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ABSTRACT

The implicit biases of gradient-based optimization algorithms are conjectured to
be a major factor in the success of modern deep learning. In this work, we inves-
tigate the implicit bias of gradient flow and gradient descent in two-layer fully-
connected neural networks with leaky ReLU activations when the training data
are nearly-orthogonal, a common property of high-dimensional data. For gradi-
ent flow, we leverage recent work on the implicit bias for homogeneous neural
networks to show that asymptotically, gradient flow produces a neural network
with rank at most two. Moreover, this network is an ℓ2-max-margin solution
(in parameter space), and has a linear decision boundary that corresponds to an
approximate-max-margin linear predictor. For gradient descent, provided the ran-
dom initialization variance is small enough, we show that a single step of gradient
descent suffices to drastically reduce the rank of the network, and that the rank
remains small throughout training. We provide experiments which suggest that a
small initialization scale is important for finding low-rank neural networks with
gradient descent.

1 INTRODUCTION

Neural networks trained by gradient descent appear to generalize well in many settings, even when
trained without explicit regularization. It is thus understood that the usage of gradient-based op-
timization imposes an implicit bias towards particular solutions which enjoy favorable properties.
The nature of this implicit regularization effect—and its dependence on the structure of the training
data, the architecture of the network, and the particular gradient-based optimization algorithm—is
thus a central object of study in the theory of deep learning.

In this work, we examine the implicit bias of gradient descent when the training data is such that
the pairwise correlations |⟨xi, xj⟩| between distinct samples xi, xj ∈ Rd are much smaller than the
squared Euclidean norms of each sample: that is, the samples are nearly-orthogonal. As we shall
show, this property is often satisfied when the training data is sampled i.i.d. from a d-dimensional
distribution and d is significantly larger than the number of samples n. We will thus refer to such
training data with the descriptors ‘high-dimensional’ and ‘nearly-orthogonal’ interchangeably.

We consider fully-connected two-layer networks with m neurons where the first layer weights are
trained and the second layer weights are fixed at their random initialization. If we denote the first-
layer weights by W ∈ Rm×d, with rows w⊤

j ∈ Rd, then the network output is given by,

f(x;W ) :=
∑m

j=1 ajϕ(⟨wj , x⟩),

where aj ∈ R, j = 1, . . .m are fixed. We consider the implicit bias in two different settings:
gradient flow, which corresponds to gradient descent where the step-size tends to zero, and standard
gradient descent.

∗Equal contribution.
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For gradient flow, we consider the standard leaky ReLU activation, ϕ(z) = max(γz, z). Our starting
point in this setting is recent work by Lyu & Li (2019); Ji & Telgarsky (2020) that show that,
provided the network interpolates the training data at some time, gradient flow on homogeneous
networks, such as two-layer leaky ReLU networks, converges (in direction) to a network that satisfies
the Karush–Kuhn–Tucker (KKT) conditions for the margin-maximization problem,

min
W

1/2 ∥W∥2F s.t. ∀i ∈ [n], yif(xi;W ) ≥ 1 .

Leveraging this, we show that the asymptotic limit of gradient flow produces a matrix W which
is a global optimum of the above problem, and has rank at most 2. Moreover, we note that our
assumption on the high-dimensionality of the data implies that it is linearly separable. Our leaky
ReLU network f(·;W ) is non-linear, but we show that gradient flow converges in direction to W
such that the decision boundary is linear, namely, there exists z ∈ Rd such that for all x we have
sign(f(x;W )) = sign(z⊤x). This linear predictor z may not be an ℓ2-max-margin linear predictor,
but it maximizes the margin approximately (see details in Theorem 3.2).

For gradient descent, we consider a smoothed approximation to the leaky ReLU activation, and
consider training that starts from a random initialization with small initialization variance. Our result
for gradient flow on the standard leaky ReLU activation suggests that gradient descent with small-
enough step size should eventually produce a network for which W (t) has small rank. However,
the asymptotic characterization of trained neural networks in terms of KKT points of a margin-
maximization problem relies heavily upon the infinite-time limit. This leaves open what happens
in finite time. Towards this end, we consider the stable rank of the weight matrix W (t) found by
gradient descent at time t, defined as ∥W (t)∥2F /∥W (t)∥22, the square of the ratio of the Frobenius
norm to the spectral norm of W (t). We show that after the first step of gradient descent, the stable
rank of the weight matrix W (t) reduces from something that is of order min(m, d) to that which is
at most an absolute constant, independent of m, d, or the number of samples. Further, throughout
the training trajectory the stable rank of the network is never larger than some absolute constant.

We conclude by verifying our results with experiments. We first confirm our theoretical predictions
for binary classification problems with high-dimensional data. We then consider the stable rank of
two-layer networks trained by SGD for the CIFAR10 dataset, which is not high-dimensional. We
notice that the scale of the initialization plays a crucial role in the stable rank of the weights found by
gradient descent: with default TensorFlow initialization, the stable rank of a network with m = 512
neurons never falls below 74, while with a smaller initialization variance, the stable rank quickly
drops to 3.25, and only begins to increase above 10 when the network begins to overfit.

RELATED WORK

Implicit bias in neural networks. The literature on the implicit bias in neural networks has
rapidly expanded in recent years, and cannot be reasonably surveyed here (see Vardi (2022) for
a survey). In what follows, we discuss results which apply to two-layer ReLU or leaky ReLU net-
works in classification settings.

By Lyu & Li (2019) and Ji & Telgarsky (2020), homogeneous neural networks (and specifically
two-layer leaky ReLU networks, which are the focus of this paper) trained with exponentially-tailed
classification losses converge in direction to a KKT point of the maximum-margin problem. Our
analysis of the implicit bias relies on this result. We note that the aforementioned KKT point may
not be a global optimum (see a discussion in Section 3).

Lyu et al. (2021) studied the implicit bias in two-layer leaky ReLU networks trained on linearly
separable and symmetric data, and showed that gradient flow converges to a linear classifier which
maximizes the ℓ2 margin. Note that in our work we do not assume that the data is symmetric, but
we assume that it is nearly orthogonal. Also, in our case we show that gradient flow might converge
to a linear classifier that does not maximize the ℓ2 margin. Sarussi et al. (2021) studied gradient
flow on two-layer leaky ReLU networks, where the training data is linearly separable. They showed
convergence to a linear classifier based on an assumption called Neural Agreement Regime (NAR):
starting from some time point, all positive neurons (i.e., neurons with a positive outgoing weight)
agree on the classification of the training data, and similarly for the negative neurons. However, it is
unclear when this assumption holds a priori.

Chizat & Bach (2020) studied the dynamics of gradient flow on infinite-width homogeneous two-
layer networks with exponentially-tailed losses, and showed bias towards margin maximization w.r.t.
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a certain function norm known as the variation norm. Phuong & Lampert (2020) studied the implicit
bias in two-layer ReLU networks trained on orthogonally separable data (i.e., where for every pair of
labeled examples (xi, yi), (xj , yj) we have x⊤

i xj > 0 if yi = yj and x⊤
i xj ≤ 0 otherwise). Safran

et al. (2022) proved implicit bias towards minimizing the number of linear regions in univariate
two-layer ReLU networks. Implicit bias in neural networks trained with nearly-orthogonal data was
previously studied in Vardi et al. (2022). Their assumptions on the training data are similar to ours,
but they consider ReLU networks and prove bias towards non-robust networks. Their results do not
have any clear implications for our setting.

Implicit bias towards rank minimization was also studied in several other papers. Ji & Telgarsky
(2018; 2020) showed that in linear networks of output dimension 1, gradient flow with exponentially-
tailed losses converges to networks where the weight matrix of every layer is of rank 1. Timor et al.
(2022) showed that the bias towards margin maximization in homogeneous ReLU networks may
induce a certain bias towards rank minimization in the weight matrices of sufficiently deep ReLU
networks. Finally, implicit bias towards rank minimization was also studied in regression settings.
See, e.g., Arora et al. (2019); Razin & Cohen (2020); Li et al. (2020); Timor et al. (2022); Ergen &
Pilanci (2021; 2020).

Training dynamics of neural networks for linearly separable training data. A series of works
have explored the training dynamics of gradient descent when the data is linearly separable (such
as is the case when the input dimension is larger than the number of samples, as we consider here).
Brutzkus et al. (2017) showed that in two-layer leaky ReLU networks, SGD on the hinge loss for
linearly separable data converges to zero loss. Frei et al. (2021) showed that even when a constant
fraction of the training labels are corrupted by an adversary, in two-layer leaky ReLU networks,
SGD on the logistic loss produces neural networks that have generalization error close to the label
noise rate. As we mentioned above, both Lyu et al. (2021) and Sarussi et al. (2021) considered two-
layer leaky ReLU networks trained by gradient-based methods on linearly separable datasets. Wang
et al. (2019) and Yang et al. (2021) considered the dynamics of variants of GD/SGD algorithms on
the hinge loss for ReLU networks for linearly separable distributions.

Another line of work has explored the dynamics of neural network training when the data is sampled
i.i.d. from a distribution which is not linearly separable but the training data is linearly separable
due to the number of samples being smaller than the input dimension. Cao et al. (2022) studied
two-layer convolutional networks trained on an image-patch data model and showed how a low
signal-to-noise ratio can result in harmful overfitting, while a high signal-to-noise ratio allows for
good generalization performance. Shen et al. (2022) considered a similar image-patch signal model
and studied how data augmentation can improve generalization performance of two-layer convolu-
tional networks. Frei et al. (2022a) showed that two-layer fully connected networks trained on high-
dimensional mixture model data can exhibit a ‘benign overfitting’ phenomenon. Frei et al. (2022b)
studied the feature-learning process for two-layer ReLU networks trained on noisy 2-xor clustered
data and showed that early-stopped networks can generalize well even in high-dimensional settings.
Boursier et al. (2022) studied the dynamics of gradient flow on the squared loss for two-layer ReLU
networks with orthogonal inputs.

2 PRELIMINARIES

Notation. For a vector x we denote by ∥x∥ the Euclidean norm. For a matrix W we denote
by ∥W∥F the Frobenius norm, and by ∥W∥2 the spectral norm. We denote by 1[·] the indicator
function, for example 1[t ≥ 5] equals 1 if t ≥ 5 and 0 otherwise. We denote sign(z) = 1 for z > 0
and sign(z) = −1 otherwise. For an integer d ≥ 1 we denote [d] = {1, . . . , d}. We denote by
N(µ, σ2) the Gaussian distribution. We denote the maximum of two real numbers a, b as a ∨ b, and
their minimum as a ∧ b. We denote by log the logarithm with base e. We use the standard O(·) and
Ω(·) notation to only hide universal constant factors, and use Õ(·) and Ω̃(·) to hide poly-logarithmic
factors in the argument.

Neural networks. In this work we consider depth-2 neural networks, where the second layer is
fixed and only the first layer is trained. Thus, a neural network with parameters W is defined as

f(x;W ) =
∑m

j=1 ajϕ(w
⊤
j x) ,

where x ∈ Rd is an input, W ∈ Rm×d is a weight matrix with rows w⊤
1 , . . . , w

⊤
m, the weights in the

second layer are aj ∈ {±1/
√
m} for j ∈ [m], and ϕ : R → R is an activation function. We focus on
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the leaky ReLU activation function, defined by ϕ(z) = max{z, γz} for some constant γ ∈ (0, 1),
and on a smooth approximation of leaky ReLU (defined later).

Gradient descent and gradient flow. Let S = {(xi, yi)}ni=1 ⊆ Rd × {±1} be a binary-
classification training dataset. Let f(·;W ) : Rd → R be a neural network parameterized by W .
For a loss function ℓ : R → R the empirical loss of f(·;W ) on the dataset S is

L̂(W ) := 1
n

∑n
i=1 ℓ(yif(xi;W )) .

We focus on the exponential loss ℓ(q) = e−q and the logistic loss ℓ(q) = log(1 + e−q).

In gradient descent, we initialize [W (0)]i,j
i.i.d.∼ N(0, ω2

init) for some ωinit ≥ 0, and in each iteration
we update

W (t+1) = W (t) − α∇W L̂(W (t)) ,

where α > 0 is a fixed step size.

Gradient flow captures the behavior of gradient descent with an infinitesimally small step size. The
trajectory W (t) of gradient flow is defined such that starting from an initial point W (0), the dy-
namics of W (t) obeys the differential equation dW (t)

dt = −∇W L̂(W (t)). When L̂(W ) is non-
differentiable, the dynamics of gradient flow obeys the differential equation dW (t)

dt ∈ −∂◦L̂(W (t)),
where ∂◦ denotes the Clarke subdifferential, which is a generalization of the derivative for non-
differentiable functions (see Appendix A for a formal definition).

3 ASYMPTOTIC ANALYSIS OF THE IMPLICIT BIAS

In this section, we study the implicit bias of gradient flow in the limit t → ∞. Our results build
on a theorem by Lyu & Li (2019) and Ji & Telgarsky (2020), which considers the implicit bias in
homogeneous neural networks. Let f(x; θ) be a neural network parameterized by θ, where we view
θ as a vector. The network f is homogeneous if there exists L > 0 such that for every β > 0 and x, θ
we have f(x;βθ) = βLf(x; θ). We say that a trajectory θ(t) of gradient flow converges in direction
to θ∗ if limt→∞

θ(t)
∥θ(t)∥ = θ∗

∥θ∗∥ . Their theorem can be stated as follows.

Theorem 3.1 (Paraphrased from Lyu & Li (2019); Ji & Telgarsky (2020)). Let f be a homogeneous
ReLU or leaky ReLU neural network parameterized by θ. Consider minimizing either the exponen-
tial or the logistic loss over a binary classification dataset {(xi, yi)}ni=1 using gradient flow. Assume
that there exists time t0 such that L̂(θ(t0)) <

log(2)
n . Then, gradient flow converges in direction to

a first order stationary point (KKT point) of the following maximum-margin problem in parameter
space:

min
θ

1/2 ∥θ∥2 s.t. ∀i ∈ [n] yif(xi; θ) ≥ 1 .

Moreover, L̂(θ(t)) → 0 and ∥θ(t)∥ → ∞ as t → ∞.

We focus here on depth-2 leaky ReLU networks where the trained parameters is the weight matrix
W ∈ Rm×d of the first layer. Such networks are homogeneous (with L = 1), and hence the above
theorem guarantees that if there exists time t0 such that L̂(W (t0)) < log(2)

n , then gradient flow
converges in direction to a KKT point of the problem

min
W

1/2 ∥W∥2F s.t. ∀i ∈ [n] yif(xi;W ) ≥ 1 . (1)

Note that in leaky ReLU networks Problem (1) is non-smooth. Hence, the KKT conditions are
defined using the Clarke subdifferential. See Appendix A for more details of the KKT conditions.
The theorem implies that even though there might be many possible directions W

∥W∥F
that classify

the dataset correctly, gradient flow converges only to directions that are KKT points of Problem (1).
We note that such a KKT point is not necessarily a global/local optimum (cf. Vardi et al. (2021);
Lyu et al. (2021)). Thus, under the theorem’s assumptions, gradient flow may not converge to an
optimum of Problem (1), but it is guaranteed to converge to a KKT point.
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We now state our main result for this section. For convenience, we will use different notations
for positive neurons (i.e., where aj = 1/

√
m) and negative neurons (i.e., where aj = −1/

√
m).

Namely,

f(x;W ) =
∑m

j=1 ajϕ(w
⊤
j x) =

∑m1

j=1
1√
m
ϕ(v⊤j x)−

∑m2

j=1
1√
m
ϕ(u⊤

j x) . (2)

Note that m = m1 +m2. We assume that m1,m2 ≥ 1.
Theorem 3.2. Let {(xi, yi)}ni=1 ⊆ Rd × {±1} be a training dataset, and let Rmax := maxi ∥xi∥,
Rmin := mini ∥xi∥ and R = Rmax/Rmin. We denote I := [n], I+ := {i ∈ I : yi = 1} and
I− := {i ∈ I : yi = −1}. Assume that

R2
min ≥ 3γ−3R2nmax

i ̸=j
|⟨xi, xj⟩| .

Let f be the leaky ReLU network from (2) and let W be a KKT point of Problem (1). Then, the
following hold:

1. yif(xi;W ) = 1 for all i ∈ I .

2. v1 = . . . = vm1
:= v and u1 = . . . = um2

:= u. Hence, rank(W ) ≤ 2.

3. v = 1√
m

∑
i∈I+

λixi − γ√
m

∑
i∈I−

λixi and u = 1√
m

∑
i∈I−

λixi − γ√
m

∑
i∈I+

λixi,

where λi ∈
(

1
2R2

max
, 3
2γ2R2

min

)
for every i ∈ I . Furthermore, for all i ∈ I we have yiv⊤xi >

0 and yiu
⊤xi < 0.

4. W is a global optimum of Problem (1). Moreover, this global optimum is unique.

5. v, u is the global optimum of the following convex problem:

min
v,u∈Rd

m1

2
∥v∥2 + m2

2
∥u∥2 (3)

∀i ∈I+ :
m1√
m
v⊤xi − γ

m2√
m
u⊤xi ≥ 1

∀i ∈I− :
m2√
m
u⊤xi − γ

m1√
m
v⊤xi ≥ 1 .

6. Let z = m1√
m
v − m2√

m
u. For every x ∈ Rd we have sign (f(x;W )) = sign(z⊤x). Thus, the

network f(·;W ) has a linear decision boundary.

7. The vector z may not be an ℓ2-max-margin linear predictor, but it maximizes the margin
approximately in the following sense. For all i ∈ I we have yiz

⊤xi ≥ 1, and ∥z∥ ≤
2

κ+γ ∥z∗∥, where κ :=
√

min{m1,m2}
max{m1,m2} , and z∗ := argminz̃ ∥z̃∥ s.t. yiz̃

⊤xi ≥ 1 for all
i ∈ I .

Note that by the above theorem, the KKT points possess very strong properties: the weight matrix is
of rank at most 2, there is margin maximization in parameter space, in function space the predictor
has a linear decision boundary, there may not be margin maximization in predictor space, but the
predictor maximizes the margin approximately within a factor of 2

κ+γ . Note that if κ = 1 (i.e.,
m1 = m2) and γ is roughly 1, then we get margin maximization also in predictor space. We remark
that variants of items 2, 5 and 6 were shown in Sarussi et al. (2021) under a different assumption
called Neural Agreement Regime (as we discussed in the related work section).1

The proof of Theorem 3.2 is given in Appendix B. We now briefly discuss the proof idea. Since W
satisfies the KKT conditions of Problem (1), then there are λ1, . . . , λn such that for every j ∈ [m]
we have

wj =
∑

i∈I λi∇wj
(yif(xi;W )) = aj

∑
i∈I λiyiϕ

′
i,wj

xi ,

where ϕ′
i,wj

is a subgradient of ϕ at w⊤
j xi. Also we have λi ≥ 0 for all i, and λi = 0 if yif(xi;W ) ̸=

1. We prove strictly positive upper and lower bounds for each of the λi’s. Since the λi’s are strictly
1In fact, the main challenge in our proof is to show that a property similar to their assumption holds in every

KKT point in our setting.
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positive, the KKT conditions show that the margin constraints are satisfied with equalities, i.e., part
1 of the theorem. By leveraging these bounds on the λi’s we also derive the remaining parts of the
theorem.

The main assumption in Theorem 3.2 is that R2
min ≥ 3γ−3R2nmaxi ̸=j |⟨xi, xj⟩|. In words, this

means the squared norms of samples are much larger than the pairwise correlations between different
samples, i.e. the training data are nearly orthogonal. Lemma 3.3 below implies that if the inputs xi

are drawn from a well-conditioned Gaussian distribution (e.g., N(0, Id)), then it suffices to require

n ≤ O
(
γ3
√

d
logn

)
, i.e., d ≥ Ω̃

(
n2
)

if γ = Ω(1). Lemma 3.3 holds more generally for a class of
subgaussian distributions (see, e.g., Hu et al. (2020, Claim 3.1)), and we state the result for Gaussians
here for simplicity.
Lemma 3.3. Suppose that x1, . . . , xn are drawn i.i.d. from a d-dimensional Gaussian distribution
N(0,Σ), where Tr[Σ] = d and ∥Σ∥2 = O(1). Suppose n ≤ dO(1). Then, with probability at least

1− n−10 we have ∥xi∥2

d = 1±O(
√

logn
d ) for all i, and |⟨xi,xj⟩|

d = O(
√

logn
d ) for all i ̸= j.

The proof of Lemma 3.3 is provided in Appendix C. We thus see that for data sampled i.i.d. from
a well-conditioned Gaussian, near-orthogonality of training data holds when the training data is
sufficiently high-dimensional, i.e. the dimension is much larger than the number of samples.

By Theorem 3.2, if the data points are nearly orthogonal then every KKT point of Problem (1)
satisfies items 1-7 there. It leaves open the question of whether gradient flow converges to a KKT
point. By Theorem 3.1, in order to prove convergence to a KKT point, it suffices to show that
there exists time t0 where L̂(W (t0)) < log(2)

n . In the following theorem we show that such t0
exists, regardless of the initialization of gradient flow (the theorem holds both for the logistic and
the exponential losses).
Theorem 3.4. Consider gradient flow on a the network from (2) w.r.t. a dataset that satisfies the
assumption from Theorem 3.2. Then, there exists a finite time t0 such that for all t ≥ t0 we have
L̂(W (t)) < log(2)/n.

We prove the theorem in Appendix D. Combining Theorems 3.1, 3.2 and 3.4, we get the following:
Corollary 3.5. Consider gradient flow on the network from (2) w.r.t. a dataset that satisfies the
assumption from Theorem 3.2. Then, gradient flow converges to zero loss, and converges in direction
to a weight matrix W that satisfies items 1-7 from Theorem 3.2.

4 NON-ASYMPTOTIC ANALYSIS OF THE IMPLICIT BIAS

In this section, we study the implicit bias of gradient descent with a fixed step size following random
initialization (refer to Section 2 for the definition of gradient descent). Our results in this section
are for the logistic loss ℓ(z) = log(1 + exp(−z)) but could be extended to the exponential loss
as well. We shall assume the activation function ϕ satisfies ϕ(0) = 0 and is twice differentiable
and there exist constants γ ∈ (0, 1], H > 0 such that 0 < γ ≤ ϕ′(z) ≤ 1, and |ϕ′′(z)| ≤
H. We shall refer to functions satisfying the above properties as γ-leaky, H-smooth. Note that
such functions are not necessarily homogeneous. Examples of such functions are any smoothed
approximation to the leaky ReLU that is zero at the origin. One such example is: ϕ(z) = γz +
(1 − γ) log

(
1
2 (1 + exp(z))

)
, which is γ-leaky and 1/4-smooth (see Figure 3 in the appendix for a

side-by-side plot of this activation with the standard leaky ReLU).

We next introduce the definition of stable rank (Rudelson & Vershynin, 2007).
Definition 4.1. The stable rank of a matrix W ∈ Rm×d is StableRank(W ) = ∥W∥2F /∥W∥22.

The stable rank is in many ways analogous to the classical rank of a matrix but is considerably more
well-behaved. For instance, consider the diagonal matrix W ∈ Rd×d with diagonal entries equal
to 1 except for the first entry which is equal to ε ≥ 0. As ε → 0, the classical rank of the matrix
is equal to d until ε exactly equals 0, while on the other hand the stable rank smoothly decreases
from d to d − 1. For another example, suppose again W ∈ Rd×d is diagonal with W1,1 = 1 and
Wi,i = exp(−d) for i ≥ 2. The classical rank of this matrix is exactly equal to d, while the stable
rank of this matrix is 1 + od(1).

With the above conditions in hand, we can state our main theorem for this section.
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Theorem 4.2. Suppose that ϕ is a γ-leaky, H-smooth activation. For training data {(xi, yi)}ni=1 ⊂
Rd × {±1}, let Rmax = maxi ∥xi∥ and Rmin = mini ∥xi∥, and suppose R = Rmax/Rmin is at most
an absolute constant. Denote by CR := 10R2/γ2 + 10. Assume the training data satisfies,

R2
min ≥ 5γ−2CRnmax

i ̸=j
|⟨xi, xj⟩|.

There exist absolute constants C1, C2 > 1 (independent of m, d, and n) such that the following
holds. For any δ ∈ (0, 1), if the step-size satisfies α ≤ γ2(5nR2

maxR
2CR max(1, H))−1, and

ωinit ≤ αγ2Rmin(72RCRn
√

md log(4m/δ))−1, then with probability at least 1−δ over the random
initialization of gradient descent, the trained network satisfies:

1. The empirical risk under the logistic loss satisfies L̂(W (t)) ≤
√

C1n/R2
minαt for t ≥ 1.

2. The ℓ2 norm of each neuron grows to infinity: for all j, ∥w(t)
j ∥2 → ∞.

3. The stable rank of the weights is bounded: supt≥1

{
StableRank(W (t))

}
≤ C2.

We now make a few remarks on the above theorem. We note that the assumption on the training
data is the same as in Theorem 3.2 up to constants (treating γ as a constant), and is satisfied in many
settings when d ≫ n2 (see Lemma 3.3).

For the first part of the theorem, we show that despite the non-convexity of the underlying optimiza-
tion problem, gradient descent can efficiently minimize the training error, driving the empirical risk
to zero.

For the second part of the theorem, note that since the empirical risk under the logistic loss is driven
to zero and the logistic loss is decreasing and satisfies ℓ(z) > 0 for all z, it is necessarily the case
that the spectral norm of the first layer weights ∥W (t)∥2 → ∞. (Otherwise, L̂(W (t)) would be
bounded from below by a constant.) This leaves open the question of whether only a few neurons in
the network are responsible for the growth of the magnitude of the spectral norm, and part (2) of the
theorem resolves this question.

The third part of the theorem is perhaps the most interesting one. In Theorem 3.2, we showed
that for the standard leaky ReLU activation trained on nearly-orthogonal data with gradient flow,
the asymptotic true rank of the network is at most 2. By contrast, Theorem 4.2 shows that the
stable rank of neural networks with γ-leaky, H-smooth activations trained by gradient descent have
a constant stable rank after the first step of gradient descent and the rank remains bounded by a
constant throughout the trajectory. Note that at initialization, by standard concentration bounds
for random matrices (see, e.g., Vershynin (2010)), the stable rank satisfies StableRank(W (0)) ≈
Θ(md/(

√
m+

√
d)2) = Ω(m∧d), so that Theorem 4.2 implies that gradient descent drastically reduces

the rank of the matrix after just one step.

The details for the proof of Theorem 4.2 are provided in Appendix E, but we provide some of
the main ideas for the proofs of part 1 and 3 of the theorem here. For the first part, note that
training data satisfying the assumptions in the theorem are linearly separable with a large margin
(take, for instance, the vector

∑n
i=1 yixi). We use this to establish a proxy Polyak–Lojasiewicz

(PL) inequality (Frei & Gu, 2021) that takes the form ∥∇L̂(W (t))∥F ≥ cĜ(W (t)) for some c > 0,
where Ĝ(W (t)) is the empirical risk under the sigmoid loss −ℓ′(z) = 1/(1 + exp(z)). Because
we consider smoothed leaky ReLU activations, we can use a smoothness-based analysis of gradient
descent to show ∥∇L̂(W (t))∥F → 0, which implies Ĝ(W (t)) → 0 by the proxy PL inequality. We
then translate guarantees for Ĝ(W (t)) into guarantees for L̂(W (t)) by comparing the sigmoid and
logistic losses.

For the third part of the theorem, we need to establish two things: (i) an upper bound for the
Frobenius norm, and (ii) a lower bound for the spectral norm. A loose approach for bounding the
Frobenius norm via an application of the triangle inequality (over time steps) results in a stable rank
bound that grows with the number of samples. To develop a tighter upper bound, we first establish
a structural condition we refer to as a loss ratio bound (see Lemma E.4). In the gradient descent
updates, each sample is weighted by a quantity that scales with −ℓ′(yif(xi;W

(t))) ∈ (0, 1). We
show that these −ℓ′ losses grow at approximately the same rate for each sample throughout training,
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Figure 1: Relative reduction in the stable rank of two-layer nets trained by gradient descent for
Gaussian mixture model data (cf. (4)). The rank reduction happens more quickly as the dimension
grows (left; initialization scale 50× smaller than default TensorFlow, α = 0.01) and as the initial-
ization scale decreases (right; d = 104, α = 0.16).

and that this allows for a tighter upper bound for the Frobenius norm. Loss ratio bounds were key to
the generalization analysis of two previous works on benign overfitting (Chatterji & Long, 2021; Frei
et al., 2022a) and may be of independent interest. In Proposition E.10 we provide a general approach
for proving loss ratio bounds that can hold for more general settings than the ones we consider in
this work (i.e., data which are not high-dimensional, and networks with non-leaky activations). The
lower bound on the spectral norm follows by identifying a single direction µ̂ :=

∑n
i=1 yixi that is

strongly correlated with every neuron’s weight wj , in the sense that |⟨w(t)
j /∥w(t)

j ∥, µ̂⟩| is relatively
large for each j ∈ [m]. Since every neuron is strongly correlated with this direction, this allows for
a good lower bound on the spectral norm.

5 IMPLICATIONS OF THE IMPLICIT BIAS AND EMPIRICAL OBSERVATIONS

The results in the preceding sections show a remarkable simplicity bias of gradient-based optimiza-
tion when training two-layer networks with leaky activations on sufficiently high-dimensional data.
For gradient flow, regardless of the initialization, the learned network has a linear decision bound-
ary, even when the labels y are some nonlinear function of the input features and when the network
has the capacity to approximate any continuous function. With our analysis of gradient descent,
we showed that the bias towards producing low-complexity networks (as measured by the stable
rank of the network) is something that occurs quickly following random initialization, provided the
initialization scale is small enough.

In some distributional settings, this bias towards rather simple classifiers may be beneficial, while in
others it may be harmful. To see where it may be beneficial, consider a Gaussian mixture model dis-
tribution P, parameterized by a mean vector µ ∈ Rd, where samples (x, y) ∼ P have a distribution
as follows:

y ∼ Uniform({±1}), x|y ∼ yµ+ z, z ∼ N(0, Id). (4)
The linear classifier x 7→ sign(⟨µ, x⟩) performs optimally for this distribution, and so the implicit
bias of gradient descent towards low-rank classifiers (and of gradient flow towards linear decision
boundaries) for high-dimensional data could in principle be helpful for allowing neural networks
trained on such data to generalize well for this distribution. Indeed, as shown by Chatterji & Long
(2021), since ∥xi∥2 ≈ d + ∥µ∥2 while |⟨xi, xj⟩| ≈ ∥µ∥2 +

√
d for i ̸= j, provided ∥µ∥ = Θ(dβ)

and d ≫ n
1

1−2β ∨n2 for β ∈ (0, 1/2), the assumptions in Theorem 4.2 hold. Thus, gradient descent
on two-layer networks with γ-leaky, H-smooth activations, the empirical risk is driven to zero and
the stable rank of the network is constant after the first step of gradient descent. In this setting, Frei
et al. (2022a) recently showed that such networks have small generalization error. This shows that
the implicit bias towards classifiers with constant rank can be beneficial in distributional settings
where linear classifiers can perform well.

On the other hand, the same implicit bias can be harmful if the training data come from a distribution
that does not align with this bias. Consider the noisy 2-xor distribution Dxor in d ≥ 3 dimensions
defined by x = z+ ξ where z ∼ Uniform({±µ1,±µ2}), where µ1, µ2 are orthogonal with identical
norms, ξ ∼ N(0, Id), and y = sign(|⟨µ1, x⟩| − |⟨µ2, x⟩|). Then every linear classifier achieves 50%
test error on Dxor. Moreover, provided ∥µi∥ = Θ(dβ) for β < 1/2, by the same reasoning in the

8



Published as a conference paper at ICLR 2023

default init. small init.

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
0

100

200

0.00

0.25

0.50

0.75

1.00

step

st
ab

le
 r

an
k accuracy

stablerank
train_acc
val_acc

Figure 2: Stable rank of SGD-trained two-layer ReLU networks on CIFAR-10. Compared to the
default TensorFlow initialization (left), a smaller initialization (right) results in a smaller stable rank,
and this effect is especially pronounced before the very late stages of training. Remarkably, the train
(blue) and test (black) accuracy behavior is essentially the same.

preceding paragraph the assumptions needed for Theorem 3.2 are satisfied provided d ≫ n
1

1−2β ∨n2.
In this setting, regardless of the initialization, by Theorem 3.2 the limit of gradient flow produces
a neural network which has a linear decision boundary and thus achieves 50% test error. In the
appendix (see Fig. 6) we verify this with experiments.

Thus, the implicit bias can be beneficial in some settings and harmful in others. Theorem 4.2 and
Lemma 3.3 suggest that the relationship between the input dimension and the number of samples,
as well as the initialization variance, can influence how quickly gradient descent finds low-rank
networks. In Figure 1 we examine these factors for two-layer nets trained on a Gaussian mixture
model distribution (see Appendix F for experimental details). We see that the bias towards rank
reduction increases as the dimension increases and the initialization scale decreases, as suggested
by our theory. Moreover, it appears that the initialization scale is more influential for determining
the rank reduction than training gradient descent for longer. In Appendix F we provide more detailed
empirical investigations into this phenomenon.

In Figure 2, we investigate whether or not the initialization scale’s effect on the rank reduction of
gradient descent occurs in settings not covered by our theory, namely in two-layer ReLU networks
with bias terms trained by SGD on CIFAR-10. We consider two different initialization schemes:
(1) Glorot uniform, the default TensorFlow initialization scheme with standard deviation of order
1/

√
m+ d, and (2) a uniform initialization scheme with 50× smaller standard deviation than that

of the Glorot uniform initialization. In the default initialization scheme, it appears that a reduction
in the rank of the network only comes in the late stages of training, and the smallest stable rank
achieved by the network within 106 steps is 74.0. On the other hand, with the smaller initialization
scheme, the rank reduction comes rapidly, and the smallest stable rank achieved by the network is
3.25. It is also interesting to note that in the small initialization setting, after gradient descent rapidly
produces low-rank weights, the rank of the trained network begins to increase only when the gap
between the train and test accuracy begin to diverge.

6 CONCLUSION

In this work, we characterized the implicit bias of common gradient-based optimization algorithms
for two-layer leaky ReLU networks when trained on high-dimensional datasets. For both gradient
flow and gradient descent, we proved convergence to near-zero training loss and that there is an
implicit bias towards low-rank networks. For gradient flow, we showed a number of additional
implicit biases: the weights are (unique) global maxima of the associated margin maximization
problem, and the decision boundary of the learned network is linear. For gradient descent, we
provided experimental evidence which suggests that small initialization variance is important for
gradient descent’s ability to quickly produce low-rank networks.

There are many natural directions to pursue following this work. One question is whether or not a
similar implicit bias towards low-rank weights in fully connected networks exists for networks with
different activation functions or for data which is not nearly orthogonal. Our proofs relied heavily
upon the near-orthogonality of the data, and the ‘leaky’ behavior of the leaky ReLU, namely that
there is some γ > 0 such that ϕ′(z) ≥ γ for all z ∈ R. We conjecture that some of the properties we
showed in Theorem 3.2 (e.g., a linear decision boundary) may not hold for non-leaky activations,
like the ReLU, or without the near-orthogonality assumption.
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A PRELIMINARIES ON THE CLARKE SUBDIFFERENTIAL AND THE KKT
CONDITIONS

Below we review the definition of the KKT conditions for non-smooth optimization problems (cf.
Lyu & Li (2019); Dutta et al. (2013)).

Let f : Rd → R be a locally Lipschitz function. The Clarke subdifferential (Clarke et al., 2008) at
x ∈ Rd is the convex set

∂◦f(x) := conv
{
lim
i→∞

∇f(xi)
∣∣∣ lim
i→∞

xi = x, f is differentiable at xi

}
.

If f is continuously differentiable at x then ∂◦f(x) = {∇f(x)}. For the Clarke subdifferential
the chain rule holds as an inclusion rather than an equation. That is, for locally Lipschitz functions
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z1, . . . , zn : Rd → R and f : Rn → R, we have

∂◦(f ◦ z)(x) ⊆ conv

{
n∑

i=1

αihi : α ∈ ∂◦f(z1(x), . . . , zn(x)), hi ∈ ∂◦zi(x)

}
.

Consider the following optimization problem

min f(x) s.t. ∀n ∈ [N ] gn(x) ≤ 0 , (5)

where f, g1, . . . , gn : Rd → R are locally Lipschitz functions. We say that x ∈ Rd is a feasible
point of Problem (5) if x satisfies gn(x) ≤ 0 for all n ∈ [N ]. We say that a feasible point x is a KKT
point if there exists λ1, . . . , λN ≥ 0 such that

1. 0 ∈ ∂◦f(x) +
∑

n∈[N ] λn∂
◦gn(x);

2. For all n ∈ [N ] we have λngn(x) = 0.

B PROOF OF THEOREM 3.2

We start with some notations. We denote p = maxi ̸=j |⟨xi, xj⟩|. Thus, our assumption on n can be

written as n ≤ γ3

3 · R2
min
p · R2

min
R2

max
. Since W satisfies the KKT conditions of Problem (1), then there are

λ1, . . . , λn such that for every j ∈ [m1] we have

vj =
∑
i∈I

λi∇vj (yif(xi;W )) =
1√
m

∑
i∈I

λiyiϕ
′
i,vjxi , (6)

where ϕ′
i,vj

is a subgradient of ϕ at v⊤j xi, i.e., if v⊤j xi > 0 then ϕ′
i,vj

= 1, if v⊤j xi < 0 then
ϕ′
i,vj

= γ and otherwise ϕ′
i,vj

is some value in [γ, 1]. Also we have λi ≥ 0 for all i, and λi = 0 if
yif(xi;W ) ̸= 1. Likewise, for all j ∈ [m2] we have

uj =
∑
i∈I

λi∇uj (yif(xi;W )) =
1√
m

∑
i∈I

λi(−yi)ϕ
′
i,uj

xi , (7)

where ϕ′
i,uj

is defined similarly to ϕ′
i,vj

. The proof of the theorem follows from the following
lemmas.

Lemma B.1. For all i ∈ I we have
∑

j∈[m1]
λiϕ

′
i,vj

+
∑

j∈[m2]
λiϕ

′
i,uj

< 3m
2γR2

min
. Furthermore,

λi <
3

2γ2R2
min

for all i ∈ I .

Proof. Let ξ = maxq∈I

(∑
j∈[m1]

λqϕ
′
q,vj +

∑
j∈[m2]

λqϕ
′
q,uj

)
and suppose that ξ ≥ 3m

2γR2
min

. Let

r = argmaxq∈I

(∑
j∈[m1]

λqϕ
′
q,vj +

∑
j∈[m2]

λqϕ
′
q,uj

)
. Since ξ ≥ 3m

2γR2
min

> 0 then λr > 0, and
hence by the KKT conditions we must have yrf(xr;W ) = 1.

We consider two cases:

13



Published as a conference paper at ICLR 2023

Case 1: Assume that r ∈ I−. Using (6) and (7), we have

√
mf(xr;W ) =

∑
j∈[m1]

ϕ(v⊤j xr)−
∑

j∈[m2]

ϕ(u⊤
j xr)

=
∑

j∈[m1]

ϕ

 1√
m

∑
q∈I

λqyqϕ
′
q,vjx

⊤
q xr

−
∑

j∈[m2]

ϕ

 1√
m

∑
q∈I

λq(−yq)ϕ
′
q,uj

x⊤
q xr


=
∑

j∈[m1]

ϕ

 1√
m
λryrϕ

′
r,vj

x⊤
r xr +

1√
m

∑
q∈I\{r}

λqyqϕ
′
q,vjx

⊤
q xr


−
∑

j∈[m2]

ϕ

 1√
m
λr(−yr)ϕ

′
r,uj

x⊤
r xr +

1√
m

∑
q∈I\{r}

λq(−yq)ϕ
′
q,uj

x⊤
q xr


≤
∑

j∈[m1]

ϕ

− 1√
m
λrϕ

′
r,vj

R2
min +

1√
m

∑
q∈I\{r}

λqyqϕ
′
q,vjx

⊤
q xr


−
∑

j∈[m2]

ϕ

 1√
m
λrϕ

′
r,uj

R2
min +

1√
m

∑
q∈I\{r}

λq(−yq)ϕ
′
q,uj

x⊤
q xr

 .

Since the derivative of ϕ is lower bounded by γ, we know ϕ(z1) − ϕ(z2) ≥ γ(z1 − z2) for all
z1, z2 ∈ R. Using this and the definition of ξ, the above is at most

∑
j∈[m1]

ϕ
 1√

m

∑
q∈I\{r}

λqyqϕ
′
q,vjx

⊤
q xr

− 1√
m
γ · λrϕ

′
r,vj

R2
min


−
∑

j∈[m2]

ϕ
 1√

m

∑
q∈I\{r}

λq(−yq)ϕ
′
q,uj

x⊤
q xr

+
1√
m
γ · λrϕ

′
r,uj

R2
min


≤ − 1√

m
γξR2

min +
∑

j∈[m1]

∣∣∣∣∣∣ 1√
m

∑
q∈I\{r}

λqyqϕ
′
q,vjx

⊤
q xr

∣∣∣∣∣∣+
∑

j∈[m2]

∣∣∣∣∣∣ 1√
m

∑
q∈I\{r}

λq(−yq)ϕ
′
q,uj

x⊤
q xr

∣∣∣∣∣∣
≤ − 1√

m
γξR2

min +
1√
m

∑
j∈[m1]

∑
q∈I\{r}

∣∣∣λqyqϕ
′
q,vjx

⊤
q xr

∣∣∣+ 1√
m

∑
j∈[m2]

∑
q∈I\{r}

∣∣∣λq(−yq)ϕ
′
q,uj

x⊤
q xr

∣∣∣ .
Using |x⊤

q xr| ≤ p for q ̸= r, the above is at most

− 1√
m
γξR2

min +
1√
m

∑
j∈[m1]

∑
q∈I\{r}

λqϕ
′
q,vjp+

1√
m

∑
j∈[m2]

∑
q∈I\{r}

λqϕ
′
q,uj

p

= − 1√
m
γξR2

min +
p√
m

∑
q∈I\{r}

 ∑
j∈[m1]

λqϕ
′
q,vj +

∑
j∈[m2]

λqϕ
′
q,uj


≤ − 1√

m
γξR2

min +
p√
m

· |I| ·max
q∈I

 ∑
j∈[m1]

λqϕ
′
q,vj +

∑
j∈[m2]

λqϕ
′
q,uj


= − 1√

m
γξR2

min +
p√
m
nξ = − ξ√

m
(γR2

min − np) .
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By our assumption on n, we can bound the above expression by

− ξ√
m

(
γR2

min − p · γ
3

3
· R

2
min

p
· R

2
min

R2
max

)
= −ξR2

min√
m

(
γ − γ3

3
· R

2
min

R2
max

)
< −ξR2

min√
m

(
γ − γ

3

)
= −ξR2

min√
m

· 2γ
3

≤ − 3m

2γR2
min

· R
2
min√
m

· 2γ
3

= −
√
m .

Thus, we obtain f(xr;W ) < −1 in contradiction to yrf(xr;W ) = 1.

Case 2: Assume that r ∈ I+. A similar calculation to the one given in case 1 (which we do
not repeat for conciseness) implies that f(xr;W ) > 1, in contradiction to yrf(xr;W ) = 1. It
concludes the proof of ξ < 3m

2γR2
min

.

Finally, since ξ < 3m
2γR2

min
and the derivative of ϕ is lower bounded by γ, then for all i ∈ I we have

3m

2γR2
min

>
∑

j∈[m1]

λiϕ
′
i,vj +

∑
j∈[m2]

λiϕ
′
i,uj

≥ mλiγ ,

and hence λi <
3

2γ2R2
min

.

Lemma B.2. For all i ∈ I we have
∑

j∈[m1]
λiϕ

′
i,vj

+
∑

j∈[m2]
λiϕ

′
i,uj

> m
2R2

max
. Furthermore,

λi >
1

2R2
max

for all i ∈ I .

Proof. Suppose that there is i ∈ I such that
∑

j∈[m1]
λiϕ

′
i,vj

+
∑

j∈[m2]
λiϕ

′
i,uj

≤ m
2R2

max
. Using (6)

and (7), we have

√
m ≤

∣∣√mf(xi;W )
∣∣ =

∣∣∣∣∣∣
∑

j∈[m1]

ϕ(v⊤j xi)−
∑

j∈[m2]

ϕ(u⊤
j xi)

∣∣∣∣∣∣ ≤
∑

j∈[m1]

∣∣v⊤j xi

∣∣+ ∑
j∈[m2]

∣∣u⊤
j xi

∣∣
=
∑

j∈[m1]

∣∣∣∣∣∣ 1√
m

∑
q∈I

λqyqϕ
′
q,vjx

⊤
q xi

∣∣∣∣∣∣+
∑

j∈[m2]

∣∣∣∣∣∣ 1√
m

∑
q∈I

λq(−yq)ϕ
′
q,uj

x⊤
q xi

∣∣∣∣∣∣
≤ 1√

m

∑
j∈[m1]

∣∣∣λiyiϕ
′
i,vjx

⊤
i xi

∣∣∣+ ∑
q∈I\{i}

∣∣∣λqyqϕ
′
q,vjx

⊤
q xi

∣∣∣


+
1√
m

∑
j∈[m2]

∣∣∣λi(−yi)ϕ
′
i,uj

x⊤
i xi

∣∣∣+ ∑
q∈I\{i}

∣∣∣λq(−yq)ϕ
′
q,uj

x⊤
q xi

∣∣∣
 .
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Using |x⊤
q xi| ≤ p for q ̸= i and x⊤

i xi ≤ R2
max, the above is at most

1√
m

∑
j∈[m1]

λiϕ
′
i,vjR

2
max +

∑
q∈I\{i}

λqϕ
′
q,vjp

+
1√
m

∑
j∈[m2]

λiϕ
′
i,uj

R2
max +

∑
q∈I\{i}

λqϕ
′
q,uj

p


=

1√
m

 ∑
j∈[m1]

λiϕ
′
i,vjR

2
max +

∑
j∈[m2]

λiϕ
′
i,uj

R2
max

+
1√
m

∑
q∈I\{i}

 ∑
j∈[m1]

λqϕ
′
q,vjp+

∑
j∈[m2]

λqϕ
′
q,uj

p


=

R2
max√
m

 ∑
j∈[m1]

λiϕ
′
i,vj +

∑
j∈[m2]

λiϕ
′
i,uj

+
p√
m

∑
q∈I\{i}

 ∑
j∈[m1]

λqϕ
′
q,vj +

∑
j∈[m2]

λqϕ
′
q,uj


≤ R2

max√
m

· m

2R2
max

+
p√
m

· |I| ·max
q∈I

 ∑
j∈[m1]

λqϕ
′
q,vj +

∑
j∈[m2]

λqϕ
′
q,uj

 .

Combining the above with our assumption on n, we get

max
q∈I

 ∑
j∈[m1]

λqϕ
′
q,vj +

∑
j∈[m2]

λqϕ
′
q,uj

 ≥ m

2np
≥ m

2p
· 3p

γ3R2
min

· R
2
max

R2
min

>
3m

2γR2
min

,

in contradiction to Lemma B.1. It concludes the proof of
∑

j∈[m1]
λiϕ

′
i,vj

+
∑

j∈[m2]
λiϕ

′
i,uj

>
m

2R2
max

.

Finally, since
∑

j∈[m1]
λiϕ

′
i,vj

+
∑

j∈[m2]
λiϕ

′
i,uj

> m
2R2

max
and the derivative of ϕ is upper bounded

by 1, then for all i ∈ I we have
m

2R2
max

<
∑

j∈[m1]

λiϕ
′
i,vj +

∑
j∈[m2]

λiϕ
′
i,uj

≤ mλi ,

and hence λi >
1

2R2
max

.

Lemma B.3. For all i ∈ I we have yif(xi;W ) = 1.

Proof. By Lemma B.2 we have λi > 0 for all i ∈ I , and hence by the KKT conditions we must
have yif(xi;W ) = 1.

Lemma B.4. We have

v1 = . . . = vm1 =
1√
m

∑
i∈I+

λixi −
γ√
m

∑
i∈I−

λixi ,

and
u1 = . . . = um2 =

1√
m

∑
i∈I−

λixi −
γ√
m

∑
i∈I+

λixi .

Moreover, for all i ∈ I we have: yiv
⊤
j xi > 0 for every j ∈ [m1], and yiu

⊤
j xi < 0 for every

j ∈ [m2].

Proof. Fix j ∈ [m1]. By (6) for all i ∈ I+ we have

v⊤j xi =
1√
m

∑
q∈I

λqyqϕ
′
q,vjx

⊤
q xi

=
1√
m
λiyiϕ

′
i,vjx

⊤
i xi +

1√
m

∑
q∈I\{i}

λqyqϕ
′
q,vjx

⊤
q xi

≥ 1√
m
λiϕ

′
i,vjR

2
min −

1√
m

∑
q∈I\{i}

λqϕ
′
q,vjp .
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By Lemma B.1 and Lemma B.2, and using ϕ′
q,vj ∈ [γ, 1] for all q ∈ I , the above is larger than

1√
m

· 1

2R2
max

· γR2
min −

1√
m

· n · 3

2γ2R2
min

· p ≥ γR2
min

2
√
mR2

max
− 1√

m
· γ

3

3
· R

2
min

p
· R

2
min

R2
max

· 3

2γ2R2
min

· p

=
γR2

min

2
√
mR2

max
− γR2

min

2
√
mR2

max
= 0 .

Thus, v⊤j xi > 0, which implies ϕ′
i,vj

= 1.

Similarly, for all i ∈ I− we have

v⊤j xi =
1√
m

∑
q∈I

λqyqϕ
′
q,vjx

⊤
q xi

=
1√
m
λiyiϕ

′
i,vjx

⊤
i xi +

1√
m

∑
q∈I\{i}

λqyqϕ
′
q,vjx

⊤
q xi

≤ − 1√
m
λiϕ

′
i,vjR

2
min +

1√
m

∑
q∈I\{i}

λqϕ
′
q,vjp .

By Lemma B.1 and Lemma B.2, and using ϕ′
q,vj ∈ [γ, 1] for all q ∈ I , the above is smaller than

− 1√
m

· 1

2R2
max

· γR2
min +

1√
m

· n · 3

2γ2R2
min

· p ≤ − γR2
min

2
√
mR2

max
+

1√
m

· γ
3

3
· R

2
min

p
· R

2
min

R2
max

· 3

2γ2R2
min

· p

= − γR2
min

2
√
mR2

max
+

γR2
min

2
√
mR2

max
= 0 .

Thus, v⊤j xi < 0, which implies ϕ′
i,vj

= γ.

Using (6) again we conclude that

vj =
1√
m

∑
i∈I

λiyiϕ
′
i,vjxi =

1√
m

∑
i∈I+

λixi −
γ√
m

∑
i∈I−

λixi .

Since the above expression holds for all j ∈ [m1] then we have v1 = . . . = vm1
.

By similar arguments (which we do not repeat for conciseness) we also get

u1 = . . . = um2 =
1√
m

∑
i∈I−

λixi −
γ√
m

∑
i∈I+

λixi .

and yiu
⊤
j xi < 0 for all i ∈ I and j ∈ [m2].

By the above lemma, we may denote v := v1 = . . . = vm1
and u := u1 = . . . = um2

, and denote
z := m1√

m
v − m2√

m
u.

Lemma B.5. The pair v, u is a unique global optimum of the Problem (3).

Proof. First, we remark that a variant of the this lemma appears in Sarussi et al. (2021). They proved
the claim under an assumption called Neural Agreement Regime (NAR), and Lemma B.4 implies that
this assumption holds in our setting.

Note that the objective in Problem (3) is strictly convex and the constraints are affine. Hence, its
KKT conditions are sufficient for global optimality, and the global optimum is unique. It remains to
show that v, u satisfy the KKT conditions.

Firstly, note that v, u satisfy the constraints. Indeed, by Lemma B.4, for every i ∈ I+ we have
v⊤xi > 0 and u⊤xi < 0. Combining it with Lemma B.3 we get

1 = f(xi;W ) =
m1√
m
ϕ(v⊤xi)−

m2√
m
ϕ(u⊤xi) =

m1√
m
v⊤xi − γ

m2√
m
u⊤xi . (8)
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Similarly, for every i ∈ I− we have v⊤xi < 0 and u⊤xi > 0. Together with Lemma B.3 we get

−1 = f(xi;W ) =
m1√
m
ϕ(v⊤xi)−

m2√
m
ϕ(u⊤xi) = γ

m1√
m
v⊤xi −

m2√
m
u⊤xi . (9)

Next, we need to show that there are µ1, . . . , µn ≥ 0 such that

m1v =
∑
i∈I+

µi
m1√
m
xi +

∑
i∈I−

µi(−γ
m1√
m
xi) ,

m2u =
∑
i∈I+

µi(−γ
m2√
m
xi) +

∑
i∈I−

µi
m2√
m
xi .

By setting µi = λi for all i ∈ I , Lemma B.4 implies that the above equations hold.

Finally, we need to show that µi = 0 for all i ∈ I where the corresponding constraint holds with a
strict inequality. However, by (8) and (9) all constraints hold with an equality.

Lemma B.6. The weight matrix W is a unique global optimum of Problem (1).

Proof. Let W̃ be a weight matrix that satisfies the KKT conditions of Problem (1), and let
ṽ1, . . . , ṽm1

, ũ1, . . . , ũm2
be the corresponding positive and negative weight vectors. We first show

that W̃ = W , i.e., there is a unique KKT point for Problem (1). Indeed, by Lemma B.4, for every
such W̃ we have ṽ1 = . . . = ṽm1

:= ṽ and ũ1 = . . . = ũm2
:= ũ, and by Lemma B.5 the vectors

ṽ, ũ are a unique global optimum of Problem (3). Since by Lemma B.5 the vectors v, u are also a
unique global optimum of Problem (3), then we must have v = ṽ and u = ũ.

Now, let W ∗ be a global optimum of Problem (1). By Lyu & Li (2019), the KKT conditions of
this problem are necessary for optimality, and hence they are satisfied by W ∗. Therefore, we have
W ∗ = W . Thus, W is a unique global optimum.

Lemma B.7. For every x ∈ Rd we have sign (f(x;W )) = sign(z⊤x).

Proof. First, We remark that a variant of the this lemma appears in Sarussi et al. (2021). They proved
the claim under an assumption called Neural Agreement Regime (NAR), and Lemma B.4 implies that
this assumption holds in our setting.

Let x ∈ Rd. Consider the following cases:

Case 1: If v⊤x ≥ 0 and u⊤x ≥ 0 then f(x;W ) = m1√
m
v⊤x − m2√

m
u⊤x = z⊤x, and thus

sign (f(x;W )) = sign(z⊤x).

Case 2: If v⊤x ≥ 0 and u⊤x < 0 then f(x;W ) = m1√
m
v⊤x − m2√

m
γu⊤x > 0 and z⊤x =

m1√
m
v⊤x− m2√

m
u⊤x > 0.

Case 3: If v⊤x < 0 and u⊤x ≥ 0 then f(x;W ) = m1√
m
γv⊤x − m2√

m
u⊤x < 0 and z⊤x =

m1√
m
v⊤x− m2√

m
u⊤x < 0.

Case 4: If v⊤x < 0 and u⊤x < 0 then f(x;W ) = m1√
m
γv⊤x − m2√

m
γu⊤x = γz⊤x, and thus

sign (f(x;W )) = sign(z⊤x).

Lemma B.8. The vector z may not be an ℓ2-max-margin linear predictor.

Proof. We give an example of a setting that satisfies the theorem’s assumptions, but the correspond-
ing vector z is not an ℓ2-max-margin linear predictor. Let γ = 1

2 and suppose that m1 = m2 := m′.
Let x1 = (−1, 0, 0)⊤, x2 = (ϵ,

√
1− ϵ2, 0)⊤, and x3 = (0, 0, 1)⊤, where ϵ > 0 is sufficiently small

such that the theorem’s assumption holds. Namely, since we need n ≤ γ3

3 · R2
min
p · R2

min
R2

max
and we have

Rmin = Rmax = 1 and p = ϵ, then ϵ should satisfy 3 ≤ 1
8·3ϵ . We also let y1 = −1, y2 = y3 = 1. Let

W be a KKT point of Problem (1) w.r.t. the dataset {(xi, yi)}3i=1, and let v1, . . . , vm′ , u1, . . . , um′

be the corresponding weight vectors. By Lemma B.4 and Lemma B.5 we have v = v1 = . . . = vm′
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and u = u1 = . . . = um′ where v, u are a solution of Problem (3). Moreover, by Lemma B.4 and
Lemma B.2 we have

v =
1√
2m′

(λ2x2 + λ3x3 − γλ1x1) =
1√
2m′

(
λ2x2 + λ3x3 −

1

2
· λ1x1

)
, (10)

u =
1√
2m′

(λ1x1 − γλ2x2 − γλ3x3) =
1√
2m′

(
λ1x1 −

1

2
· λ2x2 −

1

2
· λ3x3

)
, (11)

where λi > 0 for all i. Since x1, x2, x3 are linearly independent, then given v, u there is a unique
choice of λ1, λ2, λ3 that satisfy the above equations.

Since v, u satisfy the KKT conditions of Problem (3), we can find λ1, λ2, λ3 as follows. Let
µ1, µ2, µ3 ≥ 0 be such that the KKT conditions of Problem (3) hold. From the stationarity con-
dition we have

m′v = µ2
m′

√
2m′

x2 + µ3
m′

√
2m′

x3 − γµ1
m′

√
2m′

x1 ,

m′u = µ1
m′

√
2m′

x1 − γµ2
m′

√
2m′

x2 − γµ3
m′

√
2m′

x3 .

Since x1, x2, x3 are linearly independent, combining the above with (10) and (11) implies µi =
λi > 0 for all i. Therefore, all constraints in Problem (3) must hold with an equality. Namely, we
have

√
2m′

m′ =

(
u⊤ − 1

2
v⊤
)
x1

=
1√
2m′

[
λ1x1 −

1

2
· λ2x2 −

1

2
· λ3x3 −

1

2

(
λ2x2 + λ3x3 −

1

2
· λ1x1

)]⊤
x1

=
1√
2m′

(
5

4
· λ1x1 − λ2x2 − λ3x3

)⊤

x1 =
1√
2m′

(
5

4
· λ1 · 1− λ2(−ϵ)− λ3 · 0

)
=

1√
2m′

(
5

4
· λ1 + λ2ϵ

)
,

√
2m′

m′ =

(
v⊤ − 1

2
u⊤
)
x2

=
1√
2m′

[
λ2x2 + λ3x3 −

1

2
· λ1x1 −

1

2

(
λ1x1 −

1

2
· λ2x2 −

1

2
· λ3x3

)]⊤
x2

=
1√
2m′

(
5

4
· λ2x2 +

5

4
· λ3x3 − λ1x1

)⊤

x2 =
1√
2m′

(
5

4
· λ2 + 0− λ1(−ϵ)

)
=

1√
2m′

(
5

4
· λ2 + λ1ϵ

)
,

and

√
2m′

m′ =

(
v⊤ − 1

2
u⊤
)
x3 =

1√
2m′

(
5

4
· λ2x2 +

5

4
· λ3x3 − λ1x1

)⊤

x3 =
1√
2m′

· 5
4
· λ3 .

Solving the above equations, we get λ1 = λ2 = 8
4ϵ+5 , and λ3 = 8

5 .
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Thus, a KKT point of Problem (1) must satisfy (10) and (11) with the above λi’s. Now, consider

z =
m′

√
2m′

v − m′
√
2m′

u =
m′

√
2m′

(v − u)

=
m′

√
2m′

· 1√
2m′

∑
i∈I+

λixi − γ
∑
i∈I−

λixi −
∑
i∈I−

λixi + γ
∑
i∈I+

λixi


=

1 + γ

2

∑
i∈I+

λixi −
∑
i∈I−

λixi


=

3

4

(
8

4ϵ+ 5
· x2 +

8

5
· x3 −

8

4ϵ+ 5
· x1

)
=

(
6

4ϵ+ 5
· x2 +

6

5
· x3 −

6

4ϵ+ 5
· x1

)
.

We need to show that z does not satisfy the KKT conditions of the problem

min
z̃

1

2
∥z̃∥2 s.t. ∀i ∈ {1, 2, 3} yiz̃

⊤xi ≥ β , (12)

for any margin β > 0. A KKT point z̃ of the above problem must satisfy z̃ = −λ′
1x1+λ′

2x2+λ′
3x3,

where λ′
i ≥ 0 for all i, and λ′

i = 0 if yiz̃⊤xi ̸= β. Since z is a linear combination of the three
independent vectors x1, x2, x3 where the coefficients are non-zero, then if z is a KKT point of
Problem (12) we must have λ′

i ̸= 0 for all i, which implies yiz⊤xi = β for all i. Therefore, in order
to conclude that z is not a KKT point, it suffices to show that z⊤x2 ̸= z⊤x3.

We have

z⊤x2 =

(
6

4ϵ+ 5
· x2 +

6

5
· x3 −

6

4ϵ+ 5
· x1

)⊤

x2 =
6

4ϵ+ 5
+ 0 +

6ϵ

4ϵ+ 5
=

6(ϵ+ 1)

4ϵ+ 5
,

and

z⊤x3 =

(
6

4ϵ+ 5
· x2 +

6

5
· x3 −

6

4ϵ+ 5
· x1

)⊤

x3 =
6

5
.

Using the above equations, it is easy to verify that z⊤x2 ̸= z⊤x3 for all ϵ > 0.

Lemma B.9. For all i ∈ I we have yiz
⊤xi ≥ 1, and ∥z∥ ≤ 2

κ+γ ∥z∗∥, where z∗ = argminz̃ ∥z̃∥
s.t. yiz̃⊤xi ≥ 1 for all i ∈ I .

Proof. By Lemma B.4, for all i ∈ I+ we have v⊤xi > 0 and u⊤xi < 0. Hence

1 ≤ f(xi;W ) =
m1√
m
ϕ(v⊤xi)−

m2√
m
ϕ(u⊤xi)

=
m1√
m
v⊤xi −

m2√
m
γu⊤xi

≤ m1√
m
v⊤xi −

m2√
m
u⊤xi = z⊤xi .

Likewise, by Lemma B.4, for all i ∈ I− we have v⊤xi < 0 and u⊤xi > 0. Hence

−1 ≥ f(xi;W ) =
m1√
m
ϕ(v⊤xi)−

m2√
m
ϕ(u⊤x2)

=
m1√
m
γv⊤xi −

m2√
m
u⊤xi

≥ m1√
m
v⊤xi −

m2√
m
u⊤xi = z⊤xi .

Thus, it remains to obtain an upper bound for ∥z∥.
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Assume w.l.o.g. that m1 ≥ m2 (the proof for the case m1 ≤ m2 is similar). Thus, κ =
√

m2

m1
. Let

z∗ ∈ Rd such that yi(z∗)⊤xi ≥ 1 for all i ∈ I . Let

v∗ = z∗ ·
√
m

m1
· 1

κ+ γ
,

u∗ = −z∗ ·
√
m

m2
· κ

κ+ γ
.

Note that v∗, u∗ satisfy the constraints in Problem (3). Indeed, for i ∈ I− we have

m2√
m
(u∗)⊤xi − γ

m1√
m
(v∗)⊤xi = −κ(z∗)⊤xi

κ+ γ
− γ · (z

∗)⊤xi

κ+ γ
≥ κ

κ+ γ
+ γ · 1

κ+ γ
= 1 .

For i ∈ I+ we have

m1√
m
(v∗)⊤xi − γ

m2√
m
(u∗)⊤xi =

(z∗)⊤xi

κ+ γ
+ γ · κ(z

∗)⊤xi

κ+ γ
≥ 1

κ+ γ
+ γ · κ

κ+ γ
=

1 + γκ

κ+ γ
≥ 1 ,

where the last inequality is since 0 ≤ (1− κ)(1− γ) = 1 + κγ − κ− γ.

By Lemma B.5 the pair v, u is a global optimum of Problem (3). Hence

m1 ∥v∥2 +m2 ∥u∥2 ≤ m1 ∥v∗∥2 +m2 ∥u∗∥2

= m1 ·
m

m2
1

· 1

(κ+ γ)2
∥z∗∥2 +m2 ·

m

m2
2

· κ2

(κ+ γ)2
∥z∗∥2

=
m ∥z∗∥2

(κ+ γ)2

[
1

m1
+

κ2

m2

]
=

m ∥z∗∥2

(κ+ γ)2
· 2

m1
.

Therefore, we have

∥m1v∥2 + ∥m2u∥2 ≤ m2
1 ∥v∥

2
+m1m2 ∥u∥2 ≤ m ∥z∗∥2

(κ+ γ)2
· 2 .

Hence,

∥z∥2 =

∥∥∥∥ m1√
m
v − m2√

m
u

∥∥∥∥2 ≤ 2

(∥∥∥∥ m1√
m
v

∥∥∥∥2 + ∥∥∥∥ m2√
m
u

∥∥∥∥2
)

=
2

m

(
∥m1v∥2 + ∥m2u∥2

)
≤ 4 ∥z∗∥2

(κ+ γ)2
,

which implies ∥z∥ ≤ 2∥z∗∥
κ+γ as required.

C PROOF OF LEMMA 3.3

Proof of Lemma 3.3. According to the distribution assumption in the lemma, we can write xi =
Σ1/2x̄i where x̄i ∼ N(0, Id).2 By Hanson-Wright inequality (Rudelson & Vershynin, 2013, Theo-
rem 2.1), we have for any t ≥ 0,

Pr
[∣∣∣∥∥∥Σ1/2x̄i

∥∥∥− ∥Σ1/2∥F
∣∣∣ > t

]
≤ 2 exp

(
−Ω

(
t2∥∥Σ1/2
∥∥2
2

))
,

i.e.,

Pr
[∣∣∣∥xi∥ −

√
d
∣∣∣ > t

]
≤ 2 exp

(
−Ω

(
t2
))

.

Let t = C
√
log n for a sufficiently large constant C > 0. Taking a union bound over all i ∈ [n], we

have that with probability at least 1−n−20, ∥xi∥ =
√
d±O(

√
log n) for all i ∈ [n] simultaneously.

2The proof below holds more generally when x̄i has independent subgaussian entries.
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For i ̸= j, we have ⟨xi, xj⟩|xj ∼ N(0, x⊤
j Σxj). Hence we can apply a standard tail bound to obtain

Pr [|⟨xi, xj⟩| > t |xj ] ≤ 2 exp

(
− t2

2x⊤
j Σxj

)
.

Because we have known that x⊤
j Σxj = O(∥xj∥2) = O(d+ log n) = O(d) with probability at least

1− n−20, we have

Pr [|⟨xi, xj⟩| > t] ≤ n−20 + 2 exp

(
−Ω

(
t2

d

))
.

Then we can take t = C
√
d log n for a sufficiently large constant C and apply a union bound over

all i, j, which gives |⟨xi, xj⟩| = O(
√
d log n) for all i ̸= j with probability at least

1− n2
(
n−20 + 2 exp(−Ω(C2 log n))

)
≥ 1− n−15.

This completes the proof.

D PROOF OF THEOREM 3.4

To prove Theorem 3.4, we need to show that for some t0 > 0, L̂(W (t)) < log 2/n for all t ≥ t0.
To do so, we will first show a proxy PL inequality (Frei & Gu, 2021), and then use this to argue that
the loss must eventually be smaller than log 2/n.

We begin by showing that the vector µ̂ :=
∑n

i=1 yixi correctly classifies the training data with a
positive margin. To see this, note that for any k ∈ [n],〈

n∑
i=1

yixi, ykxk

〉
= ∥xk∥2 +

∑
i ̸=k

⟨yixi, ykxk⟩

≥ min
i

∥xi∥2 − nmax
i̸=j

|⟨xi, xj⟩|

(i)

≥
(
1− γ3

3

)
min
i

∥xi∥2

(ii)

≥ 2

3
min
i

∥xi∥2. (13)

Inequality (i) uses the theorem’s assumption that 3nmaxi ̸=j |⟨xi, xj⟩| ≤ γ3. Inequality (ii) uses
that γ ≤ 1. To show how large of a margin µ̂ gets on the training data, we bound its norm. We have,∥∥∥∥∥

n∑
i=1

yixi

∥∥∥∥∥
2

≤
n∑

i=1

∥xi∥2 +
∑
i̸=j

|⟨xi, xj⟩|

=

n∑
i=1

∥xi∥2 +
∑
j ̸=i

|⟨xi, xj⟩|


≤

n∑
i=1

[
∥xi∥2 + nmax

i̸=j
|⟨xi, xj⟩|

]

≤
n∑

i=1

[
∥xi∥2 +

γ3

3
min
j

∥xj∥2
]

≤ 2nmax
i

∥xi∥2.

Denoting Rmin := mini ∥xi∥, Rmax = maxi ∥xi∥, and R = Rmax/Rmin, substituting the above
display into (13) we get for any k ∈ [n],〈

µ̂

∥µ̂∥
, ykxk

〉
≥

2/3R2
min√

2nR2
max

=

√
2Rmin

3R
√
n
. (14)
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Let us now define the matrix Z ∈ Rm×d with rows,

zj :=
µ̂

∥µ̂∥
aj .

Since a2j = 1/m for each j, we have ∥Z∥2F = 1, and moreover we have for any k ∈ [n] and
W ∈ Rm×d,

yk⟨∇f(xk;W ), Z⟩ =
m∑
j=1

a2jϕ
′(⟨wj , xk⟩)

〈
µ̂

∥µ̂∥
, ykxk

〉

≥
√
2Rmin

3R
√
n

1

m

m∑
j=1

ϕ′(⟨wj , xk⟩)

≥
√
2Rminγ

3R
√
n

,

where the first inequality uses (14) and the last inequality uses that ϕ′(z) ≥ γ. If ℓ is the logistic or
exponential loss and we define

g(z) = −ℓ′(z), Ĝ(W (t)) :=
1

n

n∑
k=1

g(ykf(xk;W (t))),

then since g(z) > 0 the above allows for the following proxy-PL inequality,

∥∇L̂(W (t))∥F ≥
〈
∇L̂(W (t)),−Z

〉
=

1

n

n∑
k=1

−ℓ′(ykf(xk;W (t)))yk⟨∇f(xk;W (t)), Z⟩

≥
√
2Rminγ

3R
√
n

Ĝ(W (t)). (15)

By the chain rule, the above implies
d

dt
L̂(W (t)) = −∥∇L̂(W (t))∥2F

≤ −

(√
2Rminγ

3R
√
n

Ĝ(W (t))

)2

.

Let us now calculate how long until we reach the point where Ĝ(W (t)) < log 2/(3n). Define

τ = inf{t : Ĝ(W (t)) < log 2/(3n)}.
Then for any t < τ we have

d

dt
L̂(W (t)) ≤ −

(√
2Rminγ

3R
√
n

· log 2
3n

)2

.

Integrating, we see that

L̂(W (t)) ≤ L̂(W (0))− 2R2
minγ

2 log2(2)t

81R2n3
.

Since L̂(W (t)) ≥ 0, this means that τ ≤ 81L̂(W (0))R2n3/(2γ2R2
min log

2(2)) ≤
85L̂(W (0))R2n3/(γ2R2

min). At time τ , we know that Ĝ(W (τ)) ≤ log 2/(3n) and thus
yif(xi;W (τ)) > 0 for each i. For z > 0, both the logistic loss and the exponential loss satisfy
ℓ(z) ≤ 2 · −ℓ′(z), and so for either loss, we have

L̂(W (τ)) =
1

n

n∑
i=1

ℓ(yif(xi;W (τ))) ≤ 2

n

n∑
i=1

−ℓ′(yif(xi;W (τ))) = 2Ĝ(W (τ)) ≤ 2

3
· log 2

n
.

Since L̂(W (t)) is decreasing, we thus have for all times t ≥ τ , we have L̂(W (t)) ≤ L̂(W (τ)) <
log(2)/n.

23



Published as a conference paper at ICLR 2023

E PROOF OF THEOREM 4.2

In this section, we provide a proof of Theorem 4.2. An overview of our proof is as follows.

1. In Section E.1 we provide basic concentration arguments about the random initialization.
2. In Section E.2 we show that the neural network output and the logistic loss objective func-

tion are smooth as a function of the parameters.
3. In Section E.3 we prove a structural result on how gradient descent weights the samples

throughout the training trajectory. In particular, we show that throughout gradient descent,
the sigmoid losses −ℓ′(yif(xi;W

(t))) grow at approximately the same rate for all samples.
4. In Section E.4 we leverage the above structural result to provide a tighter upper bound on

∥W (t)∥F than is possible with a naı̈ve application of the triangle inequality.

5. In Section E.5 we provide a lower bound for ∥W (t)∥2.
6. In Section E.6 we show that a proxy-PL inequality is satisfied.
7. We conclude the proof of Theorem 4.2 in Section E.7 by putting together the preceding

items to bound the stable rank StableRank(W (t)) = ∥W (t)∥2F /∥W (t)∥22 and to show that
L̂(W (t)) → 0.

Let us denote by CR := 10R2/γ2 + 10, where R = Rmax/Rmin and Rmax = maxi ∥xi∥, Rmin =
mini ∥xi∥. For a given probability threshold δ ∈ (0, 1), we make the following assumptions moving
forward:

(A1) Step-size α ≤ γ2
(
5nR2

maxR
2CR max(1, H)

)−1
, where ϕ is H-smooth and γ-leaky.

(A2) Initialization variance satisfies ωinit ≤ αγ2Rmin

(
72RCRn

√
md log(4m/δ)

)−1

.

We shall also use the following notation to refer to the sigmoid losses that appear throughout the
analysis of gradient descent training for the logistic loss,

g(z) = −ℓ′(z) =
1

1 + exp(z)
, Ĝ(W ) =

1

n

n∑
i=1

g
(
yif(xi;W )

)
, g

(t)
i := g

(
yif(xi;W

(t))
)
.

(16)

E.1 CONCENTRATION FOR RANDOM INITIALIZATION

The following lemma characterizes the ℓ2-norm of each neuron at intialization. It also characterizes
how large the projection of each neuron along the direction µ̂ :=

∑n
i=1 yixi can be at initialization.

We shall see in Lemma E.13 that gradient descent forces the weights to align with this direction.
In the proof of Theorem 4.2, we will argue that by taking a single step of gradient descent with a
sufficiently large step-size and small initialization variance, the gradient descent update dominates
the behavior of each neuron at initialization, so that after one step the µ̂ direction becomes dominant
for each neuron. This will form the basis of showing that W (t) has small stable rank for t ≥ 1.
Lemma E.1. With probability at least 1−δ over the random initialization, the following holds. First,
we have the following upper bounds for the spectral norm and per-neuron norms at initialization,

∥W (0)∥2 ≤ C0ωinit(
√
m+

√
d), and for all j ∈ [m], ∥w(0)

j ∥2 ≤ 5ω2
initd log(4m/δ).

Second, if we denote by µ̄ ∈ Rd be the vector
∑n

i=1 yixi/∥
∑n

i=1 yixi∥, then we have

|⟨w(0)
j , µ̄⟩| ≤ 2ωinit

√
log(4m/δ).

Proof. For the first part of the lemma, note that for fixed j ∈ [m], there are i.i.d. zi ∼ N(0, 1) such
that

∥w(0)
j ∥2 =

d∑
i=1

(w
(0)
j )2i = ω2

init

d∑
i=1

z2i ∼ ω2
init · χ2(d).
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By concentration of the χ2 distribution (Laurent & Massart, 2000, Lemma 1), for any t > 0,

P
(

1

ω2
init

∥w(0)
j ∥2 − d ≥ 2

√
dt+ 2t

)
≤ exp(−t).

In particular, if we let t = log(4m/δ), we have that with probability at least 1− δ/4, for all j ∈ [m],

∥w(0)
j ∥2 ≤ ω2

init

(
d+ 2

√
d log(4m/δ) + 2 log(4m/δ)

)
≤ 5ω2

initd log(4m/δ).

For the second part, note that ⟨w(0)
j , µ̄⟩ ∼ N(0, ω2

init). We therefore have P(|⟨w(0)
j , µ̄⟩| ≥ t) ≤

2 exp(−t2/2ω2
init). Choosing t = ωinit

√
log(4m/δ) we see that with probability at least 1 − δ/2,

for all j, |⟨w(0)
j , µ̄⟩| ≤ 2ωinit

√
log(4m/δ). Taking a union bound over both events completes the

proof.

E.2 SMOOTHNESS OF NETWORK OUTPUT AND LOSS

In this sub-section, we show that the network output and the logistic loss satisfy a number of smooth-
ness properties, owing to the fact that ϕ is H-smooth (i.e., ϕ′′ exists and |ϕ′′(z)| ≤ H).
Lemma E.2. For an H-smooth activation ϕ and any W,V ∈ Rm×d and x ∈ Rd,

|f(x;W )− f(x;V )− ⟨∇f(x;V ),W − V ⟩| ≤ H∥x∥2

2
√
m

∥W − V ∥22.

Proof. This was shown in Frei et al. (2022a, Lemma 4.5).

We next show that the empirical risk is smooth, in the sense that the gradient norm is bounded by
the loss itself and that the gradients are Lipschitz.
Lemma E.3. For an H-smooth, 1-Lipschitz activation ϕ and any W,V ∈ Rm×d, if ∥xi∥ ≤ Rmax
for all i,

1

Rmax
∥∇L̂(W )∥F ≤ Ĝ(W ) ≤ L̂(W ) ∧ 1,

where Ĝ(W ) is defined in (16). Additionally,

∥∇L̂(W )−∇L̂(V )∥F ≤ R2
max

(
1 +

H√
m

)
∥W − V ∥2.

Proof. This follows by Frei et al. (2022a, Lemma 4.6). The only difference is that in that paper, the
authors use ∥xi∥2 ≤ C1p (in their work, xi ∈ Rp) to go from equations (5) and (6) to equation (7),
while we instead use that ∥xi∥2 ≤ R2

max.

E.3 LOSS RATIO BOUND

In this section, we prove a key structural result which we will refer to as a ‘loss ratio bound’.
Lemma E.4. Let ϕ be a γ-leaky, H-smooth activation. Define R = maxi,j ∥xi∥/∥xj∥, and let us
denote CR = 10R2γ−2 + 10. Suppose that for all i ∈ [n], we have,

∥xi∥2 ≥ 5γ−2CRnmax
k ̸=i

|⟨xi, xk⟩|.

Then under Assumptions (A1) and (A2), we have with probability at least 1− δ,

sup
t≥0

{
max
i,j∈[n]

ℓ′
(
yif(xi;W

(t))
)

ℓ′
(
yjf(xj ;W (t))

)} ≤ CR.

This lemma shows that regardless of the relationship between x and y, the ratio of the sigmoid
losses −ℓ′(yif(xi;W

(t))), where −ℓ′(z) = 1/(1 + exp(z)), grows at essentially the same rate for
all examples.
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Our proof largely follows that used by Frei et al. (2022a), who showed a loss ratio bound for gra-
dient descent-trained two-layer networks with γ-leaky, H-smooth activations when the data comes
from a mixture of isotropic log-concave distributions. We generalize their proof technique to ac-
commodate general training data for which the samples are nearly orthogonal in the sense that
∥xi∥2 ≫ nmaxk ̸=i |⟨xi, xk⟩|. Additionally, we provide a more general proof technique that illus-
trates how a loss ratio bound could hold for activations ϕ for which ϕ′(z) is not bounded from below
by an absolute constant (like the ReLU), as well as for training data which are not necessarily nearly-
orthogonal. We begin by describing two conditions which form the basis of this more general proof
technique. The first condition concerns near-orthogonality of the gradients of the network, rather
than the samples as in the assumption for Theorem 4.2.

Condition E.5 (Near-orthogonality of gradients). We say that near-orthogonality of gradients holds
at time t if, for a some absolute constant C ′ > 1, for any i ∈ [n],

∥∇f(xi;W
(t))∥2 ≥ C ′nmax

k ̸=i
|⟨∇f(xi;W

(t)),∇f(xk;W
(t))⟩|.

Note that for linear classifiers—i.e., m = 1 with ϕ(z) = z—near-orthogonality of gradients is
equivalent to near-orthogonality of samples, since in this setting ∇f(xi;W ) = xi. It is clear that
this is a more general condition than near-orthogonality of samples.

The next condition we call gradient persistence, which roughly states that the gradients of the net-
work with respect to a sample has large norm whenever that sample has large norm.

Condition E.6 (Gradient persistence). We say that gradient persistence holds at time t if there is a
constant c > 0 such that for all i ∈ [n],

∥∇f(xi;W
(t))∥2F ≥ c∥xi∥2.

Gradient persistence essentially states that there is no possibility of a ‘vanishing gradient’ problem.

Next, we show that Lipschitz activation functions that are also ‘leaky’ in the sense that ϕ′(z) ≥
γ > 0 everywhere, allow for both gradient persistence and, when the samples are nearly-orthogonal,
near-orthogonality of gradients.

Fact E.7. Suppose ϕ is such that ϕ′(z) ∈ [γ, 1] for all z for some absolute constant γ > 0. Suppose
that for some C > γ−2, for all i ∈ [n] we have,

∥xi∥2 ≥ Cnmax
k ̸=i

|⟨xi, xk⟩|.

Then for all times t ≥ 0, the gradients are nearly-orthogonal (Condition E.5) with C ′ = Cγ2 and
gradient persistence (Condition E.6) holds for c = γ2.

Proof. For any samples i, k ∈ [n] and any W ∈ Rm×d,

⟨∇f(xi;W ),∇f(xk;W )⟩ = ⟨xi, xk⟩ ·
1

m

m∑
j=1

ϕ′(⟨wj , xi⟩)ϕ′(⟨wj , xk⟩).

Since ϕ′(z) ∈ [γ, 1] for all z, we therefore see that gradient persistence holds with c = γ2:

∥∇f(xk;W )∥2F = ∥xk∥2 ·
1

m

m∑
j=1

ϕ′(⟨wj , xk⟩)2 ≥ γ2∥xk∥2.

Similarly, we see that the gradients are nearly-orthogonal, since

Cnmax
i ̸=k

|⟨∇f(xi;W ),∇f(xk;W )⟩|
(i)

≤ Cnmax
i ̸=k

|⟨xi, xk⟩|
(ii)

≤ ∥xk∥2 ≤ γ−2∥∇f(xk;W )∥2F ,

where (i) uses that ϕ is 1-Lipschitz and (ii) uses the assumption on the near-orthogonality of the
samples.
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We can now begin to prove Lemma E.4. We remind the reader of the notation for the sigmoid loss,

g(z) := −ℓ′(z) =
1

1 + exp(z)
, g

(t)
i := g

(
yif(xi;W

(t))
)
.

We follow the same proof technique of Frei et al. (2022a), whereby in order to control the ratio of
the sigmoid losses we show instead that the ratio of the exponential losses is small and that this
suffices for showing the sigmoid losses is small. As we mention above, we generalize their analysis
to emphasize that near-orthogonality of gradients and gradient persistence suffice for showing the
loss ratio does not grow significantly.

Lemma E.8. Denote R := Rmax/Rmin where Rmax = maxi ∥xi∥ and Rmin = mini ∥xi∥, and let ϕ
be an arbitrary 1-Lipschitz and H-smooth activation. Suppose that near-orthogonality of gradients
(Condition E.5) holds for some C ′ > 1 and gradient persistence (Condition E.6) hold at time t for
some c > 0. Provided α ≤ [5HR2

maxn(10R
2/c + 10)]−1 and C ′ ≥ 25R2/c + 25, then for any

i, j ∈ [n] we have,

exp
(
− yif(xi;W

(t+1))
)

exp
(
− yjf(xj ;W (t+1))

) ≤
exp

(
− yif(xi;W

(t))
)

exp
(
− yjf(xj ;W (t))

)
× exp

(
−
g
(t)
j αcR2

min

n

(
g
(t)
i

g
(t)
j

− R2

c

))

× exp

(
αR2

max

(10R2/c+ 10)n
· Ĝ(W (t))

)

Proof. It suffices to consider i = 1 and j = 2. For notational simplicity denote

At :=
exp(−y1f(x1;W

(t)))

exp(−y2f(x2;W (t)))
.

We now calculate the exponential loss ratio between two samples at time t + 1 in terms of the
exponential loss ratio at time t.

Recall the notation g
(t)
i := −ℓ′(yif(xi;W

(t))), and introduce the notation

∇f
(t)
i := ∇f(xi;W

(t)).
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We can calculate,

At+1 =
exp(−y1f(x1;W

(t+1)))

exp(−y2f(x2;W (t+1)))

=
exp

(
−y1f1

(
W (t) − α∇L̂(W (t))

))
exp

(
−y2f2

(
W (t) − α∇L̂(W (t))

))
(i)

≤
exp

(
−y1f

(
x1;W

(t)
)
+ y1α

〈
∇f

(t)
1 ,∇L̂(W (t))

〉)
exp

(
−y2f

(
x2;W (t)

)
+ y2α

〈
∇f

(t)
2 ,∇L̂(W (t))

〉) exp

(
HR2

maxα
2

√
m

∥∇L̂(W (t))∥2
)

(ii)
= At ·

exp
(
y1α

〈
∇f

(t)
1 ,∇L̂(W (t))

〉)
exp

(
y2α

〈
∇f

(t)
2 ,∇L̂(W (t))

〉) exp

(
HR2

maxα
2

√
m

∥∇L̂(W (t))∥2
)

= At ·
exp

(
−α

n

∑n
k=1 g

(t)
k ⟨y1∇f

(t)
1 , yk∇f

(t)
k ⟩
)

exp
(
−α

n

∑n
k=1 g

(t)
k ⟨y1∇f

(t)
2 , yk∇f

(t)
k ⟩
) exp

(
HR2

maxα
2

√
m

∥∇L̂(W (t))∥2
)

= At · exp
(
−α

n

(
g
(t)
1 ∥∇f

(t)
1 ∥2F − g

(t)
2 ∥∇f

(t)
2 ∥2F

))
× exp

−α

n

∑
k ̸=2

g
(t)
k ⟨y2∇f

(t)
2 , yk∇f

(t)
k ⟩ −

∑
k ̸=1

g
(t)
k ⟨y1∇f

(t)
1 , yk∇f

(t)
k ⟩


× exp

(
HR2

maxα
2

√
m

∥∇L̂(W (t))∥2
)
. (17)

Inequality (i) uses Lemma E.2 while (ii) uses the definition of At. We now proceed in a manner
similar to Frei et al. (2022a) to bound each of the three terms in the product separately. For the first
term, since gradient persistence (Condition E.6) holds at time t, we have for any i ∈ [n],

∥∇f
(t)
i ∥2F ≥ c∥xi∥2 ≥ cR2

min.

On the other hand, since ϕ is 1-Lipschitz we also have

∥∇f
(t)
i ∥2F = ∥xi∥2

1

m

m∑
i=1

ϕ′(⟨w(t)
j , xi⟩)2 ≤ ∥xi∥2 ≤ R2

max.

Putting the preceding two displays together, we get

cR2
min ≤ ∥∇f

(t)
i ∥2F ≤ R2

max. (18)

Therefore, we have

exp
(
−α

n

(
g
(t)
1 ∥∇f

(t)
1 ∥2F − g

(t)
2 ∥∇f

(t)
2 ∥2F

))
= exp

(
−g

(t)
2 α

n

(
g
(t)
1

g
(t)
2

∥∇f
(t)
1 ∥2F − ∥∇f

(t)
2 ∥2F

))
(i)

≤ exp

(
−g

(t)
2 α

n

(
g
(t)
1

g
(t)
2

· cR2
min −R2

max

))

= exp

(
−g

(t)
2 αcR2

min

n

(
g
(t)
1

g
(t)
2

− R2

c

))
. (19)

Inequality (i) uses (18), and the equality uses the definition R = Rmax/Rmin. This bounds the first
term in (17).

For the second term, we use the fact that the gradients are nearly orthogonal at time t (Condition E.5)
and the lemma’s assumption on C ′ to get for any i ̸= k,

∥∇f
(t)
i ∥2F ≥ C ′nmax

k ̸=i
|⟨∇f

(t)
i ,∇f

(t)
k ⟩| ≥ (25R2/c+ 25)nmax

k ̸=i
|⟨∇f

(t)
i ,∇f

(t)
k ⟩|. (20)
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This allows for us to bound,

exp

−α

n

∑
k ̸=2

g
(t)
k ⟨y2∇f

(t)
2 , yk∇f

(t)
k ⟩ −

∑
k ̸=1

g
(t)
k ⟨y1∇f

(t)
1 , yk∇f

(t)
k ⟩


(i)

≤ exp

α

n

∑
k ̸=1

g
(t)
k |⟨∇f

(t)
1 ,∇f

(t)
k ⟩|+ α

n

∑
k ̸=2

g
(t)
k |⟨∇f

(t)
2 ,∇f

(t)
k ⟩|


(ii)

≤ exp

α

n

∑
k ̸=1

g
(t)
k · 1

(25R2/c+ 25)n
· ∥∇f

(t)
1 ∥2F +

α

n

∑
k ̸=2

g
(t)
k · 1

(25R2/c+ 25)n
· ∥∇f

(t)
2 ∥2


(iii)

≤ exp

α

n

∑
k ̸=1

g
(t)
k · 1

(25R2/c+ 25)n
·R2

max +
α

n

∑
k ̸=2

g
(t)
k · 1

(25R2/c+ 25)n
·R2

max


≤ exp

(
2αR2

max

(25R2/c+ 25)n
· Ĝ(W (t))

)
. (21)

Inequality (i) uses the triangle inequality. Inequality (ii) uses (20). The inequality (iii) uses (18).

Finally, for the third term of (17), we have

exp

(
HR2

maxα
2

√
m

∥∇L̂(W (t))∥2
)

(i)

≤ exp

(
HR4

maxα
2

√
m

Ĝ(W (t))

)
(ii)

≤ exp

(
αR2

max

2(25R2/c+ 25)n
· Ĝ(W (t))

)
. (22)

Inequality (i) uses Lemma E.3, while (ii) uses the lemma’s assumption that α is smaller than
[5HR2

maxn(10R
2/c+ 10)]−1. Putting (19), (21) and (22) into (17), we get

At+1 ≤ At · exp

(
−g

(t)
2 αcR2

min

n

(
g
(t)
1

g
(t)
2

− R2

c

))

× exp

(
2αR2

max

(25R2/c+ 25)n
· Ĝ(W (t))

)
× exp

(
αR2

max

2(25R2/c+ 25)n
· Ĝ(W (t))

)
= At · exp

(
−g

(t)
2 αcR2

min

n

(
g
(t)
1

g
(t)
2

− R2

c

))
· exp

(
5αR2

max

2(25R2/c+ 25)n
· Ĝ(W (t))

)
(23)

This completes the proof.

Lemma E.8 shows that if the sigmoid loss ratio g
(t)
i /g

(t)
j is large, then for a small-enough step-size,

the exponential loss ratio will contract at the following interation. This motivates understanding
how the exponential loss ratios relate to the sigmoid loss ratios. We recall the following fact, shown
in Frei et al. (2022a, Fact A.2).
Fact E.9. For any z1, z2 ∈ R,

g(z1)

g(z2)
≤ max

(
2, 2

exp(−z1)

exp(−z2)

)
,

and if z1, z2 > 0, then we also have

exp(−z1)

exp(−z2)
≤ 2

g(z1)

g(z2)
.

This fact demonstrates that if we can ensure that the inputs to the losses is positive, then we can
essentially treat the sigmoid and exponential losses interchangeably. Thus, if the network is able
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to interpolate the training data at a given time t, we can swap the sigmoid loss ratio appearing in
Lemma E.8 with the exponential loss, and argue that if the exponential loss is too large at a given
iteration, it will contract the following one. This allows for the exponential losses to be bounded
throughout gradient descent. We formalize this in the following lemma.
Proposition E.10. Denote R := Rmax/Rmin where Rmax = maxi ∥xi∥ and Rmin = mini ∥xi∥. Let
ϕ be an arbitrary 1-Lipschitz and H-smooth activation. Suppose that,

• Gradient persistence (Condition E.6) holds at time t for some c > 0, and

• Near-orthogonality of gradients (Condition E.5) holds at time t for some C ′ > 25R2/c +
25,

• For some ρ ≥ 5R2/c+ 5, an exponential loss ratio bound holds at time t with,

max
i,j

exp
(
− yif(xi;W

(t))
)

exp
(
− yjf(xj ;W (t))

) ≤ ρ.

• The network interpolates the training data at time t: yif(xi;W
(t)) > 0 for all i.

Then, provided the learning rate satisfies α ≤ [5HR2
maxn(10R

2/c+10)]−1, we have an exponential
loss ratio bound at time t+ 1 as well,

max
i,j

exp
(
− yif(xi;W

(t+1))
)

exp
(
− yjf(xj ;W (t+1))

) ≤ ρ.

Proof. As in the proof of Lemma E.8, it suffices to prove that the ratio of the exponential loss for
the first sample to the exponential loss for the second sample is bounded by ρ. Let us again denote

At :=
exp(−y1f(x1;W

(t)))

exp(−y2f(x2;W (t)))
,

and recall the notation g
(t)
i := −ℓ′(yif(xi;W

(t))) and ∇f
(t)
i := ∇f(xi;W

(t)). By Lemma E.8,
we have,

At+1 ≤ At · exp

(
−g

(t)
2 αcR2

min

n

(
g
(t)
1

g
(t)
2

− R2

c

))
· exp

(
αR2

max

(10R2/c+ 10)n
· Ĝ(W (t))

)
(24)

We now consider two cases.

Case 1: g(t)1 /g
(t)
2 ≤ 2

5ρ. Continuing from (24), we have,

At+1

(i)

≤ At · exp

(
g
(t)
2 αR2

minR
2

n

)
· exp

(
αR2

max

(10R2/c+ 10)n
Ĝ(W (t))

)

= At · exp

(
α ·

(
g
(t)
2 R2

max

n
+

R2
maxĜ(W (t))

(10R2/c+ 10)n

))
(ii)

≤ 1.2At

(iii)

≤ 2.4
g
(t)
1

g
(t)
2

(iv)

≤ 2.4 · 2
5
ρ ≤ ρ.

Above, inequality (i) follows since g(t)1 /g
(t)
2 > 0. The equality uses that R = Rmax/Rmin. Inequality

(ii) uses that g(t)i < 1, the lemma’s assumption on the step-size, α ≤ [5HR2
maxn(10R

2/c+10)]−1,
and that exp(0.1) ≤ 1.2. The inequality (iii) uses the proposition’s assumption that the network
interpolates the training data at time t, so that the ratio of exponential losses is at most twice the
ratio of the sigmoid losses by Fact E.9. The final inequality (iv) follows by the case assumption that
g
(t)
1 /g

(t)
2 ≤ 2

5ρ.
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Case 2: g(t)1 /g
(t)
2 > 2

5ρ. Continuing from (24), we have,

At+1 ≤ At · exp

(
−g

(t)
2 αcR2

min

n

(
g
(t)
1

g
(t)
2

− R2

c

))
· exp

(
αR2

max

(10R2/c+ 10)n
· Ĝ(W (t))

)
(i)

≤ At · exp

(
−g

(t)
2 αcR2

min

n
·
(
2

5
ρ− R2

c

))
· exp

(
αR2

max

(10R2/c+ 10)n
· Ĝ(W (t))

)

= At · exp

(
−g

(t)
2 αcR2

min

n
·
(
2

5
ρ− R2

c

))
· exp

(
αR2

max

(10R2/c+ 10)n
· g(t)2 · 1

n

n∑
i=1

g
(t)
i

g
(t)
2

)
(ii)

≤ At · exp

(
−g

(t)
2 αcR2

min

n
·
(
2

5
ρ− R2

c

))
· exp

(
αR2

max

(10R2/c+ 10)n
· g(t)2 · 2ρ

)

= At exp

(
−g

(t)
2 αcR2

min

n
·
(
2

5
ρ− R2

c
− R2

c
· 1

5R2/c+ 5
· ρ
))

(iii)

≤ At ≤ ρ.

Inequality (i) uses the Case 2 assumption that g(t)1 /g
(t)
2 > 2

5ρ. Inequality (ii) uses the proposition’s
assumption that the exponential loss ratio at time t is at most ρ, so that the sigmoid loss ratio is at
most 2ρ by Fact E.9 (note that the sigmoid loss ratio is at least 2ρ/5 > 2 by the case assumption and
as ρ > 5). The equality uses that R = Rmax/Rmin. The final inequality (iii) follows as we can write

2

5
ρ− R2

c
− R2

c
· 1

5R2/c+ 5
· ρ =

2

5
ρ

(
1− 1

2
· 5R2/c

5(R2/c+ 1)

)
− R2

c

≥ 2

5
ρ · 1

2
− R2

c
> 0.

The first inequality above uses that |x/(1+x)| ≤ 1 for x > 0, and the final inequality follows by the
assumption that ρ ≥ 5R2/c+5 > 5R2/c. This proves (iii) above, so that in Case 2, the exponential
loss ratio decreases at the following iteration.

In summary, the preceding proposition demonstrates that a loss ratio bound can hold for general
Lipschitz and smooth activations provided the following four conditions hold for some time t0:

(1) an exponential loss ratio bound holds at time t0;

(2) near-orthogonality of the gradients holds for all times t ≥ t0;

(3) gradient persistence holds at all times t ≥ t0; and

(4) the network interpolates the training data for all times t ≥ t0.

This is because the proposition guarantees that once you interpolate the training data, if the gradients
are nearly-orthogonal and gradient persistence holds, the maximum ratio of the exponential losses
does not become any larger than the maximum ratio at time t0. Note that the above proof outline
does not rely upon the training data being nearly orthogonal, nor that the activations are ‘leaky’, and
thus may be applicable to more general settings than the ones we consider in this work.

On the other hand, when the training data is nearly-orthogonal and the activations are γ-leaky and
H-smooth activations, Fact E.7 shows that (2) and (3) above hold for all times t ≥ 0. Thus, to show
a loss ratio bound in this setting, the main task is to show items (1) and (4) above. Towards this
end, we present the final auxiliary lemma that will be used in the proof of Lemma E.4. A similar
lemma appeared in Frei et al. (2022a, Lemma A.3), and our proof is only a small modification of
their proof. For completeness, we provide its proof in detail here.
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Lemma E.11. Let ϕ be a γ-leaky, H-smooth activation. Then the following hold with probability
at least 1− δ over the random initialization.

(a) An exponential loss ratio bound holds at initialization:

max
i,j

exp(−yif(xi;W
(0)))

exp(−yjf(xj ;W (0)))
≤ exp(2).

(b) If there is an absolute constant C ′
R > 1 such that at time t we have maxi,j{g(t)i /g

(t)
j } ≤

C ′
R, and if for all k ∈ [n] we have

∥xk∥2 ≥ 2γ−2C ′
Rnmax

i ̸=k
|⟨xi, xk⟩|,

then for α ≤ γ2/(2HC ′
RR

2R2
maxn), we have

for all k ∈ [n], yk[f(xk;W
(t+1))− f(xk;W

(t))] ≥ αγ2R2
min

4C ′
Rn

Ĝ(W (t)).

(c) If for all k ∈ [n] we have ∥xk∥2 ≥ 8γ−2nmaxi ̸=k |⟨xi, xk⟩|, then under Assumptions (A1)
and (A2), at time t = 1 and for all samples k ∈ [n], we have ykf(xk;W

(t)) > 0.

Proof. We shall prove each part of the lemma in sequence.

Part (a). Since ϕ is 1-Lipschitz and ϕ(0) = 0, Cauchy–Schwarz implies

|f(x;W )| =

∣∣∣∣∣∣
m∑
j=1

ajϕ(⟨wj , x⟩)

∣∣∣∣∣∣ ≤
√√√√ m∑

j=1

a2j

√√√√ m∑
j=1

⟨wj , x⟩2 = ∥Wx∥2.

Applying this bound to the network output for each sample at initialization, we get

|f(xi;W
(0))| ≤ ∥W (0)∥F ∥xi∥

(i)

≤
√
5ωinit

√
md log(4m/δ)Rmax

(ii)

≤
√
5αR2

max

72n

(iii)

≤ 1

50
. (25)

Inequality (i) uses Lemma E.1, while inequality (ii) and (iii) follow by Assumptions (A2) and (A1),
respectively. We therefore have,

max
i,j=1,...,n

exp(−yif(xi;W
(0)))

exp(−yjf(xj ;W (0)))
≤ exp(2). (26)

Part (b). Let k ∈ [n]. Let us re-introduce the notation ∇f
(t)
i := ∇f(xi;W

(t)). By Lemma E.2,
we know

yk[f(xk;W
(t+1))− f(xk;W

(t))] ≥

[
α

n

n∑
i=1

g
(t)
i ⟨yi∇f

(t)
i , yk∇f

(t)
k ⟩

]
− HR2

maxα
2

2
√
m

∥∇L̂(W (t))∥22.

By definition,

⟨∇f
(t)
i ,∇f

(t)
k ⟩ = ⟨xi, xk⟩ ·

1

m

m∑
j=1

ϕ′(⟨w(t)
j , xi⟩)ϕ′(⟨w(t)

j , xk⟩)︸ ︷︷ ︸
∈[γ2,1]

. (27)
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We can thus calculate,

yk[f(xk;W
(t+1))− f(xk;W

(t))]

(i)

≥ α

n

[
n∑

i=1

g
(t)
i ⟨yi∇f

(t)
i , yk∇f

(t)
k ⟩ − HR4

maxαn

2
√
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∑
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g
(t)
i ⟨yi∇f

(t)
i , yk∇f

(t)
k ⟩ − HR4

maxαn

2
√
m

Ĝ(W (t))


≥ α

n

g(t)k ∥∇f
(t)
k ∥2 −max

j
g
(t)
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∑
i ̸=k

|⟨∇f
(t)
i ,∇f

(t)
k ⟩| − HR4
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2
√
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Ĝ(W (t))


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α

n

g(t)k

∥∇f
(t)
k ∥2 −

maxj g
(t)
j

g
(t)
k

∑
i ̸=k

|⟨∇f
(t)
i ,∇f

(t)
k ⟩|

− HR4
maxαn

2
√
m

Ĝ(W (t))

 .

where Inequality (i) uses Lemma E.3. Continuing we get that

yk[f(xk;W
(t+1))− f(xk;W

(t))]

(i)

≥ α

n

g(t)k

∥∇f
(t)
k ∥2 − C ′

R

∑
i ̸=k

|⟨∇f
(t)
i ,∇f

(t)
k ⟩|

− HR4
maxαn

2
√
m

Ĝ(W (t))


(ii)

≥ α

n

g(t)k ·

γ2∥xk∥2 − C ′
R

∑
i ̸=k

|⟨xi, xk⟩|

− HR4
maxαn

2
√
m

Ĝ(W (t))


(iii)

≥ α

n

[
g
(t)
k · 1

2
γ2∥xk∥2 −

HR4
maxαn

2
√
m

Ĝ(W (t))

]
(iv)

≥ α

n

[
g
(t)
k · 1

2
γ2R2

min −
HR4

maxαn

2
√
m

Ĝ(W (t))

]
(v)

≥ α

n

[
γ2R2

min

2C ′
R

Ĝ(W (t))− HR4
maxαn

2
√
m

Ĝ(W (t))

]
(vi)

≥ αγ2R2
min

4C ′
Rn

Ĝ(W (t))

Inequality (i) uses the lemma’s assumption that maxi,j{g(t)i /g
(t)
j } ≤ C ′

R. Inequality (ii) uses that
ϕ is γ-leaky and 1-Lipschitz (see eq. (27)). Inequality (iii) uses that the assumption that the samples
are nearly-orthogonal,

∥xk∥2 ≥ 2γ−2C ′
Rnmax

i ̸=k
|⟨xi, xk⟩| ≥ 2γ−2C ′

R

∑
i ̸=k

|⟨xi, xk⟩|.

Inequality (iv) uses the definition Rmin = mini ∥xi∥. Inequality (v) again uses the lemma’s as-
sumption of a sigmoid loss ratio bound, so that

g
(t)
k =

1

n

n∑
i=1

g
(t)
i

g
(t)
k

g
(t)
k ≥ 1

C ′
R

1

n

n∑
i=1

g
(t)
i =

1

C ′
R

Ĝ(W (t)).

The final inequality (vi) follows since the step-size α ≤ γ2/(2HC ′
RR

2R2
maxn) is small enough.

This completes part (b) of this lemma.

Part (c). Note that by (25), |f(xk;W
(0))| ≤ 1/50. Since g is monotone this implies the sigmoid

losses at initialization satisfy g
(0)
i ∈ [(1 + exp(0.02))−1, (1 + exp(−0.02))−1] ⊂ [0.49, 0.51] and

so

Ĝ(W (0)) ≥ 49

100
, and max

i,j

g
(0)
i

g
(0)
j

≤ 51

49
. (28)
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Thus, the assumption that ∥xk∥2 ≥ 8γ−2nmaxi ̸=k |⟨xi, xk⟩| and Assumption (A1) allow for us to
apply part (b) of this lemma as follows,

ykf(xk;W
(1)) = ykf(xk;W

(1))− ykf(xk;W
(0)) + f(xk;W

(0))

≥ ykf(xk;W
(1))− ykf(xk;W

(0))− |f(xk;W
(0))|

(i)

≥ αγ2R2
min

4n · 51/49
· Ĝ(W (0))−

√
5ωinit

√
md log(4m/δ)Rmax

(ii)

≥ γ2αR2
min

16n
−
√
5ωinit

√
md log(4m/δ)Rmax

=
γ2αR2

min

16n

[
1−

16
√
5ωinitRn

√
md log(4m/δ)

γ2αRmin

]
(iii)

≥ γ2αR2
min

32n
.

The first term in inequality (i) uses the lower bound provided in part (b) of this lemma as well as (28),
while the second term uses the upper bound on |f(xk;W

(0))| in (25). Inequality (ii) uses (28).
Inequality (iii) uses Assumption (A2) so that ωinit ≤ αγ2Rmin · (72RCRn

√
md log(4m/δ))−1

and that 16
√
5 < 36.

We now have all of the pieces necessary to prove Lemma E.4.

Proof of Lemma E.4. In order to show that the ratio of the g(·) losses is bounded, it suffices to show
that the ratio of exponential losses exp(−(·)) is bounded, since by Fact E.9,

max
i,j=1,...,n

g(yif(xi;W
(t)))

g(yjf(xj ;W (t)))
≤ max

(
2, 2 · max

i,j=1,...,n

exp(−yif(xi;W
(t)))

exp(−yjf(xj ;W (t)))

)
. (29)

We will prove the lemma by first showing an exponential loss ratio holds at time t = 0 and t = 1,
and then use an inductive argument based on Proposition E.10 with ρ = 5R2/γ5 + 5 = 1

2CR.

By part (a) of Lemma E.11, the exponential loss ratio at time t = 0 is at most exp(2). To see the
loss ratio holds at time t = 1, first note that by assumption, we have that the samples satisfy,

∥xi∥2 ≥ 5γ−2CRnmax
k ̸=i

|⟨xi, xk⟩| = 2γ−2(25R2γ−2 + 25)nmax
k ̸=i

|⟨xi, xk⟩|. (30)

Because ϕ is a γ-leaky, H-smooth activation, by Fact E.7 this implies that gradient persistence
(Condition E.6) holds with c = γ2 and near-orthogonality of gradients (Condition E.5) holds for all
times t ≥ 0 with C ′ > 2(25R2γ−2+25). By Assumption (A1), we can therefore apply Lemma E.8
at time t = 0, so that we have for any i, j,

exp
(
− yif(xi;W

(1))
)

exp
(
− yjf(xj ;W (1))

) ≤ exp(2) · exp

(
−
g
(0)
j αcR2

min

n

(
g
(0)
i

g
(0)
j

− R2

γ2

))

× exp

(
αR2

max

(10R2/γ2 + 10)n
· Ĝ(W (0))

)
(i)

≤ exp(2) · exp
(
R2R2

minα

n

)
· exp

(
αR2

max

(10R2/γ2 + 10)n

)
= exp(2) · exp

(
α

(
R2

max

n
+

R2
max

(10R2/γ2 + 10)n

))
(ii)

≤ exp(2.1) ≤ 9.

Inequality (i) uses that g(t)i < 1, while inequality (ii) uses that the step-size is sufficiently small
α ≤ 1/20R2

max by Assumption (A1). Therefore, the exponential loss ratio at times t = 0 and t = 1
is at most 9 ≤ 5R2/γ2 + 5.
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Now suppose by induction that at times τ = 1, . . . , t, the exponential loss ratio is at most 5R2/γ2+5,
and consider t+1. (The cases t = 0 and t = 1 were just proved above.) By the induction hypothesis
and (29), the sigmoid loss ratio from times 0, . . . , t is at most 10R2/γ2 + 10. By Assumption (A1),
the step-size satisfies

α ≤ γ2[5nR2
maxR

2(10R2γ−2 + 10)max(1, H)]−1 ≤ γ2[2HCRR
2
maxR

2n]−1.

Further, the samples satisfy (30), so that

∥xk∥2 ≥ 2γ−2(10R2γ−2 + 10)nmax
i ̸=k

|⟨xi, xk⟩| = 2γ−2CRnmax
i ̸=k

|⟨xi, xk⟩|.

Thus all parts of Lemma E.11 hold with C ′
R = CR = 10R2γ−2 + 10. By part (b) of that lemma,

the unnormalized margin for each sample increased for every time τ = 0, . . . , t:

for all τ = 1, . . . , t, yk[f(xk;W
(τ+1))− f(xk;W

(τ))] > 0. (31)

Since the network interpolates the training data at time t = 1 by part (c) of Lemma E.11, this implies

for all τ = 1, . . . , t, ykf(xk;W
(τ)) > 0.

Finally, since the learning rate satisfies α ≤ γ2[5nR2
maxR

2CR max(1, H)]−1, all of the conditions
necessary to apply Proposition E.10 hold. This proposition shows that the exponential loss ratio at
time t+ 1 is at most 5R2/γ2 + 5. This completes the induction so that the exponential loss ratio is
at most 5R2/γ2 + 5 throughout gradient descent, which by (29) implies that the sigmoid loss ratio
is at most 10R2/γ2 + 10.

E.4 UPPER BOUND FOR THE FROBENIUS NORM

In this section we prove an upper bound for the Frobenius norm of the first-layer weights (recall that
StableRank(W ) = ∥W∥2F /∥W∥22). The proof is a modification of Frei et al. (2022a, Lemma 4.10)
to accommodate more general data. Note that the lemma is a strict improvement over the triangle
inequality, as we are able to reduce the growth term by a factor of 1/

√
n. The proof crucially relies

upon the loss ratio bound proved in Lemma E.4.

Lemma E.12. Let Rmin = mini ∥xi∥, Rmax := maxi ∥xi∥, R = Rmax/Rmin, and denote CR =
10R2/γ2 + 10 as the upper bound on the sigmoid loss ratio from Lemma E.4. Suppose that for all
i ∈ [n] the training data satisfy,

∥xi∥2 ≥ 5γ−2CRnmax
k ̸=i

|⟨xi, xk⟩|.

Then under Assumptions (A1) and (A2), with probability at least 1− δ, for any t ≥ 1,

∥W (t)∥F ≤ ∥W (0)∥F +

√
2CRRmaxα√

n

t−1∑
s=0

Ĝ(W (s)).

Proof. We prove an upper bound on the ℓ2 norm of each neuron and then use this to derive an
upper bound on the Frobenius norm of the first layer weight matrix. First note that the lemma’s
assumptions guarantee that Lemma E.4 holds. Next, by the triangle inequality, we have

∥w(t)
j ∥ =

∥∥∥∥∥w(0)
j + α

t−1∑
s=0

∇jL̂(W
(s))

∥∥∥∥∥
F

≤ ∥w(0)
j ∥+ α

t−1∑
s=0

∥∇jL̂(W
(s))∥F . (32)
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We now consider the squared gradient norm with respect to the j-th neuron:
∥∇jL̂(W

(s))∥2

=
1

n2

∥∥∥∥∥
n∑

i=1

g
(s)
i yi∇jf(xi;W

(s))

∥∥∥∥∥
2

=
1

n2

 n∑
i=1

(
g
(s)
i

)2 ∥∥∥∇jf(xi;W
(s))
∥∥∥2 + ∑

k ̸=i∈[n]

g
(s)
i g

(s)
k yiyj⟨∇jf(xi;W

(s)),∇jf(xk;W
(s))⟩


≤ 1

n2

 n∑
i=1

(
g
(s)
i

)2 ∥∥∥∇jf(xi;W
(s))
∥∥∥2 + ∑

k ̸=i∈[n]

g
(s)
i g

(s)
k

∣∣∣⟨∇jf(xi;W
(s)),∇jf(xk;W

(s))⟩
∣∣∣


(i)

≤
a2j
n2

 n∑
i=1

(
g
(s)
i

)2
ϕ′(⟨w(t)

j , xi⟩)2∥xi∥2 +
∑

k ̸=i∈[n]

g
(s)
i g

(s)
k ϕ′(⟨w(t)

j , xi⟩)ϕ′(⟨w(t)
j , xk⟩)|⟨xi, xk⟩|


(ii)

≤
a2j
n2

 n∑
i=1

(
g
(s)
i

)2
∥xi∥2 +

∑
k ̸=i∈[n]

g
(s)
i g

(s)
k |⟨xi, xk⟩|


=

a2j
n2

n∑
i=1

(g(s)i

)2 ∥xi∥2 +
∑
k ̸=i

g
(s)
k

g
(s)
i

|⟨xi, xk⟩|


(iii)

≤
a2j
n2

n∑
i=1

(g(s)i

)2 ∥xi∥2 + CR

∑
k ̸=i

|⟨xi, xk⟩|


(iv)

≤
2a2j
n2

n∑
i=1

(
g
(s)
i

)2
∥xi∥2.

Above, inequality (i) uses that ∇jf(xi;W ) = ajϕ
′(⟨wj , xi⟩)xi. Inequality (ii) uses that ϕ is 1-

Lipschitz. Inequality (iii) uses the loss ratio bound in Lemma E.4, and inequality (iv) uses the
lemma’s assumption about the near-orthogonality of the samples. We can thus continue,

∥∇jL̂(W
(s))∥2 ≤

2a2j
n2

n∑
i=1

(
g
(s)
i

)2
∥xi∥2

≤
2a2jR

2
max

n2
·
(
max

k
g
(s)
k

)
·

n∑
i=1

g
(s)
i

=
2a2jR

2
max

n
·
(
max

k
g
(s)
k

)
Ĝ(W (s))

(i)

≤
2a2jR

2
maxCR

n

(
Ĝ(W (s))

)2
. (33)

The final inequality uses the loss ratio bound so that we have

max
k∈[n]

g
(s)
k =

1

n

n∑
i=1

(
maxk g

(s)
k

g
(s)
i

g
(s)
i

)
≤ CR

n

n∑
i=1

g
(s)
i = CRĜ(W (s)).

Finally, taking square roots of (33) and applying this bound on the norm in Inequality (32) above we
conclude that

∥w(t)
j ∥ ≤ ∥w(0)

j ∥+
√
2CR|aj |Rmaxα√

n

t−1∑
s=0

Ĝ(W (s)),

establishing our claim for the upper bound on ∥w(t)
j ∥. For the bound on the Frobenius norm, we

have an analogue of (32),

∥W (t)∥F ≤ ∥W (0)∥F + α

t−1∑
s=0

∥∇L̂(W (s))∥F ,
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and we can simply use that a2j = 1/m and

∥∇L̂(W (s))∥2F =

m∑
j=1

∥∇jL̂(W
(s))∥2F .

E.5 LOWER BOUND FOR THE SPECTRAL NORM

We next show that the spectral norm is large. The proof follows by showing that after the first step
of gradient descent, every neuron is highly correlated with the vector µ̂ :=

∑n
i=1 yixi.

Lemma E.13. Let Rmax = maxi ∥xi∥, Rmin = mini ∥xi∥ and R := Rmax/Rmin. Let CR =
10R2γ−2 + 10. Suppose that for all i ∈ [n] the training data satisfy,

∥xi∥2 ≥ 5γ−2CRnmax
k ̸=i

|⟨xi, xk⟩|.

Then, under Assumptions (A1) and (A2), we have with probability at least 1 − δ, we have the
following lower bound for the spectral norm of the weights for any t ≥ 1:

∥W (t)∥2 ≥ αγRmin

4
√
2R

√
n

t−1∑
s=0

Ĝ(W (s)).

Proof. We shall show that every neuron is highly correlated with the vector µ̂ :=
∑n

i=1 yixi. By
definition,

⟨w(t+1)
j − w

(t)
j , µ̂⟩ = αaj

n

n∑
i=1

g
(t)
i ϕ′(⟨w(t)

j , xi⟩)

〈
yixi,

n∑
k=1

ykxk

〉

=
αaj
n

n∑
i=1

g
(t)
i ϕ′(⟨w(t)

j , xi⟩)

∥xi∥2 +
∑
k ̸=i

⟨yixi, ykxk⟩

 .

Positive neurons. If aj > 0, then we have,

⟨w(t+1)
j − w

(t)
j , µ̂⟩ ≥ α|aj |

n

n∑
i=1

g
(t)
i ϕ′(⟨w(t)

j , xi⟩)

∥xi∥2 −
∑
k ̸=i

|⟨xi, xk⟩|


(i)

≥ α|aj |
n

n∑
i=1

g
(t)
i ϕ′(⟨w(t)

j , xi⟩) ·
1

2
∥xi∥2

≥ α|aj |R2
min

2n

n∑
i=1

g
(t)
i ϕ′(⟨w(t)

j , xi⟩)

(ii)

≥ αγ|aj |R2
min

2
Ĝ(W (t)).

Inequality (i) uses the lemma’s assumption that ∥xi∥2 ≫ nmaxk ̸=i |⟨xi, xk⟩|. Inequality (ii) uses
that ϕ is γ-leaky and g

(t)
i ≥ 0. Telescoping, we get

⟨w(t)
j − w

(0)
j , µ̂⟩ ≥ αγ|aj |R2

min

2

t−1∑
s=0

Ĝ(W (s)) =
αγR2

min

2
√
m

t−1∑
s=0

Ĝ(W (s)). (34)

We now show that we can ignore the ⟨w(0)
j , µ̂⟩ term by taking α large relative to ωinit. By the

calculation in (25), we know that |f(xi;W
(0))| ≤ 1 for each i and thus

Ĝ(W (0)) =
1

n

n∑
i=1

1

1 + exp(−yif(xi;W (0)))
≥ 1/4. (35)
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On the other hand, by Lemma E.1, we know that

|⟨w(0)
j , µ̂⟩| ≤ 2ωinit∥µ̂∥

√
log(4m/δ).

By the lemma’s assumption that ∥xi∥2 ≫ nmaxk ̸=i |⟨xi, xk⟩|, we have

∥µ̂∥2 =

n∑
i=1

∥xi∥2 +
n∑

k:k ̸=i

⟨yixi, ykxk⟩

 ≤
n∑

i=1

[
∥xi∥2 + nmax

k ̸=i
|⟨xi, xk⟩|

]
≤ 2nR2

max. (36)

Substituting this inequality into the previous display, we get

|⟨w(0)
j , µ̂⟩| ≤ 4Rmaxωinit

√
n log(4m/δ). (37)

We thus have

αγR2
min

2
√
m

Ĝ(W (0))
(i)

≥ αγR2
min

8
√
m

(ii)

≥ 8Rmaxωinit

√
n log(4m/δ)

(iii)

≥ 2|⟨w(0)
j , µ̂⟩|. (38)

where (i) uses (35), (ii) uses Assumption (A2) and that CR > 1 so that,

α ≥ 64ωinitγ
−1CR(Rmax/R

2
min)
√

nm log(4m/δ) = 64ωinitγ
−1CR(R/Rmin)

√
nm log(4m/δ),

and (iii) uses (37). Continuing from (34) we get

⟨w(t)
j , µ̂⟩ ≥ ⟨w(t)

j − w
(0)
j , µ̂⟩ − |⟨w(0)

j , µ̂⟩|

≥ αγ|aj |R2
min

2

t−1∑
s=0

Ĝ(W (s))− |⟨w(0)
j , µ̂⟩|

≥ αγ|aj |R2
min

4

t−1∑
s=0

Ĝ(W (s)), (39)

where the last inequality uses (38).

Negative neurons. The argument in this case is essentially identical. If aj < 0, then

⟨w(t+1)
j − w

(t)
j , µ̂⟩ ≤ −α|aj |

n

n∑
i=1

g
(t)
i ϕ′(⟨w(t)

j , xi⟩)

∥xi∥2 −
∑
k ̸=i

|⟨xi, xk⟩|


(i)

≤ −α|aj |R2
min

2n

n∑
i=1

g
(t)
i ϕ′(⟨w(t)

j , xi⟩)

(iii)

≤ −αγ|aj |R2
min

2
Ĝ(W (t)),

where the inequalities (i) and (ii) follow using an identical logic to the positive neuron case. We
therefore have for negative neurons,

⟨w(t)
j − w

(0)
j , µ̂⟩ ≤ −αγR2

min

2
√
m

t−1∑
s=0

Ĝ(W (s)). (40)

An identical argument used for the positive neurons to derive (39) shows a similar bound for
⟨w(t)

j , µ̂⟩.

38



Published as a conference paper at ICLR 2023

To see the claim about the spectral norm, first note that since Rmin > 0, |⟨w(t)
j , µ̂⟩| > 0 and hence

µ̂ ̸= 0. We thus can calculate,

∥W (t)∥22
(i)

≥ ∥W (t)µ̂/∥µ̂∥∥22

= ∥µ̂∥−2
m∑
j=1

⟨w(t)
j , µ̂⟩2

≥ ∥µ̂∥−2
m∑
j=1

(
αγ|aj |R2

min

4

t−1∑
s=0

Ĝ(W (s))

)2

= ∥µ̂∥−2

(
αγR2

min

4

t−1∑
s=0

Ĝ(W (s))

)2

(ii)

≥

(
αγR2

min

4
√
2Rmax

√
n

t−1∑
s=0

Ĝ(W (s))

)2

Inequality (i) uses (34) and (40), and inequality (ii) uses the upper bound for ∥µ̂∥ given in (36).
This completes the proof.

E.6 PROXY PL INEQUALITY

Our final task for the proof of Theorem 4.2 is to show that L̂(W (t)) → 0. We do so by establishing
a variant of the Polyak–Lojasiewicz (PL) inequality called a proxy PL inequality (Frei & Gu, 2021,
Definition 1.2).
Lemma E.14. Let Rmax = maxi ∥xi∥, Rmin = mini ∥xi∥, and R := Rmax/Rmin. Let CR =
10R2γ−2 + 10. Suppose the training data satisfy, for all i ∈ [n],

∥xi∥2 ≥ 5γ−2CRnmax
k ̸=i

|⟨xi, xk⟩|.

For a γ-leaky activation, the following proxy-PL inequality holds for any t ≥ 0:∥∥∥∇L̂(W (t))
∥∥∥ ≥ γRmin

2
√
2R

√
n
Ĝ(W (t)).

Proof. By definition, for any matrix V ∈ Rm×d with ∥V ∥F ≤ 1 we have

∥∇L̂(W )∥ ≥ ⟨∇L̂(W ),−V ⟩ = 1

n

n∑
i=1

g
(t)
i yi⟨∇f(xi;W ), V ⟩.

Let µ̂ :=
∑n

i=1 yixi and define the matrix V as having rows aj µ̂/∥µ̂∥. Then, ∥V ∥2F =
∑m

j=1 a
2
j =

1, and we have for each j,

yi⟨∇f(xi;W ), V ⟩ = 1

m

m∑
j=1

ϕ′(⟨wj , xi⟩)⟨yixi, µ̂/∥µ̂∥⟩

=
1

∥µ̂∥m

m∑
j=1

ϕ′(⟨wj , xi⟩)

∥xi∥2 +
∑
k ̸=i

⟨yixi, ykxk⟩


(i)

≥ 1

∥µ̂∥m

m∑
j=1

ϕ′(⟨wj , xi⟩) ·
1

2
∥xi∥2

(ii)

≥ R2
min

2∥µ̂∥m

m∑
j=1

ϕ′(⟨wj , xi⟩)

(iii)

≥ γR2
min

2∥µ̂∥
.
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Inequality (i) uses the lemma’s assumption that ∥xi∥2 ≫ nmaxk ̸=i |⟨xi, xk⟩|. Inequality (ii) uses
that ∥xi∥2 ≥ R2

min, and inequality (iii) uses that ϕ′(z) ≥ γ. We therefore have,

∥∇L̂(W (t))∥ ≥ 1

n

n∑
i=1

g
(t)
i yi⟨∇f(xi;W

(t)), V ⟩

≥ γR2
min

2∥µ̂∥
Ĝ(W (t))

≥ γR2
min

2
√
2Rmax

√
n
Ĝ(W (t)) =

γRmin

2
√
2R

√
n
Ĝ(W (t)),

where the final inequality uses the calculation (36).

E.7 PROOF OF THEOREM 4.2

We are now in a position to provide the proof of Theorem 4.2. For the reader’s convenience, we
re-state the theorem below.
Theorem 4.2. Suppose that ϕ is a γ-leaky, H-smooth activation. For training data {(xi, yi)}ni=1 ⊂
Rd × {±1}, let Rmax = maxi ∥xi∥ and Rmin = mini ∥xi∥, and suppose R = Rmax/Rmin is at most
an absolute constant. Denote by CR := 10R2/γ2 + 10. Assume the training data satisfies,

R2
min ≥ 5γ−2CRnmax

i ̸=j
|⟨xi, xj⟩|.

There exist absolute constants C1, C2 > 1 (independent of m, d, and n) such that the following
holds. For any δ ∈ (0, 1), if the step-size satisfies α ≤ γ2(5nR2

maxR
2CR max(1, H))−1, and

ωinit ≤ αγ2Rmin(72RCRn
√

md log(4m/δ))−1, then with probability at least 1−δ over the random
initialization of gradient descent, the trained network satisfies:

1. The empirical risk under the logistic loss satisfies L̂(W (t)) ≤
√

C1n/R2
minαt for t ≥ 1.

2. The ℓ2 norm of each neuron grows to infinity: for all j, ∥w(t)
j ∥2 → ∞.

3. The stable rank of the weights is bounded: supt≥1

{
StableRank(W (t))

}
≤ C2.

Proof. We prove the theorem in parts.

Empirical risk driven to zero. This is a simple consequence of the proxy-PL inequality given
in Lemma E.14 since ϕ is smooth; a small modification of the proof of Frei et al. (2022a, Lemma
4.12) suffices. In particular, since by Lemma E.3 the loss L̂(w) has R2

max(1 + H/
√
m)-Lipschitz

gradients, we have

L̂(W (t+1)) ≤ L̂(W (t))− α∥∇L̂(W (t))∥2F +R2
max max(1, H/

√
m)α2∥∇L̂(W (t))∥2F .

Applying the proxy-PL inequality of Lemma E.14 and using that α ≤ [2max(1, H/
√
m)R2

max]
−1

we thus have
γ2R2

min

8R2n
Ĝ(W (t))2 ≤ ∥∇L̂(W (t))∥2F ≤ 2

α

[
L̂(W (t+1))− L̂(W (t))

]
.

Telescoping the above, we get

min
t<T

Ĝ(W (t))2 ≤ 1

T

T−1∑
t=0

Ĝ(W (t))2 ≤ 2L̂(W (0))

αT
· 8nR2

γ2R2
min

.

We know from the proof of Lemma E.4 (see (31)) that the unnormalized margin increases for each
sample for all times. Since g is monotone, this implies Ĝ(W (t)) is decreasing and hence so is
Ĝ(W (t))2, which implies

Ĝ(W (T−1)) = min
t<T

Ĝ(W (t)) ≤

√
16L̂(W (0))nR2

γ2R2
minαT

.
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Since ℓ(z) ≤ 2g(z) for z > 0 and we know that the network interpolates the training data for all
times t ≥ 1, we know that L̂(W (t)) ≤ 2̂G(W (t)) for t ≥ 1, so that for T ≥ 2,

L̂(W (T−1)) ≤ 2̂G(W (T−1)) ≤ 2

√
16L̂(W (0))nR2

γ2R2
minαT

.

Norms driven to infinity. We showed in Lemma E.13 (see (39) and (36)) that for each t ≥ 1 and
for each j,

∥w(t)
j ∥ ≥ ⟨w(t)

j , µ̂/∥µ̂∥⟩ ≥ α|aj |R2
min

4
√
2Rmax

√
n

t−1∑
s=0

Ĝ(W (s)).

It therefore suffices to show that
∑t−1

s=0 Ĝ(W (s)) → ∞. Suppose this is not the case, so that there
exists some β > 0 such that

∑t−1
s=0 Ĝ(W (s)) ≤ β for all t. By Lemma E.12, this implies that for

all t, ∥W (t)∥F ≤ ∥W (0)∥F + 2
√

CRRmaxα/nβ. In particular, ∥W (t)∥F is bounded independently
of t. But this contradicts the fact that L̂(W (t)) → 0 and ℓ > 0 everywhere, and thus ∥w(t)

j ∥ ≳∑t−1
s=0 Ĝ(W (s)) → ∞.

Stable rank is constant. By definition,

StableRank(W (t)) =
∥W (t)∥2F
∥W (t)∥22

.

We consider two cases.

Case 1: ∥W (t)∥F > 2∥W (0)∥F . In this instance, by Lemma E.12, we have the chain of inequali-
ties,

2∥W (0)∥F < ∥W (t)∥F ≤ ∥W (0)∥F +

√
2CRRmaxα√

n

t−1∑
s=0

Ĝ(W (s)).

In particular, we have

∥W (0)∥F <

√
2CRRmaxα√

n

t−1∑
s=0

Ĝ(W (s)).

We can thus use Lemma E.13 and Lemma E.12 to bound the ratio of the Frobenius norm to the
spectral norm:

∥W (t)∥F
∥W (t)∥2

≤
∥W (0)∥F +

√
2CRRmaxα√

n

∑t−1
s=0 Ĝ(W (t))

αγRmin

4
√
2R

√
n

∑t−1
s=0 Ĝ(W (t))

≤
2
√
2CRRmaxα√

n

∑t−1
s=0 Ĝ(W (t))

αγRmin

4
√
2R

√
n

∑t−1
s=0 Ĝ(W (t))

= 16C
1/2
R R2γ−1. (41)

Case 2: ∥W (t)∥F ≤ 2∥W (0)∥F . Again using Lemma E.13, we have

∥W (t)∥F
∥W (t)∥2

≤ 2∥W (0)∥F
αγRmin

4
√
2R

√
n

∑t−1
s=0 Ĝ(W (t))

(i)

≤
√
5ωinit

√
md log(4m/δ)

αγRmin

4
√
2R

√
n
Ĝ(W (0))

(ii)

≤
4
√
5ωinit

√
md log(4m/δ)

αγRmin

4
√
2R

√
n

= 16
√
10CRγ

−1RR−1
min

√
nα−1ωinit

√
md log(4m/δ)

(iii)

≤ γ/
√
n ≤ 16C

1/2
R R2γ−1. (42)
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Figure 3: The 0.1-leaky, 1
4 -smooth leaky activation ϕ(z) = 0.1z+0.9 log

(
1
2 (1+exp(z)

)
(left) and

the standard leaky ReLU ϕ(z) = max(0.1z, z) (right).

Inequality (i) uses Lemma E.1. Inequality (ii) uses that Ĝ(W (0)) ≥ 1/4 by the
calculation (35). The final inequality (iii) uses Assumption (A2) so that ωinit ≤
αγ2Rmin(72RCRn

√
md log(4m/δ))−1. Thus, (42) yields the following upper bound for the stable

rank,
StableRank(W (t)) ≤ 162CRR

4γ−2 = 162(10R2/γ2 + 10)R4γ−2 =: C∗.

F EXPERIMENT DETAILS

We describe below the two experimental settings we consider.

F.1 BINARY CLUSTER DATA

In Figure 1, we consider the binary cluster distribution described in (4). We consider a neural
network with m = 512 neurons with activation ϕ(z) = γz + (1 − γ) log

(
1
2 (1 + exp(z))

)
for

γ = 0.1, which is a 0.1-leaky, 1/4-smooth leaky ReLU activation (see Figure 3). We fix n =
100 samples with mean separation ∥µ∥ = d0.26 with each entry of µ identical and positive. We
introduce label noise by making 15% of the labels in each cluster share the opposing cluster label
(i.e., samples from cluster mean +µ1 have label +1 with probability 0.85 and −1 with probability
0.15). Concurrent with the set-up in Section 4, we do not use biases and we keep the second layer
fixed at the values ±1/

√
m, with exactly half of the second-layer weights positive and the other half

negative. For the figure on the left, the initialization is standard normal distribution with standard
deviation that is 50× smaller than the TensorFlow default initialization, that is, ωinit = 1/50 × ωTF

init

where ωTF
init =

√
2/(m+ d). For the figure on the right, we fix d = 104 and vary the initialization

standard deviation for different multiples of ωTF
init, so that the variance is between (10−2ωTF

init)
2 and

(102ωTF
init)

2. For the experiment on the effect of dimension, we use a fixed learning rate of α = 0.01,
while for the experiment on the effect of the initialization scale we use a learning rate of α = 0.16.
In Figure 1, we show the stable rank of the first-layer weights scaled by the initial stable rank of the
network (i.e., we plot StableRank(W (t))/StableRank(W (0))). The line shows the average over 5
independent random initializations with error bars (barely visible) corresponding to plus or minus
one standard deviation.

In Figure 4, we provide additional empirical observations on how the learning rate can affect the
initialization scale’s influence on the stable rank of the trained network as we showed in Figure 1.
We fix d = 104 and otherwise use the same setup for Figure 1 described in the previous paragraph.
When the learning rate is the smaller value of α = 0.01, training for longer can reduce the (stable)
rank of the network, while for the larger learning rate of α = 0.32 most of the rank reduction occurs
in the first step of gradient descent.

In Figure 5, we examine the training accuracy, test accuracy, and stable rank of networks trained on
the binary cluster distribution described above. Here we fix d = 104 and α = 0.01 and otherwise use
the same setup described in the first paragraph. We again consider two settings of the initialization
scale: either a standard deviation of ωTF

init or 1/50×ωTF
init. We again see that the stable rank decreases

much more rapidly when using a small initialization. Note that in both settings we observe a benign
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(a) Learning rate α = 0.01
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(b) Learning rate α = 0.32

Figure 4: With larger learning rates, most of the rank reduction occurs in the first step of gradient
descent. With smaller learning rates, training for longer can reduce the rank at most initialization
scales.
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Figure 5: For the high-dimensional binary cluster data (cf. (4)), we see that using a small initializa-
tion scale leads to a rapid decrease in the stable rank of the network. A similar phenomenon occurs
with CIFAR-10 (see Figure 2).

overfitting phenomenon as the training accuracy is 100% and the test accuracy is eventually the
(optimal) 85%.

Finally, in Figure 6, we examine the training and test error of two-layer leaky ReLU networks
trained by gradient descent with learning rate α = 0.01 for the 2-XOR distribution described in
Section 5 (with n = 80). We fix the number of neurons to m = 512. Theorem 3.2 suggests that if
the leaky parameter γ and d are large enough relative to the number of samples, then the network
will achieve a linear decision boundary. For the 2-XOR distribution, every classifier with a linear
decision boundary achieves 50% test accuracy. We see that as γ and d increase, the test accuracy is
indeed close to 50%, but for small γ and d the network achieves better performance and thus learns
a nonlinear decision boundary.

F.2 CIFAR10

We use the standard 10-class CIFAR10 dataset with pixel values normalized to be between 0 and 1
(dividing each pixel value by 255). We consider a standard two-layer network with 512 neurons with
ReLU activations with biases and with second-layer weights trained. We train for T = 106 steps
with SGD with batch size 128 and a learning rate of α = 0.01. Figure 2 shows the average over
5 independent random initializations with shaded area corresponding to plus or minus one standard
deviation.

For the second-layer initialization we use the standard TensorFlow Dense layer initialization, which
uses Glorot Uniform with standard deviation

√
2/(m+ 10) (since the network has 10 outputs). For

the first-layer initialization, we consider two different initialization schemes.

Default initialization. We use the standard Dense layer initialization in TensorFlow Keras. In this
case the ‘Glorot Uniform’ initialization has standard deviation ωTF

init =
√
2/(m+ d).
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Leaky ReLU Networks on XOR Data

Figure 6: As γ and d increase, leaky ReLU networks trained by gradient descent fail to generalize
well for the XOR distribution, as predicted by Theorem 3.2.

Small initialization. We use ωinit = ωTF
init/50.
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