perplexity it can reach (since validation data is always full-length). On the other hand, when SLW
cases start to learn from longer sequences, the validation perplexity drops faster than baseline (and
related works) and eventually surpasses them.

Our approach with batch size 512 provides smaller convergence speedup because (1) Baseline
with batch size 512 has less instability issue, limiting the gain from the proposed approach; (2)
At batch size 512 the communication overhead is very high, and our approach takes more steps
(i.e., communication rounds) than baseline to reach the same 157B training tokens. This extra
communication cost “cancelled” part of the time saving from our approach. For GPT-2 117M, our
approach provides similar token-wise and time-wise convergence speedup (Appendix A.4).

Advancing cost-quality Pareto curve: In Section 3 Table 2 we discussed about baseline’s zero-shot
evaluation results. For proposed work eval results in this table, we present them in two ways: one
evaluated at the earliest checkpoint that provides better eval results than baseline (batch size 512 and
seqlen 1K); the other one evaluated at the end of full training. Results show that our approach is able
to advance the cost-quality Pareto curve in two ways: (1) To reach the same eval result quality as
baseline, our approach reduces the required number of pre-training tokens and wall clock time by up
to 2.2x and 3.7x, respectively; (2) Under the same 157B training tokens, our approach can further
improve the eval result quality. In (1) the time-wise saving is higher than the token-wise because
(a) For each Transformer block, the self-attention and intermediate layers have time complexity of
O(B×L2×H) and O(B×L×H2), respectively6. The proposed method uses shorter sequences at

6B,L,H represent batch size, sequence length, hidden size.
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the beginning, reducing the time complexity quadratically for the self-attention sub-layer and linearly
for the intermediate sub-layer of Transformer blocks; (b) By enabling stable training at larger batch
size, our approach achieves additional time-wise saving by reducing the communication overhead.

Variance reduction helps stabilize training: In Section 3 we discussed the strong correlation
between training instability and gradient variance norm/max. Figure 4(c) and 4(d) demonstrate that
proposed approach stabilizes training and reduces both the Adam variance norm and the variance
max element. Importantly, it avoids all the spikes of the variance max element, which all happen to
be where the baseline has training loss spikes. One may wonder why gradient clipping cannot help
avoid these extreme gradient variance outliers. Although gradient clipping can avoid large gradient
at every single step, it cannot avoid the gradient variance getting accumulated from multiple steps
(Appendix A.3.2).

Comparing with related works: We now compare the proposed work with two related works on the
most challenging “1.5B model + batch size 4K” case. The first work is the Shortformer where the
first stage uses shorter sequences and the second stage uses full-length sequences [30]. Following
the grid search in the paper, we use seqlen 128 for the first stage and set its duration at about half
of the baseline duration (20K steps). The second work is the batch size warmup technique used by
GPT-3 [6], where we set the starting batch size at 128 and then gradually increase it to 4K, and set
the warmup duration same as the proposed work. Other training hyperparameters are unchanged.
Figure 4(e) to 4(h) present the results. Both related works provide convergence speedup but it is less
than our work. More importantly, they still have training instability issues. The Shortformer has an
obvious training divergence at step 20K when the sequence length switches from 128 to 1K (the spike
at 20K in Figure 4(h)). This shows when staying at the same shorter sequence length for too long, the
model becomes heavily overfitted for that length which leads to divergence risk when/after switching
to full length. Although both batch size warmup and our method reduce the number of tokens per
batch in a similar fashion, batch size warmup does not provide any training stability benefit compared
to the baseline. This indicates that providing the same number of shorter (simpler) sequences leads
to better training stability than providing fewer number of same length (same difficulty) sequences.
In addition, batch size warmup has a limitation that the batch size must be multiple of data-parallel
size. On the other hand, for our method the sequence length only needs to be multiple of 8 to enable
Tensor Core acceleration. These two limitations are different: for the proposed SLW method, the
“multiple of 8” limitation is fixed and unrelated to data-parallel size. For batch size warmup it’s a
dynamic "multiple of data-parallel size" limitation: since nowadays pre-training tasks are performed
on up to thousands of GPUs, the data-parallel size can easily go beyond 100, prohibiting flexible
configuration of the method (or requires reducing the number of GPUs when using smaller batches,
increasing the training clock time). Last but not least, both related works provide non-zero “loss ratio”
in Table 1 and worse zero-shot evaluation results in Table 2.

5.2 GPT-3 experiments
For experiments replicating the GPT-3 125M model [6] using the Pile public dataset [13], first we
reproduce the original GPT-3 training recipe: 300B training tokens, seqlen 2K, batch size 256 with
batch size warmup (start with 16 then gradually increase to 256 in first 4B tokens), learning rate
6× 10−4 with a linear warmup of 375M tokens and a single cycle cosine decay over 260B tokens
(6 × 10−5 min. learning rate)7. Then we explore an aggressive training scenario where only 30B
tokens (10%) are allowed. This is because (1) GPT-3 paper admits that it has poor training sample
efficiency and it sees much more text during pre-training than a human sees in the their lifetime [6, 23].
(2) There could exist cases where the total amount of data/computation resource is limited. We adjust
several hyperparameters in this 30B-token training: 8x batch size (2K) for better training efficiency,
learning rate decay reduced to 30B tokens (based on study that LR schedule should match total
training tokens [14], warmup stays at 375M), min. learning rate reduced to 0 (based on recent study
on GPT-3 [51]). For baseline we keep using 4B-token batch size warmup, but when our method is
used (seqlens = 72, T = 11.5K based on tuning) we disable it since both methods reduce tokens
per batch. And for both cases we tune the learning rate and use the highest one that provides stable
training, which is 30x (1.8×10−2) for baseline and 40x (2.4×10−2) for our method. All experiments
are performed on 128 V100 GPUs.

Figure 5 and 6 present the training loss and gradient variance max for the GPT-3 pre-training
experiments. When applying 40x learning rate to the baseline (batch size warmup), it quickly

7Different from GPT-2, GPT-3 uses token-based learning rate schedule and we follow it.
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Table 4: Zero-shot evaluation of the
trained GPT-3 125M models on 11 tasks
used by the original GPT-3 work [6]. Per-
task eval results in Appendix A.5.

Batch Training Training Average
Case size tokens time accuracy ↑
1: Original [6] 256 300B 33.6
2: Baseline repro 256 300B (1x) 61Hr 31.4
3: Baseline 30x LR 2K 30B (10x) 7Hr (9x) 29.8 (95%)
4: SLW 40x LR 2K 30B (10x) 3.5Hr (17x) 31.1 (99%)
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Figure 5: Training loss
during GPT-3 125M
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Figure 6: Gradient vari-
ance max during GPT-3
125M pre-training (first
1B tokens).

diverges and cannot continue to train due to NaN losses. The corresponding gradient variance max
element becomes a flat line after divergence because the gradients on all dimensions are so large
that all gradients get clipped including the max element. After lowering the learning rate to 30x, the
baseline is able to finish the whole training, but it can only retain 95% of average zero-shot accuracy on
11 tasks (HellaSwag [53], LAMBADA [28], TriviaQA [15], WebQs [3], Winogrande [38], PIQA [4],
ARC Challenge/Easy [10], ANLI R1/R2/R3 [27]) compared with the case that reproduces the original
GPT-3 training recipe8 as shown in Table 4. In contrast, our approach enables stable training with
40x learning rate, demonstrates lower gradient variance max outliers than baseline with 30x learning
rate, retains 99% of the original training recipe’s average zero-shot accuracy, and achieves 10x
data saving and 17x time saving.9 This demonstrates that the proposed method not only solves the
stability-efficiency dilemma, but also opens a promising direction of significantly reducing total
training cost in a different data efficiency dimension.

Finally, in Appendix A.6 we evaluate the proposed method on a larger GPT-3 1.3B model, including
not only zero-shot but also few-shot evaluation. Results show that under the same 300B training
tokens the proposed SLW method provides better average accuracy than the baseline for both zero-
shot (from 41.6 to 41.9) and few-shot (from 44.8 to 45.3) tasks, demonstrating that the proposed
method (in addition to the stability-efficiency benefit) can provide better accuracy performance.
Similar to the original GPT-3, under few-shot prompts the average accuracy is better than zero-shot
results for both models trained with baseline batch size warmup and proposed SLW method.

6 Limitation and Future Work
Although our paper discovers the correlation between long sequences and training instability (and
proposes a method to alleviate the issue), the root cause of this causal relationship is not fully
deciphered and would be an interesting future work direction. One assumption we have is that the
shorter sequences are not necessarily easier but can be viewed as simpler examples since there are
less context to embed. We think encoding shorter sequences (especially at the early training stage
when weight is still relatively random) will generate less "noisy" gradients thus leading to higher
stability.

This work presents correlation analysis on an empirical connection between training instability and
gradient variance norm/max element, but it is not sufficient to prove a causal relationship, and training
instability could be caused by other factors. Overall, our work is one preliminary attempt to study the
topic of training instability in large-scale model training, and we hope it could inspire future works to
further study this important issue in both theory and practice.

7 Conclusion
This paper presents the Sequence Length Warmup method, which solves a stability-efficiency dilemma
inside GPT-style model pre-training, an critical issue that hinders efficient language model pre-training
as explained in our in-depth analysis. By enabling stable training on more aggressive training recipe,
this method also motivates a new dimension of training cost reduction by improving the data efficiency,
as demonstrated by the 10x data and 17x time saving in our GPT-3 experiments. We believe that
the effectiveness, simplicity, and easy-to-use/tune make the proposed method a must-try for deep
learning practitioners, and we hope this work could motivate more studies on improving training data
efficiency.

8Our reproduced GPT-3 has 2.2 point lower average accuracy than the original GPT-3, which is because of
the different training data and OpenAI employed many data processing techniques [6]

9We want to emphasize here that the SLW method “only retains 99% of accuracy” because this experiment is
an extreme case: only 10% of original training data is used during training.
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