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Abstract

In this work, we focus on the alignment prob-
lem of diffusion models with a continuous re-
ward function, which represents specific objec-
tives for downstream tasks, such as increasing
darkness or improving the aesthetics of images.
The central goal of the alignment problem is to
adjust the distribution learned by diffusion mod-
els such that the generated samples maximize the
target reward function. We propose a novel align-
ment approach, named Direct Noise Optimization
(DNO), that optimizes the injected noise during
the sampling process of diffusion models. By de-
sign, DNO operates at inference-time, and thus is
tuning-free and prompt-agnostic, with the align-
ment occurring in an online fashion during gener-
ation. We rigorously study the theoretical proper-
ties of DNO and also propose variants to deal with
non-differentiable reward functions. Furthermore,
we identify that naive implementation of DNO
occasionally suffers from the out-of-distribution
reward hacking problem, where optimized sam-
ples have high rewards but are no longer in the
support of the pretrained distribution. To remedy
this issue, we leverage classical high-dimensional
statistics theory to an effective probability regu-
larization technique. We conduct extensive ex-
periments on several important reward functions
and demonstrate that the proposed DNO approach
can achieve state-of-the-art reward scores within
a reasonable time budget for generation.
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1. Introduction
Diffusion models work by learning to reverse the process
of diffusing the data distribution p(x) into noise, which can
be described by a stochastic differential equation (SDE)
(Song et al., 2020b; Karras et al., 2022): dxt = f(t)xtdt+
g(t)dwt, where dwt is the standard Wiener process, and f(t)
and g(t) are the drift and diffusion coefficients, respectively.
The reverse process relies on the score function ϵ(xt, t)

def.
=

∇x log pt(x) where pt denotes the p.d.f of noisy data xt,
and its closed-form can be expressed either as an ODE or as
an SDE: (Song et al., 2020b):

ODE: dxt =

(
f(t)xt −

1

2
g2(t)ϵ(xt, t)

)
dt, (1)

SDE: dxt =
(
f(t)xt − g2(t)ϵ(xt, t)

)
dt+ g(t)dwt. (2)

With the capability to evaluate ϵ(xt, t), it becomes possible
to generate samples from noise by numerically solving ei-
ther the ODE (1) or the SDE (2). The training process, there-
fore, involves learning a parameterized surrogate ϵθ(xt, t)
to approximate ϵ(xt, t), following a denoising score match-
ing framework as described in (Song et al., 2020b; Karras
et al., 2022). Despite the effectiveness of diffusion models
in modeling continuous distributions, when deploying these
generative models for specific tasks, it is not suitable to sam-
ple from the original learned distribution directly, because
this distribution has not been aligned with the task-specific
objective. For instance, in image generation, users may
wish to produce images that are aesthetically pleasing rather
than mediocre, or generate images with enhanced bright-
ness, darkness, or compressibility. Recently, the alignment
problem has drawn considerable interest in the context of
diffusion models, as evidenced by a series of studies such
as (Yuan et al., 2024; Song et al., 2023a; Dong et al., 2023;
Prabhudesai et al., 2023; Black et al., 2023; Fan et al., 2023).

Alignment Problem for Diffusion Models. Given a diffu-
sion model characterized by parameters θ and its associated
distribution pθ(x), as well as a reward function r(x) that can
assign real-valued scores to generated samples, the central
goal of the alignment problem is to adjust the distribution
pθ(x) such that the generated samples maximize the reward
from r(x). In this work, we consider the reward functions
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to be continuous but possibly non-differentiable. In the fol-
lowing sections, we will provide a comprehensive review
of some well-established methods for aligning diffusion
models.

1.1. Methods for Aligning Diffusion Models

1.1.1. ONLINE/OFFLINE RL METHODS

A common mathematical formulation in methods based on
Reinforcement Learning (RL) is to maximize the expected
reward while ensuring the resulting distribution does not
deviate excessively from the original distribution. This can
be expressed as the following KL-regularized optimization
problem: maxp Ex∼p(x)[r(x)]− λKL(p||pθ). Current RL-
based methods can be categorized into online and offline
methods based on the data used. In the online method, the
algorithm has the capacity to query the reward function
throughout the entire optimization process. Two notable on-
line RL methods are DDPO (Black et al., 2023) and DPOK
(Fan et al., 2023), which have been shown to improve down-
stream objectives such as aesthetics and compressibility.
Alternatively, research has also delved into the offline RL
optimization setting, where an explicit reward function is
not accessible and only a fixed preference dataset is utilized.
Noteworthy works in this category include Diffusion-DPO
(Wallace et al., 2023a) and SPIN-Diffusion (Yuan et al.,
2024).

1.1.2. DIRECT FINE-TUNING METHODS

Before delving into the formal description of this method, it
is useful to revisit the sampling process of diffusion mod-
els, which also serves as the foundation for the rest of this
work. Solving the ODE (1) or the SDE (2) typically in-
volves discretizing the time steps into T steps. By starting
with the initial noise xT ∼ N (0, I), the solution process
for the ODE (1) can be viewed as a mapping that transforms
the initial noise xT into less noisy data through the fol-
lowing process: xt−1 = ODE solver(xt), for t = T, ..., 1.
After T steps, the output will be the generated sample
x0. Similarly, solving the SDE (2) can be seen as a map-
ping that gradually converts both the initial noise xT and
the entire extra random noise vectors zT , ..., z1 into the
generated sample x0, e.g., through the following process:
xt−1 = SDE solver(xt, zt), for t = T, ..., 1, where zt is
also drawn from standard Gaussian distribution.

Remark 1.1. Throughout this work, for simplicity, we adopt
only the DDIM sampling algorithm (Song et al., 2020a)
for our experiments, as it remains one of the most popu-
lar choices for diffusion sampling and, more importantly,
supports both ODE-style and SDE-style sampling. To be
self-contained, we summarize the notations and procedure
of the DDIM sampling method in Appendix A.

Diffusion Sampling as a Noise-to-Sample Mapping. From
the diffusion sampling process described above, we observe
that the sampling process can be conceptualized as an end-
to-end mapping Mθ(z), which translates noise vectors z,
sampled from the standard Gaussian distribution, into gen-
erated samples. Here, the noise vectors z serve as a unified
abstraction for both the xT in the ODE-based sampling
process and the (xT , {z1, ..., zT }) in the SDE-based sam-
pling process. As we can see, the noise vector z uniquely
determines the generated sample from the diffusion models.

Two recent studies, AlignProp (Prabhudesai et al., 2023)
and DRaFT (Clark et al., 2023), have proposed to di-
rectly fine-tune diffusion models using differentiable re-
wards. Specifically, their optimization objective is formu-
lated as: maxθ Ez∼N (0,I)[r(Mθ(z))]. Both the AlignProp
(Prabhudesai et al., 2023) and DRaFT (Clark et al., 2023)
methods utilize the ODE-type DDIM solver for the sampling
process, specifically employing Algorithm 1 with η = 0.

1.1.3. REWARD GRADIENT GUIDANCE

A recent work focusing on loss-guided diffusion mod-
els (LGD) (Song et al., 2023a) also examines the con-
cept of aligning diffusion models with differentiable re-
wards. Unlike the methods mentioned previously, LGD is
an Inference-Time alignment method, meaning it does not
necessitate modifications to the pretrained model θ and only
works by modifying the inference process. In essence, the
core idea of LGD is that, during the sampling process for
the ODE (1), it considers a modified version of the ODE
by introducing a new term that guides the generation to-
ward areas of higher reward. Specifically, the new ODE
is: dxt =

(
f(t)xt − 1

2g
2(t)ϵ(xt, t) +∇xt

r(x0(xt))
)
dt,

where x0(xt) denotes the solution of this ODE starting from
xt. However, the gradient term ∇xt

r(x0(xt)) is not readily
available during generation. To address this, the authors
suggest utilizing Monte Carlo estimation to approximate the
gradient. Nevertheless, this estimation tends to be noisy and
imprecise, leading to suboptimal performance, particularly
with complex reward functions.

1.2. Comparing Existing Methods

Existing works can be generally categorized based on two
criteria: whether it requires fine-tuning and whether the
reward function needs to be differentiable.

Inference-Time or Tuning-based Methods. All RL-based
methods and the direct fine-tuning method are tuning-based,
meaning they necessitate adjustments to the network mod-
els θ. There are two main disadvantages associated with
tuning-based methods. The first is that they require fine-
tuning for new reward functions, a process that can consume
considerable resources, especially when faced with exten-
sive choices for reward functions. The second drawback
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is that the fine-tuning process typically relies on a limited
set of input prompts, which challenges the model to gen-
eralize to new and unseen prompts. In contrast, methods
such as LGD (Song et al., 2023a) belong to the inference-
time category. The main advantage of this approach is its
elimination of the need for fine-tuning, allowing it to be
flexibly applied in conjunction with any reward functions
and input prompts. Further, inference-time methods require
significantly fewer computing resources than tuning-based
methods. However, the major drawback of inference-time
methods is the substantial increase in the time required for
the generation process.

Differentiable or Non-Differentiable Rewards. Current
RL-based methods can work by utilizing solely the value
or preference information of the reward functions, therefore
they can still work even when the reward function is non-
differentiable. In contrast, the existing direct fine-tuning
methods and LGD require the reward function to be dif-
ferentiable. In practice, working with non-differentiable
reward functions is important due to their prevalence. This
non-differentiable property can arise from the simulation-
based procedures used to compute the reward, or the reward
function itself may be a black box.

1.3. Our Contributions

In this work, we focus on inference-time alignment of diffu-
sion models, as we believe that flexibility with the choices
of the reward functions, generalization on unseen prompts,
and low computing requirements are critical for a broad
range of real-world applications. Our primary goal is to
design an inference-time alignment method that can match
the performance of tuning-based methods by incurring a
reasonable additional time cost, and is capable of handling
both differentiable and non-differentiable objective func-
tions. To this end, we focus on an under-explored technique
for achieving inference-time alignment of diffusion mod-
els—Direct Noise Optimization (DNO). Specifically, we
make the following contributions:

• We conduct a self-contained and comprehensive study
for DNO, and demonstrate that noise optimization can
be theoretically interpreted as sampling from an im-
proved distribution.

• We identify out-of-distribution reward-hacking as a
critical issue in DNO. To address this issue, we intro-
duce a novel probability-regularized noise optimization
method designed to ensure the generated samples re-
main within the support of pretrained distribution.

• By developing a novel and highly efficient hybrid gra-
dient approximation strategy, we extend the DNO ap-
proach to handle non-differentiable reward functions
effectively.

• Through the experiments on several important image
reward functions, we demonstrate that our proposed
method can achieve state-of-the-art scores in compar-
ison to existing alignment methods, without any fine-
tuning on the parameters of diffusion models.

2. Direct Noise Optimization
Given the noise-to-sample mapping Mθ described in Section
1.1.2, DNO can be mathematically formulated as follows:

max
z

r(Mθ(z)), (3)

with z ∼ N (0, I) as the initial solution. As we will dis-
cuss in Section 3, the Gaussian distribution N (0, I) serves
as an important prior on the optimization variables z. By
solving this optimization problem, we can obtain the opti-
mized noise vectors, which are then used to generate high-
reward samples. When the reward function r(·) is differen-
tiable, gradient-based optimization methods can be applied
to solve the problem efficiently. That is, the following step
can be performed iteratively until convergence: znew =
optimizer step(zold,∇zr (Mθ(zold))), where the optimizer
can be either vanilla gradient ascent or adaptive optimization
algorithms like Adam (Kingma & Ba, 2014). When the gra-
dient of reward function r(·) is not available, we can lever-
age techniques from zeroth order optimization (Nesterov &
Spokoiny, 2017; Tang et al., 2024a) to estimate the ground-
truth gradient ∇zr (Mθ(zold)), denoted as ĝ(zold), and then
apply similarly znew = optimizer step(zold, ĝ(zold)). In Sec-
tion 4, we provide a dedicated discussion on how to obtain
a better estimator for ĝ(zold) when the reward function is
non-differentiable.

Several recent studies have explored similar formulations to
(3) across different applications. (Wallace et al., 2023b)
investigates the optimization of latent vectors obtained
through DDIM-inversion (Song et al., 2020a), aiming to
enhance the CLIP score (Radford et al., 2021) and Aesthetic
Score (Schuhmann et al., 2022b) of given images. (Ben-
Hamu et al., 2024) discusses optimizing the initial noise xT

for the ODE process to address inverse problems, leveraging
the diffusion model as a prior. (Novack et al., 2024) and
(Karunratanakul et al., 2023) consider the optimization of
initial noise xT for the ODE with the objective of improving
downstream objectives in robotics and audio.

While similar methods of DNO has appeared in previous
works, many of its technical details remain insufficiently
explored. On one hand, there is a lack of a comprehensive
framework concerning the design choices, theoretical un-
derstanding, and practical challenges associated with DNO
for aligning diffusion models. On the other hand, the field
has yet to systematically investigate whether DNO, as a
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inference-time method for aligning diffusion models, can
achieve competitive performance compared to tuning-based
methods. In this work, we aim to conduct a thorough study
on DNO. In the following two sections, we dive deep to
understand the theoretical foundation of DNO and discuss a
critical design choice ignored in previous works.

2.1. Understanding Direct Noise Optimization

In Appendix B.1, we present a simple example to visualize
the process of DNO, where we observed that the distribu-
tion of the generated samples shifts toward a distribution on
the local maxima of the reward function. Inspired by this
example, we propose to view DNO as sampling from an
improved distribution. To rigorously describe this evolv-
ing process, we define an operator function g to represent
a single gradient step, i.e., g(z) def

= z + ℓ · ∇zr ◦ Mθ(z),
where ◦ denotes the function composition operator and ℓ
denotes the step size for gradient ascent. Additionally, we
define the operator gt, which denotes applying the gradient
ascent step for t steps, i.e., gt(z) = g(gt−1(z)) with g0
being the identity mapping. With these notations, we can
now express the distribution after t gradient steps as pt(x),
which is the distribution of Mθ(gt(z)) with z ∼ N (0, I).
In the following theorem, we demonstrate that there is a rig-
orous improvement after every single gradient step, i.e., the
distribution pt+1(x) is provably better than pt(x) in terms
of expected reward.

Theorem 2.1. Assuming that r ◦Mθ is L-smooth, namely,
∥∇r ◦Mθ(z)−∇r ◦Mθ(z

′)∥ ≤ L∥z− z′∥ for any z ̸= z′,
it holds true that

Ex∼pt+1(x)r(x) ≥ Ex∼pt(x)r(x)+(
ℓ− ℓ2L

2

)
Ez0∼N(0,I)

∥∥∇zr ◦Mθ(z)|z=gt(z0)

∥∥2
2
. (4)

In Theorem 2.1, we rely on the smoothness assumption of
the composite mapping r◦Mθ. We note that this is a reason-
able assumption in practice, as the noise-to-sample mapping
in diffusion models has been observed to be smooth. For in-
stance, see Figure 4 in (Tang et al., 2024a). As described in
(4), provided that the step size ℓ is less than 2

L , the distribu-
tion pt+1(x) is strictly better than the previous distribution
pt(x) in terms of expected reward, as long as the second
term is non-zero. Based on this result, it is natural to ask:
When does the distribution stop improving? Namely, when
does the second term in (4) become zero. We provide a de-
tailed discussion to answer this question and also the proof
for Theorem 2.1 in Appendix C.

2.2. Optimizing ODE vs. Optimizing SDE

As previously introduced, there are two primary methods
for sampling from pretrained diffusion models: one based
on solving the ODE (1) and the other on solving the SDE
(2). A critical difference lies in the fact that ODE sampling
depends exclusively on the initial noise xT , whereas SDE
sampling is additionally influenced by the noise zt added
at every step of the generation process. It has been noted
that existing works on noise optimization (Ben-Hamu et al.,
2024; Novack et al., 2024; Karunratanakul et al., 2023) have
mainly concentrated on optimizing the initial noise xT for
the ODE sampler.

Figure 1. ODE vs. SDE for optimization

Different from preceding studies, we explore the utilization
of the SDE sampler for noise optimization. Specifically, we
employ the DDIM with η = 1 (Song et al., 2020a) as the
SDE sampler and propose to optimize both the added noise
zt at every timestep and the initial noise xT . In this context,
the dimensionality of the optimized noise significantly sur-
passes that of ODE sampler, typically T · d v.s. d, where
d is the dimension for the learned distribution and T is the
number of discretization steps in the sampling process. With
this higher dimension for optimization, we have empirically
observed that optimizing the SDE-based generation process
can be significantly faster than its ODE-based counterpart.
This is illustrated in Figure 1, where we juxtapose the opti-
mization speeds between the ODE (DDIM with η = 0) and
SDE samplers using both the simple depicted in Figure 5
(Left) and optimizing for stable diffusion in alignment with
the aesthetic reward (Right), a major experiment detailed in
the subsequent section 5.2. In Appendix D, we also provide
a theoretical justification for the the better performance of
DNO with SDE-Based Sampling.

3. OOD Reward-Hacking in DNO
It has been observed that when aligning generative models
(e.g., including autoregressive language models or diffu-
sion models) with reward functions, one can experience
the so-called reward-hacking, i.e., the optimized samples
yield high rewards but do not possess the desirable prop-
erties (Miao et al., 2024; Chen et al., 2024a). Generally,
there are two different types of reward-hacking. In the first
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type, the reward function admits some shortcuts, so the
optimized samples score high rewards but remain barely dis-
tinguishable from the samples of the pretrained distribution.
The second type is related to the generative model used –
the optimized samples no longer fall within the support of
the pretrained distribution after optimization. We denote
this second type of reward-hacking as Out-Of-Distribution
(OOD) Reward-Hacking. In this work, we will focus on
this second type and reveal that OOD reward-hacking is a
common issue in DNO. In Appendix B.2, we provide two
visualized examples of the phenomenon of OOD Reward-
Hacking using both a 2-dimensional diffusion model and an
image diffusion model.

One of our key contributions in this work is to identify one
critical cause of OOD reward-hacking in noise optimiza-
tion. That is, the optimized noise vectors stray towards the
low-probability regions of the high-dimensional standard
Gaussian distribution; in other words, there is an extremely
low chance of such noise vectors being sampled from the
Gaussian distribution. As diffusion models are originally
trained with Gaussian noise, when the noise vectors orig-
inate from these low-probability areas—such as vectors
comprised entirely of zeros—the neural network within the
diffusion models may incur significant approximation er-
rors for these particular inputs. This error, in turn, leads to
the generation of out-of-distribution samples. In the subse-
quent section, we introduce a novel method to measure the
extent to which noise is part of the low-probability region
by leveraging the classical concentration inequalities for
high-dimensional Gaussian distributions.

3.1. Quantifying Low-Probability Region via
Concentration Inequalities

High-dimensional Gaussian distributions possess several
unique properties. For instance, it is known that the all-
zero vector is the most probable in terms of the probability
density function (p.d.f) of the standard Gaussian distribu-
tion. However, in practice, it is nearly impossible to obtain
samples near the all-zero vector from a Gaussian distri-
bution, as it resides within a low-probability region. In
high-dimensional statistics, concentration inequalities are
usually employed to describe these distinctive properties and
delineate the low-probability regions of high-dimensional
distributions. In the following lemma, we present two clas-
sical inequalities for the standard Gaussian distribution.

Lemma 3.1 ((Wainwright, 2019)). Consider that z1, ..., zm
follow a k-dimensional standard Gaussian distribution. We
have the following concentration inequalities for the mean
and covariance:Pr

[∥∥ 1
m

∑m
i=1 zi

∥∥ > M
]
< p1(M)

def.
=

max
{
2e−

mM2

2k , 1
}

, Pr
[∥∥ 1

m

∑m
i=1 ziz

⊤
i − Ik

∥∥ > M
]

<

p2(M)
def.
= max

{
2e−

m(max{√
1+M−1−

√
k/m,0})2

2 , 1

}
.

In practice, to determine if an n-dimensional vector z lies
within a low-probability region, we can factorize n as
n = m ·k, and divide z into m subvectors: z = [z11 , ..., z

k
m],

where n = m · k and zi = [z1i , ..., z
k
i ] ∼ N (0, Ik)).

Then, we compute M1(z) =
∥∥ 1
m

∑m
i=1 zi

∥∥ and M2(z) =∥∥ 1
m

∑m
i=1 ziz

⊤
i − Ik

∥∥. Finally, we can determine that z
lies in a low-probability region if both p1(M1(z)) and
p2(M2(z)) are low.
Remark 3.2. According to (Wainwright, 2019), these two
inequalities in Lemma 3.1 are tight when m/k is large. On
the other hand, k = 1 is not advisable, as it examines
only the mean and variance of the noise vector, but not
the covariance of different subvectors. In this work, we
empirically found that k = 2 serves as a good default choice.
In Appendix .7, we provide a more detailed analysis for
choosing an appropriate k.

An important point to note is that the standard Gaussian
distribution is invariant to permutation, i.e., for any per-
mutation matrix Π, if z follows a standard Gaussian distri-
bution, the permuted vector Πz will have the same prob-
ability behavior. With this insight, to increase the ro-
bustness of the probability measure p1 and p2, a natural
idea is to examine the probability of many permuted vec-
tors. Specifically, given q permutation matrices Π1, ...,Πq,

we define the following indicator metric, P (z)
def.
=

min {p1 (M1(Πiz)) , p2 (M2(Πiz)) , i ∈ {1, ..., q}}.

Interpretation of P (z). If the probability P (z) is low,
it implies that there exists a permutation matrix Πi such
that the noise vector Πiz is in the low-probability region
of the standard Gaussian distribution. Therefore, due to
the permutation-invariant property, the noise vector z is
also less likely to be sampled from the standard Gaussian
distribution. In practice, we utilize randomly generated
permutation matrices and have found that setting q = 100
results in empirically good performance. In Appendix .5,
we provide some visualized empirical evidence to show
that P (z) serves as a good indicator for determining if the
generated samples are OOD.

3.2. Probability-Regularized Noise Optimization

With the insights discussed above, a natural idea for pre-
venting OOD reward hacking is to regularize noise vectors
to remain within the high-probability region of the Gaus-
sian distribution. To achieve this, we propose the following
Probability-Regularized Noise Optimization problem:

max
z

r(Mθ(z)) + γEΠ [p1(M1(Πz)) + p2(M2(Πz))] , (5)
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where γ is the coefficient used to control the regularization
effect. In particular, for the regularization term, we use
the expectation of the log probabilities over the permuta-
tion matrices, rather than the minimum probability P (z).
This is because the expectation is smoother for optimization
purposes.

4. Tackling Non-Differentiable Rewards
In the previous section, DNO method has been applied
to optimize differentiable reward functions. However, in
many applications the ground-truth gradient of the reward
function is unavailable. Such non-differentiable properties
can arise from various scenarios; here we present two rep-
resentative cases. Firstly, the reward may be computed
through simulation-based procedures, such as the JPEG-
compressibility employed in DDPO (Black et al., 2023),
which calculates the size of an image in bits after running a
JPEG compression algorithm. Additionally, the reward func-
tion itself may be a black box provided through online API
providers, as in the setting considered in (Sun et al., 2022).
This scenario is common when the reward function is a large
neural network model, like those in (Wang et al., 2024a; Lin
et al., 2024), making it impossible to directly obtain the
gradient for optimization. To address these scenarios, we
explore adapting the noise optimization approach to handle
the optimization of non-differentiable reward functions by
estimating the gradient with function values. Specifically,
we explore three methods under this setting.

Method 1. Concerning optimization with only function
value, a major family of optimization approaches is zeroth-
order optimization algorithms, including ZO-SGD (Nes-
terov & Spokoiny, 2017). This method treats the entire
mapping r ◦Mθ(·) as a black-box function and seeks to es-
timate the gradient of r ◦Mθ(·) via function value queries.

Method 2. It is worth noting that for the mapping r ◦Mθ(·),
only the gradient of the reward function r(x) is not avail-
able, and we are still able to compute the gradient of Mθ(z).
Therefore, a straightforward idea is to adopt a hybrid gra-
dient approach—only to estimate the gradient of r, while
using the ground truth gradient for Mθ(z). Specifically, we
denote that the initial noise is z, and the generated sample
is x = Mθ(z). Firstly, we can estimate the gradient of
∇r(x) in a similar fashion with the ZO-SGD (Nesterov &
Spokoiny, 2017):

H1(x) = Eξ∼N (0,I) [(r(x+ µξ)− r(x)) ξ] , (6)

where µ is the coefficient for perturbation, and C1 is some
constant. With the estimated gradient H1(x) for the reward
function r(x), we can use the following estimated gradient
G1(z) for optimization:

G1(z)
def.
= H1(x) · ∇zMθ(z), (7)

where the main idea is to replace the ground truth ∇r(x)
in the chain-rule of differentiating r(Mθ(z)). We refer this
method as Hybrid-1 in the following sections.
Remark 4.1. As one can observe, the computation of (7)
involves the Jacobian ∇zMθ(z). However, it is important to
note that when we only require the vector-Jacobian product
H1(x)·∇zMθ(z), it is unnecessary to compute the full Jaco-
bian ∇zMθ(z). In Appendix .6, we describe an elegant and
efficient way to implement (7) using an auto-differentiation
technique.

Method 3. There is a crucial drawback in the gradient
estimator (6), that one needs to query the reward function
r(·) with noisy input x + µξ. When the reward function
is only defined on some manifold M, e.g., defined on the
image manifold, rather than the whole space Rn, this can
lead to severe problems, because, for some x ∈ M, the
noisy sample x + µξ may no longer stay within M. To
remedy this issue, we propose to perturb the sample through
the latent noise, rather than directly in the sample space.
Specifically, our proposed new gradient estimator for ∇r(x)
is H2(x) =:

Eξ [(r(Mθ(z + µξ))− r(x)) (Mθ(z + µξ)− x)] . (8)

Following a similar proof in (Nesterov & Spokoiny, 2017),
we can also show that H2(x) ≈ C2∇r(x) for some con-
stants C2. As we can see, when computing the gradient
(8), we ensure that we query the reward function r(·) with
only samples that are within the manifold of the pretrained
distribution. Similar to Hybrid-1, we can adopt a gradient
estimator G2(z) with H2(x):

G2(z)
def.
= H2(x) · ∇zMθ(z). (9)

We refer this method (9) as Hybrid-2. As we will see in
Section 5.3, this Hybrid-2 method is significantly faster than
the other two in terms of optimization speed.

5. Experiments
In this section, we aim to demonstrate the effectiveness of
the method proposed above. For all subsequent experiments,
we utilize Stable Diffusion v1.5 (Rombach et al., 2022)
as the base model for noise optimization. For each figure,
we perform the optimization using 1,000 different random
seeds and report the average value along with the standard
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deviation (std) of the results. For comprehensive details
regarding the implementation of our proposed methods, as
well as information on hyperparameters, we refer readers to
Appendices .6 and .7. Additionally, we provide examples to
visualize the optimization process in Appendix B. For all the
following experiments, unless explicitly stated otherwise, a
single run of DNO is performed on a single A800 GPU.

5.1. Experiments on Image Brightness and Darkness
Reward Functions

Experiment Design. In this section, we design an experi-
ment to demonstrate the effectiveness of DNO as described
in Section 2, and the probability regularization proposed in
Section 3.2. We consider two settings: The first involves
optimizing the brightness reward, which is the average value
of all pixels—the higher this value, the brighter the image
becomes—with the prompt ”black [animal]”, where the to-
ken [animal] is randomly selected from a list of animals.
The second setting involves optimizing the darkness reward,
defined as the negative of the brightness reward, with the
prompt ”white [animal]”. The primary rationale behind
designing such experiments is the inherent contradiction
between the prompt and the reward, which makes it easier
to trigger the OOD reward-hacking phenomenon. More-
over, it is straightforward to verify whether the generated
samples are out-of-distribution by simply examining the
color of the generated animals. In these experiments, we
compare the noise optimization process with and without
probability regularization to assess the capability of proba-
bility regularization in preventing the OOD reward-hacking
phenomenon.

Importance of the Brightness and Darkness Reward
Functions. While the primary purpose of using these two re-
ward functions is to better examine the effectiveness of prob-
ability regularization, it is also important to highlight their
practical utility. There is often a genuine need to generate
images with extremely dark or bright backgrounds, which
cannot be achieved by the base models through prompting
alone, as reported in the notable research by (CrossLabs,
2023).

Measuring the Degree of OOD. As observed in this ex-
periment, the reward function contradicts the input prompt,
leading to an inconsistency between the generated sam-
ples and the prompt. Therefore, we utilize the CLIP Score
(CS) (Radford et al., 2021), a commonly used metric for
measuring the semantic similarity between images and text
descriptions, to gauge the degree of OOD for the gener-
ated samples. A higher CS indicates that the sample is less
likely to be out-of-distribution (OOD). In addition to the CS,
we also use an MLLM-based score to measure the degree
of OOD, specifically employing the Image-Text Matching
(ITM) score from (Wang et al., 2024a) as the metric.

Figure 2. Comparison of DNO with and without probability regu-
larization. Upper row: Optimizing for the brightness reward, i.e.,
the average value of all pixels in the images. Lower row: Opti-
mizing for the darkness reward, i.e., the negative of the brightness
reward. The x-axis refers to the number of gradient ascent steps
during optimization.

Results. In Figure 2, we first observe that adding the regu-
larization term leads to a mildly slower optimization process.
However, the generated samples are much more consistent
with the prompt throughout the entire optimization process,
as reflected by the CS and ITM curves. The trajectory of
P (z) further corroborates that it is a good indicator of the
OOD phenomenon, as it is positively associated with CS and
ITM. We also provide visualized examples in Appendix B.3,
which also confirm that the probability regularization pro-
posed in Section 3.2 can effectively prevent the generated
samples from becoming OOD.

Generating Images with Purely Bright/Dark Back-
grounds. From the images in Figure 7 of Appendix B.3, we
observe that DNO with regularization can lead to images
with purely dark or bright backgrounds. It is worth noting
that this is a remarkable result, as DNO requires no fine-
tuning. Notably, as discussed in (CrossLabs, 2023), such
an effect can only be achieved by fine-tuning the diffusion
models using a technique called Offset-Noise.

5.2. Benchmarking on Three Human-Aligned Reward
Functions

Setting. In this section, we investigate the performance of
the proposed method using three common reward functions
trained from human feedback data, specifically Aesthetic
Score (Schuhmann et al., 2022b), HPS-v2 score (Wu et al.,
2023), and PickScore (Kirstain et al., 2023), respectively. In
this experiment, we also compare noise optimization with
and without probability regularization. However, compared
to the reward function used in the previous section, using
these reward functions presents a lesser chance for the opti-
mized image to be OOD. In this case, to measure the benefit
of probability regularization in maintaining the quality of
the generated sample, we consider using the other two re-
ward functions as test metrics when optimizing one of them.
For the prompt dataset, we follow (Clark et al., 2023; Black
et al., 2023) to use a simple animals prompt dataset.
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Results. Firstly, we observe that the effect of probability
regularization is less pronounced than that in Section 5.1.
This observation is also reflected by our proposed indicator
P (z); if no regularization is applied, the value of P (z)
in Figure 3 decreases much slower than that in Figure 2.
Nonetheless, by adding the regularization term to noise
optimization, we can stabilize the value of P (z) throughout
the optimization process and also improve the test metrics.
For instance, when optimizing the aesthetic reward, the
regularization has no significant effect on the optimization
speed, while it prevents the test metrics, i.e., the HPS score
and Pick Score, from decreasing throughout the process.

Figure 3. Comparison of running DNO with three human-like re-
ward functions, with and without regularization. When optimizing
one reward function, the other two are used as test metrics. A,
H, P are short for Aesthetic Score, HPS Score, and Pick Score,
respectively. The name for each line comprises the used reward
function and whether the regularization is used. For example, A +
w/ reg means optimizing aesthetic score with regularization.

Comparison to Existing Alignment Methods. We sum-
marize the performance of DNO with probability regular-
ization from Figure 3 into Table 1 and compare it to the
major existing alignment methods discussed in the introduc-
tion. As shown, the performance of DNO matches that of
state-of-the-art tuning-based alignment methods without any
fine-tuning on the network models, all within a reasonable
time budget for generation. More importantly, we demon-
strate that DNO provides an worthwhile trade-off between
inference time and the reward of the generated samples.
On one hand, another inference-time method, LGD (Song
et al., 2023a), performs poorly with these complex reward
functions, as it is impossible to estimate the gradient of the
reward functions without a complete generation process.
On the other hand, we also examined the most fundamen-
tal inference-time alignment algorithm, Best-of-N (BoN)
Sampling, which generates N samples and selects the one
with the highest reward. In this experiment, we fix the time
budget for BoN to 10 minutes, and we observe that DNO
outperforms it by a large margin, demonstrating that DNO
presents a highly advantageous trade-off between inference
time and reward.

Using Fewer Steps to Reduce Inference Time. In Figure
3, we show that our proposed DNO can achieve high re-
ward values within approximately 3–5 minutes. While this
already represents a highly advantageous performance, 3–5
minutes of optimization may still be prohibitively long in
practice. However, we note that reducing the number of dif-

fusion steps can significantly decrease optimization time. In
Table 1, we fix the diffusion steps to 50, as this is the setting
used by all other algorithms to ensure a fair comparison.
In practice, 50 diffusion steps is a fairly long choice, and
using 15–25 steps can still result in sufficiently good sam-
ples. Therefore, in Table 2, we present the performance of
DNO with different numbers of denoising steps, fixing the
time budget to 1 minute, as well as other hyperparameters
like learning rate and reguralization coefficient. As Table
2 shows, with 15 diffusion steps, DNO can achieve high
reward values within 1 minute.

Finally, we would like to highlight that this alignment pro-
cess can run with memory usage of less than 15GB, and
thus can easily fit into just one consumer-level GPU. In
contrast, current tuning-based methods require significantly
more computing resources, typically 4-8 advanced GPUs
like A100 (Black et al., 2023; Prabhudesai et al., 2023).

5.3. Optimization for Non-Differentiable Reward
Functions

Setting. In this section, we aim to explore the three exten-
sions proposed in Section 4 for handling non-differentiable
reward functions. For Method 1, we use ZO-SGD (Nes-
terov & Spokoiny, 2017), and compare it with our proposed
Hybrid-1 and Hybrid-2. We consider using two reward func-
tions: The Jpeg Compressibility score, which is the file size
of the image after compressing it using the JPEG algorithm.
This reward function was also used in (Black et al., 2023)
and is intrinsically non-differentiable. The second reward
function is the Aesthetic Score used in the previous section.
Unlike previous experiments, in this section we treat the
Aesthetic Score as a non-differentiable reward function for
optimization. The goal is to simulate a scenario where the
neural network model of the Aesthetic Score can only be
queried via an API provider that returns the score rather
than its gradient. We compare the three methods in terms of
optimization steps and the final score of the reward function.
For ease of demonstration, we do not add the probability
regularization term to the optimization process. Moreover,
it is important to note that in these three methods, the major
time expenditure comes from estimating the gradient with
finite samples. For a fair comparison among these methods,
we set the number of samples for estimating the gradient
separately so that the total time spent estimating the gradient
is the same for all three methods.

Results. The main results are visualized in Figure 4. For
better visualization purposes, when plotting the line for ZO-
SGD, we compute and plot the current best reward instead
of the current reward due to the extremely high variance.
Initially, we observe that the Hybrid-2 method is signifi-
cantly faster than the other two methods, and the final score
is also higher for both reward functions used in this experi-
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Method SD v1.5 LGD SPIN DDPO AlignProp DNO (This work) BoN
2s n=10 n=100 ∼ 20h ∼ 56h ∼ 12h 1 min 3 min 5 min 10 min

Aesthetic ↑ 5.367 5.340 5.224 6.248 7.180 8.940 5.754 7.202 8.587 6.531
HPS ↑ 0.278 0.276 0.271 0.276 0.287 0.330 0.285 0.303 0.324 0.298

PickScore ↑ 21.11 21.01 21.09 22.00 / / 21.25 23.17 25.13 22.09

Table 1. Performance comparison. For SD v1.5 and DNO, we annotate the generation time below the name. For LGD, we annotate the
number of samples used for Monte Carlo approximation. For SPIN, DDPO, and AlignProp, we annotate the estimated time for fine-tuning.
All time costs in the table are measured with respect to the GPU time on a single A800 GPU. Baselines: LGD (Song et al., 2023a), SPIN
(Yuan et al., 2024), DDPO (Black et al., 2023), AlignProp (Prabhudesai et al., 2023), Best-of-N (BoN).

T 10 15 20 25 50

Aesthetic ↑ 6.992 7.496 6.773 6.381 5.754
HPS ↑ 0.342 0.341 0.306 0.293 0.285

PickScore ↑ 23.98 24.82 23.69 23.02 21.25

Table 2. Running DNO with different numbers of diffusion steps
T , while fixing the time budget to 1 minute.

Figure 4. Comparing three methods on two reward functions.

ment. Furthermore, in both scenarios, the ZO-SGD method
exhibits the slowest optimization speed. Another interesting
finding is the poor performance of Hybrid-1 in optimiz-
ing the Aesthetic Reward. This mainly occurs because the
aesthetic reward function can only work with image in-
puts, which validates our initiative to propose the Hybrid-2
method in Section 4. Finally, when comparing the opti-
mization of the aesthetic score in Figures 3 and 4, we can
also note that using the true gradient results in substantially
fewer steps than using the estimated gradient.

6. Conclusions
In this work, we present a comprehensive study on Direct
Noise Optimization (DNO) for aligning diffusion genera-
tive models at inference-time. We introduce variants of
DNO designed to efficiently address challenges such as
out-of-distribution reward-hacking and the optimization of
non-differentiable reward functions. More significantly, we
demonstrate the exceptional efficacy of DNO, underscoring
its capacity to rival tuning-based methods. The primary
limitation of DNO lies in its integration with the sampling
process of diffusion models, leading to a substantial increase
in processing time compared to direct sampling. Nonethe-

less, we argue that the additional time cost, being within
a reasonable and acceptable range, is a worthwhile trade-
off for attaining high-reward generated samples in a wide
range of real-world applications. We anticipate DNO gain-
ing greater attention in future research and applications due
to its flexibility to accommodate any reward function—or
even a combination of different reward functions—while de-
manding only modest computing resources, which positions
it as an accessible tool for many practitioners.
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Appendix
A. DDIM Sampling Algorithm

In Algorithm 1 described below, we summarize the sampling algorithm for diffusion models, DDIM (Song et al., 2020a),
which is essentially the Euler method for solving ODEs/SDEs. The diffusion coefficients α1, . . . , αT in Algorithm 1 are
computed using the coefficient functions f(t) and g(t), with the detailed computation found in (Song et al., 2020b; Karras
et al., 2022). The coefficient η in DDIM determines whether we are solving the ODE or the SDE, with η = 0 corresponding
to ODE and η > 0 corresponding to SDE.

Algorithm 1 DDIM Sampling Algorithm
Require: Discretization timesteps T , diffusion coefficient α1, ..., αt, initial noise xT ∼ N (0, I), noise vectors z1, ..., zT ∼ N (0, I),

coefficient η ∈ [0, 1] for balancing ODE and SDE, learned score network ϵθ(·, ·).
1: for t = T to 1 do
2: Compute σt = η

√
(1− αt−1)/(1− αt)

√
1− αt/αt−1.

3: xt−1 =
√

αt−1/αt · xt −
(√

αt−1(1− αt)/αt −
√

1− αt−1 − σ2
t

)
ϵθ(xt, t) + σtzt

4: end for

B. Visualization

To assist the reader in understanding the optimization process of DNO and also to provide a qualitative evaluation, we offer
several visualizations in this section.

B.1. A SIMPLE EXAMPLE

In this section, we present a simple example to visualize the process of noise optimization. Specifically, we trained a toy
diffusion model for generating uniform distribution on a ring with a radius between 0.8 and 1.2, and the initial distribution is
visualized in Figure 5a, where each red point denotes a single sample drawn from the trained diffusion model. We then solve
the noise optimization problem (3) with the reward function r(x) = sin(4πx[1]) + sin(4πx[2])−

(
(x[1]− 1)2 − x[2]2

)
/5,

a highly nonconvex function with many local maxima. To perform this optimization, we solve the DNO problem (3) using
gradient ascent with the learning rate set to 0.01. In Figures 5b, 5c, and 5d, we visualize the optimized samples after 10, 50,
and 100 gradient steps, respectively. We can observe that the distribution of the samples shifts toward a distribution on the
local maxima of the reward function.

(a) Initial (b) 10 steps (c) 50 steps (d) 100 steps

Figure 5. Example 1: Evolution of the sample distribution of a toy diffusion model while running DNO to maximize a non-convex reward
function.

B.2. SIMPLE EXAMPLES FOR OOD REWARD-HACKING

In this section, we present two examples using both a simple diffusion model from the Example 1 described above and
the open-source image diffusion model SD v1.5 (Rombach et al., 2022). For the first example, we revisit the pretrained
distribution displayed in Figure 5, modifying the reward function to r(x) = −(x[1]−1.4)2−(x[2]−1.4)2. Figure 6a exhibits
the pretrained distribution of the diffusion models, where we note that every sample stays within the support. However, as
illustrated in Figure 6b, after 1000 gradient steps of optimization for the reward function, all the generated samples become
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out-of-distribution. In our second example, we examine optimization for the ”brightness” reward—specifically, the average
value of all pixels in an image—using SD v1.5 as the image diffusion model. We start with the prompt ”black duck”, with
the initial image depicted in Figure 6c. After 50 gradient steps of optimization for the brightness reward, it becomes apparent
that the generated samples diverge from the original prompt ”black duck” and transform into a ”white duck”, as evidenced
in Figure 6d. Ideally, in the absence of reward-hacking, the generated samples should always adhere to the ”black duck”
prompt while incorporating the overall brightness in the images.

(a) Initial (b) 1000 steps (c) Black Duck (d) 50 steps

Figure 6. Examples of OOD Reward-Hacking

B.3. COMPARING WITH AND WITHOUT REGULARIZATION

In this section, our objective is to demonstrate the impact of the probability regularization term on the optimization process
through visual examples. Specifically, we present examples from three settings. The first two examples are derived from the
experiments in Section 5.1, while the last example is from the experiment on optimizing the aesthetic score in Section 5.2.

The examples can be seen in Figure 7. As observed across all examples, the optimization process that integrates the
regularization term consistently prevents the generated samples from falling into the category of being Out-Of-Distribution
(OOD).

B.4. QUALITATIVE EXAMPLES

In this section, we aim to provide additional visualized examples for our proposed method.

Firstly, in Figure 8, we present examples from the optimization of all three popular human-level reward functions discussed
in Section 5.2. As can be observed, the optimization process indeed results in an increase in human preference throughout.

Furthermore, we also include examples from the experiments in Section 5.3, that is, optimizing JPEG Compressibility Score
and Aesthetic Score using the Hybrid-2 method for non-differentiable optimization. These examples in Figure 9 effectively
showcase the efficiency of Hybrid-2 in both estimating the gradient and optimizing.

We also present some non-cherry-picked examples of aligning Stable Diffusion XL (Podell et al., 2024) with DNO across
four reward functions and four popular prompts from Reddit, see Figure 10. Note that this effect is achieved without
fine-tuning the diffusion models. The experiment was conducted on a single A800 GPU. , and also the setting for Figure
10. In these examples, we only use the base model of SDXL (Podell et al., 2024) as the image diffusion model. We adopt
the DDIM sampler with 50 steps and η = 1 for generation, and optimize all the injected noise in the generation process, the
same as most experiments in this work. The classifier-free guidance is set to 5.0. For each reward function, we adopt the
same hyperparameters for the optimizer and regularization terms as the experiments in Section 5.1 and 5.2. From top to
bottom in Figure 10, the used prompts are listed as follows:

1. dark alley, night, moon Cinematic light, intricate detail, high detail, sharp focus, smooth, aesthetic, extremely detailed

2. 1970s baseball player, hyperdetailed, soft light, sharp, best quality, masterpiece, realistic, Canon EOS R3, 20
megapixels.

3. a rabbit, wildlife photography, photograph, high quality, wildlife, f 1.8, soft focus, 8k, national geographic, award -
winning photograph by nick nichols.
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(a) Optimizing brightness reward with and without probability regularization. Prompt: ”black duck”.

(b) Optimizing darkness reward with and without probability regularization. Prompt: ”white duck”.

(c) Optimizing Aesthetic Score with and without probability regularization. Prompt: ”yellow squirrel”

Figure 7. Examples of optimized samples with and without regularization
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(a) Optimizing Aesthetic Score with prompt ”gray lion”

(b) Optimizing HPS v2 Score with prompt ”black deer”

(c) Optimizing PickScore with prompt ”black lizard”

Figure 8. Representative examples of optimizing reward functions trained on human feedback data.
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4. A beef steak, depth of field, bokeh, soft light, by Yasmin Albatoul, Harry Fayt, centered, extremely detailed, Nikon D850,
award winning photography

(a) Optimizing Jpeg Compressiblity with Hybrid-2 gradient approximation. Upper: prompt ”blue pig”. Lower: prompt ”yellow
rabbit”.

(b) Optimizing Aesthetic Score with Hybrid-2 gradient approximation. Upper: prompt ”silver butterfly”. Lower: prompt ”yellow
hedgehog”.

Figure 9. Representative examples for non-differentiable optimization

B.5. VISUALIZATION OF DNO

We provide a visual illustration in Figure 11 to describe the main procedure for DNO using the DDIM sampling procedure
detailed in Algorithm 1. As shown, DNO, similar to LGD (Song et al., 2023a), operates at inference-time and does not
require tuning the network parameter θ. However, it requires more time for generation compared to direct sampling, as the
optimization is integrated with the sampling process, meaning the optimization is performed for each new sample generated.
Despite this, as we will demonstrate in Section 5, the extra time needed for the DNO approach is a worthwhile trade-off for
obtaining high-reward samples.

C. Theoretical Results

Proof for Theorem 2.1. To leverage the L-smoothness assumption, we need to state a classical lemma for smooth optimiza-
tion.
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Figure 10. Running DNO with SDXL

19



Inference-Time Alignment of Diffusion Models with Direct Noise Optimization

Lemma .1 (Descent Lemma (Bertsekas, 1997)). For any z1 and z2, we have

r ◦Mθ(z2) ≥ r ◦Mθ(z1) +∇r ◦Mθ(z1) · (z2 − z1)−
L

2
∥z2 − z1∥22. (10)

Now for any z and steps t ≥ 1, with the descent lemma, we have

r ◦Mθ(gt+1(z)) ≥ r ◦Mθ(gt(z)) +∇r ◦Mθ(gt(z)) · (gt+1(z)− gt(z))−
L

2
∥gt+1(z)− gt(z)∥22.

Notice that by the definition of gt· we have

gt+1(z)− gt(z) = gt(z) + ℓ∇r ◦Mθ(gt(z))− gt(z)

= ℓ∇r ◦Mθ(gt(z)).

Therefore, we have

r ◦Mθ(gt+1(z)) ≥ r ◦Mθ(gt(z)) +

(
ℓ− ℓ2L

2

)
∥∇r ◦Mθ(gt(z))∥22.

Taking the expectation over z ∼ N (0, I) we have

Ez∼N (0,I) [r ◦Mθ(gt+1(z))] ≥ Ez∼N (0,I) [r ◦Mθ(gt(z))] +(
ℓ− ℓ2L

2

)
Ez∼N (0,I)

[
∥∇r ◦Mθ(gt(z))∥22

]
.

By using the change of variable formula for distribution, we can easily see that

Ex∼pt+1(x)r(x) = Ez∼N (0,I) [r ◦Mθ(gt+1(z))] ,

and

Ex∼pt(x)r(x) = Ez∼N (0,I) [r ◦Mθ(gt(z))] ,

Therefore, we conclude with

Ex∼pt+1(x)r(x) ≥ Ex∼pt(x)r(x) +

(
ℓ− ℓ2L

2

)
Ez0∼N(0,I)

∥∥∇zr ◦Mθ(z)|z=gt(z0)

∥∥2
2

(11)

≥ Ex∼pt(x)r(x).

When Does the Distribution Stop Improving? As observed, the distribution ceases to improve when the sec-
ond term in Equation (11) becomes zero. Initially, we note that the optimized distribution stops improving when
Ez0∼N(0,I)

∥∥∇zr ◦Mθ(z)|z=gt(z0)

∥∥2
2
= 0. In statistical terms, this implies that ∇zr ◦Mθ(z)|z=gt(z0) is a zero vector with

probability one.

To discern the circumstances under which this zero vector occurs, let us assume that z0 is some fixed noise vector and
consider the scenario where

∇xr(x)|x=Mθ(gt(z0)) · ∇zMθ(z)|z=gt(z0) = 0⃗, (12)

Here, we denote G1(z0) = ∇xr(x)|x=Mθ(gt(z0)) as the gradient of the reward functions on the generated sample, and
G2(z0) = ∇zMθ(z)|z=gt(z0) representing the Jacobian matrix of the noise-to-sample mapping. We categorize the situation
in Equation (12) into three cases:
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Figure 11. Overview of the DNO procedure with the DDIM sampling algorithm: DNO seeks to optimize only those Gaussian noise
vectors {xT , z1, z2..., zT } to maximize the reward value of a single generated sample x0. To facilitate the gradient backpropagation
from x0 to {xT , z1, z2..., zT }, we leverage the technique of gradient checkpointing. It is worth noting that when using η = 0 for DDIM
sampling, there is no need to compute the gradient for z1, ..., zT , as the generated sample x0 depends exclusively on xT . When computing
the gradient from r(x0) to x0, we can use either ground-truth gradient ∇r or an estimated gradient ∇̂r, depending on whether the reward
function r(·) is differentiable.

Type-I: ∥G1(z0)∥ = 0 and ∥G2(z0)∥ > 0. Here, the gradient of the reward function on the generated sample is zero,
indicating that the generated sample has reached a stationary point (or local solution) of the reward function.

Type-II: ∥G2(z0)∥ = 0 and ∥G1(z0)∥ > 0. This indicates that the Jacobian matrix of the noise-to-sample mapping is zero,
which often suggests that the generated sample is at the boundary of the support of the distribution, as a zero Jacobian means
that changes in the noise will not affect the generated sample.

Type-III: ∥G1(z0)∥ > 0 and ∥G2(z0)∥ > 0, but ∥G1(z0) · G2(z0)| = 0. In this scenario, the gradient of the reward
function on the generated sample is orthogonal to the Jacobian matrix of the noise-to-sample mapping.

In summary, the distribution will halt its improvement after the t-th step if it almost surely holds that z0 corresponds to a
Type-I, Type-II, or Type-III noise vector.

We provide examples for the three scenarios, respectively, in the following figures. First, in Figure 12a, we display examples
of Type-I and Type-II by reutilizing the experiment from Figure 5. To determine the type of the noise vector, we empirically
compute ∥G1(z0)∥, ∥G2(z0)∥, and ∥G1(z0) ·G2(z0)∥ for each noise vector.

To showcase an example of Type-III noise vectors, we introduce a new toy example illustrated in Figure 12b. Specifically,
the ground-truth distribution learned by diffusion models is uniform across a horizontal line spanning from (−1, 0) to (1, 0).
The reward function is defined as r(x, y) = y. It can be readily confirmed that, for every point on this line, the gradient of
the reward function is orthogonal to the Jacobian matrix of the noise-to-sample mapping. Consequently, all points along the
line segment [(−1, 0), (1, 0)] qualify as Type-III noise vectors.

D. Understanding the Faster Speed of DNO with SDE-Based Sampling.

Intuitively, the acceleration in optimization speed can be attributed to the finer-grained control over the generation process
afforded by the SDE sampler compared to the ODE sampler. To formally state this intuition, we revisit the DDIM
sampling algorithm in Algorithm 1. We consider the procedure of SDE-based sampling algorithm, DDIM with η =
1, as defining the noise-to-sample mapping Mθ(xT , z1, . . . , zT ). An important observation is that the ODE sampling
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(a) Example 1 (b) Example 2

Figure 12. Examples of generated samples with Type-I, Type-II and Type-III noise vectors in the toy examples.

(a) Toy Example (b) P (z) = 0.36 (c) P (z) = 0.00 (d) P (z) = 0.02

Figure 13. Examples of generated samples with corresponding values of P (z).

Figure 14. Trajectory of P (z) on optimizing brightness reward.
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Figure 15. Trajectory of P (z) on optimizing Aesthetic Score.

algorithm, DDIM with η = 0, can also be expressed using the same Mθ(xT , z1, . . . , zT ), with the distinction that
the noise z1, . . . , zT becomes deterministic and dependent on xT , rather than sampled from a Gaussian distribution.

Specifically, if we define the deterministic noise vectors as: zODE
t

def.
=

√
1−αt−1−

√
1−αt−1−σ2

t

σt
ϵθ(xt, t), for t = 1, . . . , T,

where σt =
√
(1− αt−1/(1− αt)

√
1− αt/αt−1, then the sampling process of DDIM with η = 0 can be expressed as

Mθ(xT , z
ODE
1 , . . . , zODE

T ). In this context, the advantage of SDE-based sampling becomes evident:

max
xT ,z1,...,zT

r (Mθ(xT , z1, . . . , zT )) ≥ max
xT

r
(
Mθ(xT , z

ODE
1 , . . . , zODE

T )
)
,

meaning that running DNO with SDE will yield better results, or at least as good as DNO with ODE for aligning diffusion
models. Based on this conclusion, our work will focus on optimizing the SDE-based sampling (DDIM with η = 1) for the
remainder of the study. Additionally, we fix the number of generation steps T to 50 throughout this work for simplicity.

.5. Empirical Investigation of P (z)

In this section, we provide several empirical evidence to demonstrate that P (z) acts as an effective indicator for the
out-of-distribution phenomenon.

Firstly, in Figure 13a, we revisit the examples from Figures 6a and 6b, coloring each sample based on the value of P (z). As
depicted in Figure 13a, P (z) proves to be an efficient metric to separate in-distribution samples from out-of-distribution
samples; those in-distribution have high values for P (z), whereas those out-of-distribution exhibit values of P (z) near zero.

Secondly, we manually construct several noise vectors that reside in the low-probability region of the standard Gaussian
distribution. To establish a baseline comparison, we first draw one sample from the standard Gaussian distribution and use it
to generate an image with Stable Diffusion v1.5 and the prompt ”black duck”. As can be seen, this leads to a normal image
with P (z) also within a reasonably large value. We then construct the low-probability vectors in two ways. The first one is
to use all-zero vectors, which obviously reside in the low-probability zone of high-dimensional Gaussian distributions. The
generated images with all-zero vectors are visualized in Figure 13c, showcasing that there is nothing discernible in the image
while P (z) approximates zero. The second method is to repeat parts of the noise vectors, such that the noise vectors exhibit
high covariance in the elements. Specifically, we construct the repeated vectors by first generating an n/4 dimensional
z0 from the standard Gaussian distribution, and then constructing the noise vectors as z = [z0, z0, z0, z0], making z an n
dimensional vector. The figure corresponding to these repeated vectors, shown in Figure 13d, once again results in a poor
image, with P (z) illustrating that the noise vectors also come from a low-probability region.

We further visualize the entire optimization trajectory for the examples in Figures 6c and 6d, i.e., optimizing the brightness
reward for Stable Diffusion v1.5 with the prompt ”black duck” in Figure 14. Specifically, from Figure 14 we can clearly see
that the value of P (z) gradually decreases, and the generated image also gradually diverges from the distribution associated
with a black duck. Notably, at around 20 steps, the value of P (z) becomes near-zero, and at the same time, the generated
image more closely resembles a blue duck rather than the specified black duck.
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Similarly, we visualize the optimization trajectory for optimizing the Aesthetic Score for SD v1.5 with the prompt ”black
duck”. The results are in Figure 15. A clear conclusion is that in this case, it is less likely for the optimized samples to be
out-of-distribution. This is mainly because the Aesthetic Score itself penalizes those OOD samples. It is noteworthy to
observe that this insight is also captured by our proposed indicator P (z), because when comparing the trend of P (z) in
Figure 14 and Figure 15, we can see that optimizing the Aesthetic Score leads to a much less significant decrease in the
P (z) value.

.6. Implementation Details

In this section, we discuss some implementation details of our proposed method, as well as clarify some omissions in the
experimental section.

.6.1. ALGORITHM IMPLEMENTATION

It is clear that to solve the direct noise optimization problem stated in Problem 3, differentiation of the noise-to-sample
mapping Mθ is required. It is worth noting that this differentiation cannot be handled by standard auto-differentiation in
PyTorch (Paszke et al., 2019), as it can lead to a memory explosion. A common technique to resolve this issue is gradient
checkpointing, which has also been adopted by other related works on noise optimization (Wallace et al., 2023b; Novack
et al., 2024; Karunratanakul et al., 2023).

Here, we describe an efficient method to implement our proposed hybrid gradient estimators detailed in Section 4, along
with the optimization process, by utilizing the built-in auto-differentiation in PyTorch (Paszke et al., 2019). Specifically,
suppose we wish to use q samples to estimate the gradient in Equation (8); that is, we draw q noise vectors for perturbation:
ξ1, ..., ξq . We then generate the corresponding samples xi = Mθ(z + µξi) for i = 1, ..., q. At this point, we should compute
the estimated gradient of the reward functions in a non-differentiable mode as follows:

Ĥ2(x) =
1

q

q∑
i=1

(r(Mθ(xi))− r(x))(xi − x). (13)

Finally, we can execute gradient backpropagation with the loss function,

loss(z) = ⟨Ĥ2(x),Mθ(z)⟩,

which produces the exact gradient estimator for z.

.6.2. EXPERIMENT DETAILS

In this section, our goal is to provide the experimental details that were omitted from Sections 5.1, 5.2, 5.3.

Details for Section 5.1. In this experiment, to solve the probability-regularized noise optimization problem as formulated
in Equation (5), we employ the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.01. For optimization
with regularization, we set the regularization coefficient γ to 1. To compute the minibatch stochastic gradient for the
regularization term in Equation (5), we set the batch size b—the number of random permutations drawn at each step—to 100.
For each optimization run, we utilize a single A800 GPU, with the total memory consumption being approximately 15 GB.

Details for Section 5.2. In this second set of experiments, we continue using the Adam optimizer with a learning rate of
0.01. For optimization with regularization, though, we reduce the regularization coefficient to γ = 0.1 because optimizing
these human-like reward functions is less susceptible to the OOD reward-hacking issue, while maintaining the batch size for
the permutation matrix b at 100. Each optimization run also uses a single A800 GPU, but the total memory consumption
is around 20 GB. Regarding the baselines in Table 1, we implemented LGD (Song et al., 2023a) ourselves, following
the algorithm from their paper on these reward functions. For other baselines, we reuse the statistics presented in their
corresponding papers.

Details for Section 5.3. In this section, the primary hyperparameters for the three tested algorithms are the perturbation
coefficient µ and the number of samples q used to approximate the gradient (as formulated in Equation (13)). Clearly, q
plays a crucial role in determining the running time of each algorithm. For an equitable comparison, we tune q separately for
each algorithm to achieve roughly the same time cost per gradient step. Specifically, we set q values for ZO-SGD, Hybrid-1,
and Hybrid-2 to 16, 8, and 4 respectively. For µ, we also adjust them individually for each algorithm, as they have varying
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sensitivity to µ. Through trial and error, we select µ values of 0.01 for ZO-SGD and Hybrid-1, and 0.02 for Hybrid-2.
Finally, for optimizing JPEG Compressibility, we use the Adam optimizer with a learning rate of 0.01, but for the Aesthetic
Score experiment, we reduce the learning rate to 0.001, as we found that 0.01 can lead to divergence during optimization for
the Aesthetic Score. Each optimization run continues to use a single A800 GPU.

.7. Hyperparameters Analysis

In this section, we conduct a thorough analysis of the hyperparameters for the proposed method. Our objective is to offer a
concise guideline for selecting the hyperparameters in the proposed method.

As discussed in Section 3.1, the concentration inequalities involve a hyperparameter k, which represents the dimension of
subvectors from the noise vectors z that we aim to assess probabilistically. As noted in Remark 3.2, the dimension k should
be neither too large nor too small. Additionally, another critical hyperparameter is the number of permutation matrices b
employed to compute the stochastic gradient for the probability regularization in Equation (5). Furthermore, we aim to
explore the impact of the regularization coefficient γ in the probability regularization term.

To examine the effects of k, b, and γ on mitigating the OOD (Out-Of-Distribution) reward-hacking problem, we revisit the
experiment of optimizing darkness reward with the prompt ”white ¡animals¿” from Section 5.1. In Figure 16, we illustrate
how these three hyperparameters influence both the reward and the consistency score (CS), across four different values.

Firstly, Figure 16a supports the notion that k should be carefully chosen—not too large, yet not overly small. We observe
that k = 1 underperforms compared to k = 2 and k = 10, as selecting k = 1 fails to account for the covariance among
noise vectors. Conversely, k = 100 proves to be a poor choice because it entails a smaller m, potentially rendering the
concentration inequalities detailed in Lemma 3.1 less precise.

Secondly, as demonstrated in Figure 16b, the number of permutation matrices b seems to have a minor impact on the
optimization process, provided b is sufficiently large. Based on empirical evidence, b = 100 emerges as an optimal selection
for the proposed method.

Lastly, the effects of γ are depicted in Figure 16c. Adjusting the value of γ clearly presents a trade-off between convergence
speed and the propensity for OOD reward-hacking problems. Given this observation, we recommend empirically tuning the
value of γ for different reward functions and prompts using a limited number of samples and a few optimization steps.
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(a) The effect of k.

(b) The effect of b.

(c) The effect of γ.

Figure 16. Hyperparamet Analysis
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