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DeduCE: Deductive Consistency as a Framework to Evaluate LLM Reasoning

Anonymous Authors1

Abstract
Deductive reasoning is a key component in solv-
ing complex problems, especially those involving
math and logic. Formally, deductive reasoning in-
volves two subtasks: understanding a set of input
premises and inferring the conclusions that follow
from them. Recent work highlights deficiencies in
deductive reasoning of language models (LMs) by
measuring final accuracy. Going beyond accuracy,
we propose a metric to directly characterize deduc-
tive reasoning, which allows comparison of LMs’
capabilities across both deductive subtasks and
guides where finetuning efforts may help the most.
The ideal evaluation would require access to an or-
acle system that can verify any candidate conclu-
sion from an LM given input premises, which in
turn requires computing the deductive closure. In-
stead, we propose a practical solution that requires
access to only one correct solution for a problem
and measures deductive consistency (DC) over
varying windows of reasoning steps. By breaking
up LMs’ reasoning steps into dynamic windows,
we can directly evaluate the two subtasks: how
well do LMs understand input premises with in-
creasing context lengths, and how well can they
infer conclusions over multiple reasoning hops?
Since existing benchmarks may be memorized,
we also develop a pipeline to evaluate LMs’ de-
ductive consistency on novel, perturbed versions
of benchmark problems. Our key result is that
LMs are more robust to processing input premises
of varying lengths than inferring conclusions over
a longer horizon. For instance, on datasets such
as GSM-8k and ProntoQA, DC of LMs stays the
same regardless of the length of prefixes; the key
source of error is the number of output reasoning
steps. Labeling the reasoning errors reveals that
a significant fraction of the errors are calculation
or logical errors. Applying prevalent mitigation
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techniques such as fine-tuning or tool use reduces
some kind of errors, but cannot fully remove the
decay in DC.

1. Related Work
Deductive consistency is a metric that goes beyond accuracy
to measure reasoning abilities. Hence, it is related to works
which evaluate reasoning using accuracy, which propose
other metrics, and which use LLMs for deductive reasoning
tasks. We discuss these categories below:

Evaluating reasoning beyond memorization. To avoid
confounding in experiments due to dataset memorization,
novel datasets based on synthetic data have been pro-
posed (Zhu et al., 2023). To keep real world relevance,
recent work propose perturbed or novel versions of exist-
ing datasets, for math (Mirzadeh et al., 2024; Zhang et al.,
2024), analogical reasoning (Lewis & Mitchell, 2024b;a),
deductive reasoning Sanyal et al. (2022), and many other
diverse tasks (Wu et al., 2024).

Metrics for reasoning beyond final answer’s accuracy.
Xu et al. (2024) propose four different types of metrics
based on answer correctness and explanation correctness.
Seals & Shalin (2024) test deductive competence on logical
questions.Paul et al. (2024) bias LLMs to adhere to their
intermediate CoT steps. Another stream of work checks
language models’ ability to detect errors in a solution (Zeng
et al., 2024) and fix any detected errors (Singh et al., 2024).
In comparison, we aim to provide a general metric for any
task that involves deductive reasoning.

Deductive reasoning in LLMs. LogicBench evaluates
various models on natural language problems over proposi-
tional, first order, and non-monotonic logic (Parmar et al.,
2024). JustLogic is a synthetic deductive dataset Chen
et al. (2025). Other examples include analyzing categorical
syllogisms (Zong & Lin, 2024) and proving theorems in
intuitionistic propositional logic (An et al., 2024). How-
ever, most work uses final accuracy as the metric to evaluate
deductive reasoning.
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 James writes a 3-page letter to 2 different
friends twice a week. How many pages does

he write a year?

Question

Prefix (K) =0

"James writes 8 pages to
20 friends 2 a week.",

"So that is 8* 20 * 2 = 326
pages a week."

"In a year, that is 52 *320 =
16640 pages."

 James writes a 3-page letter to 2 different
friends twice a week. How many pages does

he write a year?

Question

Prefix (K) =1

 James writes a 3-page letter to 2 different
friends twice a week. How many pages does

he write a year?

Question

Prefix (K) =2

 James writes a 3-page letter to 2 different
friends twice a week. How many pages does

he write a year?

Question

Prefix (K) =3

Hop = 1 ;

Hop = 3 ;

Hop = 2 ;

Hop = 4 ;

Hop = 1

Hop = 3

Hop = 2

Hop = 2

Hop = 1

Hop = 1

Standard Evaluation (Justlogic, ProntoQA) DeDuCE: Dynamic window-based evaluation of Deductive reasoning (prefix, hop)

DC(1,2)=0

DC(1,1)=1

DC(1,3)=1

DC(2,1)=1

DC(2,2)=1 DC(3,1)=1DC(0,4)=1

DC(0,3)=0

DC(0,2)=1

DC(0,1)=1

Final Accuracy =1

"There are 52 weeks in
an year"

Figure 1: Standard accuracy-based evaluation versus Deductive Consistency that allows evaluation of step-wise computation
of deductive conclusions, given a set of input premises (previous steps from a correct reference solution).

2. Defining Deductive Consistency
Given a consistent proof system S = ⟨L,R⟩, where L is the
underlying logical language and R is the set of inference
rules, let P ⊂ L denote the set of premises and Th(P ) ⊆ L
the deductive closure of P under R. We assume access to a
dataset of problems (Pj , tj)

M
j=1 ∈ D where Pj denotes the

set of premises and tj the target predicate to be proved in
each problem j. The total number of problems in the data
set is M .

For example, consider a system with the language L of
statements of the form X → Y and transitivity as a single
inference rule, W → X,X → Y ⇒ W → Y . A sample
set of premises may be “A → B;B → C;B → D;C →
F ;D → F ;E → F ;F → G”, and a target predicate to
be proved be “A → G”. Assume that a reasoning system
A (e.g., an AI reasoning model) produces the (incorrect)
proof, A → D;A → E;E → G to conclude A → G.
Beyond final accuracy, we define the Deductive Consistency
metric to evaluate the reasoning system’s proof steps on
such problems. For instance, on a math word problem, we
would like to check the consistency of a LM’s intermediate
steps with correct deductive reasoning.

2.1. Deductive consistency given a complete proof
system

Consistency evaluates the extent to which a reasoning sys-
tem A agrees with the reference proof system S. For each
problem d ∈ D, where d = (P, t), we generate a proof
A(P, t) using A. A simple way of measuring reasoning
performance may be to compute per-predicate accuracy. For
each Xi ∈ A(P, t): Consd =

∑
i IXi

|A(P,t)| where Iz is an indi-

cator function, 1 whenever z is correctly inferred by A and
zero otherwise. For each Xi, we use the complete proof
system to verify whether it is true or not, given P and the
input premises Xk : {k : 1, 2, ..i − 1}. For the example
proof above, the metric will be 0.67 because the second
predicate is incorrect, but final accuracy will be 1.

However, in the definition above, if a given step Xj is in-
correct, evaluation of the future steps would depend on an
incorrect premise. Therefore, we extend the above metric to
include longer input premises than in an original problem.
We do so by sampling a (correct) proof from the reference
proof system and adding the first k steps of the proof to
the input premises P . The input premises now become
P ′ = P ∪ Rk(P, t) where Rk(P, t) is the first k steps of
the proof. Then, as k increases, we obtain a measure of how
well a reasoning system can handle larger input premises.
Let X ′

i be the proof steps generated by A(P ∪Rk(P, t), t).
The reasoning system’s goal is to complete the proof.

Consd(k) =

∑N
i=k+1 IX′

i

|A(P ′, t)| (1)

Continuing our example with k = 1, the reference proof
system may add the first step, “A → C” and let the target
system A complete the rest. Here, the system may produce a
faulty proof as before, A → C;A → E;A → G. However,
with k = 2 and adding the first two steps “A → C;A → F ”,
the system A may produce A → C;A → F ;A → G,
which is a correct proof.

However, the above metric has a right censoring issue (Gij-
bels, 2010): this measure of deductive consistency depends
trivially on the number of input premises. In general, the dif-
ficulty of a proof is associated with the number of inference
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DeduCE: Deductive Consistency for Evaluating LLM Reasoning

rules required to complete it. If many premises are already
provided, the number of inference rules to reach the target
predicate decreases and the problem becomes simpler. As a
result, if we see an increase in deductive consistency as the
number of reference proof steps are increased (as we see for
the example above), it may simply be due to the fewer steps
that need to be predicted, rather than due to the reasoning
system’s improved consistency after access to the reference
system’s guidance for the first few steps. Therefore, we
also introduce a hops parameter (l), denoting the number of
inference rules (steps) at which we evaluate the reasoning
system.

DedConsdj
(k, l) =

IX′
k+l,j

M
; (2)

DedCons(k, l) =

∑
dj∈D IX′

k+l,j

M
(3)

Compared to final accuracy, a key benefit of the our formu-
lation is that we obtain multiple premises and evaluation
sets from a single problem instance. This makes it possible
to study the subtasks in deductive reasoning: 1) Premise
understanding: vary k to see how a reasoning system’s con-
sistency changes as the number of input premises increase;
2) Deductive inference: vary l to see how the reasoning sys-
tem’s consistency changes as the number of output hops are
increased. We define base as the deductive consistency at
the first hop and decay as the negative slope of line that best
fits deductive consistency marginalized by prefixes and hops

normalized between 0 and 1, = −Cov(Ek[DedCons(k,ℓ)], ℓ
ℓmax

)

V ar( ℓ
ℓmax

)

to refer to this change as k or l are increased. For example,
decay wrt. the output hops is defined as,

µ =
1

ℓmax + 1

ℓmax∑
ℓ=0

Ek [DedCons(k, ℓ)] (4)

γ = − 12ℓmax

(ℓmax + 2)
(5)

Decay = γ

ℓmax∑
ℓ=0

(
ℓ

ℓmax
− 1

2

)
(Ek [DedCons(k, ℓ)]− µ)

(6)

where ℓmax represents maximum number of hops in dataset.
An ideal reasoning system’s deductive consistency should
be a constant close to 1 (thus zero decay), independent
of the number of premises k and the number of hops l.

2.2. Deductive Consistency given a reference proof

While the above metric works for a complete proof system
as the reference, in practice it is more common to have
access to a limited reference system that can only generate
a single proof S(P, t) given a problem. Therefore, we now
assume access to a reference proof system that given a

set of premises P and a target predicate t, can generate a
proof involving predicates S(P, t) ⊆ Th(P ), representing
the predicates within the closure that were proved while
proving the main result for t. We call such a proof as the
reference solution. Continuing the transitivity example, it
would mean that we only have access to a reference proof
solution, A → C;A → F ;A → G, but cannot assess the
validity of a predicate outside it such as A → D.

Given a reasoning system’s proof A(P, t), now we can only
verify the predicates that are also present in S(P, t). We
therefore orient the deductive consistency metric to focus
on the verifiable predicates that are also proved by A. For
each Zi ∈ S(P, t)

DedConssingle(k, l) =

∑
dj∈D IZk+l,j∈A(P ′

j ,tj)

M
(7)

where the numerator is an indicator function checking
whether a given predicate Zi ∈ S(P, t) is also included
in the proof by A. Note that the above metric introduces a
bias because the reasoning system A may generate (true)
predicates that are not in the reference solution (there can
be multiple ways to solve the same problem). For in-
stance, even if a reasoning system produces a valid proof,
A → D;A → F ;A → G, its DedConssingle(0, 1) will be
zero because the first step A → C from reference solution
S(P, t) is not a part of the system’s proof A.

In such cases, the consistency metric above can under-
estimate the deductive consistency–the reasoning system
may be penalized for a producing a valid solution because its
steps are different than that of the reference system. Hence,
we also introduce a metric for coverage. The Coverage
metric is defined as the expected proportion of variables in
S(P, t) inferred by A. Let VS(P,t) be the variables included
in the reference solution. Then coverage is

Coverage =

∑
dj∈D

∣∣VS(Pj ,t) ∩ VA(Pj ,t)

∣∣∑
dj∈D

∣∣VS(Pj ,t)

∣∣ . (8)

Thus, coverage measures how verification of the set of pred-
icates in the reference solution measures deductive con-
sistency. Interpretation of DedCons is valid only when
coverage is high.

3. Evaluating Deductive Consistency of LLMs
To evaluate deductive consistency, we require at least one
reference solution for each reasoning problem. Given a
benchmark reasoning dataset, we propose a method to ob-
tain such solutions. We call the model under evaluation
as SubjectLM. It produces a chain-of-thought (CoT) solu-
tion for a question. Each question is defined by an initial
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DeduCE: Deductive Consistency for Evaluating LLM Reasoning

set of premises Q and a target conclusion T . While stan-
dard evaluations assess accuracy only at the final step T ,
we evaluate reasoning quality at each intermediate step via
deductive consistency. We assume that a reference solution
tCode is available which can be used to verify correctness
of intermediate steps.

3.1. Evaluating Deductive Consistency: A Correct
Solution is Known

In order to compute deductive consistency we generate win-
dowed instances of the same problem to test SubjectLM
on. We increase the window of prefix and compute value
of variables at every subsequent hop using the computation
graph of tCode as illustrated in Figure 1. We provide the
SubjectLM with the question and prefix and let it generate
solution. To implement Equation 5, we check for the correct-
ness of variables at every subsequent hop ℓ with respect to
tCode given prefix k. A Variable Extraction LM (Parser)
is used to extract predicate values from natural language
chain of thought, if predicate is present in the CoT for
evaluation. We average these values over the entire dataset
to obtain DedCons(k, l) for each prefix k and hop l pair.

3.2. Evaluating Deductive Consistency: Realworld
dataset requires Novel Problem Generation

The above pipeline works when a single correct solution can
be obtained (e.g., from the dataset construction source code).
However, for datasets sourced from real-world scenarios,
that may be difficult. In addition, in popular real-world
datasets such as GSM-8k, there are significant memorization
concerns. To alleviate both these problems, we develop a
pipeline that constructs novel versions of the benchmark
problem, and uses an auxiliary LM on the original problem
to obtain a reference solution. Partly, we are exploiting
LMs’ memorization abilities to increase the chances that
the auxiliary LM returns a correct solution.

Obtaining Correct Solution.To generate a correct solution
for a reasoning problem, we adopt a generate-then-verify
approach. First, an expert language model produces a candi-
date solution in two semantically equivalent forms: a tem-
platized chain-of-thought (tCoT ) and an executable code
snippet (tCode). Generating the tCoT comes before code
generation, ensuring that the reasoning steps are clearly out-
lined. Next, we perform an internal consistency check
between these two representations. We verify that, for any
given factual input, both the tCode and the tCoT yield
identical intermediate variable values at each step. Only
when this equivalence is confirmed do we accept the code
as a reliable, symbolic encoding of both the problem and its
correct solution.

Generating Novel Problem. For generating a novel prob-
lem, we adopt a simple perturbation: changing the val-

ues of variables in the problem statement. Other perturba-
tions, such as changing variable names and adding irrelevant
info (Mirzadeh et al., 2024) can be easily added. This is
done by first generating the correct code for a novel problem
and then generating the text for the problem. To create a new
problem, we sample seed premises: random integers un-
der 100 (avoiding large numbers and floating-point values).
These sampled inputs are fed into tCode to compute inter-
mediate results (val). Then, we generate a novel problem
by reinserting val back into the templated question (tQ),
producing a new question Q′, and into the tCoT , producing
a fresh chain-of-thought ground-truth CoT’. This process
lets us confirm that the method consistently generates cor-
rect solutions across different inputs.

To summarize, we use auxiliary expert LMs to help with
transformation tasks. Specifically, we use Code Generation
LM that generates executable reasoning graphs (tCode)
from the solution. Templatization LM that creates templa-
tized version of Question (tQ) and the Chain of Thought
(tCoT ). The entire pipeline is shown in Figure 4.

4. Results
4.1. Datasets

GSM8K A subset of 1000 problems from GSM8K is ran-
domly chosen. The responses of LMs under evaluation are
filtered as described in section 3. Problem instances com-
mon across the models are collected and used as final dataset
that will be used to evaluate these models. This consists
of 165 problem instances. For each instance we generate
n(=10) counterfactual samples.

SynDeduct is our custom synthetic data-generation pipeline.
It allows generation of questions with large number of steps
with fine-grained control, which is not available in GSM8k.
For example, a question can be orchestrated to move from
the initial premise (A) to an intermediate node I (“prefix k”)
and then from node I to the target node B (“hop l”), such that
Distance(A, B) = k+l. This level of control over the graph’s
structure proves highly valuable for generating datasets with
specific properties and systematically assessing deductive
performance. Additional generation steps are present in
Appendix (subsection A.6 and subsection A.10)

ProntoQA This is a synthetic dataset introduced to evaluate
language models on logical reasoning tasks such as use of
Modus Ponens in Natural Language. We generate dataset of
upto 5 Hops and 100 question per hop for each of the three
ontologies - True, False and Fictional. Statements in CoT
are converted into Z3 (de Moura & Bjørner, 2008) FOL.
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4.2. Setup

LMs in DeduCE pipeline. We use LLama-3-70B-Instruct
as the Templatizer, code generation and variable extractor
LLM. We obtain a failure rate (unable to generate json) close
to 30%, which we filter out. The additional sanity checks
ensures that we have high quality dataset for evaluation. We
use Llama-3.1-8B-Instruct as Parser LLM. For ProntoQA,
each predicate in the ground truth CoT and response CoT
are verified for consistency using Z3 solver. GPT-4o is used
for error analysis.

Models under evaluation. We evaluate the follow-
ing LMs: Phi-3.5-mini-instruct, Phi-4, Qwen2.5-Math-
7B-Instruct, Qwen2.5-Math-72B-Instruct, Llama-3.3-70B-
Instruct, Llama-3-8B-Instruct and their R1 Distill variants.
All models are Instruct tuned. Model suffixes will be trun-
cated in plots. More details can be found in Figure 4. All
the experiments were done on a Nvidia 4xA100 80GB GPU
compute.

4.3. Results: Math reasoning on GSM8K

Premise understanding v/s deductive inference. Mean
deductive consistency is computed by averaging predicate
consistency across prefixes for a given hop. Only hops
where the ratio of single-premise samples to those with
premise length of 1 hop-1 exceeds 20% is included, ensuring
sufficient data for reliable estimates.

Deductive consistency as a function of hops on the original
benchmark achieves a constant value of 1 across all models.
When deductive consistency is computed on perturbed prob-
lem, it is significantly lower (see Figure 2). This indicates
Memorization Effect on the benchmark.

The key result is decay in deductive consistency as hops
increase, which was masked due to memorization of the
original benchmark. An ideal model must achieve zero
decay and a base value of one.

Figure 2 reveals that larger models (Qwen-Math-72B-
Instruct, and Llama-3.3-70B-Instruct), models trained on
synthetic data (Phi-4) as well as math-specific models
(Qwen-2.5-Math-72B-Instruct, and Qwen-2.5-Math-72B-
Instruct) do achieve greater base values. However, even
these models show significant decay in the deductive con-
sistency as the number of hops increases. Smaller models
like Llama-3-8B-Instruct and Phi-3.5-mini-instruct perform
poorly with lower base values and Llama-3-8B-Instruct ex-
hibits a high decay value compared to other models (also
see Figure 2).

Importantly, deductive consistency does not vary much as
the length of input premises are changed. A lower variance
in mean deductive consistency as a function of prefix as seen
in Figure 8 . Which implies a partial evidence of hypothesis:

it depends on hops, but not on the premises. A caveat is that
due to the simplicity of the GSM8K problems, the maximum
premise length we could evaluate on is 7.

Other hypotheses: Based on the deductive consistency
metric, we can answer some hypotheses on why final accu-
racy decreases for novel math problems, as reported in past
work (Mirzadeh et al., 2024; Srivastava et al., 2024). We
also test the hypothesis on the effects of language style on
reasoning (Han et al., 2024).

H1: Novel problems induce early errors in the math compu-
tation, which propagate to lead to an incorrect solution. H2:
Novel problems induce a style change in the CoT answers,
which may lead to faulty reasoning and hence incorrect final
answer.

H1: Our findings reveal that deductive consistency remains
high for the first hop, contradicting hypothesis by demon-
strating that models correctly answer the first step. While
novel problems do not induce early errors, we observe fre-
quent computational errors in model responses. These errors
propagate, providing evidence for part of hypothesis. De-
tailed error analysis, is in Appendix A.4.

H2: To decide on this hypothesis, we create four kinds of
premises that can be added. The first is the original (eg:
Yasna has 60 + 12 = 72 pages to read.), sourced from
subject LMs answers on the original benchmark problem.
Others are different paraphrases of the original style. They
are explained in Appendix A.2. A slight decrease in base
values across models due to impact of language style. While
it is expected that the original benchmark’s style should
have highest accuracy, the variation across paraphrases is
not high. Even though, on performing t-test, p-values values
were significant (at 0.05 significance level), Cohens’ effects
sizes were too small to consider (<0.1). We find weak
evidence for H2 referring to Figure 5 in Appendix.

Error Analysis. A higher proportion of calculation errors
is observed relative to other errors. These calculation errors
predominantly emerge during arithmetic operations within
the chain-of-thought, and they propagate through subse-
quent reasoning steps. Refer to Appendix A.4 for details.

4.4. Results: Evaluation on SynDeduct

To validate the conclusions from GSM8K, we now evaluate
deductive consistency on a synthetic dataset. In particular,
the problems are designed such that the solutions involve a
large number of hops spread across prefixes.

The general trend of decreasing deductive consistency over
hops supports our results in GSM8K. Our findings in Fig-
ure 3 suggests larger models demonstrate greater resilience
to increases in the number of hops, while smaller mod-
els—such as Llama-3-8B-Instruct—experience a substan-
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Figure 2: Left: Deductive Consistency vs. Reasoning Hops across models on GSM8K-Mutated. Right: Deductive
Consistency vs. Reasoning Hops across models on ProntoQA.
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Figure 3: Deductive Consistency v/s Hops. Each Hop bin
has roughly same variation of Prefixes. Y-Ticks on each
data-point is Standard Error for Accuracy. For Coverage
refer to Appendix Figure 12.

tial drop in performance. This trend becomes evident when
examining accuracy versus prefix length across multiple
hops: as prefix segments grow, the overall task accuracy
declines. One contributing factor may be the larger maxi-
mum token limit, which allows these models to analyze and
accommodate more extensive reasoning chains. However,
barring Llama-3-8B all models have context lengths greater
than maximum number of tokens required for answering the
question properly (around max_length = 10k tokens).

Error Analysis: Similar to GSM8K, a higher proportion of
calculation errors is observed. Interestingly, a large propor-
tion of Garbled errors were also seen. For more details, see
subsection A.7

4.5. Results: Evaluation on ProntoQA

We evaluate models on ProntoQA—a benchmark specif-
ically designed for multi-hop factual reasoning. Fig-
ure 2(right) shows a consistent decay with respect to hops.
Phi-4 performs exceptionally well with negligible decay
w.r.t prefixes; plausibly due to being trained on similar syn-
thetic data. The pattern of decay on ProntoQA is similar
to that in the prior sections. For further details, refer to
subsection A.8.

5. Do Prevalent Techniques Mitigate Decay ?
To better understand the impact of different popular strate-
gies to improve deductive reasoning, we focus on two pri-
mary fine-tuning approaches: iterative fine-tuning with re-
inforcement learning (Ziegler et al., 2019), supervised fine-
tuning (SFT) (Ouyang et al., 2022) and a calculator tool-
calling approach (Schick et al., 2023).

For RL-based and iterative fine-tuning models, Qwen-2.5-
Math-Instruct in both its 7B and 72B variants (Yang et al.,
2024) is compared against their respective base models. Sim-
ilarly, for SFT-based tuning, R1 distilled models are com-
pared to their base counterparts (DeepSeek-AI et al., 2025),
namely DeepSeek-R1-Distill-Llama-70B and DeepSeek-
R1-Distill-Qwen-7B.

To improve on decay and reduce the calculation errors, an
inference-time version of Calculator tool-calling approach
is used. Meta llama-8B model is used as an Online Monitor
that is a Reviewer and Editor. As generation of response
happens step by step, a reviewer LLM monitors and checks
if a calculation trace is present. It calls a calculator tool with
appropriate inputs and the output from the tool is passed to
editor LLM. The editor LLM changes the calculation trace

6
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with the correct one. The generation then continues after
the step has been corrected for calculation errors.

Results. RL fine tuning is more effective (Table 1, Ta-
ble 3) in reducing the decay of deductive consistency. RL
fine-tuning shows minimal change in base deductive consis-
tency on in-distribution datasets, and a reduction on unseen
datasets such as SynDeduct. SFT after training causes a de-
crease in deductive consistency and worsens decay for both
data sets (Table 2, Table 4). More work is required to study
the extent of generalization that such post-training methods
provide. In general, these findings emphasize that neither of
the two post-training techniques is successful in improving
deductive consistency between models and datasets.

For the tool-calling approach, we find (Table 5, subsec-
tion A.5) an improvement in base deductive consistency of
up to 15% but decay did not improve. Further details are in
the Appendix.

Table 1: RL post training on SynDeduct.

Model Base Decay

Qwen-2.5-72B-Instruct 0.6868 0.0602
Qwen-2.5-Math-72B-Instruct 0.5674 0.0273

Qwen-2.5-7B-Instruct 0.5458 0.0432
Qwen-2.5-Math-7B-Instruct 0.2083 0.0211

Table 2: SFT post training on SynDeduct.

Model Base Decay

Qwen-2.5-Math-7B-Instruct 0.2083 0.0211
DeepSeek-R1-Distill-Qwen-7B 0.5424 0.0381

Llama-3.3-70B-Instruct 0.8465 0.0212
DeepSeek-R1-Distill-Llama-70B 0.7389 0.0314

Table 3: RL post training on GSM8k.

Model Base Decay

Qwen-2.5-72B-Instruct 0.9149 0.2339
Qwen-2.5-Math-72B-Instruct 0.9164 0.1725

Qwen-2.5-7B-Instruct 0.8881 0.1618
Qwen-2.5-Math-7B-Instruct 0.8427 0.1189

Table 4: SFT post training on GSM8k.

Model Base Decay

Qwen-2.5-Math-7B-Instruct 0.8509 0.0613
DeepSeek-R1-Distill-Qwen-7B 0.8468 0.1957

Llama-3.3-70B-Instruct 0.8532 0.20065
DeepSeek-R1-Distill-Llama-70B 0.8366 0.24895

Table 5: Base and Decay values for LLaMA-3-8B-Instruct
with and without Monitor (calculator as a tool at inference
time).

LLaMA-3-8B-Instruct Base Decay
Without Monitor 0.7629 0.3300
With Monitor 0.9081 0.3704

6. Conclusion
We introduce a metric for assessing AI deductive reasoning
based solely on text-based reasoning traces, ensuring appli-
cability across diverse domains. Through experiments on
both synthetic datasets (SynDeduct, ProntoQA) and a real-
world benchmark (GSM8K), we demonstrate its impact and
expose critical trade-offs. Additionally, we evaluate com-
mon reasoning-enhancement techniques designed to address
the challenges identified in our study.

Limitations & Impact
Our approach depends on auxiliary language models for
parsing, error analysis, and data-pipelining. Although we
have taken extensive measures to mitigate errors introduced
by these models, residual inaccuracies may persist. More-
over, our evaluation of deductive reasoning is limited to
linear reasoning traces; extending our framework to non-
linear inference chains will be an important objective for
future work.

This paper presents work whose goal is to advance the re-
liability of AI reasoning. We expect that insights from our
work can be used to improve reliability of AI reasoning,
leading to a positive societal impact on downstream appli-
cations by avoiding reasoning bugs.

7
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A. Appendix
A.1. Details for GSM8K pipeline

"templatized_answer": [
        "James writes 8 pages
to 20 friends 2 a week.",
        "So that is 8* 20 * 2 =
320 pages a week.",
        "In a year, that is 52
*320 = 16640 pages.",
        "The answer is 16640."
      ]

Reasoning
Code

Generator

Template

Answer

Template Builder

Mutate

James writes 3 pages to 2 friends
twice a week. So that is 3 * 2 * 2 = 12

pages a week. In a year, that is 52 * 12
= 624 pages. The answer is 624.

Code

Mutated Code

Mutated Question and
Steps

Factual Dataset

James writes a 3-page letter to 2
different friends twice a week.

How many pages does he write a
year?

Question

Subject
LLM

Answer of Mutated
Question

Compute Deductive
Consistency and

Coverage

Template Question
---------------------------------------------------

Template Answer: [Step1,
Step2,...]

----------------------------------------------------
Template Variable List

----------------------------------------------------
Variable Assignment

num_pages = 3
num_friends = 2
num_times = 2
num_weeks_in_a_year = 52
pages_per_week = num_pages *
num_friends * num_times
total_pages = pages_per_week *
num_weeks_in_a_year

Subject
LLM

Premises

" "James writes 8 pages to
20 friends 2 a week."
"So that is 8* 20 * 2 = 320
pages a week."
In a year, that is 52 *320 =
16856 pages.",
 "The answer is 16856
  

Hop 1

Hop 2

num_pages = 8
num_friends = 20
num_times = 2
num_weeks_in_a_year = 52
pages_per_week = num_pages *
num_friends * num_times
total_pages = pages_per_week *
num_weeks_in_a_year

Figure 4: Given a benchmark problem, we use pre-trained LMs to templatize its solution and obtain an executable code
solution. Then we update the variables’ values in the code and generate a novel problem on which the subject LM is
evaluated. For any (number of premises, number of hops) combination, we assess whether the subject LM’s solution contains
the correct values of the variables.

Inference on original dataset We sample a subset of GSM8K of size 1000. We prompt the LM under investigation to solve
the question using the prompt template provided in subsection A.9.

Templatization and Code Generation We templatize the question and LM CoT response using Llama-3-70B as Template
Builder Agent. The model is prompted (as shown in subsection A.9) to generate templatized question, templatized CoT
answer (as well as chunk it into steps), explanation of variables of templates along with assignment of variables in question.

Sanity Checks We check that the code produced is an executable code, if the format of template generate is consistent with
our reference template format, if the all variables in factual_assignment are present in code. The generated code is executed
with factual assignment as inputs for variables in question template and the value of other variables in code are checked to
be consistent with the factual assignment in template. Further we have check if the final answer in response matches the
ground truth answer in original dataset. If any of these checks fail then we remove that question from pipeline. For each
model we now have a reduces set of questions that has passed sanity checks. We take intersection of such questions over
multiple models to get a dataset on which we can evaluate all the models under consideration. This support set depends on
the set of models being used in the experiments.

Mutation Details We create mutated dataset by sampling the values of variables in question and executing the code
with these newly sampled values to obtain assignment corresponding to other variables. Parameters for the sampler are
(min-value,max-value,max-iter). If the factual assignment of a variable is integer, we sample from integers in the range
(min-value,max-value), if factual assignment of a variable is decimal between 0 and 1, we uniformly sample from this
range, else if it is any other decimal we sample a float from (min-valu,max-value). We try to make sure that all the variable
assignments after positive. If not we rerun until we get a all positive assignment or we reach maximum iterations of the
sampler. We substitute these values into template question and template CoT answer.We sample 10 mutated questions per
question in original dataset. We create dataset with mutated question and varying length of mutated CoT answer present in
LMs context. The number of steps from mutated template CoT answer is defined as prefix length. We collect the sampled
variable assignments,mutated Question and Prefix into the mutated dataset.

Inference on mutated dataset We run inference of LMs on this mutated dataset. Since all LMs we evaluate are Instruction
tuned, we use chat template. Mutated question is passed as user-content where as prefix is passed as assistant-content. We
remove the <∥eot∥ >token and let the generation continue as if the model were completing the generation.

Computation of Deductive consistency The response of the model to mutated dataset is passed into a variable extraction
LM which extracts value if the variables under consideration (ones in template) if present in response(see subsection A.9).
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Figure 5: Comparison of Base vs. Decay Across Different Styles. Model name suffixes have been dropped for readability.

Hops are decided by the relative positions of variables under consideration in the template CoT. We check if these extracted
values are consistent with code-generated values. We collect this data for every variable across mutated question and then
group it by prefix and hop. We filter instances where the responses gives From this data structure we derive Deductive
Consistency as function of hops or prefixes (as required).

Base DC and Decay We define Base deductive consistency as the deductive consistency at one-hop as well as decay
is defined as negative slope of line fitting deductive consistency and hops (normalized between 0 and 1) [as shown in
Equation 6] .

Coverage Table 7 shows that the coverage is high across all premises. Given a LM, this implies that the intermediate
variables inferred in the solution for the novel problem are almost the same as the variables inferred in the solution for the
original benchmark problem. Therefore the code obtained from reasoning code generator is reliable as a reference proof. So
we can go ahead with interpreting the consistency results.

A.2. Para Phrasing Styles

• Vanilla (Para-van): In this approach, the text is rephrased using conventional linguistic variations without incorporating
any specialized semantic constraints. For example: Yasna’s task involves 60 pages plus an additional 12 pages, which
totals to 72 pages

• Axiomatic (Para-ax): This method reformulates the statement as a set of axioms that articulate the underlying numerical
relationships. An example is : Axiom-1 (Addition): Given two numerical values x and y, the operation ADD(x, y) yields
their arithmetic sum, thus ADD(60, 12) yields 72, which represents the total number of pages Yasna has to read.

• Reverse (Para-rev): the sentence is restructured by inverting the typical cause-effect relationship—presenting the effect
before providing the explanation for its cause. For instance, in the example: Yasna has to read the 72 pages, which is
the sum of 60 and 12.

A.3. Results - GSM8K

Here we report the full results presented in the main paper.

Table 6: Model Performance and Deductive Consistency Across Hops GSM8K

Models Hop-1 Hop-2 Hop-3 Hop-4 Hop-5

Llama-3.3-70B 0.89± 0.0135 0.8274± 0.0219 0.7909± 0.0215 0.7669± 0.0206 0.7079± 0.0114
Llama-3-8B 0.7629± 0.0217 0.6572± 0.0227 0.5777± 0.0165 0.5254± 0.0154 0.4988± 0.0264
Phi-4 0.8911± 0.0238 0.8365± 0.0278 0.8103± 0.0285 0.7929± 0.0228 0.7612± 0.0117
Phi-3.5 0.8563± 0.0114 0.7874± 0.0210 0.7602± 0.0096 0.6865± 0.0571 0.6616± 0.0488
Qwen-2.5-Math-72B 0.937± 0.0108 0.9037± 0.0085 0.8841± 0.0073 0.8573± 0.0148 0.8321± 0.0328
Qwen-2.5-Math-7B 0.8843± 0.0179 0.854± 0.0144 0.8456± 0.0307 0.8283± 0.044 0.8409± 0.039
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Table 7: Coverage across different language styles for the premises.

Models Original Para-ax Para-van Para-rev

Llama-3.3-70B 0.9725 0.9639 0.9616 0.966
Llama-3-8B 0.9669 0.9431 0.9543 0.9486
Phi-4 0.9849 0.9694 0.9759 0.9747
Phi-3.5 0.9684 0.9523 0.9649 0.9624
Qwen-2.5-Math-72B 0.9888 0.9745 0.9862 0.985
Qwen-2.5-Math-7B 0.9701 0.9442 0.9656 0.9648

Table 8: Para-ax: Model Performance and Deductive Consistency Across Hops

Models Hop-1 Hop-2 Hop-3 Hop-4 Hop-5

Llama-3.3-70B 0.8875± 0.0158 0.8083± 0.0271 0.7653± 0.0282 0.752± 0.0189 0.7328± 0.004
Llama-3-8B 0.7309± 0.0244 0.6177± 0.034 0.5096± 0.0305 0.4799± 0.0328 0.4798± 0.0173
Phi-4 0.8703± 0.0178 0.8245± 0.0177 0.8055± 0.0172 0.7525± 0.0275 0.7263± 0.0164
Phi-3.5 0.8146± 0.027 0.694± 0.0279 0.6106± 0.0426 0.5795± 0.0658 0.5715± 0.0424
Qwen-2.5-Math-72B 0.9196± 0.0143 0.851± 0.0168 0.8149± 0.0194 0.8038± 0.0154 0.8019± 0.026
Qwen-2.5-Math-7B 0.8627± 0.0192 0.8001± 0.0233 0.7672± 0.0216 0.7418± 0.0165 0.7483± 0.0148

Table 9: Para-van: Model Performance and Deductive Consistency Across Hops

Models Hop-1 Hop-2 Hop-3 Hop-4 Hop-5

Llama-3.3-70B 0.863± 0.0276 0.79± 0.0318 0.7561± 0.0277 0.7242± 0.0323 0.7203± 0.0103
Llama-3-8B 0.7538± 0.0212 0.612± 0.0352 0.5503± 0.0207 0.4997± 0.0348 0.4961± 0.0275
Phi-4 0.8505± 0.0248 0.8062± 0.0271 0.7856± 0.0273 0.7655± 0.0356 0.7408± 0.0153
Phi-3.5 0.8397± 0.0189 0.739± 0.0203 0.7178± 0.0132 0.6679± 0.0366 0.6279± 0.0355
Qwen-2.5-Math-72B 0.9175± 0.0144 0.8758± 0.0143 0.8569± 0.0138 0.8427± 0.0182 0.8063± 0.0284
Qwen-2.5-Math-7B 0.8671± 0.0207 0.8206± 0.0192 0.7841± 0.0271 0.7854± 0.0246 0.8267± 0.0299

Table 10: Para-rev: Model Performance and Deductive Consistency Across Hops

Models Hop-1 Hop-2 Hop-3 Hop-4 Hop-5

Llama-3.3-70B 0.8481± 0.0222 0.7828± 0.0306 0.7508± 0.0313 0.7148± 0.0334 0.7211± 0.0097
Llama-3-8B 0.7163± 0.0288 0.5509± 0.0504 0.4612± 0.0591 0.4609± 0.0371 0.4617± 0.025
Phi-4 0.8532± 0.0282 0.8102± 0.0289 0.7874± 0.0326 0.7724± 0.025 0.7442± 0.0122
Phi-3.5 0.7958± 0.0241 0.7308± 0.024 0.6917± 0.0165 0.6351± 0.0483 0.6355± 0.0431
Qwen-2.5-Math-72B 0.9051± 0.017 0.8636± 0.0166 0.8279± 0.0172 0.8105± 0.0176 0.7979± 0.0258
Qwen-2.5-Math-7B 0.8463± 0.0219 0.7914± 0.0227 0.7298± 0.0364 0.7543± 0.0124 0.7952± 0.0201

Table 11: Decay and Base Values Across Interventions

Models Original Para-ax Para-van Para-rev

Decay Base Decay Base Decay Base Decay Base

Llama-3.3-70B 0.21235 0.89 0.18285 0.8875 0.1756 0.863 0.161 0.8481
Llama-3-8B 0.33 0.7629 0.32 0.7309 0.31385 0.7538 0.2996 0.7163
Phi-4 0.1517 0.8911 0.18 0.8703 0.13005 0.8505 0.1279 0.8532
Phi-3.5 0.24515 0.8563 0.30035 0.8146 0.24735 0.8397 0.20815 0.7958
Qwen-2.5-Math-72B 0.1281 0.937 0.1413 0.9196 0.12775 0.9175 0.13375 0.9051
Qwen-2.5-Math-7B 0.05625 0.8843 0.14355 0.8627 0.058 0.8671 0.06965 0.8463
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Table 12: Deductive Consistency ± Standard Error vs. Prefix Length for Different Models

Model Prefix 1 Prefix 2 Prefix 3 Prefix 4 Prefix 5

Phi-3.5 0.7664± 0.0304 0.7772± 0.0255 0.7767± 0.0224 0.8153± 0.0247 0.7707± 0.0215
Qwen-2.5-Math-7B 0.8549± 0.0268 0.8366± 0.0195 0.8510± 0.0243 0.8641± 0.0329 0.8922± 0.0383
Qwen-2.5-Math 0.8802± 0.0200 0.8704± 0.0223 0.8803± 0.0166 0.9067± 0.0117 0.8967± 0.0161
Llama-3-8B 0.5884± 0.0580 0.5826± 0.0523 0.5932± 0.0466 0.5984± 0.0306 0.6637± 0.0330
Llama-3.3-70B 0.7981± 0.0342 0.7929± 0.0322 0.7937± 0.0369 0.7952± 0.0344 0.7905± 0.0322
Phi-4 0.8254± 0.0303 0.8277± 0.0274 0.8309± 0.0311 0.8199± 0.0440 0.7996± 0.0444

Table 13: Ablation 1: Deductive Consistency vs. Hops

Hops 1 2 3 4 5

Qwen-2.5-72B 0.9149± 0.0123 0.861± 0.022 0.8078± 0.011 0.7656± 0.0203 0.7287± 0.02
Qwen-2.5-Math-72B 0.9164± 0.0091 0.8739± 0.0138 0.8305± 0.0272 0.7895± 0.0402 0.7861± 0.0584

Table 14: Ablation 2: Deductive Consistency vs. Hops

Model Hop 1 Hop 2 Hop 3 Hop 4 Hop 5

Qwen-2.5-7B 0.8881± 0.0176 0.8453± 0.0246 0.8101± 0.0222 0.7738± 0.0281 0.7620± 0.0352
Qwen-2.5-Math-7B 0.8427± 0.0156 0.8021± 0.0131 0.7739± 0.0142 0.7499± 0.0251 0.7499± 0.0306

Table 15: Ablation 3: Deductive Consistency vs. Hops

Hops 1 2 3 4 5

Qwen-2.5-Math-7B 0.8509± 0.018 0.8093± 0.0168 0.8002± 0.0198 0.7957± 0.0382 0.7964± 0.0458
DeepSeek-R1-Distill-Qwen-7B 0.8468± 0.0271 0.7989± 0.0391 0.7451± 0.0414 0.7309± 0.0566 0.6851± 0.0531

Table 16: Ablation 4: Deductive Consistency vs. Hops

Hops 1 2 3 4 5

Llama-3.3-70B 0.8532± 0.0134 0.7876± 0.0158 0.7515± 0.0127 0.7075± 0.0107 0.6926± 0.0076
DeepSeek-R1-Distill-Llama-70B 0.8366± 0.0238 0.7726± 0.0333 0.7093± 0.0389 0.6741± 0.0385 0.6369± 0.0307
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A.4. Error Analysis on GSM8K

In this section, we perform a qualitative and quantitative analysis of errors that arise in the response models. Model responses
are grouped into five groups based on final accuracy on the mutated dataset. Accuracy here is computed over the set of
mutated problems for each problem in the original benchmark. The groups are; Group-1 : Accuracy = 1 ; Group-2 : 1 <
Accuracy ≤ 0.7 ; Group-3 : 0.7 < Accuracy ≤ 0.4 ; Group-4 : 0.4 < Accuracy < 0 ; Group-5 : Accuracy = 0

We use GPT-4o as an evaluator. Calculation errors like arithmetic mistakes, as well as errors in rounding, along with
error propagation Logic errors are wrong application of logic/rule/formula. Understanding errors are wrong assumption or
contradiction of a given fact. These errors are seen in cases where the problem mentions scenarios that are far from real
world such as there being 97 days in a week. In Table 17 we report the frequency of error normalized by number of error
responses in that group.

Furthermore, models exhibit (pre-training) bias. They reproduce the original reasoning graph from the vanilla solution.
This shows weak robustness from changes in reasoning structure. Logical errors stem from ambiguous natural language.
For instance, the sentence “My brother is twice more older than me” should ideally be represented as: myBrotherAge =
myAge+myAge∗2. However, models typically interpret it as: myBrotherAge = 2∗myAge which correctly corresponds
to the unambiguous phrasing “My brother is twice as old as me.”.

A.4.1. QUALITATIVE ANALYSIS OF ERROR

Logical Error

Question

Two vampires have come to the sleepy village of Willowton, population 33. Every night, each vampire turns
95 more people into vampires. How many vampires are there after two nights?

Answer (Qwen-2.5-Math-72B)

Step-by-step solution:
Initial Condition: - There are initially 2 vampires in Willowton.
Night 1: - Each vampire turns 95 people into vampires. - Since there are 2 vampires, the total number of new
vampires created is:

2× 95 = 190

- Total number of vampires after the first night:

2 + 190 = 192

Night 2: - Now there are 192 vampires. - Each vampire turns 95 people into vampires. - Since there are 192
vampires, the total number of new vampires created is:

192× 95 = 18240

- Total number of vampires after the second night:

192 + 18240 = 18432

Final Answer:
18432
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Evaluation (GPT-4o)

Errors:

• Wrong Assumption: The response assumes there are enough people to turn into vampires. Justification: The
village only has 33 people initially, so the vampires cannot turn more people into vampires than the village’s
population allows. The response fails to consider this limitation.

• Wrong Logic: The response calculates the number of new vampires incorrectly on the second night. Justifica-
tion: On the second night, the vampires cannot turn more than the remaining population into vampires. Given
the initial population, they cannot create 18,240 new vampires. [This is logic error !!]

Understanding Error

Question

James writes a 36-page letter to 71 different friends 32 times a week. How many pages does he write in a
year?

Answer (Phi-4)

Step-by-step solution:
1. Calculate the total number of pages written per week: - James writes a 36-page letter to each of his 71 friends.
- Total pages per week:

Total pages per week = 36× 71 = 2, 556 pages

2. Calculate the total number of pages written in a year: - There are 52 weeks in a year.

Total pages per year = 2, 556× 52 = 132, 912 pages

Final Answer:
132, 912 pages

Evaluation (GPT-4o)

Errors:

• Wrong Assumption: The response assumes James writes a 36-page letter to each friend only once per week.
Justification: The problem states he writes 32 times per week, so the calculation of total pages per week is
incorrect.

• Calculation Error: The response calculates the total number of pages per year using an incorrect assumption.
Justification: Since the number of times he writes per week is not factored in, the yearly calculation does not
reflect the correct total.

Calculation Error

Question

Max likes to collect model trains. He asks for 53 for every birthday of his, and asks for 18 each Christmas.
Max always gets the gifts he asks for, and asks for these same gifts every year for 16 years. At the end of the
16 years, his parents give him double the number of trains he already has. How many trains does Max have
now?
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Answer (Llama-3-8B)

Step-by-step solution:
1. Max gets 53 trains for each birthday, and he has 16 birthdays:

53× 16 = 848 trains

2. Max gets 18 trains for each Christmas, and he has 16 Christmases:

18× 16 = 288 trains

3. In total, Max receives:
848 + 288 = 1, 136 trains

4. At the end of the 16 years, his parents give him double the number of trains he already has:

1, 136× 2 = 2, 268 trains

5. In total, Max now has:
1, 136 + 2, 268 = 3, 404 trains

Final Answer:
3, 404 trains

Evaluation (GPT-4o)

Errors:

• Calculation Error: The response states that at the end of the 16 years, Max’s parents give him double the
number of trains he already has, calculated as 1, 136 × 2 = 2, 268. Justification: The correct calculation
should be:

1, 136× 2 = 2, 272

• Propagated Error Only: The response states that the total number of trains Max has is 1, 136+2, 268 = 3, 404.
Justification: Since the previous multiplication was incorrect, the final sum was also incorrect. The correct
final total should be:

1, 136 + 2, 272 = 3, 408

A.4.2. QUANTITATIVE ANALYSIS OF ERROR

Models
Group-1 Group-2 Group-3 Group-4 Group-5

Logical Understanding Calculation Logical Understanding Calculation Logical Understanding Calculation Logical Understanding Calculation Logical Understanding Calculation

Llama-3.3-70B 0.141 0.413 0.457 0.300 0.667 0.633 0.182 0.601 0.790 0.287 0.943 0.780 0.356 0.578 0.856
Llama-3-8B 0.068 0.136 0.614 0.140 0.500 0.840 0.198 0.548 0.853 0.279 0.624 0.886 0.344 0.672 0.822
Phi-4 0.036 0.175 0.130 0.128 0.368 0.248 0.229 0.702 0.550 0.261 0.513 0.704 0.369 0.946 0.754
Phi-3.5 0.169 0.312 0.429 0.158 0.554 0.576 0.152 0.488 0.784 0.227 0.553 0.827 0.429 0.659 0.865
Qwen-2.5-Math-72B 0.052 0.188 0.127 0.121 0.423 0.340 0.245 0.669 0.619 0.365 0.794 0.518 0.300 0.583 0.883
Qwen-2.5-Math-7B 0.125 0.368 0.429 0.091 0.400 0.551 0.263 0.563 0.721 0.304 0.562 0.788 0.255 0.391 0.818

Table 17: Error metrics for different models across dataset groups. Each cell reports Logical, Understanding, and Calculation
errors separately.

A.5. Calculation Monitor Experiment (Tool Calling)

To improve on decay and reduce the calculation errors, we try a online calculation monitor approach. We have an meta
llama-8-b model as an online monitor that is a reviewer and editor. As the generator generates a step, reviewer LLM of the
monitor checks if calculation is present, and if so calls a calculator with appropriate inputs and the output from calclator is
passed into editor LLM which os responsible to edit that step and replace it in the original solution. The generation then
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Figure 11: Error rate plots for all groups
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Models Group 1 Group 2 Group 3 Group 4 Group 5

Llama-3-8B 44 50 252 412 180
Llama-3.3-70B 92 90 143 209 90
Qwen-2.5-Math-72B 916 338 139 170 60
Qwen-2.5-Math-7B 560 450 240 240 110
Phi-4 553 117 131 199 130
Phi-3.5 77 139 125 255 170

Table 18: Number of instances for different models across dataset groups.

continues after the step has been corrected for calculation errors. We find an improvement in base deductive consistency of
up to 15% but decay did not improve.

A.5.1. ERROR ANALYSIS

Despite the streamlined review–and–edit loop, the calculator–tool intervention yields improvement upto 15 % in base
deductive consistency (Deductive consistency at 1-Hop)(Table 20, Table 19) and fails to curb the decay that accumulates over
longer reasoning chains. This approach targets arithmetic slip-ups alone; it leaves intact other error modes—misconceptions,
faulty inferences, and hallucinated premises, that cannot be caught or corrected by a simple tool call. Error Analysis with
Monitor (Table 21) and without Monitor (Table 17) further reveals that, even after driving calculation errors to a minimum,
we continue to observe substantial understanding errors and logical inconsistencies. Taken together, these findings show that
tool-based approaches which merely supply a calculator do not resolve the broader problem of deductive decay.

Hop LLaMA-3-8B-Instruct Phi-4
With Monitor Without Monitor With Monitor Without Monitor

1 0.9081 ± 0.0139 0.7629 ± 0.0217 0.9421 ± 0.0318 0.7629 ± 0.0238
2 0.8098 ± 0.0205 0.6572 ± 0.0227 0.8762 ± 0.0761 0.6572 ± 0.0278
3 0.7356 ± 0.0264 0.5777 ± 0.0165 0.8489 ± 0.0848 0.5777 ± 0.0285
4 0.6651 ± 0.0391 0.5254 ± 0.0154 0.8641 ± 0.0545 0.5254 ± 0.0228
5 0.6100 ± 0.0470 0.4988 ± 0.0264 0.7715 ± 0.1081 0.4988 ± 0.0117

Table 19: Deductive consistency with and without monitor across hops for LLaMA-3-8B-Instruct and Phi-4.

LLaMA-3-8B-Instruct Phi-4
Monitor Base Decay Base Decay
Without Monitor 0.7629 0.3300 0.8911 0.1517
With Monitor 0.9081 0.3704 0.9421 0.1750

Table 20: Base and decay values for LLaMA-3-8B-Instruct and Phi-4 with and without monitor.

A.6. SynDeduct

Why Use Synthetic Dataset? Synthetic datasets offer a controlled framework for evaluating deductive accuracy, as all
data points are generated according to predefined rules with precisely derived ground truth. This setup enables meticulous
regulation of the underlying computation graph, allowing us to specify the total number of reasoning steps (i.e., edges in the
graph) needed to arrive at the final answer.

In constructing of SynDeduct dataset, we begin by sampling a set of DAGs according to parameters that define constants,
variable distributions, and arithmetic operators. We then extract paths from each DAG as programmatically computed
reasoning traces. The resulting ground-truth derivations are converted into Chain of Thought representations by applying a
set of verbalization templates, yielding readable textual explanations. Unlike in GSM8K, our approach does not require
code generation or templated Chains of Thought, as the underlying computation graph is already available.

We quantify a path’s difficulty by counting the number of reasoning steps (graph edges) it takes to move from the initial
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Model Calculation Logic Understanding
Phi-4 0.1058 0.0445 0.1058

Llama-3-8B 0.1577 0.0611 0.282
Table 21: Error Rates of Models w/Monitor normalized by total data-points

(base) node to the final (target) node. Accordingly, we generate N sets of questions, where the n-th set contains questions
that require n steps.

To accommodate varying input-premise lengths, we create additional questions by progressively appending segments of the
ground-truth reasoning chain to converge on the same target premise. We then place these questions into bins based on how
many hops are needed, intermixing different prefix lengths within each bin. This organization yields n bins, each focused on
questions requiring n hops but differing in the prefixed portion of the chain. Such binning enables robust averaging of model
performance for varying prefix lengths within the same number of steps.

To reduce unnecessary increase in calculation errors we tried to keep the operators limited to only addition and subtraction.

Table 22: DC ± Standard Error for Hops 1-6

Model Hop 1 Hop 2 Hop 3 Hop 4 Hop 5 Hop 6

Qwen-2.5-Math-7B 0.2083± 0.0336 0.1205± 0.0354 0.0867± 0.0228 0.0898± 0.0245 0.0792± 0.0238 0.0607± 0.0189
Qwen-2.5-7B 0.5458± 0.0376 0.3705± 0.0474 0.3250± 0.0430 0.2630± 0.0357 0.2562± 0.0279 0.2440± 0.0334
Qwen-2.5-Math-72B 0.5674± 0.0285 0.4894± 0.0434 0.4433± 0.0456 0.3852± 0.0553 0.3635± 0.0513 0.3381± 0.0549
Qwen-2.5-72B 0.6868± 0.0287 0.5848± 0.0389 0.4825± 0.0368 0.4046± 0.0358 0.3354± 0.0294 0.2643± 0.0215
Llama-3-8B 0.2993± 0.0458 0.2023± 0.0411 0.1825± 0.0382 0.1602± 0.0368 0.1469± 0.0275 0.1357± 0.0257
DeepSeek-R1-Llama-70B 0.7389± 0.0202 0.6879± 0.0196 0.6742± 0.0175 0.6509± 0.0169 0.6542± 0.0167 0.6488± 0.0206
Llama-3.3-70B 0.8465± 0.0124 0.8129± 0.0158 0.7675± 0.0147 0.7250± 0.0140 0.7125± 0.0177 0.6833± 0.0096
DeepSeek-R1-Qwen-7B 0.5424± 0.0369 0.3871± 0.0442 0.3308± 0.0416 0.2870± 0.0432 0.2802± 0.0441 0.2262± 0.0348

Table 23: DC ± Standard Error for Hops 7-12

Model Hop 7 Hop 8 Hop 9 Hop 10 Hop 11 Hop 12

Qwen-2.5-Math-7B 0.0403± 0.0105 0.0383± 0.0124 0.0250± 0.0088 0.0250± 0.0097 0.0167± 0.0090 0.0000± 0.0000
Qwen-2.5-7B 0.1639± 0.0196 0.1633± 0.0217 0.1479± 0.0256 0.0917± 0.0273 0.0792± 0.0232 0.0500± 0.0186
Qwen-2.5-Math-72B 0.3222± 0.0582 0.3367± 0.0578 0.3229± 0.0678 0.2861± 0.0648 0.2667± 0.0691 0.2583± 0.0702
Qwen-2.5-72B 0.2167± 0.0176 0.1750± 0.0164 0.1562± 0.0209 0.0889± 0.0149 0.0667± 0.0136 0.0417± 0.0185
Llama-3-8B 0.0903± 0.0215 0.0883± 0.0201 0.1104± 0.0229 0.0861± 0.0169 0.0417± 0.0154 0.0083± 0.0080
DeepSeek-R1-Llama-70B 0.6431± 0.0159 0.6083± 0.0248 0.5958± 0.0273 0.5556± 0.0186 0.4667± 0.0325 0.3333± 0.0430
Llama-3.3-70B 0.6347± 0.0156 0.6017± 0.0169 0.5854± 0.0178 0.5750± 0.0391 0.5417± 0.0316 0.6083± 0.0343
DeepSeek-R1-Qwen-7B 0.2097± 0.0336 0.1633± 0.0360 0.1604± 0.0353 0.1250± 0.0243 0.0667± 0.0198 0.0667± 0.0136
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Table 24: DC ± Standard Error for Prefix 1-6

Model Prefix 1 Prefix 2 Prefix 3 Prefix Prefix 5 Prefix 6

Qwen-2.5-Math-7B 0.2113± 0.0452 0.1118± 0.0257 0.0967± 0.0218 0.0878± 0.0231 0.0663± 0.0214 0.0734± 0.0132
Qwen-2.5-7B 0.3719± 0.0678 0.3715± 0.0483 0.2947± 0.0559 0.2951± 0.0452 0.2289± 0.0479 0.2401± 0.0421
Qwen-2.5-Math-72B 0.7968± 0.0140 0.6433± 0.0187 0.4900± 0.0273 0.3836± 0.0338 0.3812± 0.0313 0.3475± 0.0289
Qwen-2.5-72B 0.3674± 0.0737 0.3526± 0.0773 0.3674± 0.0714 0.3522± 0.0777 0.3039± 0.0670 0.3396± 0.0545
Llama-3-8B 0.3011± 0.0451 0.2580± 0.0341 0.2371± 0.0430 0.1494± 0.0285 0.1169± 0.0277 0.0981± 0.0191
DeepSeek-R1-Llama-70B 0.5970± 0.0546 0.6546± 0.0570 0.6828± 0.0401 0.6461± 0.0569 0.6287± 0.0563 0.6304± 0.0474
Llama-3.3-70B 0.6452± 0.0204 0.7562± 0.0186 0.6720± 0.0298 0.6691± 0.0292 0.6730± 0.0181 0.6094± 0.0301
DeepSeek-R1-Qwen-7B 0.4534± 0.0581 0.3817± 0.0550 0.3252± 0.0552 0.2780± 0.0440 0.3136± 0.0376 0.1923± 0.0406

Table 25: DC ± Standard Error for Prefix 7-12

Model Prefix 7 Prefix 8 Prefix Prefix 10 Prefix 11 Prefix 12

Qwen-2.5-Math-7B 0.0383± 0.0157 0.0407± 0.0106 0.0191± 0.0080 0.0151± 0.0061 0.0176± 0.0100 0.0124± 0.0061
Qwen-2.5-7B 0.1651± 0.0386 0.1544± 0.0383 0.1918± 0.0329 0.1376± 0.0362 0.1277± 0.0238 0.1217± 0.0227
Qwen-2.5-Math-72B 0.2979± 0.0410 0.3003± 0.0274 0.2063± 0.0336 0.1619± 0.0301 0.1676± 0.0401 0.2034± 0.0359
Qwen-2.5-72B 0.2892± 0.0583 0.2505± 0.0558 0.2376± 0.0490 0.2286± 0.0419 0.2007± 0.0436 0.2138± 0.0478
Llama-3-8B 0.0775± 0.0240 0.0903± 0.0147 0.0821± 0.0163 0.0362± 0.0085 0.0599± 0.0091 0.0452± 0.0108
DeepSeek-R1-Llama-70B 0.6311± 0.0498 0.6519± 0.0377 0.6133± 0.0316 0.6845± 0.0149 0.6875± 0.0352 0.6426± 0.0473
Llama-3.3-70B 0.6164± 0.0176 0.5876± 0.0226 0.6538± 0.0195 0.5721± 0.0317 0.5625± 0.0206 0.5844± 0.0122
DeepSeek-R1-Qwen-7B 0.1470± 0.0350 0.1923± 0.0339 0.1927± 0.0377 0.1070± 0.0292 0.1302± 0.0344 0.1321± 0.0300
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Figure 12: Coverage Metric in SynDeDeduct for Different Models
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A.7. Error Analysis on SynDeduct

A.7.1. QUALITATIVE ANALYSIS

We have the following error categories: Calculation: correct operands & operator, but wrong arithmetic.

Logic: correct operands but wrong operator. Understanding: wrong operands or misread definition.

Garbled: incoherent or bad attempt at correct solution or repeated backtracking.

Exit: The case where response from error analysis llm could not be parsed.

Calculation Error

Inputs:
- X (value = 7)
- Y (value = 7)
- Z is the difference between X and Y.
- What is the value of Z?
Golden Answer Reasoning:
- Z is the difference between X and Y. Z = 7 - 7 = 0
Model Final Answer:
- Z is the difference between X and Y. Z = 7 - 7 = -3
Explanation:
Operands: X=7, Y=7; Operation: -; Computed: 7-7=-3 vs 0.

Understanding Error

Inputs:
- X (value = 7)
- Y (value = 7)
- T (value = 2)
- Z is the difference between X and Y.
- What is the value of Z?
Golden Answer Reasoning:
- Z = 7 - 7 = 0
Model Final Answer:
- Z is the difference between X and T. Z = X - T = 5
Explanation:
Picked Operands X and T instead of X and Y

Logic Error

Inputs:
- X (value = 7)
- Y (value = 7)
- Z is the difference between X and Y.
- What is the value of Z?
Golden Answer Reasoning:
- Z = 7 - 7 = 0
Model Final Answer:
- Z is the sum between X and Y. Z = X + Y = 14
Explanation:
Picked Operands X and Y (correct) but used "+" operations instead of "-"
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A.7.2. QUANTITATIVE ANALYSIS

Calculation errors (Figure 14) are major source of performance degradation and dominate through all prefix/hop levels.
Next, Understanding errors are present and stay constant thought out and Logic errors are sparse to find.

Garbled Errors are a major source of concern. tried our best to ensure that the experimental setup is sound. We used the
recommended (and other) sampling settings, prompt settings for the model and did not see major improvement in garbled
errors. We also used different LLM hosting packages and their default settings (vLLM, transformers etc and see no change).
Exit failure code denotes where our error analysis LLM failed to produce parse-able results and such errors are few.

One could argue that large context length required for synDeduct may cause issues, however it doesnt hold well. As the
maximum number of tokens for the task never exceeds 10k, which is well below for the maximum context size for these
models. And the task is hand is very simple.

Also, models like Phi-4 and Qwen 7B, Qwen 7B R1 perform way better in the same experimental settings. This failure
mode deep dive analysis is left for future work.
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(a) Llama 3.3 70B
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(b) Llama 3 8B
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(c) Llama 3.3 70B R1
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(e) Qwen 72B
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(f) Qwen Math 72B
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(g) Qwen 7B
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(h) Qwen Math 7B
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Figure 14: Error plots for SynDeduct.
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A.8. ProntoQA

Here are the results on ProntoQA.

Model Name Coverage

Phi-4 0.9151
DeepSeek-R1-Llama-70B 0.9105
DeepSeek-R1-Qwen-7B 0.9096
Qwen2.5-7B 0.9060
Qwen2.5-Math-72B 0.8902
Phi-3.5-mini 0.8706
LLaMA-3.3-70B 0.8466
Qwen2.5-Math-7B 0.8341
Meta-LLaMA-3-8B 0.7738

Model Name Hop@1 Hop@2 Hop@3 Hop@4 Hop@5

Phi-4 1.000 0.999 0.999 1.000 1.000
DeepSeek-R1-Llama-70B 0.998 0.997 0.996 0.991 0.996
DeepSeek-R1-Qwen-7B 0.995 0.984 0.970 0.953 0.953
Qwen2.5-7B 0.993 0.982 0.967 0.944 0.935
Qwen2.5-Math-72B 0.999 0.997 0.996 0.993 0.993
Phi-3.5-mini 0.998 0.997 0.996 0.994 0.996
LLaMA-3.3-70B 0.998 0.998 0.994 0.993 0.993
Qwen2.5-Math-7B 0.992 0.982 0.967 0.957 0.942
Meta-LLaMA-3-8B 0.994 0.985 0.986 0.979 0.986

Model Name P@0 P@1 P@2 P@3 P@4

Phi-4 1.000 1.000 0.998 1.000 1.000
DeepSeek-R1-Llama-70B 0.999 0.973 0.966 0.994 0.937
DeepSeek-R1-Qwen-7B 0.981 0.954 0.983 0.991 0.996
Qwen2.5-7B 0.953 0.978 0.987 0.982 0.996
Qwen2.5-Math-72B 0.997 0.997 0.997 0.997 0.998
Phi-3.5-mini 0.999 0.995 0.997 0.995 0.939
LLaMA-3.3-70B 0.997 0.997 0.996 0.997 0.996
Qwen2.5-Math-7B 0.960 0.976 0.981 0.982 0.994
Meta-LLaMA-3-8B 0.991 0.986 0.984 0.994 0.996
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A.9. LM Prompts for GSM8K

LLM Prompt

System prompt: "You are an expert in math. You must answer this question. You give the step-by-step solution
followed by four # symbols followed by the answer."
User: "Question: <question>\nAnswer:"

Example Question:
User: "Question: Yasna has two books. One book is 60 pages long, and the other book is 12 pages long. If Yasna
wants to finish both of the books in 6 weeks, how many pages will Yasna need to read every day, if she reads an
equal number of pages each day? \nAnswer:"

Example Assistant Partial Answer:
Assistant:

Yasna has 60 + 12 = 72 pages to read.

She has 6× 7 = 42 days to read them.

Template Builder Agent Prompt

System Prompt:
You are a templatizing agent. Your task is to process questions and answers, templatize them by replacing specific
numerical values with placeholders, and create a structured JSON output. The JSON output must contain the
following keys:
1. **templatized_question**: A version of the question where specific numerical values, object names, or other
unique entities are replaced by placeholders.
2. **templatized_answer**: A step-by-step reasoning answer where specific numerical values or entities are
replaced by placeholders. Each step should remain logically consistent with the original answer.
3. **factual_assignment**: A dictionary mapping placeholders to their original factual values, ensuring the
templatized versions can reconstruct the original question and answer. MUST only contain NUMERICAL values.
Make sure the templatized answer and question ALIGN PERFECTLY with the original answer structure.
—
### **ICL Examples**
#### **Example 1**
**Input Question:**
A train travels 60 kilometers in 2 hours. What is its average speed?
**Input Answer:**
The train travels a distance of 60 kilometers in 2 hours. Average speed is calculated as distance divided by time.
Average speed = 60 / 2 = 30 kilometers per hour.
**Output JSON:**

{
"templatized_question": "A train travels {distance} kilometers in {time} hours.

What is its average speed?",
"templatized_answer": [
"The train travels a distance of {distance} kilometers in {time} hours.",
"Average speed is calculated as distance divided by time.",
"Average speed = {distance} / {time} = {average_speed} kilometers per hour."

],
"factual_assignment": {
"distance": 60,
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"time": 2,
"average_speed": 30

},

"node_explanation":{
"distance": "The distance traveled by the train",
"time": "time taken by the train to travel the distance",
"average_speed": "The average speed of the train"

}
}

—
#### **Example 2** **Input Question:**
Mary buys 3 books for $15 each. How much does Mary spend in total?
**Input Answer:**
Mary buys 3 books, each costing $15. Total cost is calculated as number of books multiplied by the cost per book.
Total cost = 3 * 15 = $45.
**Output JSON:**

{
"templatized_question": "Mary buys {quantity} books for ${cost_per_book} each. How

much does she spend in total?",
"templatized_answer": [
"Mary buys {quantity} books, each costing {cost_per_book}.",
"Total cost is calculated as number of books multiplied by the cost per book.",
"Total cost = {quantity} * {cost_per_book} = ${total_cost}."

],
"factual_assignment": {
"quantity": 3,
"cost_per_book": 15,
"total_cost": 45

},
"node_explanation":{
"quantity": "The number of books bought by Mary",
"cost_per_book": "The cost of each book",
"total_cost": "The total amount spent by Mary"

}
}

—
User Prompt:
f"Question: <question>\nAnswer: <answer>\n\nProvide the templatized version as per the example above."

Code Generation LLM Prompt

System Prompt:
Generate Python code that solves the following problem step by step:
User Prompt:

Question:
<question>

Answer:
<CoT Answer>. The code must follow the variable names similar to ones in <

templatized_answer>

Python Code:
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Variable Extractor LLM Prompt

Instructions:
You are an expert in comprehension and variable extraction. Your task is to analyze a question, a step-by-step
solution, and a dictionary of variables and return a JSON object that adheres to the following rules:
—
Guidelines:

1. Inputs:

• Question: The problem description.
• Step-by-step solution: The solution text, where variables may be explicitly stated or calculated.
• Dictionary of variables: Contains variable names and their descriptions. Not all variables may appear in

the question or solution.

2. Output Format:

• Return a JSON object with:
– Keys: Variable names from the dictionary.
– Values: Numeric values extracted from the solution or question.
– If a value is explicitly mentioned in the step-by-step solution, extract it without recalculating.
– If the variable is not present in the solution or question, return "None".
– Values must preserve their original format (e.g., fractions, decimals, or expressions).

3. Output Structure:

• Enclose the output JSON object within <JSON> and </JSON> tags.
• All numeric values must be string representations (e.g., "3/2", "25.5", or "12+8").

4. Restrictions:

• Do not solve the problem yourself or calculate missing values.
• Extract only the values as they appear in the solution.

Example 1:

Question:
At a flea market, Hillary sells handmade crafts for 15 dollars per craft.
Today, Hillary sells 6 crafts and is given an extra 5 dollars from an appreciative

customer.
Later on, Hillary deposits 12 dollars from today’s profits into her bank account.
How many dollars is Hillary left with after making the deposit?

Step-by-step solution:
Hillary earns \(15 \times 6 = 90\) dollars from selling crafts.
Adding the extra 5 dollars, she has 90 + 5 = 95 dollars.
After depositing 12 dollars, she has 95 - 12 = 83 dollars left.

Dictionary of variables:
{

"price_per_craft": "The price of each craft",
"number_of_crafts": "The number of crafts sold",
"extra_dollars": "The extra amount given by the customer",
"deposit_amount": "The amount deposited into the bank account",
"total_earnings": "The total amount earned from selling crafts",
"total_amount": "The total amount after receiving the extra dollars",
"amount_left": "The amount left after depositing"

}

Output:
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<JSON> {
"price_per_craft": "15",
"number_of_crafts": "6",
"extra_dollars": "5",
"deposit_amount": "12",
"total_earnings": "90",
"total_amount": "95",
"amount_left": "83"

} </JSON>

Example 2:

Question:
In a truck, there are 5 pink hard hats, 16 green hard hats, and 15 yellow hard hats.
Carl takes away 10 pink hard hats.
John takes away 7 pink hard hats and twice as many green hard hats as the number of

pink hard hats he removed.
Calculate the total number of hard hats that remained in the truck.

Step-by-step solution:
The total number of hats is 5 + 16 + 15 = 36.
Carl removes 10 pink hats, leaving 36 - 10 = 26.
John removes 7 pink hats, leaving 26 - 7 = 19.
John also removes \(7 \times 2 = 14\) green hats, leaving \(19 - 14 = 5\) hats in

total.

Dictionary of variables:
{

"pink": "The number of pink hard hats",
"green": "The number of green hard hats",
"yellow": "The number of yellow hard hats",
"carl_pink": "The number of pink hard hats taken by Carl",
"john_pink": "The number of pink hard hats taken by John",
"total_initial": "The total number of hats initially",
"total_after_carl": "The total number of hats after Carl’s removal",
"total_after_john_pink": "The total number of hats after John’s pink hat removal",

"john_green": "The number of green hats taken by John",
"total_final": "The total number of hats remaining"

}

Output:
<JSON> {

"pink": "5",
"green": "16",
"yellow": "15",
"carl_pink": "10",
"john_pink": "7",
"total_initial": "36",
"total_after_carl": "26",
"total_after_john_pink": "19",
"john_green": "14",
"total_final": "5"

} </JSON>

User Prompt:

Here is the question and the step-by-step solution to the problem:

Question: {generation[6]}
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Step-by-step solution: {generation[1]}

Dictionary of variables: {generation[5]}

For more detailed explanation of variables you can see how they were used in this
template: {generation[2]}

A.10. Artifacts SynDeduct

Rule Set for SynDeduct

{
"add": {
"function": "lambda x, y: x + y",
"verbalization": "{child} is the sum of {parent1} and {parent2}."

},
"subtract": {
"function": "lambda x, y: x - y",
"verbalization": "{child} is the difference between {parent1} and {parent2}."

}
}

Data Generation Steps

Initially, Directed Acyclic Graphs are generated. A computation graph is then constructed by selecting a fixed-length
path within each DAG and randomly assigning values and operators to its nodes. A rule set, in conjunction with a
predetermined collection of nouns, is employed to generate verbalization.
Additionally, Chain-of-Thought solutions along with final answer are produced and later used to create prefixes. It
is important to note that the questions generated in this process consist exclusively of "n" hops and do not include
any prefix.

python3 init.py --num_graphs 99000 --m 60 --unary_ratio 0.0 --logic_mode bodmas --
naming_mode noun --nouns.json --operators_file ruleset.json --output_file output.
json --max_hops 24 --max_graphs 4000

Steps kept and undersampled to 4000:
Hop 1: 4000
Hop 2: 4000
Hop 3: 4000
Hop 4: 4000
Hop 5: 4000
Hop 6: 4000
Hop 7: 4000
Hop 8: 4000
Hop 9: 4000
Hop 10: 4000
Hop 11: 4000
Hop 12: 4000
Hop 13: 4000
Hop 14: 4000
Hop 15: 4000
Hop 16: 4000
Hop 17: 4000
Hop 18: 4000
Hop 19: 4000
Hop 20: 4000
Hop 21: 4000

30



1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Hop 22: 4000
Hop 23: 4000
Hop 24: 4000

The chain-of-solution is now appended to the question, resulting in questions that incorporate a specified number of
prefixes alongside n hops. To create a balanced dataset, the maximum number of hops is limited to 12, half the total
hops, and the total number of items is capped at 120.
For instance, in the case of Hop12, there are 10 questions featuring a 12-hop prefix. This configuration implies
that each such question originated from a 24-hop question, wherein the first 12 hops, serving as the prefix of the
chain-of-thought, are provided, and the language model is required to resolve the remaining 12 hops.

python transformer.py --max_hops 12 --max_items 120 --max_prefixes 12 --
max_prefix_length 10 output.json

Prefix Length Distribution Per Hop Category (After Undersampling):

Hop 1: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 2: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 3: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 4: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 5: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 6: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 7: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 8: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 9: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 10: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 11: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 12: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Total Prefix Length Distribution Across Hops:

Prefix1: 120
Prefix2: 120
Prefix3: 120
Prefix4: 120
Prefix5: 120
Prefix6: 120
Prefix7: 120
Prefix8: 120
Prefix9: 120
Prefix10: 120
Prefix11: 120
Prefix12: 120

Number Of Items per Hop

Hop: 1 - 120
Hop: 2 - 120
Hop: 3 - 120
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Hop: 4 - 120
Hop: 5 - 120
Hop: 6 - 120
Hop: 7 - 120
Hop: 8 - 120
Hop: 9 - 120
Hop: 10 - 120
Hop: 11 - 120
Hop: 12 - 120
Total entries in transformed JSON: 1440

A single Data-point of SynDeduct

Prompt Part A: Graph Structure and Question (will be given as user) The graph structure encompasses the
complete verbalization of the entire graph, whereas the question is derived solely from a specific path within that
graph. Consequently, a considerable amount of the information contained in the graph structure is not necessary for
generating a solution. This design serves to assess the model’s capability to extract and utilize only the relevant
information from a broader context.

=== Graph Structure ===
Inputs:
- Masako (value = 8)
- Nalca (value = 2)
- Gassman (value = 5)
Derived Nodes:
- Certain is the sum of Nalca and Masako.
- Irtysh is the sum of Certain and Gassman.
- Horstman is the difference between Masako and Certain.
- Pellicano is the difference between Horstman and Gassman.
- Taoiseach is the difference between Masako and Gassman.
- Vanvalkenburg is the difference between Gassman and Certain.
- Nourse is the sum of Irtysh and Nalca.
- Clapham is the sum of Pellicano and Taoiseach.
- Nuncio is the difference between Nalca and Horstman.
- Foxbat is the difference between Nalca and Gassman.
- Kenyon is the sum of Nuncio and Masako.
- Riva is the sum of Kenyon and Nourse.
- Claymore is the difference between Irtysh and Riva.
- Ballville is the sum of Masako and Riva.
- Lai is the difference between Kenyon and Clapham.
- Smolik is the sum of Vanvalkenburg and Riva.
- Bushi is the sum of Horstman and Claymore.
- Batiste is the sum of Riva and Kenyon.
- Criner is the sum of Riva and Certain.
- Begnaud is the difference between Nourse and Foxbat.
- SEPA is the sum of Certain and Irtysh.
- Wentling is the sum of Nalca and Smolik.
- Troon is the sum of Lai and Begnaud.
- Sanderson is the sum of Wentling and Begnaud.
- Ferozepore is the difference between Horstman and Sanderson.
- Sibiu is the sum of Ballville and Riva.
- Bootle is the sum of Irtysh and Nalca.
- Climategate is the sum of Vanvalkenburg and Taoiseach.
- Maland is the difference between Certain and Vanvalkenburg.
- Hobby is the difference between Sanderson and Kenyon.
- Tikrit is the difference between Nourse and Bootle.
- Lamarca is the sum of Maland and Criner.
- Dnipr is the sum of Irtysh and Nourse.
- Arvid is the difference between SEPA and Horstman.
- Plath is the sum of SEPA and Criner.
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- Gulliver is the difference between Kenyon and Sibiu.
- Helatrobus is the difference between Plath and Sanderson.
- Tulu is the sum of Nalca and Kenyon.
- Shuka is the sum of Nourse and Vanvalkenburg.
- Hemsley is the difference between Bootle and Pellicano.
- Creasman is the sum of Nourse and Troon.
- Falcon is the sum of Clapham and Irtysh.
- Border is the difference between Gassman and Tikrit.
- Noyola is the difference between Lamarca and Hobby.
- Tommie is the sum of Taoiseach and Helatrobus.
- Hines is the sum of Masako and Batiste.
- Adney is the difference between Wentling and Bushi.
- Winsford is the sum of Ballville and Shuka.
- Iga is the sum of Plath and Riva.
- Jacqueline is the sum of Winsford and Vanvalkenburg.
- Wheatley is the sum of Border and Irtysh.
- Lyndon is the sum of Noyola and Shuka.
- Arvelo is the difference between Pellicano and SEPA.
- Belphegor is the difference between Helatrobus and Wheatley.
- Kassandra is the difference between Bootle and Tulu.
- Garth is the difference between Wentling and Plath.
- Yucatec is the sum of Pellicano and Hines.

What is the value of Arvelo?

Prompt PartB: Partial COT (prefix)
This assistant prompt-response pair will be provided to the language model with the eos_token removed from the
end. This ensures that the model continues generating text seamlessly from where the given prefix ends, thereby
guiding its output to align with the intended structure and constraints.

Answer: - Given value of Masako = 8 .
- Given value of Nalca = 2 .Certain is the sum of Nalca and Masako.
The Computed value of Certain = 10

Response From LLM

- Given value of Gassman = 5 . Irtysh is the sum of Certain and Gassman. The
Computed value of Irtysh = 15 Horstman is the difference between Masako and
Certain. The Computed value of Horstman = -2 Pellicano is the difference
between Horstman and Gassman. The Computed value of Pellicano = -7 Taoiseach
is the difference between Masako and Gassman. The Computed value of Taoiseach
= 3 Vanvalkenburg is the difference between Gassman and Certain. The

Computed value of Vanvalkenburg = -5 Nourse is the sum of Irtysh and Nalca.
The Computed value of Nourse = 15 + 10 = 15 The Computed value of Nourse =
100 + 10 = 100 The Computed value of Nourse = 100 + 10 = 110 + 15 = 115 The
Computed value of Nourse = 15 + 10 = 110 + 15 = 115 The Computed value of
Nourse = 100 + 15 = 115 The Computed value of Nourse = 15 The Computed value
of Nourse = 15 The Computed value of Nourse = 15 + 10 = 25 The Compu

ted value of Nourse = 100 The Computed value of Nourse = 100 + 15 = 115 The Computed
value of Nourse = 15 + 15 = 30 The Computed value of Nourse = 100 T

he Computed value of Nourse = 100 The value of Septembr = 100 The value of Rondeau =
10 The value of Rondeau = 10 The value of Rondeau = 10 The value o

f Nalca = 10 The value of Nalca = 10 The value of Nalca = 10 The value of Nalca = 10
The value of Nalca = 10 The value of Nalca = 10 The value of Nalc

a = 10 The value of Nalca = 10 The value of Nalca = 10 The value of Nalca = 10 The
value of Nalca = 10 The value of Nalca = 10 The value of Nalca = 10

The value of Nalca = 10 The value of Nalca = 10 The value of Malca = 10 The value
of Malca = 10 The value of Malca = 10 The value of Maland = 10 The

value of Maland = 10 The value of Mand = 100 The value of Mand = 100 The value of
Nalca = 100 The value of Nalca = 100 The value of Nalca = 10 The va

lue of Salca = 10 The value of Valca = 10 The value of Calca = 10 The value of Galca
= 10 The value of Palca = 10 The value of Balca = 10 The value of
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Talca = 10 The value of Falca = 10 SEPA is the sum of Certain and Irtysh. The
Computed value of SEPA = 10 + 15 = 25 Pellicano is the difference between

Horstman and Gassman. The Computed value of Pellicano = -2 - 5 = -7 Arvelo is the
difference between Pellicano and SEPA. The Computed value of Arvelo = -7

- 25 = -32 \n#### -3

Template System Prompt

You are a computation graph reasoning assistant designed to evaluate mathematical
expressions described in any style of verbalizations. Your task is to process a
graph structure, interpret the relationships between nodes based on the provided
verbalizations, and answer questions about specific nodes.

Here are the rules and expectations for your behavior:
---
### Rules:
{RuleSet.json is filled here}

**Graph Structure Processing**:
- Nodes are defined as inputs or derived nodes.
- Inputs have predefined values.
- Derived nodes depend on other nodes and their relationships as defined by

verbalizations.

**Step-by-Step Reasoning**:
- Interpret the graph structure line-by-line.
- Calculate the value of each derived node based on its dependencies, ensuring

that the verbalization is correctly mapped to its mathematical function.
- Use previously calculated or input values as required.

**Answer Presentation**:
- Provide the value of the requested node only after completing all necessary

computations and make sure the value is a integer or a float.
- SHOW THE REASONING STEP-BY-STEP AND PROVIDE THE FINAL ANSWER CLEARLY, PREFIXED

BY ‘####‘ and NOTHING AFTER IT.
- Suppose answer is 56. You must output ‘#### 56‘ at the end of each step-by-step

solution.

Example 1:

{Graph Structure is filled here}
{Question is filled here}

Answer: Rondeau is an input with value 10.
- Septembr is the square of Rondeau.. The value of Septembr = 100
####100

Subsequently, the output generated by the language model is processed using a Variable Extractor analogous to that
employed in the GSM8K dataset. The parsed response is then normalized—massaged into the correct format (for instance,
converting fractional representations to floating-point numbers)—and subsequently compared to the final expected answer,
allowing for a tolerance of up to 5 per-cent deviation from the original value.
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