
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

DeduCE: Deductive Consistency as a Framework to Evaluate LLM Reasoning

Anonymous Authors1

Abstract
Deductive reasoning is a key component in solv-
ing complex problems, especially those involving
math and logic. Formally, deductive reasoning in-
volves two subtasks: understanding a set of input
premises and inferring the conclusions that follow
from them. Recent work highlights deficiencies in
deductive reasoning of language models (LMs) by
measuring final accuracy. Going beyond accuracy,
we propose a metric to directly characterize deduc-
tive reasoning, which allows comparison of LMs’
capabilities across both deductive subtasks and
guides where finetuning efforts may help the most.
The ideal evaluation would require access to an or-
acle system that can verify any candidate conclu-
sion from an LM given input premises, which in
turn requires computing the deductive closure. In-
stead, we propose a practical solution that requires
access to only one correct solution for a problem
and measures deductive consistency (DC) over
varying windows of reasoning steps. By breaking
up LMs’ reasoning steps into dynamic windows,
we can directly evaluate the two subtasks: how
well do LMs understand input premises with in-
creasing context lengths, and how well can they
infer conclusions over multiple reasoning hops?
Since existing benchmarks may be memorized,
we also develop a pipeline to evaluate LMs’ de-
ductive consistency on novel, perturbed versions
of benchmark problems. Our key result is that
LMs are more robust to processing input premises
of varying lengths than inferring conclusions over
a longer horizon. For instance, on datasets such
as GSM-8k and ProntoQA, DC of LMs stays the
same regardless of the length of prefixes; the key
source of error is the number of output reasoning
steps. Labeling the reasoning errors reveals that
a significant fraction of the errors are calculation
or logical errors. Applying prevalent mitigation

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

techniques such as fine-tuning or tool use reduces
some kind of errors, but cannot fully remove the
decay in DC.

1. Related Work
Deductive consistency is a metric that goes beyond accuracy
to measure reasoning abilities. Hence, it is related to works
which evaluate reasoning using accuracy, which propose
other metrics, and which use LLMs for deductive reasoning
tasks. We discuss these categories below:

Evaluating reasoning beyond memorization. To avoid
confounding in experiments due to dataset memorization,
novel datasets based on synthetic data have been pro-
posed (Zhu et al., 2023). To keep real world relevance,
recent work propose perturbed or novel versions of exist-
ing datasets, for math (Mirzadeh et al., 2024; Zhang et al.,
2024), analogical reasoning (Lewis & Mitchell, 2024b;a),
deductive reasoning Sanyal et al. (2022), and many other
diverse tasks (Wu et al., 2024).

Metrics for reasoning beyond final answer’s accuracy.
Xu et al. (2024) propose four different types of metrics
based on answer correctness and explanation correctness.
Seals & Shalin (2024) test deductive competence on logical
questions.Paul et al. (2024) bias LLMs to adhere to their
intermediate CoT steps. Another stream of work checks
language models’ ability to detect errors in a solution (Zeng
et al., 2024) and fix any detected errors (Singh et al., 2024).
In comparison, we aim to provide a general metric for any
task that involves deductive reasoning.

Deductive reasoning in LLMs. LogicBench evaluates
various models on natural language problems over proposi-
tional, first order, and non-monotonic logic (Parmar et al.,
2024). JustLogic is a synthetic deductive dataset Chen
et al. (2025). Other examples include analyzing categorical
syllogisms (Zong & Lin, 2024) and proving theorems in
intuitionistic propositional logic (An et al., 2024). How-
ever, most work uses final accuracy as the metric to evaluate
deductive reasoning.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

 James writes a 3-page letter to 2 different
friends twice a week. How many pages does

he write a year?

Question

Prefix (K) =0

"James writes 8 pages to
20 friends 2 a week.",

"So that is 8* 20 * 2 = 326
pages a week."

"In a year, that is 52 *320 =
16640 pages."

 James writes a 3-page letter to 2 different
friends twice a week. How many pages does

he write a year?

Question

Prefix (K) =1

 James writes a 3-page letter to 2 different
friends twice a week. How many pages does

he write a year?

Question

Prefix (K) =2

 James writes a 3-page letter to 2 different
friends twice a week. How many pages does

he write a year?

Question

Prefix (K) =3

Hop = 1 ;

Hop = 3 ;

Hop = 2 ;

Hop = 4 ;

Hop = 1

Hop = 3

Hop = 2

Hop = 2

Hop = 1

Hop = 1

Standard Evaluation (Justlogic, ProntoQA) DeDuCE: Dynamic window-based evaluation of Deductive reasoning (prefix, hop)

DC(1,2)=0

DC(1,1)=1

DC(1,3)=1

DC(2,1)=1

DC(2,2)=1 DC(3,1)=1DC(0,4)=1

DC(0,3)=0

DC(0,2)=1

DC(0,1)=1

Final Accuracy =1

"There are 52 weeks in
an year"

Figure 1: Standard accuracy-based evaluation versus Deductive Consistency that allows evaluation of step-wise computation
of deductive conclusions, given a set of input premises (previous steps from a correct reference solution).

2. Defining Deductive Consistency
Given a consistent proof system S = ⟨L,R⟩, where L is the
underlying logical language and R is the set of inference
rules, let P ⊂ L denote the set of premises and Th(P) ⊆ L
the deductive closure of P under R. We assume access to a
dataset of problems (Pj , tj)

M
j=1 ∈ D where Pj denotes the

set of premises and tj the target predicate to be proved in
each problem j. The total number of problems in the data
set is M .

For example, consider a system with the language L of
statements of the form X → Y and transitivity as a single
inference rule, W → X,X → Y ⇒ W → Y . A sample
set of premises may be “A → B;B → C;B → D;C →
F ;D → F ;E → F ;F → G”, and a target predicate to
be proved be “A → G”. Assume that a reasoning system
A (e.g., an AI reasoning model) produces the (incorrect)
proof, A → D;A → E;E → G to conclude A → G.
Beyond final accuracy, we define the Deductive Consistency
metric to evaluate the reasoning system’s proof steps on
such problems. For instance, on a math word problem, we
would like to check the consistency of a LM’s intermediate
steps with correct deductive reasoning.

2.1. Deductive consistency given a complete proof
system

Consistency evaluates the extent to which a reasoning sys-
tem A agrees with the reference proof system S. For each
problem d ∈ D, where d = (P, t), we generate a proof
A(P, t) using A. A simple way of measuring reasoning
performance may be to compute per-predicate accuracy. For
each Xi ∈ A(P, t): Consd =

∑
i IXi

|A(P,t)| where Iz is an indi-

cator function, 1 whenever z is correctly inferred by A and
zero otherwise. For each Xi, we use the complete proof
system to verify whether it is true or not, given P and the
input premises Xk : {k : 1, 2, ..i − 1}. For the example
proof above, the metric will be 0.67 because the second
predicate is incorrect, but final accuracy will be 1.

However, in the definition above, if a given step Xj is in-
correct, evaluation of the future steps would depend on an
incorrect premise. Therefore, we extend the above metric to
include longer input premises than in an original problem.
We do so by sampling a (correct) proof from the reference
proof system and adding the first k steps of the proof to
the input premises P . The input premises now become
P ′ = P ∪ Rk(P, t) where Rk(P, t) is the first k steps of
the proof. Then, as k increases, we obtain a measure of how
well a reasoning system can handle larger input premises.
Let X ′

i be the proof steps generated by A(P ∪Rk(P, t), t).
The reasoning system’s goal is to complete the proof.

Consd(k) =

∑N
i=k+1 IX′

i

|A(P ′, t)| (1)

Continuing our example with k = 1, the reference proof
system may add the first step, “A → C” and let the target
system A complete the rest. Here, the system may produce a
faulty proof as before, A → C;A → E;A → G. However,
with k = 2 and adding the first two steps “A → C;A → F ”,
the system A may produce A → C;A → F ;A → G,
which is a correct proof.

However, the above metric has a right censoring issue (Gij-
bels, 2010): this measure of deductive consistency depends
trivially on the number of input premises. In general, the dif-
ficulty of a proof is associated with the number of inference

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

rules required to complete it. If many premises are already
provided, the number of inference rules to reach the target
predicate decreases and the problem becomes simpler. As a
result, if we see an increase in deductive consistency as the
number of reference proof steps are increased (as we see for
the example above), it may simply be due to the fewer steps
that need to be predicted, rather than due to the reasoning
system’s improved consistency after access to the reference
system’s guidance for the first few steps. Therefore, we
also introduce a hops parameter (l), denoting the number of
inference rules (steps) at which we evaluate the reasoning
system.

DedConsdj
(k, l) =

IX′
k+l,j

M
; (2)

DedCons(k, l) =

∑
dj∈D IX′

k+l,j

M
(3)

Compared to final accuracy, a key benefit of the our formu-
lation is that we obtain multiple premises and evaluation
sets from a single problem instance. This makes it possible
to study the subtasks in deductive reasoning: 1) Premise
understanding: vary k to see how a reasoning system’s con-
sistency changes as the number of input premises increase;
2) Deductive inference: vary l to see how the reasoning sys-
tem’s consistency changes as the number of output hops are
increased. We define base as the deductive consistency at
the first hop and decay as the negative slope of line that best
fits deductive consistency marginalized by prefixes and hops

normalized between 0 and 1, = −Cov(Ek[DedCons(k,ℓ)], ℓ
ℓmax

)

V ar(ℓ
ℓmax

)

to refer to this change as k or l are increased. For example,
decay wrt. the output hops is defined as,

µ =
1

ℓmax + 1

ℓmax∑
ℓ=0

Ek [DedCons(k, ℓ)] (4)

γ = − 12ℓmax

(ℓmax + 2)
(5)

Decay = γ

ℓmax∑
ℓ=0

(
ℓ

ℓmax
− 1

2

)
(Ek [DedCons(k, ℓ)]− µ)

(6)

where ℓmax represents maximum number of hops in dataset.
An ideal reasoning system’s deductive consistency should
be a constant close to 1 (thus zero decay), independent
of the number of premises k and the number of hops l.

2.2. Deductive Consistency given a reference proof

While the above metric works for a complete proof system
as the reference, in practice it is more common to have
access to a limited reference system that can only generate
a single proof S(P, t) given a problem. Therefore, we now
assume access to a reference proof system that given a

set of premises P and a target predicate t, can generate a
proof involving predicates S(P, t) ⊆ Th(P), representing
the predicates within the closure that were proved while
proving the main result for t. We call such a proof as the
reference solution. Continuing the transitivity example, it
would mean that we only have access to a reference proof
solution, A → C;A → F ;A → G, but cannot assess the
validity of a predicate outside it such as A → D.

Given a reasoning system’s proof A(P, t), now we can only
verify the predicates that are also present in S(P, t). We
therefore orient the deductive consistency metric to focus
on the verifiable predicates that are also proved by A. For
each Zi ∈ S(P, t)

DedConssingle(k, l) =

∑
dj∈D IZk+l,j∈A(P ′

j ,tj)

M
(7)

where the numerator is an indicator function checking
whether a given predicate Zi ∈ S(P, t) is also included
in the proof by A. Note that the above metric introduces a
bias because the reasoning system A may generate (true)
predicates that are not in the reference solution (there can
be multiple ways to solve the same problem). For in-
stance, even if a reasoning system produces a valid proof,
A → D;A → F ;A → G, its DedConssingle(0, 1) will be
zero because the first step A → C from reference solution
S(P, t) is not a part of the system’s proof A.

In such cases, the consistency metric above can under-
estimate the deductive consistency–the reasoning system
may be penalized for a producing a valid solution because its
steps are different than that of the reference system. Hence,
we also introduce a metric for coverage. The Coverage
metric is defined as the expected proportion of variables in
S(P, t) inferred by A. Let VS(P,t) be the variables included
in the reference solution. Then coverage is

Coverage =

∑
dj∈D

∣∣VS(Pj ,t) ∩ VA(Pj ,t)

∣∣∑
dj∈D

∣∣VS(Pj ,t)

∣∣ . (8)

Thus, coverage measures how verification of the set of pred-
icates in the reference solution measures deductive con-
sistency. Interpretation of DedCons is valid only when
coverage is high.

3. Evaluating Deductive Consistency of LLMs
To evaluate deductive consistency, we require at least one
reference solution for each reasoning problem. Given a
benchmark reasoning dataset, we propose a method to ob-
tain such solutions. We call the model under evaluation
as SubjectLM. It produces a chain-of-thought (CoT) solu-
tion for a question. Each question is defined by an initial

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

set of premises Q and a target conclusion T . While stan-
dard evaluations assess accuracy only at the final step T ,
we evaluate reasoning quality at each intermediate step via
deductive consistency. We assume that a reference solution
tCode is available which can be used to verify correctness
of intermediate steps.

3.1. Evaluating Deductive Consistency: A Correct
Solution is Known

In order to compute deductive consistency we generate win-
dowed instances of the same problem to test SubjectLM
on. We increase the window of prefix and compute value
of variables at every subsequent hop using the computation
graph of tCode as illustrated in Figure 1. We provide the
SubjectLM with the question and prefix and let it generate
solution. To implement Equation 5, we check for the correct-
ness of variables at every subsequent hop ℓ with respect to
tCode given prefix k. A Variable Extraction LM (Parser)
is used to extract predicate values from natural language
chain of thought, if predicate is present in the CoT for
evaluation. We average these values over the entire dataset
to obtain DedCons(k, l) for each prefix k and hop l pair.

3.2. Evaluating Deductive Consistency: Realworld
dataset requires Novel Problem Generation

The above pipeline works when a single correct solution can
be obtained (e.g., from the dataset construction source code).
However, for datasets sourced from real-world scenarios,
that may be difficult. In addition, in popular real-world
datasets such as GSM-8k, there are significant memorization
concerns. To alleviate both these problems, we develop a
pipeline that constructs novel versions of the benchmark
problem, and uses an auxiliary LM on the original problem
to obtain a reference solution. Partly, we are exploiting
LMs’ memorization abilities to increase the chances that
the auxiliary LM returns a correct solution.

Obtaining Correct Solution.To generate a correct solution
for a reasoning problem, we adopt a generate-then-verify
approach. First, an expert language model produces a candi-
date solution in two semantically equivalent forms: a tem-
platized chain-of-thought (tCoT) and an executable code
snippet (tCode). Generating the tCoT comes before code
generation, ensuring that the reasoning steps are clearly out-
lined. Next, we perform an internal consistency check
between these two representations. We verify that, for any
given factual input, both the tCode and the tCoT yield
identical intermediate variable values at each step. Only
when this equivalence is confirmed do we accept the code
as a reliable, symbolic encoding of both the problem and its
correct solution.

Generating Novel Problem. For generating a novel prob-
lem, we adopt a simple perturbation: changing the val-

ues of variables in the problem statement. Other perturba-
tions, such as changing variable names and adding irrelevant
info (Mirzadeh et al., 2024) can be easily added. This is
done by first generating the correct code for a novel problem
and then generating the text for the problem. To create a new
problem, we sample seed premises: random integers un-
der 100 (avoiding large numbers and floating-point values).
These sampled inputs are fed into tCode to compute inter-
mediate results (val). Then, we generate a novel problem
by reinserting val back into the templated question (tQ),
producing a new question Q′, and into the tCoT , producing
a fresh chain-of-thought ground-truth CoT’. This process
lets us confirm that the method consistently generates cor-
rect solutions across different inputs.

To summarize, we use auxiliary expert LMs to help with
transformation tasks. Specifically, we use Code Generation
LM that generates executable reasoning graphs (tCode)
from the solution. Templatization LM that creates templa-
tized version of Question (tQ) and the Chain of Thought
(tCoT). The entire pipeline is shown in Figure 4.

4. Results
4.1. Datasets

GSM8K A subset of 1000 problems from GSM8K is ran-
domly chosen. The responses of LMs under evaluation are
filtered as described in section 3. Problem instances com-
mon across the models are collected and used as final dataset
that will be used to evaluate these models. This consists
of 165 problem instances. For each instance we generate
n(=10) counterfactual samples.

SynDeduct is our custom synthetic data-generation pipeline.
It allows generation of questions with large number of steps
with fine-grained control, which is not available in GSM8k.
For example, a question can be orchestrated to move from
the initial premise (A) to an intermediate node I (“prefix k”)
and then from node I to the target node B (“hop l”), such that
Distance(A, B) = k+l. This level of control over the graph’s
structure proves highly valuable for generating datasets with
specific properties and systematically assessing deductive
performance. Additional generation steps are present in
Appendix (subsection A.6 and subsection A.10)

ProntoQA This is a synthetic dataset introduced to evaluate
language models on logical reasoning tasks such as use of
Modus Ponens in Natural Language. We generate dataset of
upto 5 Hops and 100 question per hop for each of the three
ontologies - True, False and Fictional. Statements in CoT
are converted into Z3 (de Moura & Bjørner, 2008) FOL.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

4.2. Setup

LMs in DeduCE pipeline. We use LLama-3-70B-Instruct
as the Templatizer, code generation and variable extractor
LLM. We obtain a failure rate (unable to generate json) close
to 30%, which we filter out. The additional sanity checks
ensures that we have high quality dataset for evaluation. We
use Llama-3.1-8B-Instruct as Parser LLM. For ProntoQA,
each predicate in the ground truth CoT and response CoT
are verified for consistency using Z3 solver. GPT-4o is used
for error analysis.

Models under evaluation. We evaluate the follow-
ing LMs: Phi-3.5-mini-instruct, Phi-4, Qwen2.5-Math-
7B-Instruct, Qwen2.5-Math-72B-Instruct, Llama-3.3-70B-
Instruct, Llama-3-8B-Instruct and their R1 Distill variants.
All models are Instruct tuned. Model suffixes will be trun-
cated in plots. More details can be found in Figure 4. All
the experiments were done on a Nvidia 4xA100 80GB GPU
compute.

4.3. Results: Math reasoning on GSM8K

Premise understanding v/s deductive inference. Mean
deductive consistency is computed by averaging predicate
consistency across prefixes for a given hop. Only hops
where the ratio of single-premise samples to those with
premise length of 1 hop-1 exceeds 20% is included, ensuring
sufficient data for reliable estimates.

Deductive consistency as a function of hops on the original
benchmark achieves a constant value of 1 across all models.
When deductive consistency is computed on perturbed prob-
lem, it is significantly lower (see Figure 2). This indicates
Memorization Effect on the benchmark.

The key result is decay in deductive consistency as hops
increase, which was masked due to memorization of the
original benchmark. An ideal model must achieve zero
decay and a base value of one.

Figure 2 reveals that larger models (Qwen-Math-72B-
Instruct, and Llama-3.3-70B-Instruct), models trained on
synthetic data (Phi-4) as well as math-specific models
(Qwen-2.5-Math-72B-Instruct, and Qwen-2.5-Math-72B-
Instruct) do achieve greater base values. However, even
these models show significant decay in the deductive con-
sistency as the number of hops increases. Smaller models
like Llama-3-8B-Instruct and Phi-3.5-mini-instruct perform
poorly with lower base values and Llama-3-8B-Instruct ex-
hibits a high decay value compared to other models (also
see Figure 2).

Importantly, deductive consistency does not vary much as
the length of input premises are changed. A lower variance
in mean deductive consistency as a function of prefix as seen
in Figure 8 . Which implies a partial evidence of hypothesis:

it depends on hops, but not on the premises. A caveat is that
due to the simplicity of the GSM8K problems, the maximum
premise length we could evaluate on is 7.

Other hypotheses: Based on the deductive consistency
metric, we can answer some hypotheses on why final accu-
racy decreases for novel math problems, as reported in past
work (Mirzadeh et al., 2024; Srivastava et al., 2024). We
also test the hypothesis on the effects of language style on
reasoning (Han et al., 2024).

H1: Novel problems induce early errors in the math compu-
tation, which propagate to lead to an incorrect solution. H2:
Novel problems induce a style change in the CoT answers,
which may lead to faulty reasoning and hence incorrect final
answer.

H1: Our findings reveal that deductive consistency remains
high for the first hop, contradicting hypothesis by demon-
strating that models correctly answer the first step. While
novel problems do not induce early errors, we observe fre-
quent computational errors in model responses. These errors
propagate, providing evidence for part of hypothesis. De-
tailed error analysis, is in Appendix A.4.

H2: To decide on this hypothesis, we create four kinds of
premises that can be added. The first is the original (eg:
Yasna has 60 + 12 = 72 pages to read.), sourced from
subject LMs answers on the original benchmark problem.
Others are different paraphrases of the original style. They
are explained in Appendix A.2. A slight decrease in base
values across models due to impact of language style. While
it is expected that the original benchmark’s style should
have highest accuracy, the variation across paraphrases is
not high. Even though, on performing t-test, p-values values
were significant (at 0.05 significance level), Cohens’ effects
sizes were too small to consider (<0.1). We find weak
evidence for H2 referring to Figure 5 in Appendix.

Error Analysis. A higher proportion of calculation errors
is observed relative to other errors. These calculation errors
predominantly emerge during arithmetic operations within
the chain-of-thought, and they propagate through subse-
quent reasoning steps. Refer to Appendix A.4 for details.

4.4. Results: Evaluation on SynDeduct

To validate the conclusions from GSM8K, we now evaluate
deductive consistency on a synthetic dataset. In particular,
the problems are designed such that the solutions involve a
large number of hops spread across prefixes.

The general trend of decreasing deductive consistency over
hops supports our results in GSM8K. Our findings in Fig-
ure 3 suggests larger models demonstrate greater resilience
to increases in the number of hops, while smaller mod-
els—such as Llama-3-8B-Instruct—experience a substan-

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

1 2 3 4 5
Hops

0.5

0.6

0.7

0.8

0.9

1.0

De
du

ct
iv

e
Co

ns
ist

en
cy

Llama-3.3-70B
Llama-3-8B
Phi-4
Phi-3.5
Qwen-2.5-Math-72B
Qwen-2.5-Math-7B 1 2 3 4 5

Hops
0.90

0.92

0.94

0.96

0.98

1.00

De
du

ct
iv

e
Co

ns
ist

en
cy

Phi-4
DeepSeek-R1-Llama-70B
DeepSeek-R1-Qwen-7B
Qwen2.5-7B
Qwen2.5-Math-72B
Phi-3.5-mini
LLaMA-3.3-70B
Qwen2.5-Math-7B
Meta-LLaMA-3-8B

Figure 2: Left: Deductive Consistency vs. Reasoning Hops across models on GSM8K-Mutated. Right: Deductive
Consistency vs. Reasoning Hops across models on ProntoQA.

1 2 3 4 5 6 7 8 9 10 11 12
Hops

0.0

0.2

0.4

0.6

0.8

1.0

DC
 S

co
re

DC ± StdErr vs Hops (1 12)
Qwen-2.5-Math-7B
Qwen-2.5-7B
Qwen-2.5-Math-72B
Qwen-2.5-72B
Llama-3-8B
DeepSeek-R1-Llama-70B
Llama-3.3-70B
DeepSeek-R1-Qwen-7B

Figure 3: Deductive Consistency v/s Hops. Each Hop bin
has roughly same variation of Prefixes. Y-Ticks on each
data-point is Standard Error for Accuracy. For Coverage
refer to Appendix Figure 12.

tial drop in performance. This trend becomes evident when
examining accuracy versus prefix length across multiple
hops: as prefix segments grow, the overall task accuracy
declines. One contributing factor may be the larger maxi-
mum token limit, which allows these models to analyze and
accommodate more extensive reasoning chains. However,
barring Llama-3-8B all models have context lengths greater
than maximum number of tokens required for answering the
question properly (around max_length = 10k tokens).

Error Analysis: Similar to GSM8K, a higher proportion of
calculation errors is observed. Interestingly, a large propor-
tion of Garbled errors were also seen. For more details, see
subsection A.7

4.5. Results: Evaluation on ProntoQA

We evaluate models on ProntoQA—a benchmark specif-
ically designed for multi-hop factual reasoning. Fig-
ure 2(right) shows a consistent decay with respect to hops.
Phi-4 performs exceptionally well with negligible decay
w.r.t prefixes; plausibly due to being trained on similar syn-
thetic data. The pattern of decay on ProntoQA is similar
to that in the prior sections. For further details, refer to
subsection A.8.

5. Do Prevalent Techniques Mitigate Decay ?
To better understand the impact of different popular strate-
gies to improve deductive reasoning, we focus on two pri-
mary fine-tuning approaches: iterative fine-tuning with re-
inforcement learning (Ziegler et al., 2019), supervised fine-
tuning (SFT) (Ouyang et al., 2022) and a calculator tool-
calling approach (Schick et al., 2023).

For RL-based and iterative fine-tuning models, Qwen-2.5-
Math-Instruct in both its 7B and 72B variants (Yang et al.,
2024) is compared against their respective base models. Sim-
ilarly, for SFT-based tuning, R1 distilled models are com-
pared to their base counterparts (DeepSeek-AI et al., 2025),
namely DeepSeek-R1-Distill-Llama-70B and DeepSeek-
R1-Distill-Qwen-7B.

To improve on decay and reduce the calculation errors, an
inference-time version of Calculator tool-calling approach
is used. Meta llama-8B model is used as an Online Monitor
that is a Reviewer and Editor. As generation of response
happens step by step, a reviewer LLM monitors and checks
if a calculation trace is present. It calls a calculator tool with
appropriate inputs and the output from the tool is passed to
editor LLM. The editor LLM changes the calculation trace

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

with the correct one. The generation then continues after
the step has been corrected for calculation errors.

Results. RL fine tuning is more effective (Table 1, Ta-
ble 3) in reducing the decay of deductive consistency. RL
fine-tuning shows minimal change in base deductive consis-
tency on in-distribution datasets, and a reduction on unseen
datasets such as SynDeduct. SFT after training causes a de-
crease in deductive consistency and worsens decay for both
data sets (Table 2, Table 4). More work is required to study
the extent of generalization that such post-training methods
provide. In general, these findings emphasize that neither of
the two post-training techniques is successful in improving
deductive consistency between models and datasets.

For the tool-calling approach, we find (Table 5, subsec-
tion A.5) an improvement in base deductive consistency of
up to 15% but decay did not improve. Further details are in
the Appendix.

Table 1: RL post training on SynDeduct.

Model Base Decay

Qwen-2.5-72B-Instruct 0.6868 0.0602
Qwen-2.5-Math-72B-Instruct 0.5674 0.0273

Qwen-2.5-7B-Instruct 0.5458 0.0432
Qwen-2.5-Math-7B-Instruct 0.2083 0.0211

Table 2: SFT post training on SynDeduct.

Model Base Decay

Qwen-2.5-Math-7B-Instruct 0.2083 0.0211
DeepSeek-R1-Distill-Qwen-7B 0.5424 0.0381

Llama-3.3-70B-Instruct 0.8465 0.0212
DeepSeek-R1-Distill-Llama-70B 0.7389 0.0314

Table 3: RL post training on GSM8k.

Model Base Decay

Qwen-2.5-72B-Instruct 0.9149 0.2339
Qwen-2.5-Math-72B-Instruct 0.9164 0.1725

Qwen-2.5-7B-Instruct 0.8881 0.1618
Qwen-2.5-Math-7B-Instruct 0.8427 0.1189

Table 4: SFT post training on GSM8k.

Model Base Decay

Qwen-2.5-Math-7B-Instruct 0.8509 0.0613
DeepSeek-R1-Distill-Qwen-7B 0.8468 0.1957

Llama-3.3-70B-Instruct 0.8532 0.20065
DeepSeek-R1-Distill-Llama-70B 0.8366 0.24895

Table 5: Base and Decay values for LLaMA-3-8B-Instruct
with and without Monitor (calculator as a tool at inference
time).

LLaMA-3-8B-Instruct Base Decay
Without Monitor 0.7629 0.3300
With Monitor 0.9081 0.3704

6. Conclusion
We introduce a metric for assessing AI deductive reasoning
based solely on text-based reasoning traces, ensuring appli-
cability across diverse domains. Through experiments on
both synthetic datasets (SynDeduct, ProntoQA) and a real-
world benchmark (GSM8K), we demonstrate its impact and
expose critical trade-offs. Additionally, we evaluate com-
mon reasoning-enhancement techniques designed to address
the challenges identified in our study.

Limitations & Impact
Our approach depends on auxiliary language models for
parsing, error analysis, and data-pipelining. Although we
have taken extensive measures to mitigate errors introduced
by these models, residual inaccuracies may persist. More-
over, our evaluation of deductive reasoning is limited to
linear reasoning traces; extending our framework to non-
linear inference chains will be an important objective for
future work.

This paper presents work whose goal is to advance the re-
liability of AI reasoning. We expect that insights from our
work can be used to improve reliability of AI reasoning,
leading to a positive societal impact on downstream appli-
cations by avoiding reasoning bugs.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

References
An, C., Chen, Z., Ye, Q., First, E., Peng, L., Zhang, J., Wang,

Z., Lerner, S., and Shang, J. Learn from failure: Fine-
tuning LLMs with trial-and-error data for intuitionistic
propositional logic proving. In Ku, L.-W., Martins, A.,
and Srikumar, V. (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2024.

Chen, M. K., Zhang, X., and Tao, D. Justlogic: A com-
prehensive benchmark for evaluating deductive reason-
ing in large language models. 2025. URL https:
//doi.org/10.48550/arXiv.2501.14851.

de Moura, L. and Bjørner, N. Z3: An efficient smt solver.
In Ramakrishnan, C. R. and Rehof, J. (eds.), Tools and
Algorithms for the Construction and Analysis of Systems,
pp. 337–340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. ISBN 978-3-540-78800-3.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X.,
Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao,
Z., Li, Z., Gao, Z., Liu, A., Xue, B., Wang, B., Wu, B.,
Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan,
C., Dai, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo,
F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu,
H., Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li,
H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J.,
Li, J., Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K.,
Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang, L.,
Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L., Xia,
L., Zhang, M., Zhang, M., Tang, M., Li, M., Wang, M.,
Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q., Chen,
Q., Du, Q., Ge, R., Zhang, R., Pan, R., Wang, R., Chen,
R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen, S., Ye,
S., Wang, S., Yu, S., Zhou, S., Pan, S., Li, S. S., Zhou,
S., Wu, S., Ye, S., Yun, T., Pei, T., Sun, T., Wang, T.,
Zeng, W., Zhao, W., Liu, W., Liang, W., Gao, W., Yu, W.,
Zhang, W., Xiao, W. L., An, W., Liu, X., Wang, X., Chen,
X., Nie, X., Cheng, X., Liu, X., Xie, X., Liu, X., Yang,
X., Li, X., Su, X., Lin, X., Li, X. Q., Jin, X., Shen, X.,
Chen, X., Sun, X., Wang, X., Song, X., Zhou, X., Wang,
X., Shan, X., Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang,
Y., Xu, Y., Li, Y., Zhao, Y., Sun, Y., Wang, Y., Yu, Y.,
Zhang, Y., Shi, Y., Xiong, Y., He, Y., Piao, Y., Wang, Y.,
Tan, Y., Ma, Y., Liu, Y., Guo, Y., Ou, Y., Wang, Y., Gong,
Y., Zou, Y., He, Y., Xiong, Y., Luo, Y., You, Y., Liu, Y.,
Zhou, Y., Zhu, Y. X., Xu, Y., Huang, Y., Li, Y., Zheng,
Y., Zhu, Y., Ma, Y., Tang, Y., Zha, Y., Yan, Y., Ren, Z. Z.,
Ren, Z., Sha, Z., Fu, Z., Xu, Z., Xie, Z., Zhang, Z., Hao,
Z., Ma, Z., Yan, Z., Wu, Z., Gu, Z., Zhu, Z., Liu, Z., Li,
Z., Xie, Z., Song, Z., Pan, Z., Huang, Z., Xu, Z., Zhang,
Z., and Zhang, Z. Deepseek-r1: Incentivizing reasoning

capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Gijbels, I. Censored data. WIREs Computational Statistics,
2(2):178–188, 2010.

Han, Y., Xu, L., Chen, S., Zou, D., and Lu, C. Beyond
surface structure: A causal assessment of llms’ compre-
hension ability, 2024. URL https://arxiv.org/
abs/2411.19456.

Lewis, M. and Mitchell, M. Evaluating the robustness of
analogical reasoning in large language models. arXiv
preprint arXiv:2411.14215, 2024a.

Lewis, M. and Mitchell, M. Using counterfactual tasks
to evaluate the generality of analogical reasoning in
large language models. arXiv preprint arXiv:2402.08955,
2024b.

Mirzadeh, I., Alizadeh, K., Shahrokhi, H., Tuzel, O., Ben-
gio, S., and Farajtabar, M. Gsm-symbolic: Understand-
ing the limitations of mathematical reasoning in large
language models, 2024. URL https://arxiv.org/
abs/2410.05229.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Parmar, M., Patel, N., Varshney, N., Nakamura, M., Luo,
M., Mashetty, S., Mitra, A., and Baral, C. LogicBench:
Towards systematic evaluation of logical reasoning ability
of large language models. In Ku, L.-W., Martins, A.,
and Srikumar, V. (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2024.

Paul, D., West, R., Bosselut, A., and Faltings, B. Mak-
ing reasoning matter: Measuring and improving faith-
fulness of chain-of-thought reasoning. In Al-Onaizan,
Y., Bansal, M., and Chen, Y. (eds.), Findings of the As-
sociation for Computational Linguistics: EMNLP 2024,
Miami, Florida, USA, November 12-16, 2024, 2024.

Sanyal, S., Liao, Z., and Ren, X. RobustLR: A diagnostic
benchmark for evaluating logical robustness of deductive
reasoners. In Goldberg, Y., Kozareva, Z., and Zhang, Y.
(eds.), Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, 2022.

Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli,
M., Zettlemoyer, L., Cancedda, N., and Scialom, T. Tool-
former: Language models can teach themselves to use
tools. International Conference on Learning Representa-
tions (ICLR), 2023.

8

https://doi.org/10.48550/arXiv.2501.14851
https://doi.org/10.48550/arXiv.2501.14851
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2411.19456
https://arxiv.org/abs/2411.19456
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Seals, S. and Shalin, V. Evaluating the deductive com-
petence of large language models. In Proceedings of
the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp.
8606–8622, 2024.

Singh, J., Nambi, A., and Vineet, V. Exposing the achilles’
heel: Evaluating llms ability to handle mistakes in math-
ematical reasoning, 2024. URL https://arxiv.
org/abs/2406.10834.

Srivastava, S., PV, A., Menon, S., Sukumar, A., Philipose,
A., Prince, S., Thomas, S., et al. Functional benchmarks
for robust evaluation of reasoning performance, and the
reasoning gap. arXiv preprint arXiv:2402.19450, 2024.

Wu, Z., Qiu, L., Ross, A., Akyürek, E., Chen, B., Wang, B.,
Kim, N., Andreas, J., and Kim, Y. Reasoning or reciting?
exploring the capabilities and limitations of language
models through counterfactual tasks. In Proceedings of
the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp.
1819–1862, 2024.

Xu, F., Lin, Q., Han, J., Zhao, T., Liu, J., and Cambria, E.
Are large language models really good logical reasoners?
a comprehensive evaluation and beyond, 2024. URL
https://arxiv.org/abs/2306.09841.

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B., Li, C., Liu, D.,
Tu, J., Zhou, J., Lin, J., Lu, K., Xue, M., Lin, R., Liu, T.,
Ren, X., and Zhang, Z. Qwen2.5-math technical report:
Toward mathematical expert model via self-improvement.
arXiv preprint arXiv:2409.12122, 2024.

Zeng, Z., Chen, P., Liu, S., Jiang, H., and Jia, J. Mr-gsm8k:
A meta-reasoning benchmark for large language model
evaluation, 2024. URL https://arxiv.org/abs/
2312.17080.

Zhang, Z., Chen, J., and Yang, D. Darg: Dynamic evaluation
of large language models via adaptive reasoning graph,
2024.

Zhu, K., Chen, J., Wang, J., Gong, N. Z., Yang, D., and
Xie, X. Dyval: Dynamic evaluation of large language
models for reasoning tasks. In The Twelfth International
Conference on Learning Representations, 2023.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., and Christiano, P. F. Fine-tuning lan-
guage models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

Zong, S. and Lin, J. Categorical syllogisms revisited: A re-
view of the logical reasoning abilities of LLMs for analyz-
ing categorical syllogisms. In Peled-Cohen, L., Calderon,
N., Lissak, S., and Reichart, R. (eds.), Proceedings of the
1st Workshop on NLP for Science (NLP4Science), 2024.

9

https://arxiv.org/abs/2406.10834
https://arxiv.org/abs/2406.10834
https://arxiv.org/abs/2306.09841
https://arxiv.org/abs/2312.17080
https://arxiv.org/abs/2312.17080

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

A. Appendix
A.1. Details for GSM8K pipeline

"templatized_answer": [
 "James writes 8 pages
to 20 friends 2 a week.",
 "So that is 8* 20 * 2 =
320 pages a week.",
 "In a year, that is 52
*320 = 16640 pages.",
 "The answer is 16640."
]

Reasoning
Code

Generator

Template

Answer

Template Builder

Mutate

James writes 3 pages to 2 friends
twice a week. So that is 3 * 2 * 2 = 12

pages a week. In a year, that is 52 * 12
= 624 pages. The answer is 624.

Code

Mutated Code

Mutated Question and
Steps

Factual Dataset

James writes a 3-page letter to 2
different friends twice a week.

How many pages does he write a
year?

Question

Subject
LLM

Answer of Mutated
Question

Compute Deductive
Consistency and

Coverage

Template Question

Template Answer: [Step1,
Step2,...]

--
Template Variable List

--
Variable Assignment

num_pages = 3
num_friends = 2
num_times = 2
num_weeks_in_a_year = 52
pages_per_week = num_pages *
num_friends * num_times
total_pages = pages_per_week *
num_weeks_in_a_year

Subject
LLM

Premises

" "James writes 8 pages to
20 friends 2 a week."
"So that is 8* 20 * 2 = 320
pages a week."
In a year, that is 52 *320 =
16856 pages.",
 "The answer is 16856

Hop 1

Hop 2

num_pages = 8
num_friends = 20
num_times = 2
num_weeks_in_a_year = 52
pages_per_week = num_pages *
num_friends * num_times
total_pages = pages_per_week *
num_weeks_in_a_year

Figure 4: Given a benchmark problem, we use pre-trained LMs to templatize its solution and obtain an executable code
solution. Then we update the variables’ values in the code and generate a novel problem on which the subject LM is
evaluated. For any (number of premises, number of hops) combination, we assess whether the subject LM’s solution contains
the correct values of the variables.

Inference on original dataset We sample a subset of GSM8K of size 1000. We prompt the LM under investigation to solve
the question using the prompt template provided in subsection A.9.

Templatization and Code Generation We templatize the question and LM CoT response using Llama-3-70B as Template
Builder Agent. The model is prompted (as shown in subsection A.9) to generate templatized question, templatized CoT
answer (as well as chunk it into steps), explanation of variables of templates along with assignment of variables in question.

Sanity Checks We check that the code produced is an executable code, if the format of template generate is consistent with
our reference template format, if the all variables in factual_assignment are present in code. The generated code is executed
with factual assignment as inputs for variables in question template and the value of other variables in code are checked to
be consistent with the factual assignment in template. Further we have check if the final answer in response matches the
ground truth answer in original dataset. If any of these checks fail then we remove that question from pipeline. For each
model we now have a reduces set of questions that has passed sanity checks. We take intersection of such questions over
multiple models to get a dataset on which we can evaluate all the models under consideration. This support set depends on
the set of models being used in the experiments.

Mutation Details We create mutated dataset by sampling the values of variables in question and executing the code
with these newly sampled values to obtain assignment corresponding to other variables. Parameters for the sampler are
(min-value,max-value,max-iter). If the factual assignment of a variable is integer, we sample from integers in the range
(min-value,max-value), if factual assignment of a variable is decimal between 0 and 1, we uniformly sample from this
range, else if it is any other decimal we sample a float from (min-valu,max-value). We try to make sure that all the variable
assignments after positive. If not we rerun until we get a all positive assignment or we reach maximum iterations of the
sampler. We substitute these values into template question and template CoT answer.We sample 10 mutated questions per
question in original dataset. We create dataset with mutated question and varying length of mutated CoT answer present in
LMs context. The number of steps from mutated template CoT answer is defined as prefix length. We collect the sampled
variable assignments,mutated Question and Prefix into the mutated dataset.

Inference on mutated dataset We run inference of LMs on this mutated dataset. Since all LMs we evaluate are Instruction
tuned, we use chat template. Mutated question is passed as user-content where as prefix is passed as assistant-content. We
remove the <∥eot∥ >token and let the generation continue as if the model were completing the generation.

Computation of Deductive consistency The response of the model to mutated dataset is passed into a variable extraction
LM which extracts value if the variables under consideration (ones in template) if present in response(see subsection A.9).

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Decay

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Ba

se

Llama-3.3-70B

Llama-3-8B

Phi-4

Phi-3.5

Qwen-2.5-Math-72B

Qwen-2.5-Math-7B

Llama-3.3-70B
Original (Circles)
Para-ax (Squares)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Decay

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ba
se

Llama-3.3-70B

Llama-3-8B

Phi-4

Phi-3.5

Qwen-2.5-Math-72B

Qwen-2.5-Math-7B

Llama-3.3-70B
Original (Circles)
Para-van (Squares)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Decay

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ba
se

Llama-3.3-70B

Llama-3-8B

Phi-4

Phi-3.5

Qwen-2.5-Math-72B

Qwen-2.5-Math-7B

Llama-3.3-70B
Original (Circles)
Para-rev (Squares)

Figure 5: Comparison of Base vs. Decay Across Different Styles. Model name suffixes have been dropped for readability.

Hops are decided by the relative positions of variables under consideration in the template CoT. We check if these extracted
values are consistent with code-generated values. We collect this data for every variable across mutated question and then
group it by prefix and hop. We filter instances where the responses gives From this data structure we derive Deductive
Consistency as function of hops or prefixes (as required).

Base DC and Decay We define Base deductive consistency as the deductive consistency at one-hop as well as decay
is defined as negative slope of line fitting deductive consistency and hops (normalized between 0 and 1) [as shown in
Equation 6] .

Coverage Table 7 shows that the coverage is high across all premises. Given a LM, this implies that the intermediate
variables inferred in the solution for the novel problem are almost the same as the variables inferred in the solution for the
original benchmark problem. Therefore the code obtained from reasoning code generator is reliable as a reference proof. So
we can go ahead with interpreting the consistency results.

A.2. Para Phrasing Styles

• Vanilla (Para-van): In this approach, the text is rephrased using conventional linguistic variations without incorporating
any specialized semantic constraints. For example: Yasna’s task involves 60 pages plus an additional 12 pages, which
totals to 72 pages

• Axiomatic (Para-ax): This method reformulates the statement as a set of axioms that articulate the underlying numerical
relationships. An example is : Axiom-1 (Addition): Given two numerical values x and y, the operation ADD(x, y) yields
their arithmetic sum, thus ADD(60, 12) yields 72, which represents the total number of pages Yasna has to read.

• Reverse (Para-rev): the sentence is restructured by inverting the typical cause-effect relationship—presenting the effect
before providing the explanation for its cause. For instance, in the example: Yasna has to read the 72 pages, which is
the sum of 60 and 12.

A.3. Results - GSM8K

Here we report the full results presented in the main paper.

Table 6: Model Performance and Deductive Consistency Across Hops GSM8K

Models Hop-1 Hop-2 Hop-3 Hop-4 Hop-5

Llama-3.3-70B 0.89± 0.0135 0.8274± 0.0219 0.7909± 0.0215 0.7669± 0.0206 0.7079± 0.0114
Llama-3-8B 0.7629± 0.0217 0.6572± 0.0227 0.5777± 0.0165 0.5254± 0.0154 0.4988± 0.0264
Phi-4 0.8911± 0.0238 0.8365± 0.0278 0.8103± 0.0285 0.7929± 0.0228 0.7612± 0.0117
Phi-3.5 0.8563± 0.0114 0.7874± 0.0210 0.7602± 0.0096 0.6865± 0.0571 0.6616± 0.0488
Qwen-2.5-Math-72B 0.937± 0.0108 0.9037± 0.0085 0.8841± 0.0073 0.8573± 0.0148 0.8321± 0.0328
Qwen-2.5-Math-7B 0.8843± 0.0179 0.854± 0.0144 0.8456± 0.0307 0.8283± 0.044 0.8409± 0.039

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Table 7: Coverage across different language styles for the premises.

Models Original Para-ax Para-van Para-rev

Llama-3.3-70B 0.9725 0.9639 0.9616 0.966
Llama-3-8B 0.9669 0.9431 0.9543 0.9486
Phi-4 0.9849 0.9694 0.9759 0.9747
Phi-3.5 0.9684 0.9523 0.9649 0.9624
Qwen-2.5-Math-72B 0.9888 0.9745 0.9862 0.985
Qwen-2.5-Math-7B 0.9701 0.9442 0.9656 0.9648

Table 8: Para-ax: Model Performance and Deductive Consistency Across Hops

Models Hop-1 Hop-2 Hop-3 Hop-4 Hop-5

Llama-3.3-70B 0.8875± 0.0158 0.8083± 0.0271 0.7653± 0.0282 0.752± 0.0189 0.7328± 0.004
Llama-3-8B 0.7309± 0.0244 0.6177± 0.034 0.5096± 0.0305 0.4799± 0.0328 0.4798± 0.0173
Phi-4 0.8703± 0.0178 0.8245± 0.0177 0.8055± 0.0172 0.7525± 0.0275 0.7263± 0.0164
Phi-3.5 0.8146± 0.027 0.694± 0.0279 0.6106± 0.0426 0.5795± 0.0658 0.5715± 0.0424
Qwen-2.5-Math-72B 0.9196± 0.0143 0.851± 0.0168 0.8149± 0.0194 0.8038± 0.0154 0.8019± 0.026
Qwen-2.5-Math-7B 0.8627± 0.0192 0.8001± 0.0233 0.7672± 0.0216 0.7418± 0.0165 0.7483± 0.0148

Table 9: Para-van: Model Performance and Deductive Consistency Across Hops

Models Hop-1 Hop-2 Hop-3 Hop-4 Hop-5

Llama-3.3-70B 0.863± 0.0276 0.79± 0.0318 0.7561± 0.0277 0.7242± 0.0323 0.7203± 0.0103
Llama-3-8B 0.7538± 0.0212 0.612± 0.0352 0.5503± 0.0207 0.4997± 0.0348 0.4961± 0.0275
Phi-4 0.8505± 0.0248 0.8062± 0.0271 0.7856± 0.0273 0.7655± 0.0356 0.7408± 0.0153
Phi-3.5 0.8397± 0.0189 0.739± 0.0203 0.7178± 0.0132 0.6679± 0.0366 0.6279± 0.0355
Qwen-2.5-Math-72B 0.9175± 0.0144 0.8758± 0.0143 0.8569± 0.0138 0.8427± 0.0182 0.8063± 0.0284
Qwen-2.5-Math-7B 0.8671± 0.0207 0.8206± 0.0192 0.7841± 0.0271 0.7854± 0.0246 0.8267± 0.0299

Table 10: Para-rev: Model Performance and Deductive Consistency Across Hops

Models Hop-1 Hop-2 Hop-3 Hop-4 Hop-5

Llama-3.3-70B 0.8481± 0.0222 0.7828± 0.0306 0.7508± 0.0313 0.7148± 0.0334 0.7211± 0.0097
Llama-3-8B 0.7163± 0.0288 0.5509± 0.0504 0.4612± 0.0591 0.4609± 0.0371 0.4617± 0.025
Phi-4 0.8532± 0.0282 0.8102± 0.0289 0.7874± 0.0326 0.7724± 0.025 0.7442± 0.0122
Phi-3.5 0.7958± 0.0241 0.7308± 0.024 0.6917± 0.0165 0.6351± 0.0483 0.6355± 0.0431
Qwen-2.5-Math-72B 0.9051± 0.017 0.8636± 0.0166 0.8279± 0.0172 0.8105± 0.0176 0.7979± 0.0258
Qwen-2.5-Math-7B 0.8463± 0.0219 0.7914± 0.0227 0.7298± 0.0364 0.7543± 0.0124 0.7952± 0.0201

Table 11: Decay and Base Values Across Interventions

Models Original Para-ax Para-van Para-rev

Decay Base Decay Base Decay Base Decay Base

Llama-3.3-70B 0.21235 0.89 0.18285 0.8875 0.1756 0.863 0.161 0.8481
Llama-3-8B 0.33 0.7629 0.32 0.7309 0.31385 0.7538 0.2996 0.7163
Phi-4 0.1517 0.8911 0.18 0.8703 0.13005 0.8505 0.1279 0.8532
Phi-3.5 0.24515 0.8563 0.30035 0.8146 0.24735 0.8397 0.20815 0.7958
Qwen-2.5-Math-72B 0.1281 0.937 0.1413 0.9196 0.12775 0.9175 0.13375 0.9051
Qwen-2.5-Math-7B 0.05625 0.8843 0.14355 0.8627 0.058 0.8671 0.06965 0.8463

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Table 12: Deductive Consistency ± Standard Error vs. Prefix Length for Different Models

Model Prefix 1 Prefix 2 Prefix 3 Prefix 4 Prefix 5

Phi-3.5 0.7664± 0.0304 0.7772± 0.0255 0.7767± 0.0224 0.8153± 0.0247 0.7707± 0.0215
Qwen-2.5-Math-7B 0.8549± 0.0268 0.8366± 0.0195 0.8510± 0.0243 0.8641± 0.0329 0.8922± 0.0383
Qwen-2.5-Math 0.8802± 0.0200 0.8704± 0.0223 0.8803± 0.0166 0.9067± 0.0117 0.8967± 0.0161
Llama-3-8B 0.5884± 0.0580 0.5826± 0.0523 0.5932± 0.0466 0.5984± 0.0306 0.6637± 0.0330
Llama-3.3-70B 0.7981± 0.0342 0.7929± 0.0322 0.7937± 0.0369 0.7952± 0.0344 0.7905± 0.0322
Phi-4 0.8254± 0.0303 0.8277± 0.0274 0.8309± 0.0311 0.8199± 0.0440 0.7996± 0.0444

Table 13: Ablation 1: Deductive Consistency vs. Hops

Hops 1 2 3 4 5

Qwen-2.5-72B 0.9149± 0.0123 0.861± 0.022 0.8078± 0.011 0.7656± 0.0203 0.7287± 0.02
Qwen-2.5-Math-72B 0.9164± 0.0091 0.8739± 0.0138 0.8305± 0.0272 0.7895± 0.0402 0.7861± 0.0584

Table 14: Ablation 2: Deductive Consistency vs. Hops

Model Hop 1 Hop 2 Hop 3 Hop 4 Hop 5

Qwen-2.5-7B 0.8881± 0.0176 0.8453± 0.0246 0.8101± 0.0222 0.7738± 0.0281 0.7620± 0.0352
Qwen-2.5-Math-7B 0.8427± 0.0156 0.8021± 0.0131 0.7739± 0.0142 0.7499± 0.0251 0.7499± 0.0306

Table 15: Ablation 3: Deductive Consistency vs. Hops

Hops 1 2 3 4 5

Qwen-2.5-Math-7B 0.8509± 0.018 0.8093± 0.0168 0.8002± 0.0198 0.7957± 0.0382 0.7964± 0.0458
DeepSeek-R1-Distill-Qwen-7B 0.8468± 0.0271 0.7989± 0.0391 0.7451± 0.0414 0.7309± 0.0566 0.6851± 0.0531

Table 16: Ablation 4: Deductive Consistency vs. Hops

Hops 1 2 3 4 5

Llama-3.3-70B 0.8532± 0.0134 0.7876± 0.0158 0.7515± 0.0127 0.7075± 0.0107 0.6926± 0.0076
DeepSeek-R1-Distill-Llama-70B 0.8366± 0.0238 0.7726± 0.0333 0.7093± 0.0389 0.6741± 0.0385 0.6369± 0.0307

Lla
ma-3

.3-
70

B

Lla
ma-3

-8B Ph
i-4

Ph
i-3

.5

Qwen
-2.

5-M
ath

-72
B

Qwen
-2.

5-M
ath

-7B
0.94

0.95

0.96

0.97

0.98

0.99

1.00

Co
ve

ra
ge

Original
Para-ax
Para-van
Para-rev

Figure 6: Coverage Comparison Across
Interventions (Adjusted Y-Limits)

Lla
ma-3

.3-
70

B

Lla
ma-3

-8B Ph
i-4

Ph
i-3

.5

Qwen
-2.

5-M
ath

-72
B

Qwen
-2.

5-M
ath

-7B
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ba
se

Original
Para-ax
Para-van
Para-rev

Figure 7: Base Comparison Across In-
terventions

1 2 3 4 5
Prefix Length

0.0

0.2

0.4

0.6

0.8

1.0

De
du

ct
iv

e
Co

ns
ist

en
cy

microsoft-phi-3.5
qwen-2.5-math-7b-instruct
qwen-2.5-math-72b-instruct
meta-llama-3-8b-instruct
meta-llama-3.3-70b-instruct
microsoft-phi-4

Figure 8: Deductive Consistency vs.
Prefix Length for Different Models

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

1 2 3 4 5
Hops

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

De
du

ct
iv

e
Co

ns
ist

en
cy

Qwen-2.5-Math-72B-Instruct
Qwen-2.5-72B-Instruct

(a) Ablation 1

1 2 3 4 5
Hops

0.70

0.75

0.80

0.85

0.90

De
du

ct
iv

e
Co

ns
ist

en
cy

Qwen-2.5-7B-Instruct
Qwen-2.5-Math-7B-Instruct

(b) Ablation 2

1 2 3 4 5
Hops

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

De
du

ct
iv

e
Co

ns
ist

en
cy

DeepSeek-R1-Distill-Qwen-7B
Qwen-2.5-Math-7B-Instruct

(c) Ablation 3

1 2 3 4 5
Hops

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

De
du

ct
iv

e
Co

ns
ist

en
cy

Meta-Llama-3.3-70B-Instruct
DeepSeek-R1-Distill-Llama-70B

(d) Ablation 4

Figure 9: Deductive Consistency vs. Hops for all Ablations

Qwen
-2.

5-7
2B

-In
str

uct

Qwen
-2.

5-M
ath

-72
B-In

str
uct

Model

0.00

0.05

0.10

0.15

0.20

0.25

De
ca

y

(a) Ablation 1

Qwen
-2.

5-7
B-In

str
uct

Qwen
-2.

5-M
ath

-7B
-In

str
uct

Model

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

De
ca

y

(b) Ablation 2

Qwen
-2.

5-M
ath

-7B
-In

str
uct

Dee
pS

ee
k-R

1-D
isti

ll-Q
wen

-7B

Model

0.00

0.05

0.10

0.15

0.20

De
ca

y

(c) Ablation 3

Meta
-Lla

ma-3
.3-

70
B-In

str
uct

Dee
pS

ee
k-R

1-D
isti

ll-L
lam

a-7
0B

Model

0.00

0.05

0.10

0.15

0.20

0.25

De
ca

y

(d) Ablation 4

Figure 10: Comparison of Decay across Models for Ablations 1–4

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

A.4. Error Analysis on GSM8K

In this section, we perform a qualitative and quantitative analysis of errors that arise in the response models. Model responses
are grouped into five groups based on final accuracy on the mutated dataset. Accuracy here is computed over the set of
mutated problems for each problem in the original benchmark. The groups are; Group-1 : Accuracy = 1 ; Group-2 : 1 <
Accuracy ≤ 0.7 ; Group-3 : 0.7 < Accuracy ≤ 0.4 ; Group-4 : 0.4 < Accuracy < 0 ; Group-5 : Accuracy = 0

We use GPT-4o as an evaluator. Calculation errors like arithmetic mistakes, as well as errors in rounding, along with
error propagation Logic errors are wrong application of logic/rule/formula. Understanding errors are wrong assumption or
contradiction of a given fact. These errors are seen in cases where the problem mentions scenarios that are far from real
world such as there being 97 days in a week. In Table 17 we report the frequency of error normalized by number of error
responses in that group.

Furthermore, models exhibit (pre-training) bias. They reproduce the original reasoning graph from the vanilla solution.
This shows weak robustness from changes in reasoning structure. Logical errors stem from ambiguous natural language.
For instance, the sentence “My brother is twice more older than me” should ideally be represented as: myBrotherAge =
myAge+myAge∗2. However, models typically interpret it as: myBrotherAge = 2∗myAge which correctly corresponds
to the unambiguous phrasing “My brother is twice as old as me.”.

A.4.1. QUALITATIVE ANALYSIS OF ERROR

Logical Error

Question

Two vampires have come to the sleepy village of Willowton, population 33. Every night, each vampire turns
95 more people into vampires. How many vampires are there after two nights?

Answer (Qwen-2.5-Math-72B)

Step-by-step solution:
Initial Condition: - There are initially 2 vampires in Willowton.
Night 1: - Each vampire turns 95 people into vampires. - Since there are 2 vampires, the total number of new
vampires created is:

2× 95 = 190

- Total number of vampires after the first night:

2 + 190 = 192

Night 2: - Now there are 192 vampires. - Each vampire turns 95 people into vampires. - Since there are 192
vampires, the total number of new vampires created is:

192× 95 = 18240

- Total number of vampires after the second night:

192 + 18240 = 18432

Final Answer:
18432

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Evaluation (GPT-4o)

Errors:

• Wrong Assumption: The response assumes there are enough people to turn into vampires. Justification: The
village only has 33 people initially, so the vampires cannot turn more people into vampires than the village’s
population allows. The response fails to consider this limitation.

• Wrong Logic: The response calculates the number of new vampires incorrectly on the second night. Justifica-
tion: On the second night, the vampires cannot turn more than the remaining population into vampires. Given
the initial population, they cannot create 18,240 new vampires. [This is logic error !!]

Understanding Error

Question

James writes a 36-page letter to 71 different friends 32 times a week. How many pages does he write in a
year?

Answer (Phi-4)

Step-by-step solution:
1. Calculate the total number of pages written per week: - James writes a 36-page letter to each of his 71 friends.
- Total pages per week:

Total pages per week = 36× 71 = 2, 556 pages

2. Calculate the total number of pages written in a year: - There are 52 weeks in a year.

Total pages per year = 2, 556× 52 = 132, 912 pages

Final Answer:
132, 912 pages

Evaluation (GPT-4o)

Errors:

• Wrong Assumption: The response assumes James writes a 36-page letter to each friend only once per week.
Justification: The problem states he writes 32 times per week, so the calculation of total pages per week is
incorrect.

• Calculation Error: The response calculates the total number of pages per year using an incorrect assumption.
Justification: Since the number of times he writes per week is not factored in, the yearly calculation does not
reflect the correct total.

Calculation Error

Question

Max likes to collect model trains. He asks for 53 for every birthday of his, and asks for 18 each Christmas.
Max always gets the gifts he asks for, and asks for these same gifts every year for 16 years. At the end of the
16 years, his parents give him double the number of trains he already has. How many trains does Max have
now?

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Answer (Llama-3-8B)

Step-by-step solution:
1. Max gets 53 trains for each birthday, and he has 16 birthdays:

53× 16 = 848 trains

2. Max gets 18 trains for each Christmas, and he has 16 Christmases:

18× 16 = 288 trains

3. In total, Max receives:
848 + 288 = 1, 136 trains

4. At the end of the 16 years, his parents give him double the number of trains he already has:

1, 136× 2 = 2, 268 trains

5. In total, Max now has:
1, 136 + 2, 268 = 3, 404 trains

Final Answer:
3, 404 trains

Evaluation (GPT-4o)

Errors:

• Calculation Error: The response states that at the end of the 16 years, Max’s parents give him double the
number of trains he already has, calculated as 1, 136 × 2 = 2, 268. Justification: The correct calculation
should be:

1, 136× 2 = 2, 272

• Propagated Error Only: The response states that the total number of trains Max has is 1, 136+2, 268 = 3, 404.
Justification: Since the previous multiplication was incorrect, the final sum was also incorrect. The correct
final total should be:

1, 136 + 2, 272 = 3, 408

A.4.2. QUANTITATIVE ANALYSIS OF ERROR

Models
Group-1 Group-2 Group-3 Group-4 Group-5

Logical Understanding Calculation Logical Understanding Calculation Logical Understanding Calculation Logical Understanding Calculation Logical Understanding Calculation

Llama-3.3-70B 0.141 0.413 0.457 0.300 0.667 0.633 0.182 0.601 0.790 0.287 0.943 0.780 0.356 0.578 0.856
Llama-3-8B 0.068 0.136 0.614 0.140 0.500 0.840 0.198 0.548 0.853 0.279 0.624 0.886 0.344 0.672 0.822
Phi-4 0.036 0.175 0.130 0.128 0.368 0.248 0.229 0.702 0.550 0.261 0.513 0.704 0.369 0.946 0.754
Phi-3.5 0.169 0.312 0.429 0.158 0.554 0.576 0.152 0.488 0.784 0.227 0.553 0.827 0.429 0.659 0.865
Qwen-2.5-Math-72B 0.052 0.188 0.127 0.121 0.423 0.340 0.245 0.669 0.619 0.365 0.794 0.518 0.300 0.583 0.883
Qwen-2.5-Math-7B 0.125 0.368 0.429 0.091 0.400 0.551 0.263 0.563 0.721 0.304 0.562 0.788 0.255 0.391 0.818

Table 17: Error metrics for different models across dataset groups. Each cell reports Logical, Understanding, and Calculation
errors separately.

A.5. Calculation Monitor Experiment (Tool Calling)

To improve on decay and reduce the calculation errors, we try a online calculation monitor approach. We have an meta
llama-8-b model as an online monitor that is a reviewer and editor. As the generator generates a step, reviewer LLM of the
monitor checks if calculation is present, and if so calls a calculator with appropriate inputs and the output from calclator is
passed into editor LLM which os responsible to edit that step and replace it in the original solution. The generation then

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Lla
ma-3

.3-
70

B

Lla
ma-3

-8B Ph
i-4

Ph
i-3

.5

Qwen
-2.

5-M
ath

-72
B

Qwen
-2.

5-M
ath

-7B

Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r
Ra

te

Group 1
Error Type

Logical
Understanding
Calculation

(a) Group 1

Lla
ma-3

.3-
70

B

Lla
ma-3

-8B Ph
i-4

Ph
i-3

.5

Qwen
-2.

5-M
ath

-72
B

Qwen
-2.

5-M
ath

-7B

Model

0.0

0.2

0.4

0.6

0.8

Er
ro

r
Ra

te

Group 2
Error Type

Logical
Understanding
Calculation

(b) Group 2

Lla
ma-3

.3-
70

B

Lla
ma-3

-8B Ph
i-4

Ph
i-3

.5

Qwen
-2.

5-M
ath

-72
B

Qwen
-2.

5-M
ath

-7B

Model

0.0

0.2

0.4

0.6

0.8

Er
ro

r
Ra

te

Group 3
Error Type

Logical
Understanding
Calculation

(c) Group 3

Lla
ma-3

.3-
70

B

Lla
ma-3

-8B Ph
i-4

Ph
i-3

.5

Qwen
-2.

5-M
ath

-72
B

Qwen
-2.

5-M
ath

-7B

Model

0.0

0.2

0.4

0.6

0.8
Er

ro
r

Ra
te

Group 4
Error Type

Logical
Understanding
Calculation

(d) Group 4

Lla
ma-3

.3-
70

B

Lla
ma-3

-8B Ph
i-4

Ph
i-3

.5

Qwen
-2.

5-M
ath

-72
B

Qwen
-2.

5-M
ath

-7B

Model

0.0

0.2

0.4

0.6

0.8

Er
ro

r
Ra

te

Group 5
Error Type

Logical
Understanding
Calculation

(e) Group 5

Figure 11: Error rate plots for all groups

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Models Group 1 Group 2 Group 3 Group 4 Group 5

Llama-3-8B 44 50 252 412 180
Llama-3.3-70B 92 90 143 209 90
Qwen-2.5-Math-72B 916 338 139 170 60
Qwen-2.5-Math-7B 560 450 240 240 110
Phi-4 553 117 131 199 130
Phi-3.5 77 139 125 255 170

Table 18: Number of instances for different models across dataset groups.

continues after the step has been corrected for calculation errors. We find an improvement in base deductive consistency of
up to 15% but decay did not improve.

A.5.1. ERROR ANALYSIS

Despite the streamlined review–and–edit loop, the calculator–tool intervention yields improvement upto 15 % in base
deductive consistency (Deductive consistency at 1-Hop)(Table 20, Table 19) and fails to curb the decay that accumulates over
longer reasoning chains. This approach targets arithmetic slip-ups alone; it leaves intact other error modes—misconceptions,
faulty inferences, and hallucinated premises, that cannot be caught or corrected by a simple tool call. Error Analysis with
Monitor (Table 21) and without Monitor (Table 17) further reveals that, even after driving calculation errors to a minimum,
we continue to observe substantial understanding errors and logical inconsistencies. Taken together, these findings show that
tool-based approaches which merely supply a calculator do not resolve the broader problem of deductive decay.

Hop LLaMA-3-8B-Instruct Phi-4
With Monitor Without Monitor With Monitor Without Monitor

1 0.9081 ± 0.0139 0.7629 ± 0.0217 0.9421 ± 0.0318 0.7629 ± 0.0238
2 0.8098 ± 0.0205 0.6572 ± 0.0227 0.8762 ± 0.0761 0.6572 ± 0.0278
3 0.7356 ± 0.0264 0.5777 ± 0.0165 0.8489 ± 0.0848 0.5777 ± 0.0285
4 0.6651 ± 0.0391 0.5254 ± 0.0154 0.8641 ± 0.0545 0.5254 ± 0.0228
5 0.6100 ± 0.0470 0.4988 ± 0.0264 0.7715 ± 0.1081 0.4988 ± 0.0117

Table 19: Deductive consistency with and without monitor across hops for LLaMA-3-8B-Instruct and Phi-4.

LLaMA-3-8B-Instruct Phi-4
Monitor Base Decay Base Decay
Without Monitor 0.7629 0.3300 0.8911 0.1517
With Monitor 0.9081 0.3704 0.9421 0.1750

Table 20: Base and decay values for LLaMA-3-8B-Instruct and Phi-4 with and without monitor.

A.6. SynDeduct

Why Use Synthetic Dataset? Synthetic datasets offer a controlled framework for evaluating deductive accuracy, as all
data points are generated according to predefined rules with precisely derived ground truth. This setup enables meticulous
regulation of the underlying computation graph, allowing us to specify the total number of reasoning steps (i.e., edges in the
graph) needed to arrive at the final answer.

In constructing of SynDeduct dataset, we begin by sampling a set of DAGs according to parameters that define constants,
variable distributions, and arithmetic operators. We then extract paths from each DAG as programmatically computed
reasoning traces. The resulting ground-truth derivations are converted into Chain of Thought representations by applying a
set of verbalization templates, yielding readable textual explanations. Unlike in GSM8K, our approach does not require
code generation or templated Chains of Thought, as the underlying computation graph is already available.

We quantify a path’s difficulty by counting the number of reasoning steps (graph edges) it takes to move from the initial

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Model Calculation Logic Understanding
Phi-4 0.1058 0.0445 0.1058

Llama-3-8B 0.1577 0.0611 0.282
Table 21: Error Rates of Models w/Monitor normalized by total data-points

(base) node to the final (target) node. Accordingly, we generate N sets of questions, where the n-th set contains questions
that require n steps.

To accommodate varying input-premise lengths, we create additional questions by progressively appending segments of the
ground-truth reasoning chain to converge on the same target premise. We then place these questions into bins based on how
many hops are needed, intermixing different prefix lengths within each bin. This organization yields n bins, each focused on
questions requiring n hops but differing in the prefixed portion of the chain. Such binning enables robust averaging of model
performance for varying prefix lengths within the same number of steps.

To reduce unnecessary increase in calculation errors we tried to keep the operators limited to only addition and subtraction.

Table 22: DC ± Standard Error for Hops 1-6

Model Hop 1 Hop 2 Hop 3 Hop 4 Hop 5 Hop 6

Qwen-2.5-Math-7B 0.2083± 0.0336 0.1205± 0.0354 0.0867± 0.0228 0.0898± 0.0245 0.0792± 0.0238 0.0607± 0.0189
Qwen-2.5-7B 0.5458± 0.0376 0.3705± 0.0474 0.3250± 0.0430 0.2630± 0.0357 0.2562± 0.0279 0.2440± 0.0334
Qwen-2.5-Math-72B 0.5674± 0.0285 0.4894± 0.0434 0.4433± 0.0456 0.3852± 0.0553 0.3635± 0.0513 0.3381± 0.0549
Qwen-2.5-72B 0.6868± 0.0287 0.5848± 0.0389 0.4825± 0.0368 0.4046± 0.0358 0.3354± 0.0294 0.2643± 0.0215
Llama-3-8B 0.2993± 0.0458 0.2023± 0.0411 0.1825± 0.0382 0.1602± 0.0368 0.1469± 0.0275 0.1357± 0.0257
DeepSeek-R1-Llama-70B 0.7389± 0.0202 0.6879± 0.0196 0.6742± 0.0175 0.6509± 0.0169 0.6542± 0.0167 0.6488± 0.0206
Llama-3.3-70B 0.8465± 0.0124 0.8129± 0.0158 0.7675± 0.0147 0.7250± 0.0140 0.7125± 0.0177 0.6833± 0.0096
DeepSeek-R1-Qwen-7B 0.5424± 0.0369 0.3871± 0.0442 0.3308± 0.0416 0.2870± 0.0432 0.2802± 0.0441 0.2262± 0.0348

Table 23: DC ± Standard Error for Hops 7-12

Model Hop 7 Hop 8 Hop 9 Hop 10 Hop 11 Hop 12

Qwen-2.5-Math-7B 0.0403± 0.0105 0.0383± 0.0124 0.0250± 0.0088 0.0250± 0.0097 0.0167± 0.0090 0.0000± 0.0000
Qwen-2.5-7B 0.1639± 0.0196 0.1633± 0.0217 0.1479± 0.0256 0.0917± 0.0273 0.0792± 0.0232 0.0500± 0.0186
Qwen-2.5-Math-72B 0.3222± 0.0582 0.3367± 0.0578 0.3229± 0.0678 0.2861± 0.0648 0.2667± 0.0691 0.2583± 0.0702
Qwen-2.5-72B 0.2167± 0.0176 0.1750± 0.0164 0.1562± 0.0209 0.0889± 0.0149 0.0667± 0.0136 0.0417± 0.0185
Llama-3-8B 0.0903± 0.0215 0.0883± 0.0201 0.1104± 0.0229 0.0861± 0.0169 0.0417± 0.0154 0.0083± 0.0080
DeepSeek-R1-Llama-70B 0.6431± 0.0159 0.6083± 0.0248 0.5958± 0.0273 0.5556± 0.0186 0.4667± 0.0325 0.3333± 0.0430
Llama-3.3-70B 0.6347± 0.0156 0.6017± 0.0169 0.5854± 0.0178 0.5750± 0.0391 0.5417± 0.0316 0.6083± 0.0343
DeepSeek-R1-Qwen-7B 0.2097± 0.0336 0.1633± 0.0360 0.1604± 0.0353 0.1250± 0.0243 0.0667± 0.0198 0.0667± 0.0136

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Table 24: DC ± Standard Error for Prefix 1-6

Model Prefix 1 Prefix 2 Prefix 3 Prefix Prefix 5 Prefix 6

Qwen-2.5-Math-7B 0.2113± 0.0452 0.1118± 0.0257 0.0967± 0.0218 0.0878± 0.0231 0.0663± 0.0214 0.0734± 0.0132
Qwen-2.5-7B 0.3719± 0.0678 0.3715± 0.0483 0.2947± 0.0559 0.2951± 0.0452 0.2289± 0.0479 0.2401± 0.0421
Qwen-2.5-Math-72B 0.7968± 0.0140 0.6433± 0.0187 0.4900± 0.0273 0.3836± 0.0338 0.3812± 0.0313 0.3475± 0.0289
Qwen-2.5-72B 0.3674± 0.0737 0.3526± 0.0773 0.3674± 0.0714 0.3522± 0.0777 0.3039± 0.0670 0.3396± 0.0545
Llama-3-8B 0.3011± 0.0451 0.2580± 0.0341 0.2371± 0.0430 0.1494± 0.0285 0.1169± 0.0277 0.0981± 0.0191
DeepSeek-R1-Llama-70B 0.5970± 0.0546 0.6546± 0.0570 0.6828± 0.0401 0.6461± 0.0569 0.6287± 0.0563 0.6304± 0.0474
Llama-3.3-70B 0.6452± 0.0204 0.7562± 0.0186 0.6720± 0.0298 0.6691± 0.0292 0.6730± 0.0181 0.6094± 0.0301
DeepSeek-R1-Qwen-7B 0.4534± 0.0581 0.3817± 0.0550 0.3252± 0.0552 0.2780± 0.0440 0.3136± 0.0376 0.1923± 0.0406

Table 25: DC ± Standard Error for Prefix 7-12

Model Prefix 7 Prefix 8 Prefix Prefix 10 Prefix 11 Prefix 12

Qwen-2.5-Math-7B 0.0383± 0.0157 0.0407± 0.0106 0.0191± 0.0080 0.0151± 0.0061 0.0176± 0.0100 0.0124± 0.0061
Qwen-2.5-7B 0.1651± 0.0386 0.1544± 0.0383 0.1918± 0.0329 0.1376± 0.0362 0.1277± 0.0238 0.1217± 0.0227
Qwen-2.5-Math-72B 0.2979± 0.0410 0.3003± 0.0274 0.2063± 0.0336 0.1619± 0.0301 0.1676± 0.0401 0.2034± 0.0359
Qwen-2.5-72B 0.2892± 0.0583 0.2505± 0.0558 0.2376± 0.0490 0.2286± 0.0419 0.2007± 0.0436 0.2138± 0.0478
Llama-3-8B 0.0775± 0.0240 0.0903± 0.0147 0.0821± 0.0163 0.0362± 0.0085 0.0599± 0.0091 0.0452± 0.0108
DeepSeek-R1-Llama-70B 0.6311± 0.0498 0.6519± 0.0377 0.6133± 0.0316 0.6845± 0.0149 0.6875± 0.0352 0.6426± 0.0473
Llama-3.3-70B 0.6164± 0.0176 0.5876± 0.0226 0.6538± 0.0195 0.5721± 0.0317 0.5625± 0.0206 0.5844± 0.0122
DeepSeek-R1-Qwen-7B 0.1470± 0.0350 0.1923± 0.0339 0.1927± 0.0377 0.1070± 0.0292 0.1302± 0.0344 0.1321± 0.0300

Qwen
-2.

5-M
ath

-7B

Qwen
-2.

5-7
B

Qwen
-2.

5-M
ath

-72
B

Qwen
-2.

5-7
2B

Lla
ma-3

-8B

Dee
pS

ee
k-R

1-L
lam

a-7
0B

Lla
ma-3

.3-
70

B

Dee
pS

ee
k-R

1-Q
wen

-7B
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

Coverage per Model

Figure 12: Coverage Metric in SynDeDeduct for Different Models

1 2 3 4 5 6 7 8 9 10 11 12
Hops

0.0

0.2

0.4

0.6

0.8

1.0

DC
 S

co
re

DC vs Hops Group 1 (RL)
Qwen-2.5-72B-Instruct
Qwen-2.5-Math-72B-Instruct
Qwen-2.5-7B-Instruct
Qwen-2.5-Math-7B-Instruct

(a) DC vs. Hops for Group 1

1 2 3 4 5 6 7 8 9 10 11 12
Hops

0.0

0.2

0.4

0.6

0.8

1.0

DC
 S

co
re

DC vs Hops Group 2 (Distill)
Qwen-2.5-Math-7B-Instruct
Distill-Qwen-7B
Llama-3.3-70B-Instruct
Distill-Llama-70B

(b) DC vs. Hops for Group 2

Figure 13: Comparison of DC vs. Hops for Different Model Groups

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

A.7. Error Analysis on SynDeduct

A.7.1. QUALITATIVE ANALYSIS

We have the following error categories: Calculation: correct operands & operator, but wrong arithmetic.

Logic: correct operands but wrong operator. Understanding: wrong operands or misread definition.

Garbled: incoherent or bad attempt at correct solution or repeated backtracking.

Exit: The case where response from error analysis llm could not be parsed.

Calculation Error

Inputs:
- X (value = 7)
- Y (value = 7)
- Z is the difference between X and Y.
- What is the value of Z?
Golden Answer Reasoning:
- Z is the difference between X and Y. Z = 7 - 7 = 0
Model Final Answer:
- Z is the difference between X and Y. Z = 7 - 7 = -3
Explanation:
Operands: X=7, Y=7; Operation: -; Computed: 7-7=-3 vs 0.

Understanding Error

Inputs:
- X (value = 7)
- Y (value = 7)
- T (value = 2)
- Z is the difference between X and Y.
- What is the value of Z?
Golden Answer Reasoning:
- Z = 7 - 7 = 0
Model Final Answer:
- Z is the difference between X and T. Z = X - T = 5
Explanation:
Picked Operands X and T instead of X and Y

Logic Error

Inputs:
- X (value = 7)
- Y (value = 7)
- Z is the difference between X and Y.
- What is the value of Z?
Golden Answer Reasoning:
- Z = 7 - 7 = 0
Model Final Answer:
- Z is the sum between X and Y. Z = X + Y = 14
Explanation:
Picked Operands X and Y (correct) but used "+" operations instead of "-"

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

A.7.2. QUANTITATIVE ANALYSIS

Calculation errors (Figure 14) are major source of performance degradation and dominate through all prefix/hop levels.
Next, Understanding errors are present and stay constant thought out and Logic errors are sparse to find.

Garbled Errors are a major source of concern. tried our best to ensure that the experimental setup is sound. We used the
recommended (and other) sampling settings, prompt settings for the model and did not see major improvement in garbled
errors. We also used different LLM hosting packages and their default settings (vLLM, transformers etc and see no change).
Exit failure code denotes where our error analysis LLM failed to produce parse-able results and such errors are few.

One could argue that large context length required for synDeduct may cause issues, however it doesnt hold well. As the
maximum number of tokens for the task never exceeds 10k, which is well below for the maximum context size for these
models. And the task is hand is very simple.

Also, models like Phi-4 and Qwen 7B, Qwen 7B R1 perform way better in the same experimental settings. This failure
mode deep dive analysis is left for future work.

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

1 2 3 4 5 6 7 8 9 10 11 12
Instance Number

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r C
ou

nt
 /

12
0

Error Counts Normalized by 120 for llama70b
Error Type
Calculation
Logic
Understanding
Garbled
Exit

(a) Llama 3.3 70B

1 2 3 4 5 6 7 8 9 10 11 12
Instance Number

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r C
ou

nt
 /

12
0

Error Counts Normalized by 120 for llama8b
Error Type
Calculation
Logic
Understanding
Garbled
Exit

(b) Llama 3 8B

1 2 3 4 5 6 7 8 9 10 11 12
Instance Number

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r C
ou

nt
 /

12
0

Error Counts Normalized by 120 for r1_llama70b
Error Type
Calculation
Logic
Understanding
Garbled
Exit

(c) Llama 3.3 70B R1

1 2 3 4 5 6 7 8 9 10 11 12
Instance Number

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r C
ou

nt
 /

12
0

Error Counts Normalized by 120 for phi4
Error Type
Calculation
Logic
Understanding
Garbled
Exit

(d) Phi 4

1 2 3 4 5 6 7 8 9 10 11 12
Instance Number

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r C
ou

nt
 /

12
0

Error Counts Normalized by 120 for qwen72b
Error Type
Calculation
Logic
Understanding
Garbled
Exit

(e) Qwen 72B

1 2 3 4 5 6 7 8 9 10 11 12
Instance Number

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r C
ou

nt
 /

12
0

Error Counts Normalized by 120 for math_qwen72b
Error Type
Calculation
Logic
Understanding
Garbled
Exit

(f) Qwen Math 72B

1 2 3 4 5 6 7 8 9 10 11 12
Instance Number

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r C
ou

nt
 /

12
0

Error Counts Normalized by 120 for qwen7b
Error Type
Calculation
Logic
Understanding
Garbled
Exit

(g) Qwen 7B

1 2 3 4 5 6 7 8 9 10 11 12
Instance Number

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r C
ou

nt
 /

12
0

Error Counts Normalized by 120 for math_qwen7b
Error Type
Calculation
Logic
Understanding
Garbled
Exit

(h) Qwen Math 7B

1 2 3 4 5 6 7 8 9 10 11 12
Instance Number

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r C
ou

nt
 /

12
0

Error Counts Normalized by 120 for r1_qwen7b
Error Type
Calculation
Logic
Understanding
Garbled
Exit

(i) Qwen 7B R1

Figure 14: Error plots for SynDeduct.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

A.8. ProntoQA

Here are the results on ProntoQA.

Model Name Coverage

Phi-4 0.9151
DeepSeek-R1-Llama-70B 0.9105
DeepSeek-R1-Qwen-7B 0.9096
Qwen2.5-7B 0.9060
Qwen2.5-Math-72B 0.8902
Phi-3.5-mini 0.8706
LLaMA-3.3-70B 0.8466
Qwen2.5-Math-7B 0.8341
Meta-LLaMA-3-8B 0.7738

Model Name Hop@1 Hop@2 Hop@3 Hop@4 Hop@5

Phi-4 1.000 0.999 0.999 1.000 1.000
DeepSeek-R1-Llama-70B 0.998 0.997 0.996 0.991 0.996
DeepSeek-R1-Qwen-7B 0.995 0.984 0.970 0.953 0.953
Qwen2.5-7B 0.993 0.982 0.967 0.944 0.935
Qwen2.5-Math-72B 0.999 0.997 0.996 0.993 0.993
Phi-3.5-mini 0.998 0.997 0.996 0.994 0.996
LLaMA-3.3-70B 0.998 0.998 0.994 0.993 0.993
Qwen2.5-Math-7B 0.992 0.982 0.967 0.957 0.942
Meta-LLaMA-3-8B 0.994 0.985 0.986 0.979 0.986

Model Name P@0 P@1 P@2 P@3 P@4

Phi-4 1.000 1.000 0.998 1.000 1.000
DeepSeek-R1-Llama-70B 0.999 0.973 0.966 0.994 0.937
DeepSeek-R1-Qwen-7B 0.981 0.954 0.983 0.991 0.996
Qwen2.5-7B 0.953 0.978 0.987 0.982 0.996
Qwen2.5-Math-72B 0.997 0.997 0.997 0.997 0.998
Phi-3.5-mini 0.999 0.995 0.997 0.995 0.939
LLaMA-3.3-70B 0.997 0.997 0.996 0.997 0.996
Qwen2.5-Math-7B 0.960 0.976 0.981 0.982 0.994
Meta-LLaMA-3-8B 0.991 0.986 0.984 0.994 0.996

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

A.9. LM Prompts for GSM8K

LLM Prompt

System prompt: "You are an expert in math. You must answer this question. You give the step-by-step solution
followed by four # symbols followed by the answer."
User: "Question: <question>\nAnswer:"

Example Question:
User: "Question: Yasna has two books. One book is 60 pages long, and the other book is 12 pages long. If Yasna
wants to finish both of the books in 6 weeks, how many pages will Yasna need to read every day, if she reads an
equal number of pages each day? \nAnswer:"

Example Assistant Partial Answer:
Assistant:

Yasna has 60 + 12 = 72 pages to read.

She has 6× 7 = 42 days to read them.

Template Builder Agent Prompt

System Prompt:
You are a templatizing agent. Your task is to process questions and answers, templatize them by replacing specific
numerical values with placeholders, and create a structured JSON output. The JSON output must contain the
following keys:
1. **templatized_question**: A version of the question where specific numerical values, object names, or other
unique entities are replaced by placeholders.
2. **templatized_answer**: A step-by-step reasoning answer where specific numerical values or entities are
replaced by placeholders. Each step should remain logically consistent with the original answer.
3. **factual_assignment**: A dictionary mapping placeholders to their original factual values, ensuring the
templatized versions can reconstruct the original question and answer. MUST only contain NUMERICAL values.
Make sure the templatized answer and question ALIGN PERFECTLY with the original answer structure.
—
ICL Examples
Example 1
Input Question:
A train travels 60 kilometers in 2 hours. What is its average speed?
Input Answer:
The train travels a distance of 60 kilometers in 2 hours. Average speed is calculated as distance divided by time.
Average speed = 60 / 2 = 30 kilometers per hour.
Output JSON:

{
"templatized_question": "A train travels {distance} kilometers in {time} hours.

What is its average speed?",
"templatized_answer": [
"The train travels a distance of {distance} kilometers in {time} hours.",
"Average speed is calculated as distance divided by time.",
"Average speed = {distance} / {time} = {average_speed} kilometers per hour."

],
"factual_assignment": {
"distance": 60,

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

"time": 2,
"average_speed": 30

},

"node_explanation":{
"distance": "The distance traveled by the train",
"time": "time taken by the train to travel the distance",
"average_speed": "The average speed of the train"

}
}

—
Example 2 **Input Question:**
Mary buys 3 books for $15 each. How much does Mary spend in total?
Input Answer:
Mary buys 3 books, each costing $15. Total cost is calculated as number of books multiplied by the cost per book.
Total cost = 3 * 15 = $45.
Output JSON:

{
"templatized_question": "Mary buys {quantity} books for ${cost_per_book} each. How

much does she spend in total?",
"templatized_answer": [
"Mary buys {quantity} books, each costing {cost_per_book}.",
"Total cost is calculated as number of books multiplied by the cost per book.",
"Total cost = {quantity} * {cost_per_book} = ${total_cost}."

],
"factual_assignment": {
"quantity": 3,
"cost_per_book": 15,
"total_cost": 45

},
"node_explanation":{
"quantity": "The number of books bought by Mary",
"cost_per_book": "The cost of each book",
"total_cost": "The total amount spent by Mary"

}
}

—
User Prompt:
f"Question: <question>\nAnswer: <answer>\n\nProvide the templatized version as per the example above."

Code Generation LLM Prompt

System Prompt:
Generate Python code that solves the following problem step by step:
User Prompt:

Question:
<question>

Answer:
<CoT Answer>. The code must follow the variable names similar to ones in <

templatized_answer>

Python Code:

27

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Variable Extractor LLM Prompt

Instructions:
You are an expert in comprehension and variable extraction. Your task is to analyze a question, a step-by-step
solution, and a dictionary of variables and return a JSON object that adheres to the following rules:
—
Guidelines:

1. Inputs:

• Question: The problem description.
• Step-by-step solution: The solution text, where variables may be explicitly stated or calculated.
• Dictionary of variables: Contains variable names and their descriptions. Not all variables may appear in

the question or solution.

2. Output Format:

• Return a JSON object with:
– Keys: Variable names from the dictionary.
– Values: Numeric values extracted from the solution or question.
– If a value is explicitly mentioned in the step-by-step solution, extract it without recalculating.
– If the variable is not present in the solution or question, return "None".
– Values must preserve their original format (e.g., fractions, decimals, or expressions).

3. Output Structure:

• Enclose the output JSON object within <JSON> and </JSON> tags.
• All numeric values must be string representations (e.g., "3/2", "25.5", or "12+8").

4. Restrictions:

• Do not solve the problem yourself or calculate missing values.
• Extract only the values as they appear in the solution.

Example 1:

Question:
At a flea market, Hillary sells handmade crafts for 15 dollars per craft.
Today, Hillary sells 6 crafts and is given an extra 5 dollars from an appreciative

customer.
Later on, Hillary deposits 12 dollars from today’s profits into her bank account.
How many dollars is Hillary left with after making the deposit?

Step-by-step solution:
Hillary earns \(15 \times 6 = 90\) dollars from selling crafts.
Adding the extra 5 dollars, she has 90 + 5 = 95 dollars.
After depositing 12 dollars, she has 95 - 12 = 83 dollars left.

Dictionary of variables:
{

"price_per_craft": "The price of each craft",
"number_of_crafts": "The number of crafts sold",
"extra_dollars": "The extra amount given by the customer",
"deposit_amount": "The amount deposited into the bank account",
"total_earnings": "The total amount earned from selling crafts",
"total_amount": "The total amount after receiving the extra dollars",
"amount_left": "The amount left after depositing"

}

Output:

28

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

<JSON> {
"price_per_craft": "15",
"number_of_crafts": "6",
"extra_dollars": "5",
"deposit_amount": "12",
"total_earnings": "90",
"total_amount": "95",
"amount_left": "83"

} </JSON>

Example 2:

Question:
In a truck, there are 5 pink hard hats, 16 green hard hats, and 15 yellow hard hats.
Carl takes away 10 pink hard hats.
John takes away 7 pink hard hats and twice as many green hard hats as the number of

pink hard hats he removed.
Calculate the total number of hard hats that remained in the truck.

Step-by-step solution:
The total number of hats is 5 + 16 + 15 = 36.
Carl removes 10 pink hats, leaving 36 - 10 = 26.
John removes 7 pink hats, leaving 26 - 7 = 19.
John also removes \(7 \times 2 = 14\) green hats, leaving \(19 - 14 = 5\) hats in

total.

Dictionary of variables:
{

"pink": "The number of pink hard hats",
"green": "The number of green hard hats",
"yellow": "The number of yellow hard hats",
"carl_pink": "The number of pink hard hats taken by Carl",
"john_pink": "The number of pink hard hats taken by John",
"total_initial": "The total number of hats initially",
"total_after_carl": "The total number of hats after Carl’s removal",
"total_after_john_pink": "The total number of hats after John’s pink hat removal",

"john_green": "The number of green hats taken by John",
"total_final": "The total number of hats remaining"

}

Output:
<JSON> {

"pink": "5",
"green": "16",
"yellow": "15",
"carl_pink": "10",
"john_pink": "7",
"total_initial": "36",
"total_after_carl": "26",
"total_after_john_pink": "19",
"john_green": "14",
"total_final": "5"

} </JSON>

User Prompt:

Here is the question and the step-by-step solution to the problem:

Question: {generation[6]}

29

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Step-by-step solution: {generation[1]}

Dictionary of variables: {generation[5]}

For more detailed explanation of variables you can see how they were used in this
template: {generation[2]}

A.10. Artifacts SynDeduct

Rule Set for SynDeduct

{
"add": {
"function": "lambda x, y: x + y",
"verbalization": "{child} is the sum of {parent1} and {parent2}."

},
"subtract": {
"function": "lambda x, y: x - y",
"verbalization": "{child} is the difference between {parent1} and {parent2}."

}
}

Data Generation Steps

Initially, Directed Acyclic Graphs are generated. A computation graph is then constructed by selecting a fixed-length
path within each DAG and randomly assigning values and operators to its nodes. A rule set, in conjunction with a
predetermined collection of nouns, is employed to generate verbalization.
Additionally, Chain-of-Thought solutions along with final answer are produced and later used to create prefixes. It
is important to note that the questions generated in this process consist exclusively of "n" hops and do not include
any prefix.

python3 init.py --num_graphs 99000 --m 60 --unary_ratio 0.0 --logic_mode bodmas --
naming_mode noun --nouns.json --operators_file ruleset.json --output_file output.
json --max_hops 24 --max_graphs 4000

Steps kept and undersampled to 4000:
Hop 1: 4000
Hop 2: 4000
Hop 3: 4000
Hop 4: 4000
Hop 5: 4000
Hop 6: 4000
Hop 7: 4000
Hop 8: 4000
Hop 9: 4000
Hop 10: 4000
Hop 11: 4000
Hop 12: 4000
Hop 13: 4000
Hop 14: 4000
Hop 15: 4000
Hop 16: 4000
Hop 17: 4000
Hop 18: 4000
Hop 19: 4000
Hop 20: 4000
Hop 21: 4000

30

1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Hop 22: 4000
Hop 23: 4000
Hop 24: 4000

The chain-of-solution is now appended to the question, resulting in questions that incorporate a specified number of
prefixes alongside n hops. To create a balanced dataset, the maximum number of hops is limited to 12, half the total
hops, and the total number of items is capped at 120.
For instance, in the case of Hop12, there are 10 questions featuring a 12-hop prefix. This configuration implies
that each such question originated from a 24-hop question, wherein the first 12 hops, serving as the prefix of the
chain-of-thought, are provided, and the language model is required to resolve the remaining 12 hops.

python transformer.py --max_hops 12 --max_items 120 --max_prefixes 12 --
max_prefix_length 10 output.json

Prefix Length Distribution Per Hop Category (After Undersampling):

Hop 1: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 2: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 3: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 4: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 5: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 6: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 7: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 8: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 9: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 10: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 11: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Hop 12: Prefix1: 10, Prefix2: 10, Prefix3: 10, Prefix4: 10, Prefix5: 10, Prefix6: 10,
Prefix7: 10, Prefix8: 10, Prefix9: 10, Prefix10: 10, Prefix11: 10, Prefix12: 10

Total Prefix Length Distribution Across Hops:

Prefix1: 120
Prefix2: 120
Prefix3: 120
Prefix4: 120
Prefix5: 120
Prefix6: 120
Prefix7: 120
Prefix8: 120
Prefix9: 120
Prefix10: 120
Prefix11: 120
Prefix12: 120

Number Of Items per Hop

Hop: 1 - 120
Hop: 2 - 120
Hop: 3 - 120

31

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Hop: 4 - 120
Hop: 5 - 120
Hop: 6 - 120
Hop: 7 - 120
Hop: 8 - 120
Hop: 9 - 120
Hop: 10 - 120
Hop: 11 - 120
Hop: 12 - 120
Total entries in transformed JSON: 1440

A single Data-point of SynDeduct

Prompt Part A: Graph Structure and Question (will be given as user) The graph structure encompasses the
complete verbalization of the entire graph, whereas the question is derived solely from a specific path within that
graph. Consequently, a considerable amount of the information contained in the graph structure is not necessary for
generating a solution. This design serves to assess the model’s capability to extract and utilize only the relevant
information from a broader context.

=== Graph Structure ===
Inputs:
- Masako (value = 8)
- Nalca (value = 2)
- Gassman (value = 5)
Derived Nodes:
- Certain is the sum of Nalca and Masako.
- Irtysh is the sum of Certain and Gassman.
- Horstman is the difference between Masako and Certain.
- Pellicano is the difference between Horstman and Gassman.
- Taoiseach is the difference between Masako and Gassman.
- Vanvalkenburg is the difference between Gassman and Certain.
- Nourse is the sum of Irtysh and Nalca.
- Clapham is the sum of Pellicano and Taoiseach.
- Nuncio is the difference between Nalca and Horstman.
- Foxbat is the difference between Nalca and Gassman.
- Kenyon is the sum of Nuncio and Masako.
- Riva is the sum of Kenyon and Nourse.
- Claymore is the difference between Irtysh and Riva.
- Ballville is the sum of Masako and Riva.
- Lai is the difference between Kenyon and Clapham.
- Smolik is the sum of Vanvalkenburg and Riva.
- Bushi is the sum of Horstman and Claymore.
- Batiste is the sum of Riva and Kenyon.
- Criner is the sum of Riva and Certain.
- Begnaud is the difference between Nourse and Foxbat.
- SEPA is the sum of Certain and Irtysh.
- Wentling is the sum of Nalca and Smolik.
- Troon is the sum of Lai and Begnaud.
- Sanderson is the sum of Wentling and Begnaud.
- Ferozepore is the difference between Horstman and Sanderson.
- Sibiu is the sum of Ballville and Riva.
- Bootle is the sum of Irtysh and Nalca.
- Climategate is the sum of Vanvalkenburg and Taoiseach.
- Maland is the difference between Certain and Vanvalkenburg.
- Hobby is the difference between Sanderson and Kenyon.
- Tikrit is the difference between Nourse and Bootle.
- Lamarca is the sum of Maland and Criner.
- Dnipr is the sum of Irtysh and Nourse.
- Arvid is the difference between SEPA and Horstman.
- Plath is the sum of SEPA and Criner.

32

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

- Gulliver is the difference between Kenyon and Sibiu.
- Helatrobus is the difference between Plath and Sanderson.
- Tulu is the sum of Nalca and Kenyon.
- Shuka is the sum of Nourse and Vanvalkenburg.
- Hemsley is the difference between Bootle and Pellicano.
- Creasman is the sum of Nourse and Troon.
- Falcon is the sum of Clapham and Irtysh.
- Border is the difference between Gassman and Tikrit.
- Noyola is the difference between Lamarca and Hobby.
- Tommie is the sum of Taoiseach and Helatrobus.
- Hines is the sum of Masako and Batiste.
- Adney is the difference between Wentling and Bushi.
- Winsford is the sum of Ballville and Shuka.
- Iga is the sum of Plath and Riva.
- Jacqueline is the sum of Winsford and Vanvalkenburg.
- Wheatley is the sum of Border and Irtysh.
- Lyndon is the sum of Noyola and Shuka.
- Arvelo is the difference between Pellicano and SEPA.
- Belphegor is the difference between Helatrobus and Wheatley.
- Kassandra is the difference between Bootle and Tulu.
- Garth is the difference between Wentling and Plath.
- Yucatec is the sum of Pellicano and Hines.

What is the value of Arvelo?

Prompt PartB: Partial COT (prefix)
This assistant prompt-response pair will be provided to the language model with the eos_token removed from the
end. This ensures that the model continues generating text seamlessly from where the given prefix ends, thereby
guiding its output to align with the intended structure and constraints.

Answer: - Given value of Masako = 8 .
- Given value of Nalca = 2 .Certain is the sum of Nalca and Masako.
The Computed value of Certain = 10

Response From LLM

- Given value of Gassman = 5 . Irtysh is the sum of Certain and Gassman. The
Computed value of Irtysh = 15 Horstman is the difference between Masako and
Certain. The Computed value of Horstman = -2 Pellicano is the difference
between Horstman and Gassman. The Computed value of Pellicano = -7 Taoiseach
is the difference between Masako and Gassman. The Computed value of Taoiseach
= 3 Vanvalkenburg is the difference between Gassman and Certain. The

Computed value of Vanvalkenburg = -5 Nourse is the sum of Irtysh and Nalca.
The Computed value of Nourse = 15 + 10 = 15 The Computed value of Nourse =
100 + 10 = 100 The Computed value of Nourse = 100 + 10 = 110 + 15 = 115 The
Computed value of Nourse = 15 + 10 = 110 + 15 = 115 The Computed value of
Nourse = 100 + 15 = 115 The Computed value of Nourse = 15 The Computed value
of Nourse = 15 The Computed value of Nourse = 15 + 10 = 25 The Compu

ted value of Nourse = 100 The Computed value of Nourse = 100 + 15 = 115 The Computed
value of Nourse = 15 + 15 = 30 The Computed value of Nourse = 100 T

he Computed value of Nourse = 100 The value of Septembr = 100 The value of Rondeau =
10 The value of Rondeau = 10 The value of Rondeau = 10 The value o

f Nalca = 10 The value of Nalca = 10 The value of Nalca = 10 The value of Nalca = 10
The value of Nalca = 10 The value of Nalca = 10 The value of Nalc

a = 10 The value of Nalca = 10 The value of Nalca = 10 The value of Nalca = 10 The
value of Nalca = 10 The value of Nalca = 10 The value of Nalca = 10

The value of Nalca = 10 The value of Nalca = 10 The value of Malca = 10 The value
of Malca = 10 The value of Malca = 10 The value of Maland = 10 The

value of Maland = 10 The value of Mand = 100 The value of Mand = 100 The value of
Nalca = 100 The value of Nalca = 100 The value of Nalca = 10 The va

lue of Salca = 10 The value of Valca = 10 The value of Calca = 10 The value of Galca
= 10 The value of Palca = 10 The value of Balca = 10 The value of

33

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

DeduCE: Deductive Consistency for Evaluating LLM Reasoning

Talca = 10 The value of Falca = 10 SEPA is the sum of Certain and Irtysh. The
Computed value of SEPA = 10 + 15 = 25 Pellicano is the difference between

Horstman and Gassman. The Computed value of Pellicano = -2 - 5 = -7 Arvelo is the
difference between Pellicano and SEPA. The Computed value of Arvelo = -7

- 25 = -32 \n#### -3

Template System Prompt

You are a computation graph reasoning assistant designed to evaluate mathematical
expressions described in any style of verbalizations. Your task is to process a
graph structure, interpret the relationships between nodes based on the provided
verbalizations, and answer questions about specific nodes.

Here are the rules and expectations for your behavior:

Rules:
{RuleSet.json is filled here}

Graph Structure Processing:
- Nodes are defined as inputs or derived nodes.
- Inputs have predefined values.
- Derived nodes depend on other nodes and their relationships as defined by

verbalizations.

Step-by-Step Reasoning:
- Interpret the graph structure line-by-line.
- Calculate the value of each derived node based on its dependencies, ensuring

that the verbalization is correctly mapped to its mathematical function.
- Use previously calculated or input values as required.

Answer Presentation:
- Provide the value of the requested node only after completing all necessary

computations and make sure the value is a integer or a float.
- SHOW THE REASONING STEP-BY-STEP AND PROVIDE THE FINAL ANSWER CLEARLY, PREFIXED

BY ‘####‘ and NOTHING AFTER IT.
- Suppose answer is 56. You must output ‘#### 56‘ at the end of each step-by-step

solution.

Example 1:

{Graph Structure is filled here}
{Question is filled here}

Answer: Rondeau is an input with value 10.
- Septembr is the square of Rondeau.. The value of Septembr = 100
####100

Subsequently, the output generated by the language model is processed using a Variable Extractor analogous to that
employed in the GSM8K dataset. The parsed response is then normalized—massaged into the correct format (for instance,
converting fractional representations to floating-point numbers)—and subsequently compared to the final expected answer,
allowing for a tolerance of up to 5 per-cent deviation from the original value.

34

