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Abstract

Relations between words are governed by hi-001
erarchical structure rather than linear ordering.002
Sequence-to-sequence (seq2seq) models, de-003
spite their success in downstream NLP appli-004
cations, often fail to generalize in a hierarchy-005
sensitive manner when performing syntactic006
transformations—for example, transforming007
declarative sentences into questions—instead008
generalizing linearly using positional surface009
heuristics. However, syntactic evaluations of010
seq2seq models have only observed models011
that were not pre-trained on natural language012
data before being trained to perform syntac-013
tic transformations, in spite of the fact that014
pre-training has been found to induce hierar-015
chical linguistic generalizations in language016
models; in other words, the syntactic capabili-017
ties of seq2seq models may have been greatly018
understated. Here, we make use of the pre-019
trained seq2seq model T5 (and its multilingual020
variant mT5) and evaluate whether they gen-021
eralize hierarchically on two syntactic trans-022
formations in two languages: question forma-023
tion and passivization in English and German.024
We find that T5 and mT5 generalize hierarchi-025
cally when performing syntactic transforma-026
tions, whereas non-pre-trained baseline models027
do not. This result presents additional evidence028
for the learnability of hierarchical syntactic in-029
formation from non-annotated natural language030
text while also demonstrating that seq2seq mod-031
els are capable of syntactic generalization.032

1 Introduction033

Human language is structured hierarchically. In034

NLP tasks like natural language inference, syn-035

tactic competence is a prerequisite for robust gen-036

eralization (e.g., McCoy et al., 2019). Probing037

studies have found that masked language models038

(MLMs) contain hierarchical representations (Ten-039

ney et al., 2019; Hewitt and Manning, 2019; Clark040

et al., 2019), while behavioral studies of recurrent041

neural language models (Linzen et al., 2016; Mar-042

vin and Linzen, 2018; Wilcox et al., 2018; van Schi- 043

jndel et al., 2019) and MLMs (Goldberg, 2019; Hu 044

et al., 2020) have found that models are largely able 045

to capture long-range syntactic dependencies that 046

require hierarchical representations of sentences. 047

Recent evidence suggests that MLMs like BERT 048

(Devlin et al., 2019) and RoBERTa (Liu et al., 049

2019) can learn to make hierarchical linguistic gen- 050

eralizations through exposure to text (Warstadt and 051

Bowman, 2020), although the acquisition of many 052

of these linguistic generalizations requires large 053

amounts of data (Warstadt et al., 2020). However, 054

this evidence comes from binary acceptability judg- 055

ment tasks, where a classifier head is attached to 056

an MLM and the model is tuned to classify which 057

sentence in a given minimal pair is consistent with 058

a hierarchical linguistic generalization, rather than 059

a linear positional generalization. Consider the 060

following two transformations of Example (1): 061

(1) The farmer that has seen the horse hasn’t 062

helped his friend. 063

a. Hasn’t the farmer that has seen the horse 064

helped his friend? 065

b. *Has the farmer that seen the horse hasn’t 066

helped his friend? 067

Example (1-a) correctly forms the question by mov- 068

ing the main auxiliary verb to the front of the sen- 069

tence, while (1-b) relies on the incorrect positional 070

heuristic that the first auxiliary in the declarative 071

sentence is always inverted. When differentiating 072

grammatical and ungrammatical auxiliary inver- 073

sions, a model could rely on distributional infor- 074

mation (Lewis and Elman, 2001) such as bigram 075

heuristics (Reali and Christiansen, 2005; Kam et al., 076

2008) to make correct judgments in many cases, 077

so high performance on binary classification tasks 078

may overstate the syntactic competence of a model. 079

By contrast, performing a syntactic trans- 080

formation—e.g., given a declarative sentence like 081
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Example (1) as input, transforming it into a po-082

lar question like (1-a)—is more difficult, as it083

requires multiple complex but systematic opera-084

tions (such as movement, case reinflection, and085

number agreement) that rely on hierarchical struc-086

ture. Evaluations of syntactic transformational087

abilities can therefore act as more targeted behav-088

ioral indicators of syntactic structural representa-089

tions in neural models. McCoy et al. (2018) evalu-090

ate non-pre-trained recurrent sequence-to-sequence091

(seq2seq; Sutskever et al., 2014) models on the092

question formation task, finding that they rely on093

linear/positional surface heuristics rather than hi-094

erarchical structure to perform this syntactic trans-095

formation. More recent studies have also exclu-096

sively observed non-pre-trained recurrent seq2seq097

models and non-pre-trained Transformer models098

(Petty and Frank, 2021) on other transformations099

like tense reinflection (McCoy et al., 2020) and pas-100

sivization (Mulligan et al., 2021), finding similar101

results. These studies were designed to understand102

the inductive biases of various seq2seq architec-103

tures, hence why they do not pre-train the mod-104

els on non-annotated natural language data before105

training them to perform syntactic transformations.106

However, as Warstadt and Bowman (2020) find107

that non-annotated natural language text can in-108

duce preferences for hierarchical generalization in109

MLMs—and as positive results from syntactic eval-110

uations have come from language models which111

have been trained on large amounts of data (Hu112

et al., 2020)—we hypothesize that a seq2seq model113

exposed to a large amount of language will also114

acquire preferences for hierarchical generalizations.115

That is, we expect pre-trained models to make use116

of structural rather than surface features when gen-117

eralizing to held-out examples. In this study, we118

make use of the recent availability of a large pre-119

trained seq2seq model T5 (Raffel et al., 2020) and120

its multilingual variant mT5 (Xue et al., 2021) to121

investigate whether seq2seq models acquire pref-122

erences for hierarchical linguistic generalizations123

through pre-training. We test this by observing T5124

and mT5 (henceforth, (m)T5)’s syntactic transfor-125

mational abilities on English and German question126

formation and passivization tasks.127

We find that (m)T5 generally performs syn-128

tactic transformations in a hierarchy-sensitive129

manner, while non-pre-trained models (including130

randomized-weight versions of (m)T5) rely primar-131

ily on linear/positional heuristics to perform the132

transformations. This finding presents additional 133

evidence for the learnability of hierarchical syntac- 134

tic information from natural language text input. 135

2 Syntactic Transformations 136

2.1 Languages 137

We evaluate on syntactic transformations in English 138

and German. We choose English to allow for com- 139

parisons to previous results (McCoy et al., 2018; 140

Mulligan et al., 2021). We further extend our eval- 141

uations to German because it exhibits explicit case 142

marking on determiners and nouns; this typological 143

feature has been found to increase the sensitivity of 144

language models to syntactic structure (Ravfogel 145

et al., 2019). This allows us to compare transforma- 146

tional abilities for languages with different levels 147

of surface cues for hierarchy. 148

2.2 Tasks 149

We employ a poverty of the stimulus experimental 150

design (Wilson, 2006), where we train the model 151

on examples of a linguistic transformation that are 152

compatible with either a hierarchical rule or a lin- 153

ear/positional rule, and then evaluate the model on 154

sentences where only the hierarchical rule leads to 155

the generalization pattern that is consistent with the 156

grammar of the language.1 In other words, we are 157

interested in whether (m)T5 demonstrates a hierar- 158

chical inductive bias,2 unlike the linear inductive 159

bias displayed in prior work by non-pre-trained 160

models (McCoy et al., 2020). 161

We focus on two syntactic transformation tasks: 162

question formation and passivization. See Table 1 163

for a breakdown of which structures we present to 164

the model during training and which we hold out 165

to evaluate hierarchical generalization. 166

Question formation. In this task, a declarative 167

sentence is transformed into a polar question by 168

moving the main (matrix) auxiliary verb to the 169

start of the sentence; this hierarchical rule is called 170

MOVE-MAIN. The linear rule, MOVE-FIRST, en- 171

tails moving the linearly first auxiliary verb to the 172

front of the sentence. We train the model only on 173

sentences with no relative clauses (RCs) or with 174

RCs on the object—both cases in which the first 175

1Note that there are other rules that could properly trans-
form the stimuli we use, but we find that the models we test
do learn one of these rules or the other.

2When multiple generalizations are consistent with the
training data, “inductive bias” refers to a model’s choice of
one generalization over others.
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Train, dev, test Generalization

Structure Question Formation Passivization

No RC/PP quest: some xylophones have remembered my yak.
→ have some xylophones remembered my yak?

passiv: your quails amused some vulture.
→ some vulture was amused by your quails.

RC/PP on object quest: my zebras have amused some walrus who has waited.
→ have my zebras amused some walrus who has waited?

passiv: some tyrannosaurus entertained your quail behind your newt.
→ your quail behind your newt was entertained by some tyrannosaurus.

RC/PP on subject quest: my vultures that our peacock hasn’t applauded haven’t read.
→ haven’t my vultures that our peacock hasn’t applauded read?

passiv: the zebra upon the yak confused your orangutans.
→ your orangutans were confused by the zebra upon the yak.

Table 1: The distribution of syntactic structures in the train, test, and generalization sets. Note: to expose the model
to all structures during training and fine-tuning, we also include identity transformations for all structures using the
“decl:” prefix, where the input and output sequences are the same declarative or active sentence (see §3.1). We use
the test set to evaluate whether models have learned the task on in-distribution examples, and the generalization set
to evaluate whether models generalize hierarchically. See Appendix B for example sentences in German.

auxiliary verb is always the matrix verb. We with-176

hold examples in which RCs modify the subject,177

thus making the matrix auxiliary verb the linearly178

second auxiliary in the sentence, as such examples179

disambiguate between the two rules.180

In English, we use the auxiliaries ‘has’, ‘hasn’t’,181

‘have’, and ‘haven’t’, with past participle main182

verbs. We use affirmative and negative forms of183

the auxiliary to distinguish between the multiple184

auxiliaries in test sentences: exactly one of the aux-185

iliaries in such sentences is negative and the other186

is positive (though we vary which is which). As a187

result, we can determine whether the induced map-188

ping follows a hierarchical or linear inductive bias.189

In German, negation is realized as a separate word190

that is not fronted with the auxiliary. To make the191

multiple auxiliaries in a test sentence distinct, we192

therefore use the modal ‘können’ (can) along with193

the auxiliary ‘haben’ (have), together with past par-194

ticiple or infinitival main verbs as appropriate. As195

before, this allows us to distinguish models with a196

hierarchical bias from those with a linear bias on197

the basis of the fronted auxiliary.198

Passivization. In this task, an active sentence is199

transformed into a passive sentence by moving the200

object noun phrase (NP) to the front of the sen-201

tence (MOVE-OBJECT). The training examples we202

use are also compatible with a linear rule, MOVE-203

SECOND, in which the linearly second NP moves204

to the front of the sentence. We train on sentences205

with either no prepositional phrases (PPs) or with206

PPs modifying the object—i.e., where the second207

NP is always the object. Disambiguating examples208

are those which place prepositional phrases (PPs)209

on the subject, thus making the object the third NP210

in the sentence.211

Passivization additionally requires other move-212

ments, insertions, tense reinflection, and (for Ger-213

man) case reinflection. In Examples (2) and (3) 214

below, in addition to the displacement of the ob- 215

ject (in blue), ‘be’/‘werden’ (in red) is inserted in a 216

form appropriate to the grammatical features of the 217

fronted NP; the original subject NP (in brown) is 218

moved to a ‘by’/‘von’ phrase at the end of the sen- 219

tence; and the main verb (in orange) is reinflected 220

to be a past participle or infinitive. In German, 221

there are even more required operations: the case 222

of the NPs (reflected largely in the determiners) 223

must be reinflected and the main verb needs to be 224

moved to the end of the sentence. 225

(2) English Passivization: 226

a. Your quails amused some vulture. 227

b. Some vulture was amused by your quails. 228

(3) German Passivization: 229

a. Ihr
Your.NOM

Esel
donkey

unterhielt
entertained

meinen
my.ACC

230

Salamander.
salamander.

231

b. Mein
My.NOM

Salamander
salamander

wurde
became

von
from

ihrem
your.DAT

232

Esel
donkey

unterhalten.
entertained.

233

We provide examples of both transformations in 234

both languages in Table 2. When tuning (m)T5, we 235

use task prefixes in the source sequence before the 236

input. We use “quest:” for question formation and 237

“passiv:” for passivization. As in previous work, 238

we also include identity transformation examples 239

(prefixed with “decl:”), i.e., examples for which the 240

model has to output the unchanged declarative or 241

active sentence. When training seq2seq baselines, 242

we follow McCoy et al. (2020) and append those 243

task markers to the end of the input sequence. 244
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Input Output (hierarchical) Output (linear)

quest: My unicorn that hasn’t amused
the yaks has eaten.

Has my unicorn that hasn’t amused the yaks
eaten?

Hasn’t my unicorn that amused the yaks
has eaten?

quest: Die Hunde, die deine Löwen be-
wundern können, haben gewartet.

Haben die Hunde, die deine Löwen bewun-
dern können, gewartet?

Können die Hunde, die deine Löwen
bewundern, haben gewartet?

passiv: Her walruses above my uni-
corns annoyed her quail.

Her quail was annoyed by her walruses
above my unicorns.

My unicorns were annoyed by her wal-
ruses.

passiv: Unsere Papageie bei meinen Di-
nosauriern bedauerten unsere Esel.

Unsere Esel wurden von unseren Papageien
bei meinen Dinosauriern bedauert.

Meine Dinosaurier wurden von un-
seren Papageien bedauert.

Table 2: Examples from the generalization set with hierarchical- and linear-rule transformations.

3 Experimental Setup245

3.1 Data246

We modify and supplement the context-free gram-247

mar of McCoy et al. (2020) to generate our training248

and evaluation data.3 For each transformation, our249

training data consists of 100,000 examples with250

an approximately 50/50 split between identity ex-251

amples (where the input and output sequences are252

the same) and transformed examples. The identity253

examples include the full range of declarative or ac-254

tive structures (including sentences with RCs/PPs255

on subjects), thereby exposing the network to the256

full range of input structures we test. For the trans-257

formed examples, however, training data includes258

only examples with no RCs/PPs or RCs/PPs on259

the object NP—i.e., cases that are compatible with260

both the hierarchical and linear rules. We also gen-261

erate development and test sets consisting of 1,000262

and 10,000 examples, respectively, containing sen-263

tences with structures like those used in training;264

these are for evaluating in-distribution transforma-265

tions on unseen sentences.266

For each transformation, we also generate a gen-267

eralization set consisting of 10,000 transformed ex-268

amples with RCs/PPs on the subject NP. For such269

examples, models relying on the linear rules will270

not generalize correctly.271

3.2 Models272

We experiment with T5 (Raffel et al., 2020), an273

English pre-trained sequence-to-sequence model,274

as well as its multilingual extension mT5 (Xue275

et al., 2021).4 This is a 12-layer Transformer-based276

3We artificially generate our evaluation set such that it con-
sists of grammatical but semantically improbable sentences
which are unlikely to occur in a natural language corpus. This
is to alleviate the confound of token collocations in the pre-
training corpus.

4We use the HuggingFace implementations (Wolf et al.,
2020).

(Vaswani et al., 2017) architecture. For fine-tuning 277

on syntactic transformations, we use batch size 4 278

and initial LR 5 × 10−5. (m)T5 converges and 279

overfits quickly to the training set, so we only fine- 280

tune for 1 epoch and evaluate every 500 iterations. 281

To confirm the finding of McCoy et al. (2020) 282

that non-pre-trained models fail to generalize hi- 283

erarchically, we also implement baseline seq2seq 284

models similar to those used in that study. We im- 285

plement 1- and 2-layer LSTM-based seq2seq mod- 286

els, as well as 1- and 2-layer Transformer-based 287

seq2seq models where the Transformers have 4 at- 288

tention heads.5 We find that the 1-layer models 289

consistently achieve higher sequence accuracies on 290

the dev sets than the 2-layer models, so we focus 291

on the 1-layer baselines. We re-use all hyperpa- 292

rameters from McCoy et al. (2020), additionally 293

limiting the number of training epochs to 100. All 294

baseline scores are averaged over 10 runs. 295

3.3 Metrics 296

For all transformations, we are primarily interested 297

in sequence accuracy: is each token in the target se- 298

quence present in the proper order in the predicted 299

sequence? However, it is possible that the model 300

could generalize hierarchically while making some 301

other mistake, so we also use two more relaxed met- 302

rics: main auxiliary accuracy for question forma- 303

tion, which evaluates whether the correct auxiliary 304

was moved to the front of the sentence; and object 305

noun accuracy for passivization, which measures 306

whether the correct object noun was moved to the 307

subject position. In the question formation task, the 308

first word in the target sequence is always the main 309

auxiliary verb, so we calculate main auxiliary accu- 310

racy by checking if the first word is the same in the 311

predicted and target sequences. In the passiviza- 312

5Our implementations are based on the syntactic-
transformation-focused transductions repository: https:
//github.com/clay-lab/transductions
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Question Formation Passivization

Model English German English German

LSTM 0.95 0.94 0.97 0.97
Transformer 0.95 0.93 0.98 0.98

T5 1.00 – 1.00 –
mT5 1.00 1.00 1.00 1.00

Table 3: Sequence accuracies on the (in-distribution)
test sets for English and German syntactic transforma-
tions. All models learn the in-distribution transforma-
tions.

Question Formation Passivization

Model English German English German

LSTM 0.11 0.33 0.05 0.44
Transformer 0.07 0.05 0.04 0.07

T5 0.87 – 1.00 –
mT5 0.99 1.00 1.00 1.00

Table 4: Main auxiliary accuracies (for question forma-
tion) or object noun accuracies (for passivization) on the
generalization sets for English and German syntactic
transformations. Only T5 and mT5 generalize hierarchi-
cally.

tion task, the second word in the target sequence313

is the original object noun, so we calculate object314

noun accuracy by checking if the second word is315

the same in the predicted and target sequences.316

4 Results317

All models learn the in-distribution transfor-318

mations. We first present results on unseen sen-319

tences with the structure seen in training, where320

both the hierarchical and the linear rules result in321

correct generalization (Table 3). All models per-322

form well in this setting, including the LSTM- and323

Transformer-based models trained from scratch on324

this task. However, English and multilingual T5325

converge to higher sequence accuracies on both lan-326

guages and tasks than the non-pre-trained models.327

Additionally, while the baselines require about 15–328

20 epochs of training to converge to a high score,329

(m)T5 converges to perfect sequence accuracy after330

only a fraction of an epoch of fine-tuning.331

Only pre-trained models generalize hierarchi-332

cally. Evaluations on the generalization-set ex-333

amples with RCs/PPs on subjects (i.e., examples334

where the linear rule leads to incorrect generaliza-335

tion) reveal that that none of the baseline models336

have learned the hierarchical rule. These models337

consistently stay at or near 0% sequence accuracy 338

on the generalization set throughout training, so we 339

present main auxiliary/object noun accuracies (Ta- 340

ble 4). Accuracy remains low even on these more 341

forgiving metrics, indicating that the baselines have 342

not acquired the hierarchical rules. 343

Low accuracies do not necessarily indicate 344

reliance on the linear MOVE-FIRST or MOVE- 345

SECOND rules, since the baseline models could 346

be using other heuristics to perform the transforma- 347

tions. To test whether the baselines have learned 348

the linear rules, we implement metrics which calcu- 349

late the proportion of generalization-set examples 350

for which the MOVE-FIRST rule (for question for- 351

mation) or MOVE-SECOND rule (for passivization) 352

were used; we refer to these as the move-first fre- 353

quency and move-second frequency, respectively. 354

For each baseline and language, the sum of the 355

main auxiliary accuracy and move-first frequency 356

for question formation is ≈ 1.00; the sum of the 357

object noun accuracy and move-second frequency 358

for passivization is also ≈ 1.00. Thus, in most 359

cases where the model did not move the main aux- 360

iliary or object noun, it used the linear rule to move 361

the incorrect word. In other words, the baseline 362

models generalize using the linear rules. This 363

finding is in line with prior evaluations of non- 364

pre-trained seq2seq models (McCoy et al., 2020; 365

Mulligan et al., 2021; Petty and Frank, 2021).6 366

In contrast, (m)T5 achieves very high main aux- 367

iliary/object noun accuracies on the generalization 368

set. Even more strikingly, (m)T5 also consistently 369

achieves high sequence accuracies.7 Because se- 370

quence accuracy on the generalization set is unsta- 371

ble, we present learning curves for mT5 (Figure 1) 372

for the first epoch of fine-tuning. While the se- 373

quence accuracy is not consistently at 100%, it 374

is generally very high for mT5; this is far better 375

than the baselines’ 0% sequence accuracies. This 376

indicates that T5 and mT5 demonstrate a hier- 377

archical inductive bias, and that they can quickly 378

learn syntactic transformations. 379

Is (m)T5’s hierarchical inductive bias a feature 380

of the deep architecture, or is this bias acquired 381

during pre-training? To test this, we randomize the 382

6Nonetheless, higher accuracies on German transforma-
tions support the hypothesis that more explicit cues to syn-
tactic structure (here, case-marked articles and nouns) allow
models to learn hierarchical syntactic generalizations more
easily. This agrees with the findings of Ravfogel et al. (2019)
and Mueller et al. (2020).

7T5 performs very similarly to mT5, so we present results
for T5 in Appendix A.
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Figure 1: Learning curves during the first epoch of fine-tuning for mT5 on both transformation tasks in English and
German.

Figure 2: Learning curves for mT5 with randomized
weights on the generalization set. Note: the x-axis is
scaled by 1,000,000.

weights of mT5 and fine-tune for up to 50 epochs383

using an initial LR of 5 × 10−5.8 For all of the384

transformations, accuracies are much lower than385

for the pre-trained models (Figure 2), which sug-386

gests that the deeper architecture on its own does387

not lead to structure-sensitive generalizations. This388

in return indicates that mT5 does not start with a389

hierarchical inductive bias; the model acquires390

it through pre-training, extending the findings391

of Warstadt and Bowman (2020) to the generative392

sequence-to-sequence setting. However, as indi-393

cated by the non-zero main auxiliary/object noun394

accuracies, the randomly initialized mT5 models—395

unlike the baseline models—do not exhibit a con-396

sistent linear generalization either. This may be397

due to the large number of parameters compared398

to the size of the transformations training corpus.399

A randomly initialized model of this size would400

likely need orders of magnitude more training data401

to learn any stable generalizations.402

8We tune over learning rates ∈ 5× 10{−2,−3,−4,−5} for
the randomized models, finding that this setting yields the
best main auxiliary and object noun accuracies on in-domain
evaluations.

Error Analysis. T5 and mT5 almost always 403

choose the correct auxiliary/object to move; what 404

errors account for their sub-perfect sequence ac- 405

curacies? We implement more specific metrics to 406

observe more closely what mistakes (m)T5 makes. 407

Figure 3 depicts results for German passiviza- 408

tion, the transformation with the lowest sequence 409

accuracy. mT5 is almost always successful at the 410

hierarchical transformation of moving the object 411

NP to subject position (including its attached PP 412

when present), and it correctly moves the original 413

subject noun to a “by” phrase following the auxil- 414

iary. However, the model fails to preserve the PP on 415

the second NP (in the by-phrase). We find the same 416

results on English passivization for both T5 and 417

mT5: discrepancies between sequence accuracy 418

and object noun accuracy are almost always due to 419

the model dropping the PP on the second NP in the 420

target sequence. For example, “My yaks below the 421

unicorns comforted the orangutans.” is often trans- 422

formed to “The orangutans were comforted by my 423

yaks.”, where the PP “below the unicorns” has not 424

been moved with “my yaks”. As mT5 has not been 425

fine-tuned on output sequences where PPs appear 426

at the end of the sentence, perhaps the decoder as- 427

signs very low probability to end-of-sentence PPs 428

while otherwise encoding a hierarchical analysis of 429

sentence structure. 430

Errors for question formation are more varied. 431

T5 and mT5’s sub-perfect main auxiliary accuracy 432

on question formation is mainly due to improper 433

negations on the main auxiliary: when the noun in 434

the relative clause and the main noun agree in num- 435

ber, (m)T5 will sometimes delete the main auxiliary 436

(as expected) while copying the incorrect auxiliary 437

to the beginning of the sentence. Additionally, the 438

discrepancy between sequence and main auxiliary 439

accuracies is almost always attributable to (m)T5 440

not deleting the main auxiliary after moving it to 441

the start of the sentence. These results (as with the 442

passivization results) suggest that (m)T5 is actually 443
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Figure 3: Learning curves displaying alternative accu-
racy metrics for mT5 on German passivization. We
present the accuracy of the model in properly moving
the object NP to the start of the sentence (top left), mov-
ing the subject NP after the auxiliary verb (top right),
moving the subject NP after the auxiliary verb with or
without its attached PP (bottom left), and the full se-
quence accuracy (bottom right).

better at performing hierarchy-sensitive transfor-444

mations than the learning curves initially suggest—445

but also that (m)T5 can fail to perform theoretically446

simpler operations, such as deletions and moving447

all parts of a constituent.448

5 Transformation Strategies449

Our results indicate that (m)T5 can consistently450

perform hierarchy-sensitive transformations. What451

strategy does the model follow to do this? Because452

(m)T5’s pre-training data includes active, passive,453

declarative, and question sentences, the model rep-454

resentations could encode these high-level sentence455

features.9 Thus, one strategy could be to learn a456

mapping between abstract representations of dif-457

ferent sentence structures (REPRESENTATION strat-458

egy). Alternatively, the model could learn to cor-459

rectly identify the relevant syntactic units in the in-460

put (e.g., the main auxiliary for question formation,461

and the subject and object NPs for passivization),462

and then learn a “recipe” of steps leading to the463

correct transformations, such as those outlined in464

Section 2 (RECIPE strategy).465

To distinguish which strategy (m)T5 uses to per-466

form syntactic transformations, we exploit that En-467

glish and German use the same operations for ques-468

tion formation, whereas passivization in German in-469

9For example, (sets of) neuron activations have been found
to encode syntactic features in MLMs (Ravfogel et al., 2021;
Finlayson et al., 2021; Hernandez and Andreas, 2021).

Figure 4: Learning curves for German transformations
after tuning only on English/German identity examples
and English transformations. We show accuracies for
German question formation with RCs on objects (top
left) and RCs on subjects (top right), as well as accu-
racies for German passivization with PPs on objects
(bottom left) and PPs on subjects (bottom right).

volves the additional steps of case reinflection and 470

moving the main verb to the sentence-final position. 471

Thus, if structural representations are shared across 472

English and German in mT5,10 we expect divergent 473

behaviors for question formation and passivization: 474

if the model employs the REPRESENTATION strat- 475

egy, we expect it to also correctly turn German 476

active sentences into passive sentences, including 477

the additional steps of case reinflection and moving 478

the main verb. Conversely, if the model employs 479

the RECIPE strategy, we expect a model trained 480

on English passivization to only perform the steps 481

that are required for English passivization, result- 482

ing in reordered noun phrases with incorrect case 483

marking and no main verb movement in German. 484

We first verify that mT5 is capable of cross- 485

lingual transfer by training a model on the English 486

question formation task and evaluating on German. 487

In early experiments, we noticed the issue of “spon- 488

taneous translation” (Xue et al., 2021); we there- 489

fore also include German declarative identity trans- 490

formations in the training data to train the decoder 491

to also output German sentences. 492

As the top two panels of Figure 4 show, an mT5 493

model that has been fine-tuned for English ques- 494

tion formation can correctly perform German ques- 495

tion formation, especially on in-domain structures 496

(where RCs are attached to the object). For out-of- 497

10Shared cross-lingual structural representations have been
found for multilingual MLMs (Chi et al., 2020), and we pro-
vide further evidence for shared representations in this section.
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domain structures (where RCs are attached to the498

subject), mT5 almost always moves the main aux-499

iliary but almost never deletes it from its original500

position (which we found to a lesser extent in §4),501

resulting in lower sequence accuracies. Apart from502

this error, the model is capable of cross-lingual503

transfer on the question formation task.504

Given that cross-lingual transfer seems possible,505

how does the model behave in the passivization506

task, which differs between English and German?507

We fine-tune mT5 on the English passivization task508

(as well as German identity transformations on ac-509

tive sentences). The results of this experiment (the510

lower two panels in Figure 4) show that the model511

is still able to move the main object to the subject512

position, but also that it never correctly performs513

German passivization in its entirety. This is be-514

cause the model performs exactly the same steps515

for German sentences as for English sentences: it516

moves the object NP to the subject position, moves517

the subject NP to a prepositional phrase headed518

by ‘by‘ instead of the German ‘von‘, inserts the519

English auxiliaries ‘was‘ or ‘were‘ instead of the520

correct German ‘werden‘, and performs neither521

case reinflection nor movement of the main verb522

to sentence-final position. This results in mixed523

German-English outputs such as “meinen Kater524

bei ihrem Molch was verwirrten by ihre Esel.”525

These patterns of behavior suggest that (m)T5526

is learning the RECIPE strategy: it succeeds if a527

transformation’s required operations are the same528

across languages (as for question formation) but529

fails if the steps differ (as for passivization). Even530

in passivization, however, the model still learns to531

move the correct NPs, which provides additional532

evidence that mT5 makes use of structural features533

when performing transformations.534

6 Discussion535

Our experiments provide evidence that pre-trained536

seq2seq models such as (m)T5 acquire a hierar-537

chical inductive bias through exposure to non-538

annotated natural language text. This extends539

the findings of Warstadt and Bowman (2020) and540

Warstadt et al. (2020) to a more challenging gener-541

ative task, where models cannot rely on n-gram dis-542

tributional heuristics (Kam et al., 2008). In general,543

noising and denoising subsets of input sequences544

appears to be a powerful training objective for in-545

ducing linguistic generalizations in different neu-546

ral architectures—including sequence-to-sequence547

architectures—especially when data is abundant. 548

Counter to McCoy et al. (2020), our findings 549

suggest that hierarchical architectural constraints 550

(e.g., tree-structured networks) are not necessary 551

for robust hierarchical generalization as long as 552

the model has been exposed to large amounts of 553

natural language text. However, one difference be- 554

tween the randomly initialized models employed 555

by McCoy et al. (2020) and pre-trained models is 556

that pre-trained models have likely seen the struc- 557

tures (but not sentences) present in the general- 558

ization set; thus, rather than relying on syntactic 559

features, the model could choose the correct trans- 560

formation because it is more similar to the gram- 561

matical examples it has already seen. While we can- 562

not fully rule out this possibility, it seems unlikely 563

given that mT5 produces ungrammatical transfor- 564

mations, both in monolingual transformations (e.g., 565

not deleting the main auxiliary after copying it to 566

the start of the sentence) and in cross-lingual Ger- 567

man passivization. 568

More broadly, our findings seem to counter the 569

assumption that a hierarchical constraint is nec- 570

essary in language learners to acquire hierarchi- 571

cal generalization (Chomsky, 1965). However, we 572

note that T5’s pre-training corpus contains far more 573

input than a child would receive, and this corpus 574

is also likely to contain the “disambiguating exam- 575

ples” that Chomsky (1965) argues are not present 576

in children’s input. More work is needed on mod- 577

els pre-trained on input comparable to what a child 578

receives; for example, Huebner et al. (2021) evalu- 579

ate grammaticality judgments of models trained on 580

much smaller child-directed speech corpora. 581

7 Conclusions 582

We have performed an analysis of the syntac- 583

tic transformational ability of large pre-trained 584

sequence-to-sequence models. Our findings indi- 585

cate that both monolingual and multilingual T5 586

acquire a hierarchical inductive bias during pre- 587

training, and that the architecture does not yield 588

this hierarchical bias by itself. 589

It remains an open question whether a model this 590

deep and highly parameterized and a pre-training 591

dataset so vast is necessary for hierarchical gen- 592

eralization. Future work could perform ablations 593

over model depth and pre-training corpus size to 594

observe the relative contribution of architecture and 595

the training set to inducing a hierarchical inductive 596

bias in seq2seq models. 597

8



References598

Ethan A. Chi, John Hewitt, and Christopher D. Man-599
ning. 2020. Finding universal grammatical relations600
in multilingual BERT. In Proceedings of the 58th601
Annual Meeting of the Association for Computational602
Linguistics, pages 5564–5577, Online. Association603
for Computational Linguistics.604

Noam Chomsky. 1965. Aspects of the Theory of Syntax.605
MIT Press, Cambridge, MA.606

Kevin Clark, Urvashi Khandelwal, Omer Levy, and607
Christopher D. Manning. 2019. What does BERT608
look at? an analysis of BERT’s attention. In Pro-609
ceedings of the 2019 ACL Workshop BlackboxNLP:610
Analyzing and Interpreting Neural Networks for NLP,611
pages 276–286, Florence, Italy. Association for Com-612
putational Linguistics.613

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and614
Kristina Toutanova. 2019. BERT: Pre-training of615
deep bidirectional transformers for language under-616
standing. In Proceedings of the 2019 Conference of617
the North American Chapter of the Association for618
Computational Linguistics: Human Language Tech-619
nologies, Volume 1 (Long and Short Papers), pages620
4171–4186, Minneapolis, Minnesota. Association for621
Computational Linguistics.622

Matthew Finlayson, Aaron Mueller, Sebastian623
Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan624
Belinkov. 2021. Causal analysis of syntactic625
agreement mechanisms in neural language models.626
In Proceedings of the 59th Annual Meeting of627
the Association for Computational Linguistics628
and the 11th International Joint Conference on629
Natural Language Processing (Volume 1: Long630
Papers), pages 1828–1843, Online. Association for631
Computational Linguistics.632

Yoav Goldberg. 2019. Assessing BERT’s syntac-633
tic abilities. Computing Research Repository,634
arXiv:1901.05287.635

Evan Hernandez and Jacob Andreas. 2021. The low-636
dimensional linear geometry of contextualized word637
representations. In Proceedings of the 25th Confer-638
ence on Computational Natural Language Learning,639
pages 82–93, Online. Association for Computational640
Linguistics.641

John Hewitt and Christopher D. Manning. 2019. A642
structural probe for finding syntax in word represen-643
tations. In Proceedings of the 2019 Conference of644
the North American Chapter of the Association for645
Computational Linguistics: Human Language Tech-646
nologies, Volume 1 (Long and Short Papers), pages647
4129–4138, Minneapolis, Minnesota. Association for648
Computational Linguistics.649

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,650
and Roger Levy. 2020. A systematic assessment651
of syntactic generalization in neural language mod-652
els. In Proceedings of the 58th Annual Meeting of653
the Association for Computational Linguistics, pages654

1725–1744, Online. Association for Computational 655
Linguistics. 656

Philip A. Huebner, Elior Sulem, Cynthia Fisher, and 657
Dan Roth. 2021. BabyBERTa: Learning more gram- 658
mar with small-scale child-directed language. In Pro- 659
ceedings of the 25th Conference on Computational 660
Natural Language Learning, pages 624–646, Online. 661
Association for Computational Linguistics. 662

Xuân-Nga Cao Kam, Iglika Stoyneshka, Lidiya Torny- 663
ova, Janet D Fodor, and William G Sakas. 2008. Bi- 664
grams and the richness of the stimulus. Cognitive 665
Science, 32(4):771–787. 666

John D. Lewis and Jeffrey L. Elman. 2001. Learnabil- 667
ity and the statistical structure of language: Poverty 668
of stimulus arguments revisited. In Proceedings of 669
the 26th Annual Boston University Conference on 670
Language Development, volume 1, pages 359–370. 671
Citeseer. 672

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. 673
2016. Assessing the ability of lstms to learn syntax- 674
sensitive dependencies. Transactions of the Associa- 675
tion for Computational Linguistics, 4:521–535. 676

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 677
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 678
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 679
RoBERTa: A robustly optimized BERT pretrain- 680
ing approach. Computing Research Repository, 681
arXiv:1907.11692. 682

Rebecca Marvin and Tal Linzen. 2018. Targeted syn- 683
tactic evaluation of language models. In Proceed- 684
ings of the 2018 Conference on Empirical Methods 685
in Natural Language Processing, pages 1192–1202, 686
Brussels, Belgium. Association for Computational 687
Linguistics. 688

R. Thomas McCoy, Robert Frank, and Tal Linzen. 2018. 689
Revisiting the poverty of the stimulus: hierarchical 690
generalization without a hierarchical bias in recurrent 691
neural networks. In Proceedings of the 40th Annual 692
Meeting of the Cognitive Science Society, pages 2096– 693
2101. 694

R. Thomas McCoy, Robert Frank, and Tal Linzen. 2020. 695
Does syntax need to grow on trees? sources of hier- 696
archical inductive bias in sequence-to-sequence net- 697
works. Transactions of the Association for Computa- 698
tional Linguistics, 8:125–140. 699

R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. 2019. 700
Right for the wrong reasons: Diagnosing syntactic 701
heuristics in natural language inference. In Proceed- 702
ings of the 57th Annual Meeting of the Association for 703
Computational Linguistics, pages 3428–3448, Flo- 704
rence, Italy. Association for Computational Linguis- 705
tics. 706

Aaron Mueller, Garrett Nicolai, Panayiota Petrou- 707
Zeniou, Natalia Talmina, and Tal Linzen. 2020. 708

9

https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/2021.acl-long.144
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/1901.05287
https://aclanthology.org/2021.conll-1.7
https://aclanthology.org/2021.conll-1.7
https://aclanthology.org/2021.conll-1.7
https://aclanthology.org/2021.conll-1.7
https://aclanthology.org/2021.conll-1.7
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://aclanthology.org/2021.conll-1.49
https://aclanthology.org/2021.conll-1.49
https://aclanthology.org/2021.conll-1.49
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334


Cross-linguistic syntactic evaluation of word predic-709
tion models. In Proceedings of the 58th Annual Meet-710
ing of the Association for Computational Linguistics,711
pages 5523–5539, Online. Association for Computa-712
tional Linguistics.713

Karl Mulligan, Robert Frank, and Tal Linzen. 2021.714
Structure here, bias there: Hierarchical generalization715
by jointly learning syntactic transformations. Pro-716
ceedings of the Society for Computation in Linguis-717
tics, 4(1):125–135.718

Jackson Petty and Robert Frank. 2021. Trans-719
formers generalize linearly. Computing Research720
Repository, arXiv:2109.12036. ArXiv preprint721
arXiv:2109.12036.722

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-723
ine Lee, Sharan Narang, Michael Matena, Yanqi724
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the725
limits of transfer learning with a unified text-to-text726
transformer. Journal of Machine Learning Research,727
21(140):1–67.728

Shauli Ravfogel, Yoav Goldberg, and Tal Linzen. 2019.729
Studying the inductive biases of RNNs with synthetic730
variations of natural languages. In Proceedings of731
the 2019 Conference of the North American Chap-732
ter of the Association for Computational Linguistics:733
Human Language Technologies, Volume 1 (Long and734
Short Papers), pages 3532–3542, Minneapolis, Min-735
nesota. Association for Computational Linguistics.736

Shauli Ravfogel, Grusha Prasad, Tal Linzen, and Yoav737
Goldberg. 2021. Counterfactual interventions re-738
veal the causal effect of relative clause representa-739
tions on agreement prediction. In Proceedings of740
the 25th Conference on Computational Natural Lan-741
guage Learning, pages 194–209, Online. Association742
for Computational Linguistics.743

Florencia Reali and Morten H Christiansen. 2005. Un-744
covering the richness of the stimulus: Structure de-745
pendence and indirect statistical evidence. Cognitive746
Science, 29(6):1007–1028.747

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-748
quence to sequence learning with neural networks. In749
Advances in neural information processing systems,750
pages 3104–3112.751

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.752
BERT rediscovers the classical NLP pipeline. In753
Proceedings of the 57th Annual Meeting of the Asso-754
ciation for Computational Linguistics, pages 4593–755
4601, Florence, Italy. Association for Computational756
Linguistics.757

Marten van Schijndel, Aaron Mueller, and Tal Linzen.758
2019. Quantity doesn’t buy quality syntax with neu-759
ral language models. In Proceedings of the 2019 Con-760
ference on Empirical Methods in Natural Language761
Processing and the 9th International Joint Confer-762
ence on Natural Language Processing (EMNLP-763
IJCNLP), pages 5831–5837, Hong Kong, China. As-764
sociation for Computational Linguistics.765

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 766
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 767
Kaiser, and Illia Polosukhin. 2017. Attention is all 768
you need. In Advances in Neural Information Pro- 769
cessing Systems, volume 30. Curran Associates, Inc. 770

Alex Warstadt and Samuel R. Bowman. 2020. Can 771
neural networks acquire a structural bias from raw 772
linguistic data? In Proceedings of the 42nd Annual 773
Meeting of the Cognitive Science Society. Cognitive 774
Science Society. 775

Alex Warstadt, Yian Zhang, Xiaocheng Li, Haokun Liu, 776
and Samuel R. Bowman. 2020. Learning which fea- 777
tures matter: RoBERTa acquires a preference for 778
linguistic generalizations (eventually). In Proceed- 779
ings of the 2020 Conference on Empirical Methods 780
in Natural Language Processing (EMNLP), pages 781
217–235, Online. Association for Computational Lin- 782
guistics. 783

Ethan Wilcox, Roger Levy, Takashi Morita, and Richard 784
Futrell. 2018. What do RNN language models learn 785
about filler–gap dependencies? In Proceedings of 786
the 2018 EMNLP Workshop BlackboxNLP: Analyz- 787
ing and Interpreting Neural Networks for NLP, pages 788
211–221, Brussels, Belgium. Association for Com- 789
putational Linguistics. 790

Colin Wilson. 2006. Learning phonology with substan- 791
tive bias: An experimental and computational study 792
of velar palatalization. Cognitive Science, 30(5):945– 793
982. 794

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 795
Chaumond, Clement Delangue, Anthony Moi, Pier- 796
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 797
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 798
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 799
Scao, Sylvain Gugger, Mariama Drame, Quentin 800
Lhoest, and Alexander M. Rush. 2020. Transform- 801
ers: State-of-the-art natural language processing. In 802
Proceedings of the 2020 Conference on Empirical 803
Methods in Natural Language Processing: System 804
Demonstrations, pages 38–45, Online. Association 805
for Computational Linguistics. 806

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, 807
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and 808
Colin Raffel. 2021. mT5: A massively multilingual 809
pre-trained text-to-text transformer. In Proceedings 810
of the 2021 Conference of the North American Chap- 811
ter of the Association for Computational Linguistics: 812
Human Language Technologies, pages 483–498, On- 813
line. Association for Computational Linguistics. 814

10

https://doi.org/10.18653/v1/2020.acl-main.490
https://doi.org/10.18653/v1/2020.acl-main.490
https://doi.org/10.18653/v1/2020.acl-main.490
https://arxiv.org/pdf/2109.12036.pdf
https://arxiv.org/pdf/2109.12036.pdf
https://arxiv.org/pdf/2109.12036.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/N19-1356
https://doi.org/10.18653/v1/N19-1356
https://doi.org/10.18653/v1/N19-1356
https://aclanthology.org/2021.conll-1.15
https://aclanthology.org/2021.conll-1.15
https://aclanthology.org/2021.conll-1.15
https://aclanthology.org/2021.conll-1.15
https://aclanthology.org/2021.conll-1.15
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/D19-1592
https://doi.org/10.18653/v1/D19-1592
https://doi.org/10.18653/v1/D19-1592
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://cogsci.mindmodeling.org/2020/papers/0381/index.html
https://cogsci.mindmodeling.org/2020/papers/0381/index.html
https://cogsci.mindmodeling.org/2020/papers/0381/index.html
https://cogsci.mindmodeling.org/2020/papers/0381/index.html
https://cogsci.mindmodeling.org/2020/papers/0381/index.html
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/W18-5423
https://doi.org/10.18653/v1/W18-5423
https://doi.org/10.18653/v1/W18-5423
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41


Figure 5: Learning curves during the first epoch of fine-
tuning for monolingual (English) T5 on both syntactic
transformation tasks.

A Monolingual T5 Results815

Here, we present learning curves for the first epoch816

of fine-tuning on the English question formation817

and English passivization tasks for T5 (Figure 5).818

While T5 generally demonstrates the same hier-819

archical inductive bias that mT5 does, there are820

some discrepancies between the English and mul-821

tilingual models. First, T5’s sequence accuracies822

are generally more stable than mT5’s, though main823

auxiliary and object noun accuracies are still un-824

stable throughout fine-tuning. This is perhaps to825

be expected, as mT5 must acquire hierarchical in-826

ductive biases for many languages simultaneously,827

whereas T5 can devote its entire set of parameters828

to generalizing solely on English grammatical con-829

structions.830

Main auxiliary accuracy accuracy, however, is831

more unstable for T5 than mT5. This is unexpected,832

as T5 and mT5 generally achieve perfect main aux-833

iliary and object noun accuracies after 1000 iter-834

ations of fine-tuning. This sub-perfect accuracy835

is due to improper negation on the inverted auxil-836

iary, as was found for mT5: when the noun in the837

relative clause and the main noun agree in num-838

ber, T5 sometimes delete the main auxiliary (as839

expected) while copying the incorrect auxiliary to840

the beginning of the sentence.841

B German Structures842

Here, we present examples of the sentences in the843

training, development, test, and generalization sets844

for the German question formation and passiviza-845

tion tasks (Table 5). As in English, we train the846

model on declarative or active sentences, as well847

as question-formation or passivization examples848

with no RCs/PPs or with RCs/PPs on subjects (i.e.,849

sentences that are consistent with the hierarchical850

and linear rules described in §3.1). Then we evalu-851

ate its generalization on sentences where the linear852

rule does not properly transform the sentence.853

For further clarity, we present glossed examples 854

of each German structure below for both tasks. 855

(4) German Question Formation (no RC): 856

a. Unsere
Our.NOM

Salamander
salamanders

haben
have

die
the.ACC

857

Pfaue
peacocks

bewundert.
admired.

858

"Our salamanders have admired the pea- 859

cocks." 860

b. Haben
Have

unsere
our.NOM

Salamander
salamanders

die
the.ACC

861

Pfaue
peacocks

bewundert?
admired?

862

"Have our salamanders admired the pea- 863

cocks?" 864

(5) German Question Formation (RC on object): 865

a. Einige
Some.NOM

Molche
newts

können
can

meinen
my.ACC

Papagei,
parrot,

866

der
that.NOM

deinen
your.ACC

Raben
ravens

trösten
comfort

kann,
can,

867

nerven.
annoy.

868

"Some newts can annoy my parrot that can 869

comfort your ravens." 870

b. Können
Can

einige
some.NOM

Molche
newts

meinen
my.ACC

Papagei,
parrot,

871

der
that.NOM

deinen
your.ACC

Raben
ravens

trösten
comfort

kann,
can,

872

nerven?
annoy?

873

"Can some newts annoy my parrot that can 874

comfort your ravens?" 875

(6) German Question Formation (RC on subject): 876

a. Ihr
Your.NOM

Hund,
dog,

den
that.ACC

ihr
your.NOM

Geier
vulture

877

nerven
annoy

kann,
can,

hat
has

einige
some.ACC

Pfauen
peacocks

878

amüsiert.
amused.

879

"Your dog that can annoy your vulture has 880

amused some peacocks." 881

b. Hat
Has

ihr
your.NOM

Hund,
dog,

den
that.ACC

ihr
your.NOM

882

Geier
vulture

nerven
annoy

kann,
can,

hat
some.ACC

einige
peacocks

883

Pfauen
amused?

amüsiert. 884

"Has your dog that can annoy your vulture 885

amused some peacocks?" 886

(7) German Passivization (no PP): 887

a. Ihr
Your.NOM

Kater
cat

bedauerte
pities

den
the.ACC

888

Dinosaurier.
dinosaur.

889

"Your cat pities the dinosaur." 890
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b. Der
The.NOM

Dinosaurier
dinosaur

wurde
became

von
from

ihrem
your.DAT

891

Kater
cat

bedauert.
pitied.

892

"The dinosaur was pitied by your cat."893

(8) German Passivization (PP on object):894

a. Unsere
Our.NOM

Ziesel
ground-squirrels

amüsierten
amuse

einen
a.ACC

895

Kater
cat

hinter
behind

dem
the.DAT

Dinosaurier.
dinosaur.

896

"Our ground squirrels amuse a cat behind897

the dinosaur."898

b. Ein
A.NOM

Kater
cat

hinter
behind

dem
the.DAT

Dinosaurier
dinosaur

899

wurde
became

von
from

unseren
our.DAT

Zieseln
ground-squirrels

900

amüsiert.
amused.

901

"A cat behind the dinosaur was amused by902

our ground squirrels."903

(9) German Passivization (PP on subject):904

a. Die
The.NOM

Geier
vultures

hinter
behind

meinem
my.DAT

905

Ziesel
ground-squirrel

akzeptieren
accept

die
the.ACC

Molche.
newts.

906

"The vultures behind my ground squirrel907

accept the newts."908

b. Die
The.NOM

Molche
newts

wurden
became

von
from

den
the.DAT

909

Geiern
vultures

hinter
behind

meinem
my.DAT

Ziesel
ground-squirrel

910

akzeptiert.
accepted.

911

"The newts were accepted by the vultures912

behind my ground squirrel."913
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Train, dev, test Generalization

Question Formation Declarative Question

No RC decl: unsere Salamander haben die
Pfaue bewundert.
→ unsere Salamander haben die Pfaue
bewundert.

quest: ihre Hunde haben unseren Orang-Utan gen-
ervt.
→ haben ihre Hunde unseren Orang-Utan genervt?

RC on object decl: unser Ziesel kann den Salaman-
der, der meinen Pfau verwirrt hat, akzep-
tieren.
→ unser Ziesel kann den Salamander,
der meinen Pfau verwirrt hat, akzep-
tieren.

quest: einige Molche können meinen Papagei, der
deinen Raben trösten kann, nerven.
→ können einige Molche meinen Papagei, der deinen
Raben trösten kann, nerven?

RC on subject decl: dein Molch, den mein Wellen-
sittich bewundert hat, kann meine Di-
nosaurier trösten.
→ dein Molch, den mein Wellensittich
bewundert hat, kann meine Dinosaurier
trösten.

quest: ihr Hund, den ihr Geier nerven kann, hat einige
Pfaue amüsiert.
→ hat ihr Hund, den ihr Geier nerven kann, einige
Pfaue amüsiert?

Passivization Active Passive

No PP decl: die Löwen unterhielten einen
Wellensittich.
→ die Löwen unterhielten einen Wellen-
sittich.

passiv: ihr Kater bedauerte den Dinosaurier.
→ der Dinosaurier wurde von ihrem Kater bedauert.

PP on object decl: ihre Geier verwirrten ihren Raben
über unserem Ziesel.
→ ihre Geier verwirrten ihren Raben
über unserem Ziesel.

passiv: unsere Ziesel amüsierten einen Kater hinter
dem Dinosaurier.
→ ein Kater hinter dem Dinosaurier wurde von un-
seren Zieseln amüsiert.

PP on subject decl: ein Löwe unter unserem Hund
nervte einigie Ziesel.
→ ein Löwe unter unserem Hund nervte
einigie Ziesel.

passiv: die Geier hinter meinem Ziesel akzeptieren
die Molche.
→ die Molche wurden von den Geiern hinter meinem
Ziesel akzeptiert.

Table 5: The distribution of syntactic structures in the German train, test, and generalization sets. We use the test set
to evaluate whether models have learned the task on in-distribution examples, and the generalization set to evaluate
hierarchical generalization.
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