
Under review as a conference paper at ICLR 2023

A SCALABLE TRAINING STRATEGY FOR BLIND MULTI-
DISTRIBUTION NOISE REMOVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite recent advances, developing general-purpose universal denoising and
artifact-removal networks remains largely an open problem: Given fixed network
weights, one inherently trades-off specialization at one task (e.g., removing Poisson
noise) for performance at another (e.g., removing speckle noise). In addition,
training such a network is challenging due to the curse of dimensionality: As one
increases the dimensions of the specification-space (i.e., the number of parameters
needed to describe the noise distribution) the number of unique specifications one
needs to train for grows exponentially. Uniformly sampling this space will result in
a network that does well at very challenging problem specifications but poorly at
easy problem specifications, where even large errors will have a small effect on the
overall mean squared error.

In this work we propose training denoising networks using an adaptive-
sampling/active-learning strategy. Our work improves upon a recently proposed
universal denoiser training strategy by extending these results to higher dimensions
and by incorporating a polynomial approximation of the true specification-loss
landscape. This approximation allows us to reduce training times by an order
of magnitude. We test our method on joint Poisson-Gaussian-speckle noise and
demonstrate that, with our proposed training strategy, a single blind, generalist
denoiser network can achieve mean squared errors within a uniform bound of
specialized denoiser networks across a large range of operating conditions.

1 INTRODUCTION

Neural networks have become the gold standard for solving a host of imaging inverse problems Ongie
et al. (2020). From denoising and deblurring to compressive sensing and phase retrieval, modern
deep neural networks significantly outperform classical techniques like BM3D Dabov et al. (2007)
and KSVD Aharon et al. (2006).

The most straightforward and common approach to apply deep learning to inverse problems is to
train a neural network to learn a mapping from the space of corrupted images/measurements to the
space of clean images. In this framework, one first captures or creates a training set consisting of
clean images x1, x2, . . . and corrupted images y1, y2, . . . according to some known forward model
p(yi|xi, θ), where θ ∈ Θ denotes the latent variable(s) specifying the forward model. For example,
when training a network to remove additive white Gaussian noise

p(yi|xi, θ) =
1

σ
√
2π

exp−∥yi − xi∥2

2σ2
, (1)

and the latent variable θ is the standard deviation σ. With a training set of L pairs {xi, yi}Li=1 in
hand, one can then train a network to learn a mapping from y to x.

Typically, we are not interested in recovering signals from a single corruption distribution (e.g., a
single fixed noise standard deviation σ) but rather a range of distributions. For example, we might
want to remove additive white Gaussian noise with standard deviations anywhere in the range [0, 50]
(Θ = {σ|σ ∈ [0, 50]}). The size of this range determines how much the network needs to generalize
and there is inherently a trade-off between specialization and generalization. By and large, a network
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trained to reconstruct images over a large range of corruptions (a larger set Θ) will under-perform a
network trained and specialized over a narrow range Zhang et al. (2017).

This problem becomes significantly more challenging when dealing with mixed, multi-distribution
noise. As one increases the number of parameters (e.g., Gaussian standard deviation, Poisson rate,
number of speckle realizations, ...) the space of corrupted signals one needs to reconstruct grows
exponentially: The specification space becomes the Cartesian product (e.g., Θ = ΘGaussian ×
ΘPoisson ×Θspeckle) of the spaces of each of the individual noise distributions.

This expansion does not directly prevent someone (with enough compute resources) from training
a “universal” denoising algorithm. One can sample from Θ, generate a training batch, optimize the
network to minimize some reconstruction loss, and repeat. However, this process depends heavily on
the policy/probability-density-function π used to sample from Θ. As noted in Gnanasambandam &
Chan (2020) and corroborated in Section 5, uniformly sampling from Θ will produce networks that
do well on hard examples but poorly (relative to how well a specialized network performs) on easy
examples.

1.1 OUR CONTRIBUTION

In this work we develop an adaptive-sampling/active-learning strategy that allows us to train a
single “universal” network to remove mixed Poisson-Gaussian-speckle noise such that the network
consistently performs within a uniform bound of specialized bias-free DnCNN baselines Zhang
et al. (2017); Mohan et al. (2019). Our key contribution is a novel, polynomial approximation of the
specification-loss landscape. This approximation allows us to tractably apply (using two orders of
magnitude fewer training examples than it would otherwise require) the adaptive-sampling strategy
developed in Gnanasambandam & Chan (2020), wherein training a denoiser is framed as a constrained
optimization problem.

2 RELATED WORK

Overcoming the specialization-generalization trade-off has been the focus of intense research efforts
over the last 5 years.

2.1 ADAPTIVE DENOISING

One approach to improve generalization is to provide the network information about the current
problem specifications θ at test time. For example, Gharbi et al. (2016) demonstrated one could
provide a constant standard-deviation map as an extra channel to a denoising network so that it
could adapt to i.i.d. Gaussian noise. Zhang et al. (2018) extends this idea by adding a general
standard-deviation map as an extra channel, to deal with spatially-varying Gaussian noise. This
idea was recently extended to deal with correlated Gaussian noise Metzler & Wetzstein (2021). The
same framework can be extended to more complex tasks like compressive sensing, deblurring, and
descattering as well Wang et al. (2022); Tahir et al. (2022). These techniques are all non-blind and
require an accurate estimate of the specification parameters θ to be effective.

2.2 UNIVERSAL DENOISING

Somewhat surprisingly, the aforementioned machinery may be unnecessary if the goal is to simply
remove additive white Gaussian noise over a range of different standard deviations. Mohan et al.
(2019) recently demonstrated one can achieve significant invariance to the noise level by simply
removing biases from the network architecture. Wang & Morel (2014) also achieves similar invariance
to noise level by scaling the input images to the denoiser to match the distribution it was trained on.
Alternatively, at a potentially large computational cost, one can apply iterative “plug and play” or
diffusion models that allow one to denoise a signal contaminated with noise with parameters θ′ using
a denoiser/diffusion model trained for minimum mean squared error additive white Gaussian noise
removal Venkatakrishnan et al. (2013); Romano et al. (2017); Kawar et al. (2021). These plug and
play methods are non-blind and require knowledge of the likelihood p(y|x, θ′) at test time.
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2.3 TRAINING STRATEGIES

Generalization can also be improved by modifying the training set Elman (1993). In the context of
image restoration problems like denoising, Gao & Grauman (2017) propose updating the training data
sampling distribution each epoch so as to sample the data that the neural network performed worse
on during the prior epoch preferentially, in an ad-hoc way. In Gnanasambandam & Chan (2020) the
authors developed a principled adaptive training strategy by framing training a denoiser across many
problem specifications as a minimax optimization problem. This strategy will be described in detail
in Section 4.

2.4 RELATIONSHIP TO EXISTING WORKS

We go beyond Gnanasambandam & Chan (2020) by incorporating a polynomial approximation
of the specification-loss landscape. This approximation is the key to scaling the adaptive training
methodology to high-dimensional latent parameter spaces. It allows us to efficiently train a blind
image denoiser that can operate effectively across a large range of noise conditions.

3 PROBLEM FORMULATION

3.1 NOISE MODEL

This paper focuses on removing joint Poisson-Gaussian-speckle noise using a single blind image
denoising network. Such noise occurs whenever imaging scenes illuminated by a coherent (e.g., laser)
source. In this context, photon/shot noise introduces Poisson noise, read noise introduces Gaussian
noise, and the constructive and destructive interference caused by the coherent fields scattered off
optically rough surfaces causes speckle noise Goodman (2007).

The overall forward model can be described by

yi =
1

α
Poisson(α(r ◦ wi)) + ni, (2)

where the additive noise ni follows a Gaussian distribution N (0, σ2I); the multiplicative noise wi

follows a Gamma distribution with concentration parameter B/β and rate parameter B/β, where B
is the upper bound on β; and α is a scaling parameter than controls the amount of Poisson noise. The
forward model is thus specified by the set of latent variables θ = {σ, α, β}.

A few example images generated according to this forward model are illustrated in Figure 1. Variations
in the problem specifications results in drastically different forms of noise.

3.2 SPECIFICATION-LOSS LANDSCAPE

A specification is a set of n parameters that define a task. In our setting, the specifications are the
distribution parameters describing the noise in an image. Each of these parameters is bounded in an
interval [li, ri], for 1 ≤ i ≤ n. The specification space Θ is the Cartesian product of these intervals:
Θ = [l1, r1]× · · · × [ln, rn]. Suppose we have a function f that can solve a task (e.g., denoising) at
any specification in Θ, albeit with some error. Then the specification-loss landscape, for a given f
over Θ, is the function Lf which maps points θ from Θ to the corresponding error that f achieves at
that specification.

Now suppose that all functions f under consideration come from some family of functions F . Let the
ideal function from F that solves a task at a particular specification θ be fθ

ideal = argminf∈F Lf (θ).
With this in mind, we define the ideal specification-loss landscape as the function that maps points θ
in Θ to the loss that fθ

ideal achieves on the task with specification θ, and denote it Lideal.

3.3 THE UNIFORM GAP PROBLEM

Our goal is to find a single function f∗ ∈ F that achieves consistent performance across the spec-
ification space Θ, compared to the ideal function at each point θ ∈ Θ, fθ

ideal. More precisely, we
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Figure 1: Varying the noise specifications. The first row shows images corrupted by Gaussian Noise,
the second row shows images corrupted by Poisson noise, and the last row shows images corrupted
by speckle noise. In each of the rows, the other noise parameters are held fixed at 0, 0.01, and 1.00,
respectively.

want to minimize the maximum gap in performance between f∗ and fθ
ideal across all of Θ. Follow-

ing Gnanasambandam & Chan (2020), we can frame this objective as the following optimization
problem

f∗ = argmin
f∈F

sup
θ∈Θ

{Lf (θ)− Lideal(θ)} , (3)

which we call the uniform gap problem.

4 PROPOSED METHOD

4.1 ADAPTIVE TRAINING

To solve the optimization problem given in equation 3, Gnanasambandam & Chan (2020) propose
rewriting it in its Lagrangian dual formulation and then using dual ascent, which yields the following
iterations:

f t+1 = argmin
f∈F

{∫
θ∈Θ

Lf (θ)λ
t(θ)dθ

}
(4)

λt+ 1
2 = λt + γt

(
Lft+1

Lideal
− 1

)
(5)

λt+1 = λt+ 1
2 /

∫
θ∈Θ

λt+ 1
2 (θ)dθ, (6)

where λ(θ) represents a dual variable at specification θ ∈ Θ, and γ is the dual ascent step size.

We can interpret equation 4 as fitting a model f to the training data, where λ(θ) is the probabil-
ity of sampling a task at specification θ to draw training data from. Next, equation 5 updates the
sampling distribution λ(θ) based on the difference between the current model f t+1’s performance
across θ ∈ Θ and the ideal models’ performances. Lastly equation 6 ensures that λ(θ) is a prop-
erly normalized probability distribution. We provide the derivation of the dual ascent iterations
from Gnanasambandam & Chan (2020) in Appendix C.
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While Θ has been discussed thus far as a continuum, in practice we sample Θ at discrete locations
and compare the model being fit to the ideal model performance at these discrete locations only, so
that |Θ| is finite. Computing Lideal(θ) for each θ ∈ Θ is extremely computationally time-intensive if
|Θ| is large; if f is a neural network, it becomes necessary to train |Θ| neural networks. Furthermore,
while Lideal(θ) can be computed offline independent of the dual ascent iterations, during the dual
ascent iterations, each update of λ requires the evaluation of Lft+1 for each θ ∈ Θ, which is also
time intensive if |Θ| is large.

The key insight underlying our work is that one can approximate Lideal and Lf in order to drastically
accelerate the training process.

4.2 SPECIFICATION-LOSS LANDSCAPE APPROXIMATIONS

Let P be a class of functions which we will use to approximate the specification-loss landscape.
Instead of computing Lideal(θ) for each θ ∈ Θ, we propose instead computing Lideal(θ) at a set of
locations θ ∈ Θsparse, where |Θsparse| ≪ |Θ|, and then using these values to form an approximation
Pideal of Lideal(θ), as

Pideal = argmin
P∈P

∑
θ∈Θsparse

||P (θ)− Lfideal(θ)||22. (7)

We can similarly approximate Lft+1 with a polynomial Pft+1 . Then we can solve equation 3 using
dual ascent as before, replacing Lideal and Lft+1 with Pideal and Pft+1 where appropriate, resulting in
a modification to equation 5:

λt+ 1
2 = λt + γt

(
Pft+1

Pideal
− 1

)
. (8)

To justify our use of this approximation, we first consider a linear subspace projection “denoiser” and
show that its specification-loss landscape is linear with respect to its specifications, and is thus easy
to approximate.
Example 1. Let y = αPoisson( 1

αxo) + n with n ∼ N(0, σ2I), let C denote a k-dimensional
subspace of Rn (k < n), and let the denoiser be the projection of y onto subspace C denoted by
PC(y) = Py. Then, assuming 1

αxo is large, for every xo ∈ C

E∥PC(y)− xo∥22 ≈ kσ2 + αtr(Pdiag(x)Pt),

where tr(·) denotes the trace. The loss landscape is linear with respect to σ2 and α.

Proof. First note that if 1
αxo is large the distribution of αPoisson(x/α) can be approximated with

N(x, αdiag(x)). Accordingly, y ≈ x + ν where ν ∼ N(0, σ2I + αdiag(x)). Since the projection
onto a subspace is a linear operator and since PC(xo) = xo we have

E∥PC(y)− xo∥22 ≈ E∥xo + PC(ν)− xo∥22 = E∥PC(ν)∥22.

Let r = Pν. Note that r ∼ N(0,Σ) with Σ = σ2PPt + αPdiag(x)Pt. Accordingly,

E∥PC(ν)∥22 = E∥r∥2 = tr(Σ) = σ2tr(PPt) + αtr(Pdiag(x)Pt),

= kσ2 + αtr(Pdiag(x)Pt),

where the last equality follows from the fact that PPt = P and the trace of a k-dimensional projection
matrix is k.

Additionally, beyond this theoretical example, we plot the specification-loss landscapes for two of the
denoising problems we consider. We show the achievable PSNR (peak signal-to-noise ratio) versus
noise parameters plots for denoising Poisson-Gaussian and Speckle-Gaussian noise in Figure 2. The
same figure for Speckle-Poisson noise can be found in Appendix B. They are clearly smooth and
well-behaved, and we justify their approximation by polynomials using cross-validation, details of
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Figure 2: Loss Landscape Visualizations. PSNR, which we use as our proxy for error, versus denois-
ing task specifications. The specification-loss landscapes are smooth and amenable to approximation.
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Figure 3: Performance comparison between a network trained with adaptive training, using
dense sampling of the specification-loss landscape, and a network trained with uniform sampling
of the noise levels of the training data. The surface in the above plots represents the difference in
performance between a network trained with the adaptive training strategy with dense sampling of
the specification-loss landscape and the ideal networks, and the points represent the differences in
performance between a network trained with uniform sampling of the noise levels of the training data
and the ideal. Adaptively sampling the noise levels of the training data using a dense sampling of
the specification-loss landscape results in a network which uniformly under-performs specialized
networks (surface is flat) whereas uniform sampling results in networks that do terribly under certain
conditions (points are very high in some regions).

which can be found in Appendix A. In practice, we approximate the ideal PSNRs as Q(s) rather
than the ideal mean squared errors because we desire a more uniform PSNR gap rather than a more
uniform MSE gap, in the context of denoising. Then, following Gnanasambandam & Chan (2020),
we convert the ideal PSNRs to mean squared errors with the mapping P (s) = 10−Q(s)/10 for use in
the dual ascent iterations.

5 EXPERIMENTAL RESULTS

5.1 IMPLEMENTATION DETAILS

We use the 20-layer DnCNN architecture Zhang et al. (2017) for our denoiser. We remove all biases
from the network layers, following Mohan et al. (2019). We train all of our networks for 50 epochs,
with 3000 mini-batches per epoch and 128 image patches per batch, for a total of 384,000 image
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Figure 4: Performance comparison between a network trained with adaptive training, using
sparse sampling of the specification-loss landscape, and a network trained with uniform sam-
pling of the noise levels of the training data. The surface in the above plots represents the difference
in performance between the a network trained with the adaptive strategy with sparse sampling and
polynomial interpolation of the specification-loss landscape and the ideal networks, and the points
represent the differences in performance between a network trained with uniform sampling of the
noise levels of the training data and the ideal networks. Like the networks trained with adaptive noise
level sampling and dense sampling, we still achieve performance that is uniformly worse than the
ideal without severe failure modes.
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Figure 5: Adaptive vs Uniform Training, 3D specification space. Adaptive sampling with the
polynomial approximation works effectively in the 3D problem space and produces a network whose
performance is consistently close to the ideal. By contrast, a network trained by uniformly sampling
from the space performs far worse than the specialized networks in certain contexts. The error bars
represent one standard-deviation.
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Figure 6: Qualitative comparisons. Comparison between the performance of the ideal, uniform-
trained, and adaptive-trained denoisers on a sample image corrupted with a low amount of noise
and corrupted with a high amount of noise. Our adaptive blind training strategy performs only
marginally worse than an ideal, non-blind baseline when applied to “easy” problem specifications,
and significantly better than the uniform baseline, while also being only marginally worse than an
ideal baseline and uniform baseline under “hard” problem specifications.

patches total. We use the Adam optimizer Kingma & Ba (2015) to optimize the weights with a
learning rate of 1× 10−4, with an L2 loss.

In practice, rather than training a model to convergence, to save training time, we approximately
equation 4 of the dual ascent iterations by training the model for 10 epochs. While the resulting
adaptively trained denoisers do not achieve a totally uniform gap with respect to the ideal baselines,
their gap is much closer to uniform than that of the uniform specification sampling trained denoiser
baseline, as can be seen in Figures 3, 4, and 5.

To construct the loss-landscapes for each mixed noise type, we sample the loss at 10 random
specifications as well as the loss at the specification support’s endpoints, for a total of 14 samples for
Poisson-Gaussian, Speckle-Poisson, and Speckle-Gaussian noise and 18 samples for Speckle-Poisson-
Gaussian noise. In Appendix E, we compute exactly how many points from the specification-loss
landscape are required to be known in order to fit our approximation, and show that the computation
cost scales quadratically in the number of dimensions. Note that the specification space for the first
three noise types contains 100 specifications, and the last noise type 1000, which implies saving of 1
and 2 orders of magnitude of training time, respectively.

5.2 DATA

To train our denoising models, we curate a high-quality image dataset that combines multiple high
resolution image datasets: the Berkeley Segmentation Dataset Martin et al. (2001), the Waterloo
Exploration Database Ma et al. (2017), the DIV2K dataset Agustsson & Timofte (2017), and the
Flick2K dataset Lim et al. (2017). To test our denoising models, we use the validation dataset from
the DIV2K dataset. We use a patch size of 40 pixels by 40 pixels, and patches are randomly cropped
from the training images with flipping and rotation augmentations, to generate a total of 384000
patches. All images are grayscale and scaled to the range [0, 1]. We use the BSD68 dataset Roth &
Black (2005) as our testing dataset.
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5.3 SETUP

Noise Parameters. We consider four types of mixed noise distributions: Poisson-Gaussian, Speckle-
Poisson, Speckle-Gaussian, and Speckle-Poisson-Gaussian noise. In each mixed noise type, σ ∈
[0.02, 0.66], α ∈ [0.1, 41], and β ∈ [1, 1024], and we discretize each range into 10 bins. Note that
B = 1024 for speckle noise, following the parameterization in Section 3.1. These ranges were chosen
as they correspond to input PSNRs of roughly 5 to 30 dB.

Training Setup. For each of Poisson-Gaussian, Speckle-Poisson, and Speckle-Gaussian noises
separately, we use the approximations Pideal, Pf to adaptively train a denoiser f∗

sparse, use Lideal,
Lf to adaptively train a denoiser f∗

dense, and use uniform specification sampling to train a denoiser
f∗

uniform. We compare f∗
sparse and f∗

dense to f∗
uniform by plotting Lf∗

sparse
− Lideal and Lf∗

dense
− Lideal versus

Lf∗
uniform

− Lideal. Because we report PSNR metrics, in practice we compute the previous differences
for a function f by subtracting the PSNR corresponding to Lf from the PSNR corresponding to
Lideal, which is shown in Figures 3 and 4. Speckle-Poisson results can be found in Appendix B.

For Speckle-Poisson-Gaussian noise, the set of possible specifications is too large to train an ideal
denoiser for each specification, so we only report summarized results comparing adaptive training
with the approximations Pideal, Pf to training with uniform specification sampling in Figure 5.

5.4 DISCUSSION

Quantitative Results. Figure 3 shows that Chan et. al’s sampling strategy for training denoisers
can be applied directly to mixed noise distributions to achieve performance much more uniformly
close to the ideal when compared a uniform specification sampling strategy.

However, Figure 4 shows that instead of constructing the entire loss landscape, we can sparsely
sample the specification-loss landscape and interpolate an approximation to the true specification-loss
landscape to adaptively training a denoiser. The resulting performance is more closely uniformly
bounded from the ideal performance compared to the denoiser trained with uniform specification
sampling.

Finally, we see in Figure 5 that we can achieve performance uniformly bound from the ideal with
adaptive training even in settings where computing all the ideal losses is computational infeasible by
applying our approximation method. Additional quantitative results can be found in Appendix D.

Qualitative Results. Figure 6 illustrates the denoisers trained with the different strategies (ideal,
uniform, adaptive) on an example corrupted with a low amount of noise and an example corrupted
with a high amount of noise. Notice that in the low-noise regime the uniform trained denoiser
oversmooths the image so achieves worse performance than the adaptive trained denoiser, whereas
in the high noise regime the uniform trained denoiser outperforms the adaptive trained denoiser.
Addditional qualitative results can be found in Appendix F.

Time Savings. We train the DnCNNs on Nvidia GTX 1080Ti GPUs, which takes about 6 hours to
train per network. We parallelized the training across 32 GPUs at a time, which means that training
10 networks takes only about 6 hours, 100 takes about 1 day, and 1000 networks would take 10 days.
Thus, for Poisson-Gaussian, Speckle-Poisson, and Speckle-Gaussian noise, our sparse approximation
method saves 18 hours of training time, and for Speckle-Poisson-Gaussian noise we saved almost 10
days of training time, or nearly a year in GPU hours. More detailed quantitative results can be found
in Appendix D.

6 CONCLUSIONS

In this work, we demonstrate that we can leverage a polynomial approximation of the specification-
loss landscape to train a denoiser to achieve performance which is uniformly bounded away from the
ideal performance across a variety of problem specifications. Furthermore, with this approximation,
our method demonstrates significant savings in storage space, train time, and performance when
compared to baseline methods. Beyond denoising, this suggests that a polynomial approximation of
the specification-loss landscape is potentially useful across a range of imaging and computer visions
tasks where one can smoothly vary the difficulty of the problem.
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ETHICS STATEMENT

Our work presents a method for decreasing the amount of training required to achieve consistent
denoising performance across a range of specifications, which reduces the energy impact of training
denoisers and possibly reduces potential harmful impacts on the climate. However, we acknowledge
that modifying the training data sampling may introduce or exacerbate biases in the network’s
performance.

REPRODUCIBILITY STATEMENT

We completely describe the composition, preprocessing, and sampling of the corruptions of our
training and testing datasets in Sections 3.1 and 5.2. We also discuss our model and training
parameters in Section 5.1. Our code will be released publicly upon acceptance.
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Figure 7: Specification-loss Landscape. PSNR, which we use as our proxy for error, versus
denoising task specifications. The surfaces are highly smooth with respect to task specification.

A POLYNOMIAL APPROXIMATION

We used cross-validation to empirically determine what degree polynomial we should use to fit the
specification-loss landscape. Though densely sampling the specification-loss landscape becomes
intractable if its dimension is 3 or greater, we can still densely sample 2 dimensional specification-loss
landscapes then subsample to simulate sparse sampling. Through this method, we compared a linear,
quadratic, and cubic approximation to the specification-loss landscape and determined that a quadratic
polynomial is the most suitable for approximating the specification-loss landscape in this setting.
More specifically, this means for a given point s ∈ S we approximate the corresponding loss with the
function

P (s) = sTAs+ bT s+ c,

where A ∈ Rn×n is symmetric, and b, c ∈ Rn. We fit this quadratic using linear least squares with a
ridge penalty, where the ridge penalty parameter is also determined using cross-validation. We swept
over the values {0.1, 0.01, 0.001, 0.0001, 0.00001} and settled on 0.00001.

B SPECKLE-POISSON NOISE RESULTS

We plot the specification-loss landscape and performance comparisons for adaptive sampling versus
uniform sampling for Speckle-Poisson noise in Figures 7, 8, and 9.
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Figure 8: Performance comparison between a network trained with adaptive training, using
sparse sampling of the specification-loss landscape, and a network trained with uniform sam-
pling of the noise levels of the training data The surface in the above plots represents the difference
in performance between the a network trained with the adaptive strategy with sparse sampling and
polynomial interpolation of the specification-loss landscape and the ideal networks, and the points
represent the differences in performance between a network trained with uniform sampling of the
noise levels of the training data and the ideal networks. Like the networks trained with adaptive noise
level sampling and dense sampling, we still achieve performance that is uniformly worse than the
ideal without severe failure modes.
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Figure 9: Performance comparison between a network trained with adaptive training, using
sparse sampling of the specification-loss landscape, and a network trained with uniform sam-
pling of the noise levels of the training data The surface in the above plots represents the difference
in performance between the a network trained with the adaptive strategy with sparse sampling and
polynomial interpolation of the specification-loss landscape and the ideal networks, and the points
represent the differences in performance between a network trained with uniform sampling of the
noise levels of the training data and the ideal networks. Like the networks trained with adaptive noise
level sampling and dense sampling, we still achieve performance that is uniformly worse than the
ideal without severe failure modes.
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C DERIVATION OF DUAL ASCENT ITERATIONS

We restate the derivation of the dual ascent algorithm to solve the optimization problem of equation 3
from Gnanasambandam & Chan (2020) in our notation here. First, we rewrite the optimization
problem from Equation equation 3 as

min
f,t

t

subject to Lf (θ)− Lideal(θ) ≤ t, ∀θ ∈ Θ.

Then the Lagrangian is defined as

L(f, t, λ) = t+

∫
θ∈Θ

{Lf (θ)− Lideal(θ)− t}λ(θ)dθ

To get the dual function, we minimize over f and t:

g(λ) = inf
f,t

L(f, t, λ)

=

{
inff

∫
(Lf (θ)− Lideal(θ))λ(θ)dθ, if

∫
λ(θ)dθ = 1

−∞, otherwise.

Then the dual problem is defined as

λ∗ =argmax
λ≥0

inf
f

{∫
(Lf (θ)− Lideal(θ))λ(θ)dθ

}
(9)

subject to
∫

λ(σ)dσ = 1.

Then we can write down the dual ascent iterations as

f t+1 = argmin
f∈F

{∫
θ∈Θ

Lf (θ)λ
t(θ)dθ

}
(10)

λt+ 1
2 = λt + γt

(
Lft+1 − Lideal

)
(11)

λt+1 = λt+ 1
2 /

∫
θ∈Θ

λt+ 1
2 (θ)dθ, (12)

Here, equation 10 solves the inner optimization of equation 9, fixing λ, equation 11 is a gradient
ascent step for λ, and equation 12 ensures that the normalization constraint on λ is satisfied. Note
that because we use PSNR constraints instead of MSE constraints, we use the step

λt+ 1
2 = λt + γt

(
Lft+1

Lideal
− 1

)
(13)

in place of equation 11. Intuitively, the reason is because PSNR is the logarithm of the MSE loss,
and a more uniform PSNR gap means that the ratio of the losses is closer to 1, which is where the
Lft+1

Lideal
− 1 term comes from.

D ADDITIONAL QUANTITATIVE RESULTS

Tables 1, 2, 3, and 4 compare our adaptive training method, which uses an approximation of the loss-
landscape, with “ideal” non-blind baselines, which are trained for specific noise parameters; with the
densely sampled adaptive training procedure from Gnanasambandam & Chan (2020), which requires
training specialized ideal baselines at all noise specifications beforehand; and with a network trained
by uniformly sampling the specification-space. Both adaptive strategies approach the performance
of the specialized networks and dramatically outperform the uniformly trained networks at certain
problem specifications.

Table 5 shows that approximation of the specification-loss landscape allows us to reduce the compu-
tation time required for adaptive training by an order of magnitude.
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Poisson Gaussian Ideal Uniform Adaptive-Dense Adaptive-Sparse
0.1 0.02 35.3 31.4 34.5 34.6
0.1 0.66 22.0 22.0 21.9 21.9
41 0.02 22.9 22.9 22.9 22.9
41 0.66 21.4 21.3 21.3 21.3
2.0 0.11 27.1 26.6 27.0 27.0

Table 1: Quantitative comparison of methods on Poisson-Gaussian noise sampled at various levels,
using PSNR (dB).

Speckle Gaussian Ideal Uniform Adaptive-Dense Adaptive-Sparse
1.0 0.02 36.6 32.0 35.4 35.1
1.0 0.66 22.0 21.9 21.7 21.6

1024 0.02 23.1 23.1 22.6 22.4
1024 0.66 21.5 21.4 20.8 20.7

32 0.11 27.4 27.0 27.2 27.2

Table 2: Quantitative comparison of methods on Speckle-Gaussian noise sampled at various levels,
using PSNR (dB).

Speckle Poisson Ideal Uniform Adaptive-Dense Adaptive-Sparse
1.0 0.1 36.1 31.5 35.3 35.3
1.0 41 23.0 22.9 22.9 22.9

1024 0.1 23.0 23.1 23.0 22.9
1024 41 22.0 21.8 21.6 21.6

32 2.0 27.8 27.3 27.6 27.7

Table 3: Quantitative comparison of methods on Speckle-Poisson noise sampled at various levels,
using PSNR (dB).

Speckle Poisson Gaussian Ideal Uniform Adaptive-Sparse
1 0.1 0.02 34.7 29.3 33.4
1 0.1 0.66 22.0 21.9 21.5
1 41 0.02 23.0 22.9 22.7
1 41 0.66 21.4 21.3 20.8

1024 0.1 0.02 23.2 23.2 22.6
1024 0.1 0.66 21.5 21.4 20.7
1024 41 0.02 22.0 21.9 21.2
1024 41 0.66 21.0 20.8 20.0

64 2.3 0.54 25.8 25.5 25.5

Table 4: Quantitative comparison of methods on Speckle-Poisson-Gaussian noise sampled at various
levels, using PSNR (dB).

Uniform Adaptive-Dense Adaptive-Sparse
Baselines Adaptive Baselines Adaptive

Poisson-Gauss 6hr 27min 36d 20hr 7hr 37min 3d 16hr 7hr 12min
Speckle-Gauss 7hr 48min 30d 22hr 5hr 48min 3d 1hr 5hr 46min

Speckle-Poisson 8hr 0min 27d 2hr 5hr 55min 2d 17hr 5hr 47min
Speckle-Poisson-Gauss 7hr 30min X X 34d 5hr 8hr 34min

Table 5: Comparing training times between the various methods. Note that for the adaptive training
methods, there are two parts: training the ideal baseline networks to generate the specification-loss
landscapes as well as the adaptive training itself.

E HIGH-DIMENSIONAL SPECIFICATION-SPACES

In this work, we demonstrated how our quadratic approximation of the specification-loss land-
scape allowed us to adaptively train a blind image denoiser with orders of magnitude less compute
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Figure 10: Qualitative comparisons. Comparison between the performance of the ideal, uniform-
trained, and adaptive-trained denoisers on a sample image corrupted with a low amount of noise
and corrupted with a high amount of noise. Our adaptive blind training strategy performs only
marginally worse than an ideal, non-blind baseline when applied to “easy” problem specifications,
and significantly better than the uniform baseline, while also being only marginally worse than an
ideal baseline and uniform baseline under “hard” problem specifications.

than Gnanasambandam & Chan (2020). The key distinction between the two methods is that our
approach only needs to sparsely sample the specification-loss landscape, in order to form a quadratic
approximation of the landscape, whereas Gnanasambandam & Chan (2020) needs to evaluate this
landscape at all specifications of interest.

As one increases the number of specifications, n, needed to describe this landscape (n = 1 for
Gaussian noise, n = 2 for Poisson-Gaussian noise, n = 3 for Poisson-Gaussian-Speckle noise,
...), the number points needed to densely sample the landscape grows exponentially. Fortunately,
the number of samples needed to fit a quadratic to this landscape only grows quadratically with
n: The number of possible nonzero coefficients, i.e., unknowns, of a quadratic of n variables is(
n+2
2

)
= (n+1)(n+2)

2 and thus one can uniquely specify this function from (n+1)(n+2)
2 + 1 non-

degenerate samples.

F ADDITIONAL QUALITATIVE RESULTS

Additionally qualitative results are presented in Figure 10 and 11.
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Figure 11: Qualitative comparisons. Comparison between the performance of the ideal, uniform-
trained, and adaptive-trained denoisers on a sample image corrupted with a low amount of noise
and corrupted with a high amount of noise. Our adaptive blind training strategy performs only
marginally worse than an ideal, non-blind baseline when applied to “easy” problem specifications,
and significantly better than the uniform baseline, while also being only marginally worse than an
ideal baseline and uniform baseline under “hard” problem specifications.
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