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Abstract

Relations between words are governed by hi-
erarchical structure rather than linear ordering.
Sequence-to-sequence (seq2seq) models, de-
spite their success in downstream NLP appli-
cations, often fail to generalize in a hierarchy-
sensitive manner when performing syntactic
transformations—for example, transforming
declarative sentences into questions—instead
generalizing linearly using positional surface
heuristics. However, syntactic evaluations of
seq2seq models have only observed models
that were not pre-trained on natural language
data before being trained to perform syntac-
tic transformations, in spite of the fact that
pre-training has been found to induce hierar-
chical linguistic generalizations in language
models; in other words, the syntactic capabili-
ties of seq2seq models may have been greatly
understated. Here, we make use of the pre-
trained seq2seq model TS5 (and its multilingual
variant mT5) and evaluate whether they gen-
eralize hierarchically on two syntactic trans-
formations in two languages: question forma-
tion and passivization in English and German.
We find that T5 and mT5 generalize hierarchi-
cally when performing syntactic transforma-
tions, whereas non-pre-trained baseline models
do not. This result presents additional evidence
for the learnability of hierarchical syntactic in-
formation from non-annotated natural language
text while also demonstrating that seq2seq mod-
els are capable of syntactic generalization.

1 Introduction

Human language is structured hierarchically. In
NLP tasks like natural language inference, syn-
tactic competence is a prerequisite for robust gen-
eralization (e.g., McCoy et al., 2019). Probing
studies have found that masked language models
(MLMs) contain hierarchical representations (Ten-
ney et al., 2019; Hewitt and Manning, 2019; Clark
et al., 2019), while behavioral studies of recurrent
neural language models (Linzen et al., 2016; Mar-

vin and Linzen, 2018; Wilcox et al., 2018; van Schi-
jndel et al., 2019) and MLMs (Goldberg, 2019; Hu
et al., 2020) have found that models are largely able
to capture long-range syntactic dependencies that
require hierarchical representations of sentences.

Recent evidence suggests that MLMs like BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) can learn to make hierarchical linguistic gen-
eralizations through exposure to text (Warstadt and
Bowman, 2020), although the acquisition of many
of these linguistic generalizations requires large
amounts of data (Warstadt et al., 2020). However,
this evidence comes from binary acceptability judg-
ment tasks, where a classifier head is attached to
an MLM and the model is tuned to classify which
sentence in a given minimal pair is consistent with
a hierarchical linguistic generalization, rather than
a linear positional generalization. Consider the
following two transformations of Example (1):

(1) The farmer that has seen the horse hasn’t
helped his friend.

a. Hasn’t the farmer that has seen the horse
helped his friend?

b. *Has the farmer that seen the horse hasn’t
helped his friend?

Example (1-a) correctly forms the question by mov-
ing the main auxiliary verb to the front of the sen-
tence, while (1-b) relies on the incorrect positional
heuristic that the first auxiliary in the declarative
sentence is always inverted. When differentiating
grammatical and ungrammatical auxiliary inver-
sions, a model could rely on distributional infor-
mation (Lewis and Elman, 2001) such as bigram
heuristics (Reali and Christiansen, 2005; Kam et al.,
2008) to make correct judgments in many cases,
so high performance on binary classification tasks
may overstate the syntactic competence of a model.

By contrast, performing a syntactic trans-
formation—e.g., given a declarative sentence like



Example (1) as input, transforming it into a po-
lar question like (1-a)—is more difficult, as it
requires multiple complex but systematic opera-
tions (such as movement, case reinflection, and
number agreement) that rely on hierarchical struc-
ture. Evaluations of syntactic transformational
abilities can therefore act as more targeted behav-
ioral indicators of syntactic structural representa-
tions in neural models. McCoy et al. (2018) evalu-
ate non-pre-trained recurrent sequence-to-sequence
(seq2seq; Sutskever et al., 2014) models on the
question formation task, finding that they rely on
linear/positional surface heuristics rather than hi-
erarchical structure to perform this syntactic trans-
formation. More recent studies have also exclu-
sively observed non-pre-trained recurrent seq2seq
models and non-pre-trained Transformer models
(Petty and Frank, 2021) on other transformations
like tense reinflection (McCoy et al., 2020) and pas-
sivization (Mulligan et al., 2021), finding similar
results. These studies were designed to understand
the inductive biases of various seq2seq architec-
tures, hence why they do not pre-train the mod-
els on non-annotated natural language data before
training them to perform syntactic transformations.

However, as Warstadt and Bowman (2020) find
that non-annotated natural language text can in-
duce preferences for hierarchical generalization in
MLMs—and as positive results from syntactic eval-
uations have come from language models which
have been trained on large amounts of data (Hu
et al., 2020)—we hypothesize that a seq2seq model
exposed to a large amount of language will also
acquire preferences for hierarchical generalizations.
That is, we expect pre-trained models to make use
of structural rather than surface features when gen-
eralizing to held-out examples. In this study, we
make use of the recent availability of a large pre-
trained seq2seq model TS (Raffel et al., 2020) and
its multilingual variant mT5 (Xue et al., 2021) to
investigate whether seq2seq models acquire pref-
erences for hierarchical linguistic generalizations
through pre-training. We test this by observing T5
and mT5 (henceforth, (m)T5)’s syntactic transfor-
mational abilities on English and German question
formation and passivization tasks.

We find that (m)T5 generally performs syn-
tactic transformations in a hierarchy-sensitive
manner, while non-pre-trained models (including
randomized-weight versions of (m)T5) rely primar-
ily on linear/positional heuristics to perform the

transformations. This finding presents additional
evidence for the learnability of hierarchical syntac-
tic information from natural language text input.

2 Syntactic Transformations

2.1 Languages

We evaluate on syntactic transformations in English
and German. We choose English to allow for com-
parisons to previous results (McCoy et al., 2018;
Mulligan et al., 2021). We further extend our eval-
uations to German because it exhibits explicit case
marking on determiners and nouns; this typological
feature has been found to increase the sensitivity of
language models to syntactic structure (Ravfogel
et al., 2019). This allows us to compare transforma-
tional abilities for languages with different levels
of surface cues for hierarchy.

2.2 Tasks

We employ a poverty of the stimulus experimental
design (Wilson, 2006), where we train the model
on examples of a linguistic transformation that are
compatible with either a hierarchical rule or a lin-
ear/positional rule, and then evaluate the model on
sentences where only the hierarchical rule leads to
the generalization pattern that is consistent with the
grammar of the language.! In other words, we are
interested in whether (m)T5 demonstrates a hierar-
chical inductive bias,? unlike the linear inductive
bias displayed in prior work by non-pre-trained
models (McCoy et al., 2020).

We focus on two syntactic transformation tasks:
question formation and passivization. See Table 1
for a breakdown of which structures we present to
the model during training and which we hold out
to evaluate hierarchical generalization.

Question formation. In this task, a declarative
sentence is transformed into a polar question by
moving the main (matrix) auxiliary verb to the
start of the sentence; this hierarchical rule is called
MOVE-MAIN. The linear rule, MOVE-FIRST, en-
tails moving the linearly first auxiliary verb to the
front of the sentence. We train the model only on
sentences with no relative clauses (RCs) or with
RCs on the object—both cases in which the first

"Note that there are other rules that could properly trans-
form the stimuli we use, but we find that the models we test
do learn one of these rules or the other.

*When multiple generalizations are consistent with the
training data, “inductive bias” refers to a model’s choice of
one generalization over others.



[ ] Train, dev, test

[ Generalization

Structure Question Formation Passivization
No RC/PP quest: some xylophones have remembered my yak. passiv: your quails amused some vulture.
— have some xylophones remembered my yak? — some vulture was amused by your quails.
RC/PP on object  quest: my zebras have amused some walrus who has waited. passiv: some tyrannosaurus entertained your quail behind your newt.
— have my zebras amused some walrus who has waited? — your quail behind your newt was entertained by some tyrannosaurus.
RC/PP on subject —quest: my vultures that our peacock hasn’t applauded haven’t read.  passiv: the zebra upon the yak confused your orangutans.

— haven’t my vultures that our peacock hasn’t applauded read?

— your orangutans were confused by the zebra upon the yak.

Table 1: The distribution of syntactic structures in the train, test, and generalization sets. Note: to expose the model
to all structures during training and fine-tuning, we also include identity transformations for all structures using the
“decl:” prefix, where the input and output sequences are the same declarative or active sentence (see §3.1). We use
the test set to evaluate whether models have learned the task on in-distribution examples, and the generalization set
to evaluate whether models generalize hierarchically. See Appendix B for example sentences in German.

auxiliary verb is always the matrix verb. We with-
hold examples in which RCs modify the subject,
thus making the matrix auxiliary verb the linearly
second auxiliary in the sentence, as such examples
disambiguate between the two rules.

In English, we use the auxiliaries ‘has’, ‘hasn’t’,
‘have’, and ‘haven’t’, with past participle main
verbs. We use affirmative and negative forms of
the auxiliary to distinguish between the multiple
auxiliaries in test sentences: exactly one of the aux-
iliaries in such sentences is negative and the other
is positive (though we vary which is which). As a
result, we can determine whether the induced map-
ping follows a hierarchical or linear inductive bias.
In German, negation is realized as a separate word
that is not fronted with the auxiliary. To make the
multiple auxiliaries in a test sentence distinct, we
therefore use the modal ‘konnen’ (can) along with
the auxiliary ‘haben’ (have), together with past par-
ticiple or infinitival main verbs as appropriate. As
before, this allows us to distinguish models with a
hierarchical bias from those with a linear bias on
the basis of the fronted auxiliary.

Passivization. In this task, an active sentence is
transformed into a passive sentence by moving the
object noun phrase (NP) to the front of the sen-
tence (MOVE-OBJECT). The training examples we
use are also compatible with a linear rule, MOVE-
SECOND, in which the linearly second NP moves
to the front of the sentence. We train on sentences
with either no prepositional phrases (PPs) or with
PPs modifying the object—i.e., where the second
NP is always the object. Disambiguating examples
are those which place prepositional phrases (PPs)
on the subject, thus making the object the third NP
in the sentence.

Passivization additionally requires other move-
ments, insertions, tense reinflection, and (for Ger-

man) case reinflection. In Examples (2) and (3)
below, in addition to the displacement of the ob-
ject (in blue), ‘be’/‘werden’ (in red) is inserted in a
form appropriate to the grammatical features of the
fronted NP; the original subject NP (in brown) is
moved to a ‘by’/‘von’ phrase at the end of the sen-
tence; and the main verb (in ) is reinflected
to be a past participle or infinitive. In German,
there are even more required operations: the case
of the NPs (reflected largely in the determiners)
must be reinflected and the main verb needs to be
moved to the end of the sentence.

(2) English Passivization:

some vulture.
by your quails.

a. Your quails
b. Some vulture was

(3) German Passivization:

a. lhr Esel meinen
Your.NOM donkey entertained my.ACC
Salamander.
salamander.

b. Mein Salamander wurde von ihrem
My.NOM salamander became from your.DAT
Esel .
donkey entertained.

We provide examples of both transformations in
both languages in Table 2. When tuning (m)T5, we
use task prefixes in the source sequence before the
input. We use “quest:” for question formation and
“passiv:” for passivization. As in previous work,
we also include identity transformation examples
(prefixed with “decl:”), i.e., examples for which the
model has to output the unchanged declarative or
active sentence. When training seq2seq baselines,
we follow McCoy et al. (2020) and append those
task markers to the end of the input sequence.



Input

Output (hierarchical)

Output (linear)

quest: My unicorn that hasn’t amused

the yaks has eaten. eaten?

Has my unicorn that hasn’t amused the yaks

Hasn’t my unicorn that amused the yaks
has eaten?

quest: Die Hunde, die deine Lowen be-
wundern konnen, haben gewartet.

Haben die Hunde, die deine Lowen bewun-
dern konnen, gewartet?

Konnen die Hunde, die deine Lowen
bewundern, haben gewartet?

passiv: Her walruses above my uni-
corns annoyed her quail.

Her quail was annoyed by her walruses
above my unicorns.

My unicorns were annoyed by her wal-
ruses.

passiv: Unsere Papageie bei meinen Di-
nosauriern bedauerten unsere Esel.

Unsere Esel wurden von unseren Papageien
bei meinen Dinosauriern bedauert.

Meine Dinosaurier wurden von un-
seren Papageien bedauert.

Table 2: Examples from the generalization set with hierarchical- and linear-rule transformations.

3 Experimental Setup
3.1 Data

We modify and supplement the context-free gram-
mar of McCoy et al. (2020) to generate our training
and evaluation data.? For each transformation, our
training data consists of 100,000 examples with
an approximately 50/50 split between identity ex-
amples (where the input and output sequences are
the same) and transformed examples. The identity
examples include the full range of declarative or ac-
tive structures (including sentences with RCs/PPs
on subjects), thereby exposing the network to the
full range of input structures we test. For the trans-
formed examples, however, training data includes
only examples with no RCs/PPs or RCs/PPs on
the object NP—i.e., cases that are compatible with
both the hierarchical and linear rules. We also gen-
erate development and test sets consisting of 1,000
and 10,000 examples, respectively, containing sen-
tences with structures like those used in training;
these are for evaluating in-distribution transforma-
tions on unseen sentences.

For each transformation, we also generate a gen-
eralization set consisting of 10,000 transformed ex-
amples with RCs/PPs on the subject NP. For such
examples, models relying on the linear rules will
not generalize correctly.

3.2 Models

We experiment with TS5 (Raffel et al., 2020), an
English pre-trained sequence-to-sequence model,
as well as its multilingual extension mT5 (Xue
etal., 2021).* This is a 12-layer Transformer-based

3We artificially generate our evaluation set such that it con-
sists of grammatical but semantically improbable sentences
which are unlikely to occur in a natural language corpus. This
is to alleviate the confound of token collocations in the pre-
training corpus.

*We use the HuggingFace implementations (Wolf et al.,
2020).

(Vaswani et al., 2017) architecture. For fine-tuning
on syntactic transformations, we use batch size 4
and initial LR 5 x 107°. (m)T5 converges and
overfits quickly to the training set, so we only fine-
tune for 1 epoch and evaluate every 500 iterations.
To confirm the finding of McCoy et al. (2020)
that non-pre-trained models fail to generalize hi-
erarchically, we also implement baseline seq2seq
models similar to those used in that study. We im-
plement 1- and 2-layer LSTM-based seq2seq mod-
els, as well as 1- and 2-layer Transformer-based
seq2seq models where the Transformers have 4 at-
tention heads.> We find that the 1-layer models
consistently achieve higher sequence accuracies on
the dev sets than the 2-layer models, so we focus
on the 1-layer baselines. We re-use all hyperpa-
rameters from McCoy et al. (2020), additionally
limiting the number of training epochs to 100. All
baseline scores are averaged over 10 runs.

3.3 Maetrics

For all transformations, we are primarily interested
in sequence accuracy: is each token in the target se-
quence present in the proper order in the predicted
sequence? However, it is possible that the model
could generalize hierarchically while making some
other mistake, so we also use two more relaxed met-
rics: main auxiliary accuracy for question forma-
tion, which evaluates whether the correct auxiliary
was moved to the front of the sentence; and object
noun accuracy for passivization, which measures
whether the correct object noun was moved to the
subject position. In the question formation task, the
first word in the target sequence is always the main
auxiliary verb, so we calculate main auxiliary accu-
racy by checking if the first word is the same in the
predicted and target sequences. In the passiviza-

S0ur implementations are based on the syntactic-
transformation-focused transductions repository: https:
//github.com/clay-lab/transductions
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Question Formation Passivization

Model English German English German
LSTM 0.95 0.94 0.97 0.97
Transformer 0.95 0.93 0.98 0.98
T5 1.00 - 1.00 -
mT5 1.00 1.00 1.00 1.00

Table 3: Sequence accuracies on the (in-distribution)
test sets for English and German syntactic transforma-
tions. All models learn the in-distribution transforma-
tions.

Question Formation Passivization

Model English German English German
LST™M 0.11 0.33 0.05 0.44
Transformer 0.07 0.05 0.04 0.07
T5 0.87 - 1.00 -
mT5 0.99 1.00 1.00 1.00

Table 4: Main auxiliary accuracies (for question forma-
tion) or object noun accuracies (for passivization) on the
generalization sets for English and German syntactic
transformations. Only TS5 and mT5 generalize hierarchi-
cally.

tion task, the second word in the target sequence
is the original object noun, so we calculate object
noun accuracy by checking if the second word is
the same in the predicted and target sequences.

4 Results

All models learn the in-distribution transfor-
mations. We first present results on unseen sen-
tences with the structure seen in training, where
both the hierarchical and the linear rules result in
correct generalization (Table 3). All models per-
form well in this setting, including the LSTM- and
Transformer-based models trained from scratch on
this task. However, English and multilingual T5
converge to higher sequence accuracies on both lan-
guages and tasks than the non-pre-trained models.
Additionally, while the baselines require about 15—
20 epochs of training to converge to a high score,
(m)T5 converges to perfect sequence accuracy after
only a fraction of an epoch of fine-tuning.

Only pre-trained models generalize hierarchi-
cally. Evaluations on the generalization-set ex-
amples with RCs/PPs on subjects (i.e., examples
where the linear rule leads to incorrect generaliza-
tion) reveal that that none of the baseline models
have learned the hierarchical rule. These models

consistently stay at or near 0% sequence accuracy
on the generalization set throughout training, so we
present main auxiliary/object noun accuracies (Ta-
ble 4). Accuracy remains low even on these more
forgiving metrics, indicating that the baselines have
not acquired the hierarchical rules.

Low accuracies do not necessarily indicate
reliance on the linear MOVE-FIRST or MOVE-
SECOND rules, since the baseline models could
be using other heuristics to perform the transforma-
tions. To test whether the baselines have learned
the linear rules, we implement metrics which calcu-
late the proportion of generalization-set examples
for which the MOVE-FIRST rule (for question for-
mation) or MOVE-SECOND rule (for passivization)
were used; we refer to these as the move-first fre-
quency and move-second frequency, respectively.
For each baseline and language, the sum of the
main auxiliary accuracy and move-first frequency
for question formation is ~ 1.00; the sum of the
object noun accuracy and move-second frequency
for passivization is also ~ 1.00. Thus, in most
cases where the model did not move the main aux-
iliary or object noun, it used the linear rule to move
the incorrect word. In other words, the baseline
models generalize using the linear rules. This
finding is in line with prior evaluations of non-
pre-trained seq2seq models (McCoy et al., 2020;
Mulligan et al., 2021; Petty and Frank, 2021).6

In contrast, (m)T5 achieves very high main aux-
iliary/object noun accuracies on the generalization
set. Even more strikingly, (m)T5 also consistently
achieves high sequence accuracies.” Because se-
quence accuracy on the generalization set is unsta-
ble, we present learning curves for mT5 (Figure 1)
for the first epoch of fine-tuning. While the se-
quence accuracy is not consistently at 100%, it
is generally very high for mTS5; this is far better
than the baselines’ 0% sequence accuracies. This
indicates that TS and mTS demonstrate a hier-
archical inductive bias, and that they can quickly
learn syntactic transformations.

Is (m)T5’s hierarchical inductive bias a feature
of the deep architecture, or is this bias acquired
during pre-training? To test this, we randomize the

®Nonetheless, higher accuracies on German transforma-
tions support the hypothesis that more explicit cues to syn-
tactic structure (here, case-marked articles and nouns) allow
models to learn hierarchical syntactic generalizations more
easily. This agrees with the findings of Ravfogel et al. (2019)
and Mueller et al. (2020).

"T5 performs very similarly to mT5, so we present results
for TS in Appendix A.
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Figure 2: Learning curves for mT5 with randomized
weights on the generalization set. Note: the x-axis is
scaled by 1,000,000.

weights of mT5 and fine-tune for up to 50 epochs
using an initial LR of 5 x 10728 For all of the
transformations, accuracies are much lower than
for the pre-trained models (Figure 2), which sug-
gests that the deeper architecture on its own does
not lead to structure-sensitive generalizations. This
in return indicates that mTS5 does not start with a
hierarchical inductive bias; the model acquires
it through pre-training, extending the findings
of Warstadt and Bowman (2020) to the generative
sequence-to-sequence setting. However, as indi-
cated by the non-zero main auxiliary/object noun
accuracies, the randomly initialized mTS models—
unlike the baseline models—do not exhibit a con-
sistent linear generalization either. This may be
due to the large number of parameters compared
to the size of the transformations training corpus.
A randomly initialized model of this size would
likely need orders of magnitude more training data
to learn any stable generalizations.

8We tune over learning rates € 5 x 101237475} for
the randomized models, finding that this setting yields the
best main auxiliary and object noun accuracies on in-domain
evaluations.

Error Analysis. TS5 and mT5 almost always
choose the correct auxiliary/object to move; what
errors account for their sub-perfect sequence ac-
curacies? We implement more specific metrics to
observe more closely what mistakes (m)T5 makes.

Figure 3 depicts results for German passiviza-
tion, the transformation with the lowest sequence
accuracy. mT5 is almost always successful at the
hierarchical transformation of moving the object
NP to subject position (including its attached PP
when present), and it correctly moves the original
subject noun to a “by” phrase following the auxil-
iary. However, the model fails to preserve the PP on
the second NP (in the by-phrase). We find the same
results on English passivization for both T5 and
mT5: discrepancies between sequence accuracy
and object noun accuracy are almost always due to
the model dropping the PP on the second NP in the
target sequence. For example, “My yaks

comforted the orangutans.” is often trans-
formed to “The orangutans were comforted by my
yaks.”, where the PP “ ” has not
been moved with “my yaks”. As mT5 has not been
fine-tuned on output sequences where PPs appear
at the end of the sentence, perhaps the decoder as-
signs very low probability to end-of-sentence PPs
while otherwise encoding a hierarchical analysis of
sentence structure.

Errors for question formation are more varied.
TS5 and mT5’s sub-perfect main auxiliary accuracy
on question formation is mainly due to improper
negations on the main auxiliary: when the noun in
the relative clause and the main noun agree in num-
ber, (m)T5 will sometimes delete the main auxiliary
(as expected) while copying the incorrect auxiliary
to the beginning of the sentence. Additionally, the
discrepancy between sequence and main auxiliary
accuracies is almost always attributable to (m)T5
not deleting the main auxiliary after moving it to
the start of the sentence. These results (as with the
passivization results) suggest that (m)T5 is actually
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Figure 3: Learning curves displaying alternative accu-
racy metrics for mT5 on German passivization. We
present the accuracy of the model in properly moving
the object NP to the start of the sentence (top left), mov-
ing the subject NP after the auxiliary verb (top right),
moving the subject NP after the auxiliary verb with or
without its attached PP (bottom left), and the full se-
quence accuracy (bottom right).

better at performing hierarchy-sensitive transfor-
mations than the learning curves initially suggest—
but also that (m)T5 can fail to perform theoretically
simpler operations, such as deletions and moving
all parts of a constituent.

5 Transformation Strategies

Our results indicate that (m)T5 can consistently
perform hierarchy-sensitive transformations. What
strategy does the model follow to do this? Because
(m)T5’s pre-training data includes active, passive,
declarative, and question sentences, the model rep-
resentations could encode these high-level sentence
features.” Thus, one strategy could be to learn a
mapping between abstract representations of dif-
ferent sentence structures (REPRESENTATION strat-
egy). Alternatively, the model could learn to cor-
rectly identify the relevant syntactic units in the in-
put (e.g., the main auxiliary for question formation,
and the subject and object NPs for passivization),
and then learn a “recipe” of steps leading to the
correct transformations, such as those outlined in
Section 2 (RECIPE strategy).

To distinguish which strategy (m)T5 uses to per-
form syntactic transformations, we exploit that En-
glish and German use the same operations for ques-
tion formation, whereas passivization in German in-

9For example, (sets of) neuron activations have been found

to encode syntactic features in MLMs (Ravfogel et al., 2021;
Finlayson et al., 2021; Hernandez and Andreas, 2021).
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Figure 4: Learning curves for German transformations
after tuning only on English/German identity examples
and English transformations. We show accuracies for
German question formation with RCs on objects (top
left) and RCs on subjects (top right), as well as accu-
racies for German passivization with PPs on objects
(bottom left) and PPs on subjects (bottom right).

volves the additional steps of case reinflection and
moving the main verb to the sentence-final position.
Thus, if structural representations are shared across
English and German in mT5,'? we expect divergent
behaviors for question formation and passivization:
if the model employs the REPRESENTATION strat-
egy, we expect it to also correctly turn German
active sentences into passive sentences, including
the additional steps of case reinflection and moving
the main verb. Conversely, if the model employs
the RECIPE strategy, we expect a model trained
on English passivization to only perform the steps
that are required for English passivization, result-
ing in reordered noun phrases with incorrect case
marking and no main verb movement in German.

We first verify that mT5 is capable of cross-
lingual transfer by training a model on the English
question formation task and evaluating on German.
In early experiments, we noticed the issue of “spon-
taneous translation” (Xue et al., 2021); we there-
fore also include German declarative identity trans-
formations in the training data to train the decoder
to also output German sentences.

As the top two panels of Figure 4 show, an mT5
model that has been fine-tuned for English ques-
tion formation can correctly perform German ques-
tion formation, especially on in-domain structures
(where RCs are attached to the object). For out-of-

19Shared cross-lingual structural representations have been
found for multilingual MLMs (Chi et al., 2020), and we pro-
vide further evidence for shared representations in this section.



domain structures (where RCs are attached to the
subject), mT5 almost always moves the main aux-
iliary but almost never deletes it from its original
position (which we found to a lesser extent in §4),
resulting in lower sequence accuracies. Apart from
this error, the model is capable of cross-lingual
transfer on the question formation task.

Given that cross-lingual transfer seems possible,
how does the model behave in the passivization
task, which differs between English and German?
We fine-tune mT5 on the English passivization task
(as well as German identity transformations on ac-
tive sentences). The results of this experiment (the
lower two panels in Figure 4) show that the model
is still able to move the main object to the subject
position, but also that it never correctly performs
German passivization in its entirety. This is be-
cause the model performs exactly the same steps
for German sentences as for English sentences: it
moves the object NP to the subject position, moves
the subject NP to a prepositional phrase headed
by ‘by‘ instead of the German ‘von°, inserts the
English auxiliaries ‘was‘ or ‘were* instead of the
correct German ‘werden‘, and performs neither
case reinflection nor movement of the main verb
to sentence-final position. This results in mixed
German-English outputs such as “meinen Kater
bei ihrem Molch was verwirrten by ihre Esel.”

These patterns of behavior suggest that (m)T5
is learning the RECIPE strategy: it succeeds if a
transformation’s required operations are the same
across languages (as for question formation) but
fails if the steps differ (as for passivization). Even
in passivization, however, the model still learns to
move the correct NPs, which provides additional
evidence that mT5 makes use of structural features
when performing transformations.

6 Discussion

Our experiments provide evidence that pre-trained
seq2seq models such as (m)T5 acquire a hierar-
chical inductive bias through exposure to non-
annotated natural language text. This extends
the findings of Warstadt and Bowman (2020) and
Warstadt et al. (2020) to a more challenging gener-
ative task, where models cannot rely on n-gram dis-
tributional heuristics (Kam et al., 2008). In general,
noising and denoising subsets of input sequences
appears to be a powerful training objective for in-
ducing linguistic generalizations in different neu-
ral architectures—including sequence-to-sequence

architectures—especially when data is abundant.

Counter to McCoy et al. (2020), our findings
suggest that hierarchical architectural constraints
(e.g., tree-structured networks) are not necessary
for robust hierarchical generalization as long as
the model has been exposed to large amounts of
natural language text. However, one difference be-
tween the randomly initialized models employed
by McCoy et al. (2020) and pre-trained models is
that pre-trained models have likely seen the struc-
tures (but not sentences) present in the general-
ization set; thus, rather than relying on syntactic
features, the model could choose the correct trans-
formation because it is more similar to the gram-
matical examples it has already seen. While we can-
not fully rule out this possibility, it seems unlikely
given that mT5 produces ungrammatical transfor-
mations, both in monolingual transformations (e.g.,
not deleting the main auxiliary after copying it to
the start of the sentence) and in cross-lingual Ger-
man passivization.

More broadly, our findings seem to counter the
assumption that a hierarchical constraint is nec-
essary in language learners to acquire hierarchi-
cal generalization (Chomsky, 1965). However, we
note that T5’s pre-training corpus contains far more
input than a child would receive, and this corpus
is also likely to contain the “disambiguating exam-
ples” that Chomsky (1965) argues are not present
in children’s input. More work is needed on mod-
els pre-trained on input comparable to what a child
receives; for example, Huebner et al. (2021) evalu-
ate grammaticality judgments of models trained on
much smaller child-directed speech corpora.

7 Conclusions

We have performed an analysis of the syntac-
tic transformational ability of large pre-trained
sequence-to-sequence models. Our findings indi-
cate that both monolingual and multilingual T5
acquire a hierarchical inductive bias during pre-
training, and that the architecture does not yield
this hierarchical bias by itself.

It remains an open question whether a model this
deep and highly parameterized and a pre-training
dataset so vast is necessary for hierarchical gen-
eralization. Future work could perform ablations
over model depth and pre-training corpus size to
observe the relative contribution of architecture and
the training set to inducing a hierarchical inductive
bias in seq2seq models.
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Figure 5: Learning curves during the first epoch of fine-
tuning for monolingual (English) T5 on both syntactic
transformation tasks.

A Monolingual TS Results

Here, we present learning curves for the first epoch
of fine-tuning on the English question formation
and English passivization tasks for T5 (Figure 5).
While T5 generally demonstrates the same hier-
archical inductive bias that mT5 does, there are
some discrepancies between the English and mul-
tilingual models. First, T5’s sequence accuracies
are generally more stable than mT5’s, though main
auxiliary and object noun accuracies are still un-
stable throughout fine-tuning. This is perhaps to
be expected, as mT5 must acquire hierarchical in-
ductive biases for many languages simultaneously,
whereas T5 can devote its entire set of parameters
to generalizing solely on English grammatical con-
structions.

Main auxiliary accuracy accuracy, however, is
more unstable for T5 than mT5. This is unexpected,
as T5 and mT5 generally achieve perfect main aux-
iliary and object noun accuracies after 1000 iter-
ations of fine-tuning. This sub-perfect accuracy
is due to improper negation on the inverted auxil-
iary, as was found for mT5: when the noun in the
relative clause and the main noun agree in num-
ber, T5 sometimes delete the main auxiliary (as
expected) while copying the incorrect auxiliary to
the beginning of the sentence.

B German Structures

Here, we present examples of the sentences in the
training, development, test, and generalization sets
for the German question formation and passiviza-
tion tasks (Table 5). As in English, we train the
model on declarative or active sentences, as well
as question-formation or passivization examples
with no RCs/PPs or with RCs/PPs on subjects (i.e.,
sentences that are consistent with the hierarchical
and linear rules described in §3.1). Then we evalu-
ate its generalization on sentences where the linear
rule does not properly transform the sentence.
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For further clarity, we present glossed examples
of each German structure below for both tasks.

(4) German Question Formation (no RC):

a. Unsere Salamander haben die

Our.NOM salamanders have the.ACC

Pfaue  bewundert.

peacocks admired.

"Our salamanders have admired the pea-
cocks."

Haben unsere  Salamander die

Have our.NOM salamanders the.ACC

Pfaue  bewundert?

peacocks admired?

"Have our salamanders admired the pea-

cocks?"

(5) German Question Formation (RC on object):

a. FEinige Molche konnen meinen Papagei,
Some.NOM newts can my.ACC parrot,
der deinen  Raben trosten kann,
that.NOM your.ACC ravens comfort can,
nerven.
annoy.

"Some newts can annoy my parrot that can
comfort your ravens."

Konnen einige Molche meinen Papagei,
Can  some.NOM newts my.ACC parrot,
der deinen  Raben trosten kann,
that.NOM your.ACC ravens comfort can,
nerven?

annoy?

"Can some newts annoy my parrot that can
comfort your ravens?"

(6) German Question Formation (RC on subject):

a. Thr Hund, den ihr Geier
Your.NOM dog, that.ACC your.NOM vulture
nerven kann, hat einige Pfauen

annoy can, has some.ACC peacocks
amiisiert.

amused.

"Your dog that can annoy your vulture has

amused some peacocks."

b. Hat ihr Hund, den ihr
Has your.NOM dog, that.ACC your.NOM
Geier nerven kann, hat einige

vulture annoy can,
Pfauen amiisiert.
amused?

"Has your dog that can annoy your vulture

amused some peacocks?"

some.ACC peacocks

(7) German Passivization (no PP):

a. Thr Kater bedauerte den
Your.NOM cat  pities the.AccC
Dinosaurier.
dinosaur.

"Your cat pities the dinosaur."



b. Der Dinosaurier wurde von ihrem
The.NOM dinosaur  became from your.DAT
Kater bedauert.
cat pitied.

"The dinosaur was pitied by your cat."

(8) German Passivization (PP on object):

a. Unsere Ziesel amiisierten einen
Our.NOM ground-squirrels amuse a.ACC
Kater hinter dem  Dinosaurier.
cat  behind the.DAT dinosaur.

"Our ground squirrels amuse a cat behind
the dinosaur."

b. Ein  Kater hinter dem  Dinosaurier
A.NOM cat  behind the.DAT dinosaur
wurde von unseren Zieseln
became from our.DAT ground-squirrels
amiisiert.
amused.

"A cat behind the dinosaur was amused by

our ground squirrels."

(9) German Passivization (PP on subject):

a. Die Geier hinter meinem
The.NOM vultures behind my.DAT
Ziesel akzeptieren die Molche.
ground-squirrel accept the.ACC newts.

"The vultures behind my ground squirrel
accept the newts."

b. Die Molche wurden von den
The.NOM newts became from the.DAT
Geiern hinter meinem Ziesel
vultures behind my.DAT ground-squirrel
akzeptiert.
accepted.
"The newts were accepted by the vultures

behind my ground squirrel."



[] Train, dev, test

[ ] Generalization

Question Formation Declarative Question

No RC decl: unsere Salamander haben die quest: ihre Hunde haben unseren Orang-Utan gen-
Pfaue bewundert. ervt.
— unsere Salamander haben die Pfaue — haben ihre Hunde unseren Orang-Utan genervt?
bewundert.

RC on object decl: unser Ziesel kann den Salaman- quest: einige Molche konnen meinen Papagei, der
der, der meinen Pfau verwirrt hat, akzep- deinen Raben trosten kann, nerven.
tieren. — konnen einige Molche meinen Papagei, der deinen
— unser Ziesel kann den Salamander, Raben trosten kann, nerven?
der meinen Pfau verwirrt hat, akzep-
tieren.

RC on subject decl: dein Molch, den mein Wellen- quest: ihr Hund, den ihr Geier nerven kann, hat einige
sittich bewundert hat, kann meine Di- Pfaue amiisiert.
nosaurier trosten. — hat ihr Hund, den ihr Geier nerven kann, einige
— dein Molch, den mein Wellensittich = Pfaue amiisiert?
bewundert hat, kann meine Dinosaurier
trosten.

Passivization Active Passive

No PP decl: die Lowen unterhielten einen passiv: ihr Kater bedauerte den Dinosaurier.
Wellensittich. — der Dinosaurier wurde von ihrem Kater bedauert.
— die Lowen unterhielten einen Wellen-
sittich.

PP on object decl: ihre Geier verwirrten ihren Raben passiv: unsere Ziesel amiisierten einen Kater hinter

iiber unserem Ziesel.
— ihre Geier verwirrten ihren Raben
iber unserem Ziesel.

dem Dinosaurier.
— ein Kater hinter dem Dinosaurier wurde von un-
seren Zieseln amiisiert.

PP on subject

decl: ein Lowe unter unserem Hund
nervte einigie Ziesel.

— ein Lowe unter unserem Hund nervte
einigie Ziesel.

passiv: die Geier hinter meinem Ziesel akzeptieren
die Molche.

— die Molche wurden von den Geiern hinter meinem
Ziesel akzeptiert.

Table 5: The distribution of syntactic structures in the German train, test, and generalization sets. We use the test set
to evaluate whether models have learned the task on in-distribution examples, and the generalization set to evaluate

hierarchical generalization.
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