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Abstract

Tractability is considered key to trustworthy
decision-making under uncertainty, but it often
comes at the expense of the ability to represent
large families of probability distributions. Proba-
bilistic circuits promise to remedy this by repre-
senting tractable yet expressive probabilistic mod-
els through hierarchical compositions of tractable
distributions subject to certain structural and pa-
rameter constraints. A common parameter con-
straint enforced in these models is non-negativity
of the weights, which has been shown by prior
work to potentially hinder their expressive effi-
ciency. In this work, we propose allowing for neg-
ative weights in probabilistic circuits by loosening
the non-negativity constraint to a positive semidef-
inite constraint. We empirically show that proba-
bilistic circuits with positive semidefinite parame-
terized nodes have increased expressive efficiency,
whilst retaining tractability, and empirically outper-
form circuits with non-negative weight constraints.

1 INTRODUCTION

Decision-making under uncertainty is a challenging task
in modern machine learning (Ghahramani, 2015) in which
models that allow for accurate probabilistic inference are
required. Inference in large and flexible probabilistic models
quickly becomes intractable, and often require approximate
inference (Koller and Friedman, 2009). For example, in
deep probabilistic models such as variational auto encoders
(VAEs, Kingma and Welling, 2014) and diffusion models
(Sohl-Dickstein et al., 2015), marginalisation and compu-
tation of moments can only be approximated. However, in
safety-critical applications where accuracy of inferences are
crucial (e.g. in the medical domain), employing approxima-
tions can be problematic. These concerns are at the heart of
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Figure 1: Our extends the realm of tractable probabilistic
circuits encoding positive and negative dependencies to
mixed (discrete and continuous) domains.

the study of tractable probabilistic models (TPMs), which
aims to develop models that allow efficient and exact com-
putation of probabilistic inferences, whilst simultaneously
remaining capable of efficiently representing diverse classes
of probabilistic distributions.

Probabilistic circuits (PCs, Choi et al., 2020), a unifying
framework for a variety of TPMs (e.g., Darwiche, 2000;
Poon and Domingos, 2011; Trapp et al., 2019; Kisa et al.,
2014; Rahman et al., 2014), presents a promising avenue
in the study as they allow a concise analysis of tractable
representations and their structural properties.

Constraints on the structure of PCs determine the tractable
band (i.e., which query classes can be answered exactly
and efficiently), however, they come at the cost of expres-
sive efficiency (Delalleau and Bengio, 2011; Martens and
Medabalimi, 2014) (i.e., which families of probability dis-
tributions can be represented efficiently). Moreover, recent
work (Dennis, 2016; Zhang et al., 2020) has shown that
nonnegative weight constraint in PCs hinder their ability to
represent large families of distributions efficiently.

Allowing for negative parameterizations in TPM models is a
promising avenue for pushing the frontier of tractability and
expressive efficiency. It has been empirically (Dennis, 2016)
and theoretically (Zhang et al., 2021) shown to improve
expressive efficiency. In particular, Dennis (2016) proposed
a structure and parameter learning approach, which aims
to incorporate negative parameters while maintaining pos-
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itivity of the output function. Further, Zhang et al. (2021)
approached the problem differently by formalizing the cir-
cuit over generating functions, which resulted in a flexible
model over binary data. However, neither of the approaches
encompasses both continuous and discrete domains nor en-
able common gradient based optimization.

Independently of the work on TPMs, work in kernel meth-
ods introduced a novel family of tractable models defined as
positive semidefinite (PSD) functions (e.g., Marteau-Ferey
et al., 2020; Rudi and Ciliberto, 2021; Muzellec et al., 2022;
Tsuchida et al., 2023), which can equally be understood as
kernel-sum-of-squares or families of squared neural models.
Notably, those allow for negative parameterizations, have
shown to improve expressive efficiency compared to a posi-
tive paramerization (Marteau-Ferey et al., 2020; Rudi and
Ciliberto, 2021), and empirically outperform models with
nonegative constraints. However, to obtain an efficient form
of the normalization constant these models are chosen to
be shallow, limiting their expressivity and applicability in
relevant applications (Tsuchida et al., 2023).

In this work, we bridge between advancements in kernel
methods and TPMs by bringing PSD parameterizations into
the framework of PCs. Our work loosens the non-negative
constraint in PCs, enabling more effective modelling of
complex probability distributions. Moreover, by bringing
PSD parameterizations into PCs and exploiting compatibil-
ity (Vergari et al., 2021) in structured-decomposable (Pipat-
srisawat and Darwiche, 2008) PCs we extend the paradigm
of squared neural families (Tsuchida et al., 2023) to deep
probabilistic models. Hence, our work closes an impor-
tant gap in the PC literature (cf., Fig. 1) and bridges two
worlds by integrating PSD parameterizations into structured-
decomposable PCs. Lastly, we empirically show that our
work outperforms PCs with nonnegativity constraints.

2 PRELIMINARIES

We use X to denote random variables and x to denote a real-
ization. Further, we use S,P, L to denote sum, product and
leaf nodes, respectively, and use N for a generic node. Fur-
ther, we use ch(·) to denote a function returning the children
of a node. Parameters are denoted by θ, while we use A to
indicate a PSD matrix (A ∈ Sn+). Lastly, we use bold font
to denote vectors/matrices and calligraphic letters for sets.

We briefly review probabilistic circuits and discuss relevant
work on PSD parameterized models. Subsequently, we draw
connections to PCs and introduce our main contribution.

2.1 PROBABILISTIC CIRCUITS

A probabilistic circuit (PC), is specified by a directed acyclic
graph called the computational graph G, the scope function
ψ, and parameters θ containing weights of internal nodes pa-

rameterizations of leaf nodes. The computational graph con-
stitutes weighted sums S(x) =

∑
C∈ch(S) θS,CC(x), prod-

ucts P(x) =
∏

C∈ch(S) C(x), and leaf nodes associated with
parametric functions, typically assumed to be density/mass
functions of tractable distributions L(x) = p(x | θL).

The output of the circuit is computed by evaluating the
root node of G. To ensure that the output of the circuit
C is positive for any x in the support set of the PC, i.e.,
C(x) > 0 for all x ∈ X ; we typically assume that θS,C > 0
for all S,C ∈ G. In addition, each node N ∈ G is associated
with a scope ψ(N) ⊆ X provided by a scope function
ψ : N→ P(X) (Trapp et al., 2019), where P(X) denotes
the power set of X , specifying the set of RVs the node
represents a joint distribution over. Fig. 2(a) illustrates an
PC over two RVs in which we use ⊕ to illustrate sum nodes
and ⊗ for product nodes.

Next we provide a cursory review of structural properties
of PCs relevant to our work. We review the smoothness
and decomposability properties, as they ensure tractable
integration. We also review compatibility and structured-
decomposability (Pipatsrisawat and Darwiche, 2008) in PCs.
We refer the reader to Choi et al. (2020) for further details.

Definition 2.1 (Smoothness & Decomposability). A sum
node S is smooth if all children have the same scope, i.e.,
ψ(C) = ψ(C′),∀C,C′ ∈ ch(S). Further, a product node
P is decomposable if all children have pairwise disjoint
scopes, i.e., ψ(C) ∩ ψ(C′) = ∅,∀C,C′ ∈ ch(P). A PC is
smooth if all sum nodes are smooth and decomposable if all
product nodes are decomposable.

Definition 2.2 (Compatibility). Two circuits C and C′ over
X are compatible if (i) they are smooth and decomposable
and (2) any pair of products P ∈ C and P′ ∈ C′ with the
same scope can be rearranged into binary products that are
mutually compatible and decompose in the same way.

A circuit is structured-decomposable if it is compatible with
itself.

2.2 POSITIVE SEMIDEFINITE MODELS

Following Rudi and Ciliberto (2021), a probabilistic model
expressed as a PSD function or sum of squared func-
tions may be defined in terms of a non-negative function
parametrized by a feature map ϕη : Rd → Hη associated
with a kernel function κ(x,x′) = ϕ(x)⊤ϕ(x′), and a linear
operator in the span of ϕ(x1), . . . , ϕ(xn), i.e., A ∈ Sn+.
The resulting model is the written as:

f(x) = ϕ(x)⊤Aϕ(x) =
∑n

i,j Ai,jκ(x,xi)κ(x,xj).

(1)

As Rudi and Ciliberto (2021) show, the resulting function
resembles a mixture model (mixture of kernels) if Ai,j = 0
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Figure 2: Illustrations of a PC (a) over two RVs coloured in purple and orange, alongside a PC with PSD parameterized
nodes at the leaves (b) or the root (c) enabeling local or global negative dependencies, respectively. Note that weights along
green edges can have negative parameters in the respective models.

for all i ̸= j, and can be understood as a mixture model with
negative weights when Ai,j < 0 for any i ̸= j. Furthermore,
they showed that the resulting model allows tractable inte-
gration, i.e., the normalisation constant can be computed
efficiently, discussed the expressive efficiency and optimal-
ity for function interpolation under smoothness assumptions,
and later work (Muzellec et al., 2022) provided theoretical
results for the class of functions.

Tsuchida et al. (2023) extended the paradigm using an equiv-
alent but more general formulation of a squared 2-norm of
a shallow neural network. Tractability of the normalisation
constant for shallow architectures and various selections of
activation functions (e.g., sin(·) in Meronen et al., 2021) are
also discussed.

3 PSD PARAMETERIZED CIRCUITS

We propose bringing PSD parameterizations into PCs en-
abling: (i) negative parameters in PCs; (ii) modeling of neg-
ative dependencies in continuous and discrete domains; and
(iii) more expressive efficient representation of probability
distributions. To this end, we introduce PSD parameterized
nodes which we also refer to as a PSD node.

Definition 3.1 (PSD Parameterized Node). Let S denote a
sum node with k children, we say that S is a PSD parame-
terized node if it computes the quadratic form

f(x) = N(x)⊤AN(x) =
∑k

i,j AijNi(x)Nj(x), (2)

where N(x) = [N1(x), . . . ,Nk(x)] with Ni ∈ ch(S) and

A ∈ Sk+. Note that f(·) is not normalized.

A PSD parameterized node computes by definition a sum of
squares. Let U denote a Cholesky decomposition of A, i.e.,
A = U⊤U , then:

f(x) = N(x)⊤AN(x) = (U N(x))⊤(U N(x)) (3)

=
(∑k

i=1 U1,iNi(x)
)2

+
(∑k

i=2 U2,iNi(x)
)2

+

· · ·+ (Uk,kNk(x))
2
.

We note that introducing a PSD parameterization into a node
S results in: (i) potentially negative parameters, i.e.,Aij with
i < j can be negative and Uij ∈ R with i < j; (ii) allows
tractable computation of the normalization constant if the
sub-circuit at S is structured-decomposable (Vergari et al.,
2021); and (iii) relaxes the nonnegativity constraint of sum
nodes below S as the output of S is given as a sum of squares,
i.e., guaranteeing positivity of the output value (cf. Eq. (3)).
We provide details on the computation of the normalization
constant in Appendix A.1 alongside an algorithm to compute
arbitrary marginals in Appendix A.2.

Depending on the position of the PSD parameterized node
in the circuit we can balance computational cost and local-
ity of the negative dependencies. Fig. 2 illustrates different
placements of PSD nodes in a PC, resulting in local nega-
tive dependencies (if placed close to the leaves) or global
negative dependencies (if placed at the root node).
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4 EXPERIMENTS

The goal of our experiments is two-fold: (i) we aim to pro-
vide preliminary results evaluating whether the inclusion of
PSD nodes results in greater expressive efficiency for a PC;
and (ii) explore the effects that introducing PSD nodes in
different parts of the PC has.

To this end, we compare three PC models: A PC without
PSD nodes, a PC with PSD nodes at the leaves, and a PC
with a PSD node at the root. The latter two models are
referred to as the local negative dependency (LND) and
global negative dependency (GND) PCs respectively, as they
reflect introducing local or global negative dependencies.
As such, all models share the same number of input nodes
(K) and similar structures.

Experiments were performed over a space of configurations
for the models discussed and evaluated on the synthetic
data MOONS, WAVES, and RINGS and on toy data GEYSER,
IRIS, and WINE (Azzalini and Bowman, 1990; Fisher, 1988;
Aeberhard and Forina, 1991). We selected varying number
of input nodes K ∈ {2, 4, 8, 16} and five random seeds.
As our preliminary implementation1 is limited two RVs,
higher dimensional data were projected to their 1st and 2nd
principal components.

Training was performed via full-batch projected gradient
descent with a negative log-likelihood (NLL) loss function
and the Adam optimizer (Kingma and Ba, 2015). Data sets
were split into train and test sets (80/20), with the training
set further split into a train and validation set. Early stopping
was performed on the validation set, and the final model’s
NLL was evaluated on the testing set. We note that special
care has been taken when evaluating a PC with PSD nodes
in log-space as terms in the log-sum-exp operation can be
negative, see Appendix A.3 for details.

A curated table of results for the grid experiment can be
found in Table 1, with best models highlighted in bold (lower
is better). A full experiment results table (with additional
baselines) can be found in Table 3. Results shown are based
on five random seeds.

In all but one case, the PCs with PSD nodes outperformed
their equivalent PCs. An increase in input nodesK generally
lead to a better performing model (cf., Table 2), except in few
cases in which LND PC overfitted the training data. Results
on Geyser are of particular interest as the data set is known
to exhibit both negative and positive dependencies (the first
and second dimensions are eruption duration at xt and xt+1

respectively Scott, 1992). Overall, the experiment results
suggest that PCs with PSD nodes have higher expressive
efficiency than PCs with non-negativity constraints on their
weights.

1Available at www.github.com/AaltoML/psd-pc

Table 1: Average test set NLL scores for the PC, LND PC
and GND PC models with K input nodes. The GND and
LND PCs outperform the PC in all but one case.

Data Set K PC LND PC GND PC

MOONS

2 1.81± .04 1.82± .04 1.69± .18
4 1.62± .06 1.43± .02 1.46± .13
8 1.56± .03 1.25± .04 1.34± .08
16 1.55± .04 1.17± .04 1.46± .10

GEYSER

2 1.85± .12 1.84± .13 1.60± .23
4 1.77± .08 1.78± .08 1.63± .21
8 1.83± .15 1.81± .08 1.62± .13
16 1.90± .22 2.31± .43 1.59± .23

RINGS

2 2.71± .01 2.70± .01 2.60± .12
4 2.57± .01 2.55± .02 2.35± .18
8 2.34± .03 2.21± .03 1.99± .26
16 2.29± .01 1.95± .05 1.93± .14

WAVES

2 3.72± .03 3.73± .03 3.51± .29
4 3.40± .01 3.38± .02 3.15± .17
8 3.40± .05 3.23± .05 3.26± .10
16 3.38± .02 3.26± .06 3.32± .06

IRIS

2 2.47± .19 2.50± .22 2.45± .22
4 2.41± .22 2.40± .18 2.01± .20
8 2.59± .21 2.56± .18 2.47± .24
16 2.57± .14 2.99± .52 2.47± .29

WINE

2 2.71± .22 2.69± .20 2.61± .33
4 2.75± .26 2.83± .21 2.51± .33
8 2.90± .30 3.47± .58 3.07± .45
16 2.89± .26 3.59± .75 2.83± .54

5 DISCUSSION & CONCLUSION

In this work, we established a bridge between recent ad-
vancements on positive semidefinite (PSD) constrained prob-
abilistic models and probabilistic circuits (PCs) to loosen
the non-negativity constraint of sum nodes in PCs and bring
PSD parameterizations to deep probabilistic models. In-
corporating PSD parameterizations in PCs empirically im-
proves expressive efficiency of PCs with slight increase
in computation time (from linear to quadratic), depending
on the location of the PSD parameterization in the model.
Moreover, our results suggest that leveraging PSD parame-
terizations are a promising direction to encode positive and
negative dependencies on global or local levels and results
in improved performance.

Due to the challenge of structure learning, our preliminary
implementation is limited to two dimensions. We aim to
leverage recent work on structure learning of structured-
decomposable PCs in the future and investigate the PC
structure with relation to the induced PSD matrix of the
shallow mixture expansion of the PC.
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A TECHNICAL DETAILS

A.1 DERIVATION OF NORMALIZATION
CONSTANT

This section outlines the computation of the normalization
constant z for a PSD parameterized node S in a structured-
decomposable circuit, i.e.,

z =

∫
Rd

f(x)dx (4)

Computing z recursively decomposes as follows:

Product of Compatible Product Nodes Let pP and p′P
be compatible product nodes, we have that:∫

RpP

fP(x)fP′(x)dx (5)

=

∫
RpP

 ∏
N∈ch(P)

fN(x̂)
∏

N′∈ch(P′)

fN′(x̂)

 dx (6)

=

∫
RpP

 ∏
(N,N′)∈∆P×P′

fN(x̂)fN′(x̂)

dx (7)

=
∏

(N,N′)∈∆P×P′

∫
RpN

fN(x̂)fN′(x̂)dx̂ (8)

where ∆P×P′ denotes the diagonal of the Cartesian product
of the children of P and P′, i.e., diag(ch(P)× ch(P′)), and
compatibility ensures that both product nodes apply the
same partition of the scope ψ(P) = ψ(P′) with parts in the
same order.

Product of Sum Nodes Given two sum nodes, we have
that:∫

fS(x)fS′(x)dx (9)

=

∫  ∑
N∈ch(S)

wS,NfN(x̂)

 (10)

 ∑
N′∈ch(S′)

wS′,N′fN′(x)

 dx (11)

=

∫  ∑
N∈ch(S)
N′∈ch(S′)

wS,NwS′,N′fN(x̂)fN′(x)

 dx (12)

=
∑

N∈ch(S)
N′∈ch(S′)

wS,NwS′,N′

∫
fN(x̂)fN′(x)dx (13)

utilizing smoothness and linearity of sum nodes.

Remark A.1. In the special case of univariate Gaussian
leaf nodes, fL is in the form

fL(x) = kηL
(x, xL) = exp

(
−ηL[x− xL]2

)
(14)

In this case Equation the product of two leaf nodes has a
closed form solution as follows:∫

fL(x)fL′(x) =

∫
kηL

(x, xL)kηL′ (x, xL′)dx (15)

= k ηLηL′
ηL+η

L′
(xL, xL′)

∫
kηL+η′

L
(x, xLL′)dx (16)

= k ηLηL′
ηL+η

L′
(xL, xL′)π

1
2 (ηL + ηL′)−

1
2 (17)

where xLL′ = xLηL+xL′ηL′
ηL+ηL′

. Note that xLL′ need not be com-
puted as it is a translation term with no effect on the integral
evaluation. The last equation utilizes the closed form solu-
tion for the integral of a Gaussian kernel:∫

kη(x, x
′)dx =

(
π

η

) 1
2

◁

Integral of the Product of m 1D Gaussian Kernels In
general, we need to compute the integral of the product of
m leaves. We will focus our derivation on Gaussian ker-
nel functions, but similar results can be obtain for cases
discussed in Tsuchida et al. (2023). The following deriva-
tion is a generalization of derivation F.1 shown in Rudi and
Ciliberto (2021)

We wish to find the integral:∫ m∏
i=1

fL(x)dx =

∫ m∏
i=1

kηi
(x, xi)dx (18)

=

∫
e−

∑m
i=1 ηi(x−xi)

2

dx (19)

Pulling out and expanding the exponent (highlighted in
blue):

= x2

(
m∑
i=1

ηi

)
− 2x

(
m∑
i=1

ηixi

)
+

m∑
i=1

ηix
2
i (20)

Taking
∑m

i=1 ηi as a common factor of the first two terms:

=

(
m∑
i=1

ηi

)(
x2 − 2x

[∑m
i=1 ηixi∑m
i=1 ηi

])
+

m∑
i=1

ηix
2
i (21)

Completing the square in the rightmost parenthesis

=

(
m∑
i=1

ηi

)(
x2 − 2x

[∑m
i=1 ηixi∑m
i=1 ηi

]
(22)

−
[∑m

i=1 ηixi∑m
i=1 ηi

]2
+

[∑m
i=1 ηixi∑m
i=1 ηi

]2)
+

m∑
i=1

ηix
2
i (23)
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Expanding out the product and cancelling

=

(
m∑
i=1

ηi

)([
x−

∑m
i=1 ηixi∑m
i=1 ηi

]2
−
[∑m

i=1 ηixi∑m
i=1 ηi

]2)
(24)

+

m∑
i=1

ηix
2
i (25)

Expanding out the product of the parenthesis, resulting in
cancellation of the square of one of the denominators

=

(
m∑
i=1

ηi

)(
x−

∑m
i=1 ηixi∑m
i=1 ηi

)2

(26)

+

m∑
i=1

ηix
2
i −

(
∑m

i=1 ηixi)
2∑m

i=1 ηi
(27)

Pulling out and simplifying the last two terms by unifying
the denominators (highlighted in orange):

=
(
∑m

i=1 ηi)
∑m

i=1 ηix
2
i∑m

i=1 ηi
−

(
∑m

i=1 ηixi)
2∑m

i=1 ηi
(28)

=
1∑m

i=1 ηi

 m∑
i,j=1
i ̸=j

ηiηjx
2
i −

m∑
i,j=1
i ̸=j

ηiηjxixj

 (29)

Grouping together pairs of squares and pairwise products
and combining them into differences of two squares:

=
1∑m

i=1 ηi

 m∑
i,j=1
i ̸=j

ηiηj(xi − xj)2 ∗ 1(j > i)

 (30)

Noting that the last equation’s summation represents a sum-
mation over elements with indices i, j contained within the
triangular matrix above the diagonal of the Cartesian prod-
uct of index set I = {1, . . . ,m} with itself. In other words,
a summation over elements indexed by all two-element sub-
sets in set I.

Adding Eq. (30) back into Eq. (27):

=

(
m∑
i=1

ηi

)(
x−

∑m
i=1 ηixi∑m
i=1 ηi

)2

(31)

+
1∑m

i=1 ηi

 m∑
i,j=1
i ̸=j

ηiηj(xi − xj)2

 (32)

Adding the exponent back and splitting into a product of
two exponentials:

= exp

{(
−

m∑
i=1

ηi

)(
x−

∑m
i=1 ηixi∑m
i=1 ηi

)2
}

(33)

∗ exp

−
1∑m

i=1 ηi

 m∑
i,j=1
i ̸=j

ηiηj(xi − xj)2


 (34)

Formulating as new Gaussian kernels:

= k∑m
i=1 ηi

(
x,

∑m
i=1 ηixi∑m
i=1 ηi

) m∏
i,j=1
i ̸=j

[
k ηiηj∑m

k=1
ηk

(xi, xj)

]
(35)

Adding the integral back in:

=

∫ ∏
i,j=1
i ̸=j

[
k∑m

i=1 ηi

(
x,

∑m
i=1 ηixi∑m
i=1 ηi

)
k ηiηj∑m

k=1
ηk

(xi, xj)

]
dx

(36)

=
∏
i,j=1
i ̸=j

[
k ηiηj∑m

k=1
ηk

(xi, xj)

]
(37)

∗
∫
k∑m

i=1 ηi

(
x,

∑m
i=1 ηixi∑m
i=1 ηi

)
dx (38)

Substituting the closed form solution for an arbitrary Gaus-
sian function integral (highlighted in blue, see Remark A.1):

=

√
π∑m
i=1 ηi

m∏
i,j=1
i ̸=j

[
k ηiηj∑m

k=1
ηk

(xi, xj)

]
(39)

Hence the integral of a product of m Gaussian leaf nodes is:

∫ m∏
i=1

fL(x)dx =

√
π∑m
i=1 ηi

m∏
i,j=1
i ̸=j

[
k ηiηj∑m

k=1
ηk

(xi, xj)

]
(40)

A.2 INTEGRATION ALGORITHM

In practice the integration dervivations outlined in Ap-
pendix A.1 for computing the normalization constant zC of
a PSD parameterized PC C can be expressed in a recursive
algorithm. One such algorithm is proposed in Algorithm 1.

Note that this algorithm takes two arguments as its input: the
circuit C to be integrated and λ defining the set of RVs to be
marginalized. For calculating the normalization constant we
set λ = ψ(C), i.e., all RVs C operates over. For marginaliz-
ing out a specific subset of RVs, λ reflects this set and the
algorithm refers to it to return the correct marginalization.
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The key working principle of Algorithm 1 is modifying
the computational graph G of C into a new computational
graph Gz which computes zC , i.e., fGz

(C) = zC . The al-
gorithm begins at the root node of G and traverses it in
a depth-first manner. Its operation can be thought of as a
‘squishing’ of the computational graph through operations
that reduce depth and increase the width of the graph. This is
achieved via three key operations, denoted in Algorithm 1 as
sub-routines product-of-sums, swap-order and
product-kernel.

For example, let the root node of C be a product node P.
If the children of P are sum nodes S and S′, then sub-
routine product-of-sums is called. Following Eq. (9),
this computational sub-graph is explicitly expanded into a
new computational sub-graph G′, with a sum node S′′ as
its root. Its children are new product nodes P1,P2, . . . ,Pk

computing the k pairwise products of the children of S and
S′. Consequently, the weights of S′′ are the pairwise prod-
ucts of the weights of S and S′. The algorithm then replaces
the product node P and its children S and S′ in G with S′′.

Note: In Algorithm 1, PSD parameterized nodes are con-
sidered as sum nodes as they are just a weighted summation
operation with specific product node configurations as their
children. As such, product-of-sums processes them
in a similar way to sum nodes. The only difference is, the
weights of the resulting new sum node S′′ created are a
Kroenecker product of the weight matrices of the two PSD
nodes being multiplied.

Since Algorithm 1 is recursive, the processing of G′
kicks off the processing of sub-graphs in G′. For exam-
ple, the pairwise products P1,P2, ...,Pk constructed by
product-of-sums are passed back to Algorithm 1 for
evaluation. If the children of Pi are sum or PSD parameter-
ized nodes, product-of-sums is called again. If, how-
ever, the children are products P′

i and P′′
i , then the algorithm

determines via the decomposable and compatible
operators whether further modification of the graph is
needed.

In the case of decomposable product nodes, the algorithm
need not take further action, as the integrals of products op-
erating over different variables can be computed separately
and multiplied. If, however, the products are not decom-
posable but still compatible, then the algorithm calls the
swap-order sub-routine. Using commutativity of prod-
ucts, this routine rearranges the children of the product
nodes into products over the same RV such that their inte-
grals can be separated. At this point, Algorithm 1 is once
more called and the integral computed using the decompos-
able branch.

As suggested by Appendix A.1, the algorithm eventu-
ally winds up with products of input distributions that
cannot be further separated. In this case, the sub-routine
product-kernel is called to merge the products of in-

put nodes into a single node which can be integrated in
closed form. For the Gaussian case, this was shown in
Eq. (18).

The end result of Algorithm 1 is a graph with integrals at its
leaves, which can be passed up the graph to compute the fi-
nal normalization constant or arbitrary marginals, depending
on λ.

A.3 LOG-SUM-EXP TRICK WITH NEGATIVE
WEIGHTS

Computations in probabilistic circuits are typically per-
formed in the log-domain, rather than the linear domain,
requiring the application of the log-sum-exp trick for numer-
ical stability. Numerical instability occurs if exponentiating
an inner term results in an under- or overflow, which, in case
of the floating point number system, is reflected in values
being too large/small to be representable given the number
of exponent and mantissa bits available. The log-sum-exp
trick is typically given as

log S = c+ log

(
k∑
i

exp (log (wiNi)− c)

)
, (41)

with c = maxi{log (wiNi)}. However, in order to perform
the log-sum-exp trick every wiNi term has to be positive.
For PSD parameterized sum nodes, this is not necessarily
the case. Conveniently, however, one can express Eq. (41)
in the following form assuming positivity of the result

c+ log

(
k∑
i

(−1)si exp (log ((−1)siwiNi)− c)

)
, (42)

where si denotes the sign-bit of the ith term and c =
maxi{log (|wiNi|)}. The above ensures that the exponen-
tiated terms can still be represented given the number of
exponent and mantissa bits available. Note that if the result-
ing sum is negative, the result can be represented as the log
of its absolute value and the sign bit may be carried along
for further computations.

B EXPERIMENTAL DETAILS

All of our models were defined and all experiments run
using the Julia programming language. We also utilized
the DrWatson experiment assistant package (Datseris et al.,
2020), which provides many useful functionalities for man-
aging a standardized codebase and experiment setup. A total
of 700 models were trained on CPUs on a High Performance
Computing cluster available for our research.

B.1 MODELS

The models we defined were restricted to operate over two
RVs, given the preliminary nature of our experiments. The
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Algorithm 1 Integration graph constructor algorithm

Let a PSD parameterized PC C = (G, θθθ) where G =
(V, E) and λ denotes the set of RVs to marginalize.
function INTEGRAL-GRAPH(N,λ)

R← ∅
if N : S then

for C ∈ ch(N) do
R← R+ wN,C INTEGRAL-GRAPH(C, λ)

end for
else if N : P then

C,C′ ← ch(N)
if (C : S) ∧ (C′ : S) then

N′ ← PRODUCT-OF-SUMS(N)
R← INTEGRAL-GRAPH(N′, λ)

else if (C : P) ∧ (C′ : P) then
if compatible(C,C′) then

N′ ← SWAP-ORDER(N)
for C ∈ ch(N′) do

R← R× INTEGRAL-GRAPH(C,λ)
end for

else if decomposable(C,C′) then
N′ ← N
for C ∈ ch(N′) do

R← R× INTEGRAL-GRAPH(C, λ)
end for

else
N′ ← PRODUCT-KERNEL(N)
if ψ(N′) ∈ λ then

R←
∫
N′ dψ(N′)

else
R← N′

end if
end if

else if (C : L) ∧ (C′ : L) then
N′ ← PRODUCT-KERNEL(N)
if ψ(N′) ∈ λ then

R←
∫
N′ dψ(N′)

else
R← N′

end if
end if

else
R← N

end if
return R

end function

full set of models considered were a Gaussian Mixture
Model (GMM) and the PSD model defined by Rudi and
Ciliberto (2021) as baselines, and the PC, local negative de-
pendency (LND) PC and global negative dependency (GND)
PC as the models of interest. The model architectures were
formulated as such:

B.2 GMM & PSD MODELS

The GMM model was defined as a common mixture model
operating over K input nodes, each of which was a 2D
Gaussian kernel. Hence, the GMM was simply a sum node
computing a mixture of K 2D kernel functions.

The PSD model was exactly the same, with the exception
that it replaces the sum node with a PSD node. Hence, it
computed the PSD node function over the K 2D Gaussian
kernels. Rather than computing a mixture of K like the
GMM, it computed a mixture of K2 kernel squares and
pairwise products.

B.2.1 PC

The PC model consisted of K univariate Gaussian kernels
as input distributions (for each RV, i.e 2K input nodes in
total). The parents of the input nodes were two sum nodes,
computing mixtures of the leaves. All pairwise products
of mixtures between the two dimensions were computed
by K2 product nodes, over which a further mixture was
computed by a sum node at the root.

B.2.2 LND PC

The LND PC model is equivalent to the PC model, with
the exception that instead of computing mixtures between
univariate leaves via sum nodes, the sum nodes were re-
placed with PSD nodes. Each PSD node was assigned to
operate over a pair of the K input nodes, with PSD nodes
not sharing children with one another. Alternatively, the
formulation could be seen as one PSD node parameterized
with a block diagonal matrix, which determines weights for
only a subset of all possible pairwise products of the input
nodes. As the PSD nodes operated over pairs, each PSD
node was parameterized with a 2× 2 parameter matrix.

B.2.3 GND PC

The GND PC model is equivalent to the PC model, with
an additional sum node added as an additional root. Then,
a PSD node was added as a parent to the two sum nodes.
Hence, the GND PC computes a PSD function over two
mixtures of the children of the PC model’s root node.
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B.3 DATA SETS

Models were trained on well-known toy data sets in ma-
chine learning: MOONS, RINGS, WAVES, GEYSER, IRIS
and WINE. The WAVES dataset (N = 1000) was simulated
via generating 2D points from a uniform circular distri-
bution with radius r = 3. Rejection sampling was used
to reject points located within 1 < r < 2, i.e. a central
blob and a ring surrounding it was generated. The MOONS
dataset (N = 1000) was generated using the Synthetic-
Datasets.jl package’s make_moons function with noise
parameter noise = 0.1. The RINGS dataset (N = 3999)
was generated using a similar method as the WAVES dataset,
except it consists of thinner rings and contains an addi-
tional outer ring. The GEYSER data set (N = 271) is a
pre-processed version of Azzalini and Bowman (1990), pro-
cessed following Trapp (2019) and Scott (1992). The IRIS
data set (N = 149) and WINE data set (N = 177) were
retrieved from the University of California Irvine (UCI) ma-
chine learning data set repository (Fisher, 1988; Aeberhard
and Forina, 1991). All data sets used had two features, either
by default or through projection into 1st and 2nd principal
components in higher dimensional data sets (IRIS, WINE) to
accomodate our model architecture.

B.4 TRAINING PROCEDURE

The parameters optimized in our experiments included sum
node, PSD node and input node parameters. Parameter ini-
tialization for each node type was performed as follows:
(i) sum node weight vector elements were sampled from a
uniform distribution, and the vector was normalized to sum
to one; (ii) PSD node parameter matrices A were initialized
with an m ×m identity matrix (m denotes the number of
inputs to the node); and (iii) input nodes were initialized as
1D Gaussian kernels (see Eq. (14)) with length-scale param-
eter η initialized to 10, and the offset (or center) parameter
x′ initialized to a point in the data set using the k-means++
seeding algorithm (Arthur and Vassilvitskii, 2007).

At the beginning of an experiment, data sets were randomly
split into a train, validation and test set. Each model was
trained for 1500 epochs using full-batch projected gradient
descent with a negative log-likelihood loss function. Pro-
jected gradient descent was used to ensure parameters for
PSD nodes remained within the space of PSD matrices, and
parameters of sum nodes remained nonnegative. For PSD
node parameters, projection was done via a Cholesky de-
composition of parameter matrix A = UU⊤ and taking
the log of diagonal elements of U to ensure non-negativity.
Hence the optimized parameters of a PSD node consisted
of an upper triangular matrix of values with a diagonal of
log-scale parameters.

Parameter optimization was done via the Adam optimizer
Kingma and Ba (2015), and each experiment was repeated

for five random seeds. The validation set was used to save
the best performing model during training, and the resulting
model was evaluated on the test set.

Experiment results were calculated as the average test set
NLL achieved by the models trained over the five differ-
ent seeds. The full results table is shown in Table 3, and
graphs comparing the effect of increasing the number of
input distributions to the NLL score achieved can be seen in
Table 2.

C EXPERIMENTAL RESULTS

See next page for graphs visualizing the experiment results
for the PC, LND PC and GND PC models. The following
page provides the full experimental result table with baseline
models (GMM and PSD model) included.
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Table 2: Graphs showing number of input nodes the model has vs. average NLL test set score achieved for each data set
experimented with. Averages computed across the five random seeds. An alternative visualization of results in Table 3.
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Table 3: Full experiment results table. Table shows the average test set NLL score ± standard deviation for experiments run
over five random seeds. Best performing model for a given basepoint configuration is highlighted in bold (lower is better).

Data Set K GMM PSD-MODEL PC LND PC GND PC

MOONS

2 1.802± .027 1.828± .027 1.814± .038 1.823± .043 1.691± .184
4 1.550± .039 1.554± .022 1.623± .058 1.430± .020 1.457± .134
8 1.232± .014 1.215± .021 1.564± .028 1.246± .037 1.344± .080
16 1.125± .045 1.130± .037 1.554± .040 1.171± .044 1.461± .096

GEYSER

2 2.371± .189 2.387± .193 1.855± .120 1.836± .126 1.602± .228
4 1.842± .213 1.841± .221 1.769± .083 1.776± .080 1.626± .212
8 1.865± .176 1.962± .241 1.827± .150 1.815± .076 1.622± .129
16 1.970± .240 2.180± .341 1.902± .220 2.307± .427 1.593± .231

RINGS

2 2.738± .004 2.728± .008 2.709± .012 2.697± .010 2.597± .124
4 2.671± .016 2.657± .022 2.571± .008 2.548± .018 2.352± .183
8 2.477± .034 2.328± .062 2.335± .029 2.215± .033 1.993± .260
16 2.158± .042 2.042± .045 2.286± .010 1.949± .049 1.932± .142

WAVES

2 3.883± .068 4.046± .183 3.716± .025 3.727± .034 3.515± .293
4 3.647± .094 3.698± .057 3.396± .009 3.381± .018 3.145± .165
8 3.300± .048 3.256± .034 3.395± .055 3.230± .045 3.257± .101
16 3.224± .033 3.216± .032 3.375± .021 3.261± .057 3.320± .063

IRIS

2 2.632± .180 2.650± .180 2.470± .186 2.495± .223 2.453± .223
4 2.309± .104 2.347± .114 2.413± .224 2.397± .183 2.009± .204
8 2.331± .086 2.413± .157 2.593± .213 2.557± .177 2.469± .242
16 2.349± .083 2.715± .366 2.573± .143 2.986± .525 2.470± .292

WINE

2 2.806± .270 2.823± .246 2.708± .217 2.694± .200 2.611± .335
4 2.669± .199 2.689± .190 2.753± .260 2.825± .210 2.515± .329
8 2.801± .277 2.841± .403 2.897± .300 3.472± .581 3.074± .450
16 3.119± .334 3.484± .565 2.895± .261 3.592± .747 2.828± .541
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