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Abstract
The widespread adoption of Low-Rank Adaptation (LoRA) has en-
abled large language models (LLMs) to acquire domain-specific
knowledge with remarkable efficiency. However, understanding
how such a fine-tuning mechanism alters a model’s structural rea-
soning and semantic behavior remains an open challenge. This
work introduces a novel framework that explains fine-tuned LLMs
via counterfactuals grounded in knowledge graphs. Specifically, we
construct BioToolKG, a domain-specific heterogeneous knowledge
graph in bioinformatics tools and design a counterfactual-based fine-
tuned LLMs explainer (CFFTLLMExplainer) that learns soft masks
over graph nodes and edges to generate minimal structural pertur-
bations that induce maximum semantic divergence. Our method
jointly optimizes structural sparsity and semantic divergence while
enforcing interpretability preserving constraints such as entropy
regularization and edge smoothness. We apply this framework to a
fine-tuned LLaMA-based LLM and reveal that counterfactual mask-
ing exposes the model’s structural dependencies and aligns with
LoRA-induced parameter shifts. This work provides new insights
into the internal mechanisms of fine-tuned LLMs and highlights
counterfactual graphs as a potential tool for interpretable AI.

CCS Concepts
• Theory of computation → Structured prediction; • Com-
puting methodologies→ Knowledge representation and rea-
soning; Natural language processing; • Applied computing→
Bioinformatics.
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1 Introduction
In recent years, with the continuous advancement of NLP tech-
nologies and large language models (LLMs) [17], which exhibit
remarkable generative capabilities [17] and cross-domain general-
ization [3], an increasing number of application-level techniques
have begun to play a significant role across various domains [10].

Structured knowledge graphs [7] have become a compelling
direction in a wide range of Natural Language Processing(NLP)
applications. As a form of heterogeneous information network
(HIN), knowledge graphs have supported numerous early use cases,
including recommendation systems, link prediction, and informa-
tion fusion [23]. Recently, the integration of knowledge graphs
with LLMs has given rise to novel applications such as domain-
specific knowledge graph construction [1] and graph-enhanced
retrieval-augmented generation (RAG) [8], significantly improving
the factuality and controllability of LLM outputs. However, due
to the low information purity and the presence of substantial ir-
relevant content in many knowledge graphs, using RAG may lead
LLMs to hallucinate or fail to extract accurate subgraphs as reliable
external knowledge [2, 34]. Furthermore, the extracted subgraphs
often contain cycles, which can pose significant challenges in tasks
such as knowledge path reasoning and graph ordering [31].

Meanwhile, with the rise of explainable AI (XAI) techniques,
there has been growing attention to the user-friendliness and inter-
pretability of AI systems in real-world applications [20]. A variety
of explainability frameworks have been proposed for predictive
models, utilizing diverse strategies. Among these, many rely on per-
turbing input features to evaluate their influence on model outputs
[9, 16, 18, 20, 21]. However, it is important to note that alterna-
tive approaches—such as gradient-based methods [27] or attention-
based [29] explanations—also exist. However, there are additional
challenges in interpreting LLMs. Firstly, the output of an LLM is
not a simple classification result, but rather contains rich semantic
content. Secondly, due to the complexity of LLM architectures and
the massive scale of training data, fine-grained explanations based
on attention mechanisms alone are often insufficient or intractable
[14]. Finally, prompt-based self-explanation tools for LLMs have
shown limited effectiveness, primarily due to the prevalence of hal-
lucinations and the inherent uncertainty in LLM outputs [13, 28].

To improve and extend existing methods, this paper proposes
the following innovations in the subsequent sections:

(1) We introduce BioToolKG, a domain-specific and semanti-
cally structured knowledge graph that organizes bioinfor-
matics tools, algorithms, databases, and more related entities;

(2) A novel counterfactual-based interpretability frame-
work (CFFTLLMExplainer) is proposed, specifically tailored
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for fine-tuned large language models, enabling structure-
aware explanation of model behavior;

(3) The counterfactual generation is formalized as an unsu-
pervised optimization problem, where a multi-objective
loss jointly balances semantic divergence, structural sparsity,
prompt relevance, and graph smoothness;

(4) To uncover the internal decision mechanisms of fine-tuned
LLMs, we conducted amulti-perspective interpretability
analysis by aligning learned structural masks, token-level
attention scores, and LoRA-induced embedding shifts.

Following the introduction, the paper is organized into several
sections. Section. 2 reviews relevant works on LLM interpretability
and outlines the motivation for our study. Section. 3 introduces our
proposed counterfactual-based interpretability framework tailored
for fine-tuned LLMs. Section. 4 introduces experiments for revealing
the mechanisms in LoRA fine-tuning process. In Section. 5 presents
preliminary experimental results that demonstrate the effectiveness
of our approach. Finally, Section. 6 and Section. 7 discuss potential
directions for future work and summarize main contributions.

2 Related Works and Motivations
With the rapid development of large language models (LLMs), the
widespread adoption of Low-Rank Adaptation (LoRA) fine-tuning
has played a significant role in enabling LLMs to acquire domain-
specific knowledge efficiently, thereby facilitating the construction
of expert systems. This technique is particularly important for the
broader deployment of LLMs in specialized applications. Specifi-
cally, LoRA introduces a low-rank matrix as an incremental module
into the existing model architecture, effectively altering the model’s
behavior. By inserting these trained adapter layers into the original
model, LoRA enables the acquisition of new knowledge while up-
dating only a small subset of parameters, thus ensuring efficiency
and adaptability [12].

With the rapid advancement of Explainable AI (XAI), a variety of
XAI tools, such as SHAP, LIME and DiCE, have been widely applied
to interpret and analyze different AI models and systems. In LIME,
feature importance is indicated by the weights assigned under fea-
ture perturbation [20], and in SHAP, it is represented by computing
Shapley values [16]. Under this background, the interpretability
of large language models (LLMs) has increasingly attracted wide-
spread attention alongside their rapid development [36]. Mean-
while, counterfactual explanations—such as those generated by
DiCE—enhance model interpretability and human alignment by
producing diverse and informative counterfactuals. Specifically,
DiCE formulates counterfactual generation as a multi-objective
optimization problem, where a carefully designed loss function
minimizes the distance between the counterfactuals and the origi-
nal instances while simultaneously altering the model’s prediction
[18].

TokenSHAP, tries to explain LLM output from token level. Specif-
ically, it extends the application of SHAP by introducing Shapley
value-based attribution to natural language processing tasks, en-
abling a deeper understanding of how different components of
an input prompt influence the model’s output. By incorporating
Monte Carlo Shapley Estimation, it achieves a balance between
computational efficiency and estimation accuracy [11].

Some recent studies have proposed embedding interpretability
frameworks directly into the architecture of large language models
(LLMs) to overcome the limitations of traditional black-box inter-
pretability, which relies solely on analyzing model outputs. Concept
Bottleneck Large Language Models (CB-LLMs) introduce an inher-
ently interpretable framework for LLMs, demonstrating clear ad-
vantages in terms of scalability and transparency—both critical for
the responsible development. Specifically, the core idea of CB-LLMs
lies in training a Concept Bottleneck Layer (CBL) that maximizes
the concept score (i.e., similarity) of input samples, thereby gener-
ating transparent concept weights that explain the model’s outputs
in a semantically meaningful and interpretable manner [24].

Overall, current research on the interpretability of large language
models (LLMs) generally follows two main tracks. The first focuses
on analyzing attention weights to investigate whether they capture
causal relationships between input tokens [29]. However, attention-
based explanations are often unreliable proxies for model reasoning,
particularly in large-scale models where deep, layered architectures
and long-range context dependencies complicate attribution [14, 22,
33]. The second line of work centers on prompt engineering, where
modifications to the input prompt are used to probe model behavior
[32, 38]. While effective for black-box models, such approaches lack
a principled connection to internal mechanisms and are sensitive
to prompt design, contextual variation, and output stochasticity
[19, 37]. Some studies adapt classical interpretability tools, such as
SHAP and Integrated Gradients, to LLMs [6, 11]. Yet these methods,
originally designed for classification tasks, are often ill-suited for
generation settings, where token interactions are complex and the
output is inherently structured as free-form text [36]. Some recent
work has also explored self-explanation approaches, prompting
LLMs to generate natural language rationales. While this improves
human interpretability, such explanations often lack verifiability
and alignment with the model’s internal decision process [13, 35,
36].

Intuitively, one might hope to leverage prompt-based methods
to infer the relevance of specific attention weights by analyzing
model outputs, thereby facilitating rapid identification of the com-
ponents most responsible for a given prediction. However, this
approach faces several major challenges. First, LLM outputs are
typically general, semantically rich, and unstructured, which raises
the question of how to encode such free-form text into formats
that are trainable and operable, such as structured representations
or symbolic features. Second, under this framework, we implicitly
assume that the output can be meaningfully aligned with internal
attention weights. Yet in practice, establishing such alignment is
nearly infeasible given the enormous number of parameters and
the complexity of attention pathways in modern LLMs.

3 Methodology
This section introduces a counterfactual-based interpretability frame-
work for fine-tuned LLMs. It covers the problem statement (Sec-
tion.3.1), the construction and injection of BioToolKG (Section.3.2)
and ourmethod CFFTLLMExplainer for explaining fine-tuned LLMs
(Section.3.3).
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Specifically, a structured knowledge graph is considered a hetero-
geneous graph, which facilitates knowledge injection and knowl-
edge reconstruction from LoRA fine-tuned LLM. After the injec-
tion, we offer an unsupervised learning method for generating
counterfactuals by learning trainable soft masks on the structured
knowledge representation.

3.1 Problem Statement
In this paper, a Knowledge Graph is defined as a heterogeneous
information network [23] [25, 26], as
𝐺 = (𝑉 , 𝐸,A,R, 𝜑,𝜓, 𝑋𝑉 , 𝑋𝐸 ), where 𝑉 is a finite set of nodes, 𝐸
is a finite set of edges, 𝜑 : 𝑉 → A is an object (entities) mapping
function,𝜓 : 𝐸 → R is a link (edge) type mapping function, 𝑋𝑉 =

{𝑥𝑣 |𝑣 ∈ 𝑉 } and each 𝑥𝑣 is the attribute vector of node,𝑋𝐸 = {𝑥𝑒 |𝑒 ∈
𝐸} and each 𝑥𝑒 is the attribute vector of edge, |A| > 1 and |R | > 1.

Each object 𝑣 ∈ 𝑉 belongs to one particular object type in the
object type set A : 𝜑 (𝑣) ∈ A, and each link 𝑒 ∈ 𝐸 belongs to a
particular relation type in the relationship type set R : 𝜓 (𝑒) ∈ R.

A Counterfactual sample (CF sample) 𝑥 for an instance 𝑥 accord-
ing to a trained classifier 𝑓 is found by perturbing the features of
𝑥 such that 𝑓 (𝑥) ≠ 𝑓 (𝑥) [30]. An Optimal CF sample 𝑥∗ is one
the minimizes distance between the original instance and the CF
sample, according to some distance function 𝑑 , and the resulting
optimal CF explanation is Δ∗𝑥 = 𝑥∗ − 𝑥 [15].

We consider a LoRA-adapted transformer-based large language
model, where the original weight matrix𝑊0 ∈ R𝑑×𝑘 in selected
modules (e.g., attention projections) is frozen, and a low-rank resid-
ual update is learned via trainable adapter matrices 𝐴 ∈ R𝑑×𝑟 and
𝐵 ∈ R𝑟×𝑘 , where 𝑟 ≪ min(𝑑, 𝑘). The adapted weight is defined as:

𝑊 =𝑊0 + Δ𝑊 =𝑊0 + 𝛼 · 𝐴𝐵 (1)

, where 𝛼 is a scalar scaling factor controlling the update mag-
nitude. During fine-tuning, only the adapter parameters 𝐴 and
𝐵 are updated, while 𝑊0 remains fixed [12]. In this setting, the
LoRA adapter effectively defines a low-rank subspace span(𝐴) in
which the model’s behavior is modulated. Our objective is to inves-
tigate whether and how these learned subspaces encode structure-
sensitive patterns when the model is presented with knowledge
graph inputs.

3.2 BioToolKG Construction and Injection

Figure 1: Definitions of entities and relations in BioToolKG

Figure.1 provides a comprehensive overview of the entities and
relationships encoded within BioToolKG. The knowledge graph
comprises eight distinct entity types and fourteen relation types,
reflecting the complexity and richness of the bioinformatics domain.
Although knowledge graphs can support a wide range of down-
stream tasks, this study just focuses on the tool usage Pathfinding
problem. Typically started from a database entity. Within this con-
text, concentrating on three core relation types :
“rels_download_from”, “rels_input”, and “rels_output”, which
are critical for modeling data flow across tools. These relations are
visually distinguished as red-directed edges in Figure.1 to empha-
size their role in enabling pipeline construction. The tool usage
Pathfinding problem can be defined as follows :

The goal of the Pathfinding task is to construct a valid tool
execution pipeline 𝑃 = [𝑣1, 𝑣2, . . . , 𝑣𝑛] satisfying the following con-
straints:

• 𝑣1 is a database-type node that serves as the starting input;
• Every tool node 𝑣𝑖 in the path must consume one or more in-
put files from a preceding file node 𝑓𝑖−1 such that (𝑓𝑖−1, 𝑣𝑖 ) ∈
𝐸 and𝜓 (𝑓𝑖−1, 𝑣𝑖 ) = input;
• Each tool node 𝑣𝑖 must produce one or more output files 𝑓𝑖
such that (𝑣𝑖 , 𝑓𝑖 ) ∈ 𝐸 and𝜓 (𝑣𝑖 , 𝑓𝑖 ) = output;
• The output file(s) 𝑓𝑖 of tool 𝑣𝑖 must be consumable by the
next tool 𝑣𝑖+1, i.e., (𝑓𝑖 , 𝑣𝑖+1) ∈ 𝐸 and𝜓 (𝑓𝑖 , 𝑣𝑖+1) = input;
• The path terminates at a tool node that fulfills the task goal
(in this paper, a virtual Evaluation Information node is
utilized for termination).

The interpretability of LLMs is inherently complicated. This pa-
per specifically focuses on the explainability of fine-tuned LLMs by
analyzing the differences in model outcomes before and after fine-
tuning, trying to uncover insights into the internal mechanisms of
LLMs fine-tuning process. Although knowledge injection plays a
necessary role in our framework, we do not center our attention on
the quality of knowledge injection evaluation. Instead, we concen-
trate on interpreting the impacts of LoRA-tuned adapters on the
behavior of the model.

In this study, the baseline model, “DeepSeek-R1-Distill-Llama-
8B”, utilizes the “LLaMA-8B” architecture and undergoes super-
vised fine-tuning on instruction-style reasoning data generated by
“DeepSeek-R1”. Through this teacher–student (distillation) process,
“DeepSeek-R1”’s reasoning capabilities are transferred to a smaller,
more efficient student model(“LLaMA-8B”) [4, 5]. In our method,
an instruction-style format is adopted to construct the fine-tuning
dataset for knowledge injection. Each instance is constructed as
an prompt-response pair, which aligns with standard LoRA/PEFT
fine-tuning framework.

3.3 Counterfactual-based Fine-tuned LLMs
Explainer (CFFTLLMExplainer)

In this section, we propose an unsupervisedmachine learning frame-
work for generating optimal counterfactual samples on heteroge-
neous graphs and show how counterfactuals can help to interpret
the internal mechanisms of fine-tuned LLMs.

One of the key design goals is to achieve significant semantic di-
vergence in the model’s output through minimal and interpretable
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structural modifications to the input graph. A traditional counter-
factual example 𝑥 for an instance 𝑥 is defined as a perturbed version
such that a trained classifier 𝑓 changes its prediction: 𝑓 (𝑥) ≠ 𝑓 (𝑥)
[30]. The optimal counterfactual example 𝑥∗ is the one that mini-
mizes the distance to the original input according to some distance
function 𝑑 (·, ·):

𝑥∗ = arg min
𝑥
{𝑑 (𝑥, 𝑥) , s.t. 𝑓 (𝑥) ≠ 𝑓 (𝑥)} (2)

The difference Δ∗𝑥 = 𝑥∗ − 𝑥 constitutes the counterfactual expla-
nation [15]. In the context of graphs, particularly heterogeneous
knowledge graphs (KGs), we redefine counterfactual examples as
perturbed subgraphs𝐺𝑐 that cause a semantic shift while retaining
minimal structural changes. To formalize the generation of optimal
KG counterfactuals, we propose a multi-objective loss function, can
be simplified represented as follows:

L = L𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 + 𝛼 · L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (3)

, where L𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 constrains structural perturbations by assigning
higher costs to extensive edge or node modifications, promoting
sparsity. In contrast, L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 encourages producing
divergent semantic interpretations between the original and coun-
terfactual graphs.

Each node 𝑣 ∈ 𝑉 is assigned a learnable mask m𝑣 ∈ [0, 1], and
each edge 𝑒 ∈ 𝐸 is assigned a learnable mask m𝑒 ∈ [0, 1]. Mask
values are sampled using the Gumbel-Sigmoid reparameterization
for differentiability during training. Gumbel-Sigmoid represents
a differentiable approximation to sampling, wherein continuous
variables are used to approximate binary (e.g., Bernoulli) sampling,
thereby allowing gradient-based optimization via backpropagation.
Formally,

𝑧 = 𝜎

(
𝑙𝑜𝑔 𝛼 +𝐺

𝜏

)
(4)

, where𝐺 = −𝑙𝑜𝑔(−𝑙𝑜𝑔(𝑈 + 𝜀) + 𝜀), 𝑈 ∼ Uniform(0, 1) is the noise,
𝑧 each differentiable mask, 𝜎 (𝑥) = 1

1+𝑒−𝑥 is the sigmoid function,
and 𝜏 is the temperature.

The original graph is converted to a textual format T (𝐺) using
node attributes and edge relations. Themasked graph𝐺𝑐 is similarly
converted to T (𝐺𝑐 ) based on active nodes/edges. Semantic loss is
then computed between T (𝐺) and T (𝐺𝑐 ).

To ensure the factual correctness and structural interpretability,
we enforce multiple constraints and penalties, including entropy
regularization, sparsity control, and edge smoothness regularization
based on node importance (similarity with prompts).

The overall loss Ltotal is composed of the following components:

Ltotal = Lstructure + 𝛼 · Lsemantic + 𝛽 · Lentropy

+ 𝛾 · Lpreserve + 𝛿 · Lhard + 𝜖 · Lsmooth (5)

Each term is defined as follows:
Structure sparsity loss:

Lstructure = 𝜆𝑉 ·
∑︁
𝑣∈𝑉

𝜆𝑣 ·𝑚𝑣 + 𝜆𝐸 ·
∑︁
𝑒∈𝐸

𝜆𝜓 (𝑒 ) ·𝑚𝑒 (6)

, where 𝜆𝑣 and 𝜆𝜓 (𝑒 ) denote the regularization weights of node 𝑣
and edge 𝑒 based on their types.

Semantic loss:

Lsemantic = 1 − cos
(
TF-IDF(T (𝐺)), TF-IDF(T (𝐺 ′))

)
(7)

, where cos(·) is cosine similarity. In this work, TF-IDF is adopted
as the embedding strategy due to the observation that pretrained
embedding models, while exhibiting powerful semantic compre-
hension, tend to exhibit low sensitivity to the nuanced semantics
of pipeline structures.

Optionally reweighted by prompt relevance:

Lsemantic ← 𝑤prompt · Lsemantic,

𝑤prompt = 1 +
∑︁
𝑣∈𝑉
(1 −𝑚𝑣) · sim(𝑥𝑣, prompt) (8)

, where sim(·) is also the combination of TF-IDF and cosine simi-
larity. By dynamically assigning importance to nodes, the model
increases the semantic discrepancy when it removes nodes with
high similarity to the prompt. This mechanism is particularly impor-
tant in pipeline graphs, which typically contain a limited number
of nodes and edges, in order to prevent degenerate behavior, such
as the model removing all nodes simply to maximize semantic
divergence.

Entropy regularization : similarly, due to the limited scale of
the graph, the model may struggle to converge in certain cases.
To address this, entropy regularization is applied to encourage the
node and edge masks to approach binary values (i.e., closer to 0 or
1).

Lentropy = −
∑︁
𝑣∈𝑉
[𝑚𝑣 log𝑚𝑣 + (1 −𝑚𝑣) log(1 −𝑚𝑣)]

−
∑︁
𝑒∈𝐸
[𝑚𝑒 log𝑚𝑒 + (1 −𝑚𝑒 ) log(1 −𝑚𝑒 )] (9)

Minimum structure preserve loss (structural stability constraint):

Lpreserve = ReLU

(
|{𝑣 ∈ 𝑉 | 𝜑 (𝑣) = Tool}| − 1 −

∑︁
𝑒∈𝐸

1[𝑚𝑒 ≥ 0.5]
)

(10)
Hard mask retention penalty (structural stability constraint):

Lhard =
∑︁

𝑒∈𝐸hard

ReLU(0.5 −𝑚𝑒 ) +
∑︁

𝑣∈𝑉 hard

ReLU(0.5 −𝑚𝑣) (11)

Edge-mask smoothness regularization (based on node impor-
tance weights): since our task is grounded in realistic bioinformatics
network applications, we aim to maximize semantic discrepancy
while avoiding completely isolated edges and nodes. To this end, we
introduce smoothness regularization to smooth the learned weights,
thereby enhancing the interpretability and semantic coherence of
the resulting graph 𝐺𝑐 .

Lsmooth =
1
|𝐸 |

∑︁
𝑒=(𝑢,𝑣) ∈𝐸

(
𝑚𝑒 −

𝑤𝜑 (𝑢 ) ·𝑚𝑢 +𝑤𝜑 (𝑣) ·𝑚𝑣

𝑤𝜑 (𝑢 ) +𝑤𝜑 (𝑣)

)2

(12)

, where𝑤𝜑 (𝑢 ) and𝑤𝜑 (𝑣) denote the weight of node types.

4 Experiments Design
Two experiments are designed to investigate how CFFTLLMExplainer
can be used to interpret LoRA fine-tuned LLMs. Our goal is to un-
derstand whether structural information from a knowledge graph
is preserved or transformed during fine-tuning, and to identify
the key structural components that drive semantic changes in the
model’s output.
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4.1 Experiment 1: Counterfactual-based
Interpretation

A set of preliminary experiments is conducted to investigate two
central questions: (1) whether the LoRA-fine-tuned LLM exhibits
structural dependencies on specific nodes or edges with the struc-
tured input, and (2) whether such dependencies are reflected in the
learned parameters of the LoRA adapters.

A biological toolchain graph 𝐺 (Figure. 2) is first constructed to
satisfy the requirements of a Pathfinding task (Section. 3.2). A coun-
terfactual subgraph𝐺𝑐 is then derived through CFFTLLMExplainer
(Section. 3.3). The resulting subgraph 𝐺𝑐 is optimized to induce
maximal semantic deviation while preserving minimal structural
changes, thereby enabling the examination of whether the LLM
exhibits structural dependencies on the input graph. Both 𝐺 and
𝐺𝑐 are subsequently converted into textual prompts using the same
prompt template, and are provided as inputs to both the base-
line and fine-tuned models for comparison. It is notable that in
CFFTLLMExplainer, the counterfactual model is trained indepen-
dently of the LLM, using TF-IDF similarity as a surrogate signal.
This disentanglement enables generalizable and interpretable coun-
terfactual explanations of fine-tuned LLM behavior. This enables
subsequent analysis from multiple perspectives as follows:

Assume that baseline model 𝑓𝑏𝑎𝑠𝑒 and fine-tuned model 𝑓𝑓 𝑡 ,
bioinformatics toolchain graph 𝐺 and counterfactual sample 𝐺𝑐 .

• Semantic Drift Analysis. Bioinformatics toolchains are ex-
tracted from 𝑓base (𝐺), 𝑓ft (𝐺), and 𝑓ft (𝐺𝑐 ). To quantify the
semantic shifts induced by structural perturbations, several
metrics are computed: (1) Jaccard similarity 𝐽 (𝐴, 𝐵) = |𝐴∩𝐵 ||𝐴∪𝐵 | ,
(2) edit distance 𝑑edit (𝐴, 𝐵) measuring the minimum number
of insertions, deletions, or substitutions to convert sequence
𝐴 to 𝐵, (3) path overlap defined as 𝑃 (𝐴, 𝐵) = |prefix(𝐴,𝐵) |

min( |𝐴 |, |𝐵 | )
where prefix(𝐴, 𝐵) denotes the length of the longest com-
mon prefix;
• Attention Alignment Evaluation. The goal is to extract the
average attention assigned to each structural token in T (𝐺),
with a particular focus on tool-type nodes. Since the nodes
preserved in the counterfactual graph 𝐺𝑐 are typically less
semantically influential, this experiment provides evidence
that the structural mask tends to retain nodes with relatively
low impact on the model’s semantic output;
• Adapter Shift Probing. The latent shift is computed by pro-
jecting the token embeddings through the LoRA projection
matrices (𝐵 ·𝐴). To investigate whether the LoRA fine-tuning
process internally encodes structural preferences for key
bioinformatics components, we probe the learned adapter
parameters by measuring the latent representation shift in-
troduced to each token embedding. Specifically, for a given
node token embedding 𝑒 , we compute the LoRA-induced
directional shift Δ as: Δ = B ·A ·𝑒 , where A and B denote the
low-rank weight matrices of the LoRA adapter within the
query projection module. The resulting vector Δ captures the
fine-tuning-induced modulation of the token representation,
and its ℓ2 norm serves as a proxy for the token’s sensitivity
under task-specific adaptation. If the masked nodes corre-
spond to large latent shifts, it indicates that these nodes play

a more critical role in the LoRA fine-tuning process. Conse-
quently, masking such nodes poses a substantial challenge
to the fine-tuned model, revealing their importance in the
model’s adapted behavior.

Figure 2: One Transcript Assembly pipeline

4.2 Experiment 2: Baseline Perturbation
Although Experiment 1 provides preliminary evidence that the pro-
posed counterfactual-based framework for explaining fine-tuned
LLMs is effective, concerns remain regarding the framework’s over-
all rationality and advancement. Specifically, the following critical
questions arise: “If we do not explicitly consider graph structure and
semantic features, can random perturbations produce controllable
semantic shifts?”, “Compared to random perturbations, does the
CFFTLLMExplainer better preserve structural coherence while in-
ducing semantic shifts?”, and “Can attention-based heuristic masks
induce sufficient semantic differences?”. To address these questions,
a series of baseline experiments are designed in this section as
follows:

• Random nodes perturbation: random fixed number of nodes
(same as 𝐺𝑐 ) and relative edges are masked, denoted by
Randomnodemask;
• Random edges perturbation: random fixed number of edges(
same as 𝐺𝑐 ) are masked, denoted by Randomedgemask;
• Randomnodes and edges perturbation: randomfixed number
of nodes and edges (same as 𝐺𝑐 ) are masked, denoted by
Randomnodeedgemask;
• Highest attention nodes perturbation: remove nodes with
the highest attention weights(same number as 𝐺𝑐 ), hypoth-
esizing they are structurally “most important”, denoted by
Higherattention;

5 Initial Results
Appendix. A outlines the training configurations and results as-
sociated with the BioToolKG injection. Section 5.1 presents a pre-
liminary analysis of the experimental results introduced in Sec-
tion 4.1. Section 5.2 compares our approach to baseline methods,
as described in Section 4.2.
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5.1 CFFTLLMExplainer Framework (A case study)
In this section, the initial graph 𝐺 is tailored as a transcript assem-
bly pipeline as Figure. 2. Rather than generating the graph via LLM
prompting, 𝐺 is explicitly defined based on standard workflows
in real-world RNA-seq analysis. This design enables us to inject
precise domain priors, ensure structural-level interpretability, and
systematically analyze the influence of graph masking on LLM
outputs. The use of precise pipeline structures and semantically
coherent connections enhances the interpretability of the experi-
ment. In contrast, pipelines generated by LLMs may have invalid
or meaningless connections, thereby increasing the difficulty of
subsequent explanation tasks. While future work may investigate
generating such pipelines via prompting, our current focus is on
counterfactual explanations based on a fixed structured input.

Following Equation 5, the total loss L𝑡𝑜𝑡𝑎𝑙 is instantiated with
the following coefficient configuration: 𝛼 = 400.0 for semantic
divergence, 𝛽 = 0.05 for entropy regularization, 𝛾 = 10.0 for struc-
ture preservation, 𝛿 = 10.0 for hard retention, and 𝜖 = 5.0 for
Laplacian smoothness. The structure sparsity term incorporates
node and edge regularization weights 𝜆𝑉 = 0.1 and 𝜆𝐸 = 0.5, re-
spectively, along with edge-type-specific coefficients: 𝜆rels_input =

𝜆rels_output = 4.0, 𝜆rels_download_from = 0.5, and 𝜆END = 1.0. To
balance discrete thresholding and gradient stability, the Gumbel-
softmax temperature is set to 𝜏 = 0.15.

Figure 3 illustrates loss curves during soft masks training on
the input graph 𝐺 shown in Figure 2. As shown in Figure 3a, the
semantic loss increases as structural perturbations are introduced,
reflecting growing semantic divergence. Meanwhile, Figure 3b visu-
alizes the sparsity loss, indicating that the graph becomes progres-
sively sparser over time. In Figure 3c, we present the total loss with
both semantic and sparsity components normalized, providing a
comprehensive view of their combined influence. To better reflect
the functional trends, all curves are smoothed using exponential
moving average (EMA) with a decay factor of 0.9.

After the training process, CFFTLLMExplainer assigns a soft
mask to each node and edge, representing its importance in the
counterfactual subgraph 𝐺𝑐 . It is important to note that Figure 4
visualizes the retention weights of nodes and edges in 𝐺𝑐 , darker
colors indicate a higher likelihood of being preserved. However,
this also implies that these elements are less critical in the original
graph 𝐺 , as their removal does not significantly affect the overall
semantic structure, thus they are retained. Specifically, Figure 4a
illustrates the resulting graph structure after applying the learned
masks, showing the retained nodes and edges in 𝐺𝑐 . Figures 4b
and 4c further present the soft mask weights learned for each node
and edge, respectively, indicating the probability of each being
preserved in the counterfactual subgraph.

Following the experimental design outlined in Section. 4.1, we
obtain the outputs 𝑓𝑏𝑎𝑠𝑒 (𝐺), 𝑓𝑓 𝑡 (𝐺), and 𝑓𝑓 𝑡 (𝐺𝑐 ) based on the
original graph 𝐺 and the learned counterfactual subgraph 𝐺𝑐 . In
the subsequent analysis, we primarily focus on the bioinformat-
ics tool entities mentioned in the outputs, as Tool-type nodes are
assigned higher structural importance during mask training and
carry greater interpretive weight in the pipeline.

Figure 5 shows the toolchain extracted from the outcome of
𝑓𝑏𝑎𝑠𝑒 (𝐺) and 𝑓𝑓 𝑡 (𝐺). It is observed that both the baseline and

(a) Semantic loss (b) Sparsity loss

(c) Overall loss after normalization

Figure 3: Training loss curves including semantic loss, spar-
sity loss, and normalized overall loss.

(a) Masked Knowledge Graph

(b) Nodes heatmap (c) Edges heatmap

Figure 4: Visualization of the masked graph and correspond-
ing node/edge mask heatmaps.

fine-tuned models produce identical tool chain sequences when
prompted with the full graph 𝐺 , suggesting that the fine-tuning
process preserves the semantic fidelity of the original pipeline.
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However, when prompted with the counterfactual graph 𝐺𝑐 , the
fine-tuned model generates a substantially different set of tools (see
Figure 6), demonstrating that the learned structural perturbations
are sufficient to induce meaningful divergence in model behavior.

Figure 5: Full graph outcome
via both baseline model and
fine-tuned model

Figure 6: CF graph output via
fine-tuned model

The structural and semantic behavior of the fine-tuned LLM is
examined by comparing its outputs over the full graph 𝐺 and a
counterfactual variant 𝐺𝑐 . The analysis is conducted along three
key dimensions (in Section. 4.1):

Semantic Drift Analysis. As shown in Figure 5 and Figure 6, the
model produces significantly different toolchains in response to 𝐺
and𝐺𝑐 . Specifically, the tool set generated from𝐺 includes {Hisat2,
Samtools, Scallop, and Gffcompare}, while 𝐺𝑐 results in an en-
tirely different set including Ballgown, Cufflinks, StringTie,
IGV, VEP, and others. The computed Jaccard similarity between
the two tool sets is only 0.1, indicating substantial deviation. This
confirms that the structural perturbation induced by the learned
masks leads to semantically distinct reasoning. The semantic dis-
tance between the full-graph output 𝑓𝑓 𝑡 (𝐺) and the counterfactual
output 𝑓𝑡 𝑓 (𝐺𝑐 ) is measured by cosine dissimilarity, yielding a score
of 0.544. This suggests that the graph-level structural perturbation
effectively triggers high-level semantic variation in model genera-
tion. Detailed metrics can be found at Table. 1.

Table 1: Semantic Drift Metrics

Jaccard Edit Distance Path Overlap Cosine Similarity

0.1018 6 0.25 0.5443

Attention Alignment Evaluation. Although the removed nodes,
such as Scallop (0.0015), Samtools (0.0015), and Gffcompare (0.001),
play pivotal roles in downstream reasoning, they consistently ex-
hibit extremely low average attention weights (all below 0.002).
This discrepancy reveals a misalignment between the model’s at-
tention distribution and the true semantic importance of structural
components. Such a mismatch aligns with previous observations
that attention mechanisms, while integral to model architecture,
may not reliably reflect the underlying decision-making process

[14, 33]. These findings reinforce the need for structure-aware ex-
planation approaches, as an overreliance on raw attention weights
can obscure key elements in the input graph that are crucial for the
model’s predictive behavior.

Adapter Shift Probing. Figure. 7c illustrates the adapter shift
scores for selected tool-type tokens. Among them, Scallop exhibits
the largest latent shift (∥Δ∥ = 0.0102), followed by Gffcompare
(∥Δ∥ = 0.0041) and Samtools (∥Δ∥ = 0.0031). These results align
with the training objective, as the fine-tuning data is centered
around Scallop-related workflows. The magnitude of the shift thus
provides an interpretable measure of token-level emphasis during
LoRA adaptation. Furthermore, these scores can be compared with
other interpretability signals, such as attention weights and node
mask values—to triangulate the structural significance of each to-
ken. The discrepancy across signals reveals that some tokens with
low attention or high retention likelihood in the counterfactual
mask may still have strong adapter shifts, indicating a latent form
of task-aware structural dependency.

(a) Node Mask Score Heatmap

(b) Token Attention Score Heatmap

(c) Adapter Shift Score Heatmap

Figure 7: Visual comparison of learned nodemasks, attention
scores, and adapter shifts.
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Figure 8: Baseline Experiments Heatmap

Figure. 7 presents the visualization results discussed earlier, il-
lustrating three complementary interpretability signals on the tran-
script assembly graph. Figure. 7a shows the learned node mask
scores from the CFFTLLMExplainer. Figure. 7b displays the aver-
aged attention weights over tool-type tokens in the input prompt.
Figure. 7c depicts the adapter shift magnitudes derived from LoRA
projection.

Overall, this experiment demonstrates that counterfactual struc-
ture masking offers a precise and faithful method for interpreting
fine-tuned LLMs. It captures structural elements that most influ-
ence model behavior information that is often underrepresented in
conventional attention visualizations.

5.2 Baseline Comparison
Figure. 8 shows the results in experiment 2 (Section. 4.2). Specifi-
cally, heatmap illustrating the similarity metrics between various
baseline perturbation strategies and the original graph𝐺𝑏𝑎𝑠𝑒 . Each
row corresponds to a baseline method applied to either the pre-
trainedmodel ("_base") or the LoRA fine-tunedmodel ("_adapter").
It is important to note that in the RandomNodeMask and
RandomNodeEdgeMask experiments, the number of masked nodes
and edges strictly follows that of the counterfactual toolchain 𝐺𝑐 .
However, the types of the masked nodes are not necessarily pre-
served. To address this, we introduce two additional baselines,
RandomNodeMaskAlign and RandomNodeEdgeMaskAlign, which not
only strictly match the number of masked nodes and edges in
𝐺𝑐 , but also align with the types of the masked nodes (same in
Lowattention_adapter and Higherattention_adapter). In par-
allel, the three evaluation metrics are designed to capture distinct di-
mensions of similarity: Jaccard quantifies semantic overlap between
outputs, Edit Distance (normalized) measures structural deviations
across different graph configurations, and Overlap assesses the con-
sistency of the generated toolchains. Additional details regarding
the baseline implementations can be found in Appendix. B.

From the figure, it is evident that CFFTLLMExplainer
(Gc_adapter) achieves a significantly low Jaccard similarity with
respect to the original output, indicating a substantial semantic shift
induced by the learned counterfactual structure. The relatively high
Edit_norm and low Overlap values further suggest that, under the

structure of 𝐺𝑐 , the model output undergoes not only semantic but
also structural transformations. This supports the hypothesis that
the fine-tuned LLM internalizes and adapts its structural knowledge
during training. In contrast, most random mask baselines, while
introducing considerable structural perturbations (as reflected by
higher Edit_norm), lead to only marginal changes in semantics and
toolchain composition, as shown by higher Jaccard similarity and
Overlap scores. This implies that such random modifications fail
to establish a coherent mapping between structural changes and
semantic behavior, and offer limited explanatory power.

Another meaningful and theoretically grounded baseline is
Higherattention_adapter, which removes high-attention nodes
of the same types as those in 𝐺𝑐 . While it achieves moderately
strong semantic shifts (e.g., Jaccard score of 0.14), its performance
across all metrics remains consistently inferior to that of 𝐺𝑐 . More-
over, the attention-based perturbation strategy suffers from limited
interpretability, it is difficult to determine whether the observed
output variations stem from the removal of high-attention nodes
themselves or from the disruption of their associated structural
context.

Moreover, in many cases, the resulting graphs from both random
and attention-based perturbations exhibit disconnected or biolog-
ically implausible structures. These graphs deviate from domain-
specific bioinformatics workflows, making it difficult to extract
coherent toolchain semantics. In contrast, 𝐺𝑐 maintains biologi-
cal plausibility while effectively inducing targeted semantic diver-
gence, showcasing its advantage in producing interpretable and
structurally grounded counterfactual explanations.

6 Future Works
While the case study have demonstrated that counterfactual graph
masking can effectively reveal structure-sensitive behavior in the
model, several directions remain for future exploration.

A promising future direction is to extend the current graph-based
analysis to a prompt-driven setting by constructing instruction-
style prompts from BioToolKG subgraphs. This would enable evalu-
ation of semantic drift under structural perturbations at the prompt
level. Future work will focus on formalizing this framework and
designing improved semantic similarity metrics. Additionally, in-
tegrate human-feedback constraints are planned to use into the
CFFTLLMExplainer, such as domain-specific path constraints or
tool dependencies. Finally, while this study focuses on the biomedi-
cal domain, our framework is broadly applicable to other structured
knowledge environments such as legal reasoning or scientific work-
flow modeling.

7 Conclusion
Wepropose CFFTLLMExplainer, a counterfactual-based interpretabil-
ity framework to analyze how fine-tuned LLMs process structured
knowledge graph inputs. By introducing BioToolKG and a differen-
tiable graph masking approach, we demonstrate that LoRA adapters
encode structural biases that can be revealed through semantic drift
induced by minimal graph perturbations.
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Through visual and quantitative analyses, we identify structural
components most influential to model outputs and show that con-
ventional attention scores do not always capture these dependen-
cies. Our findings offer new insights into the internal behavior of
fine-tuned LLMs, emphasizing the importance of structure-aware
explanation methods.

This work provides a foundation for future investigations into
prompt-level semantic sensitivity, user-guided counterfactual con-
trol, and cross-domain generalizability of structural interpretability
in LLMs.
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A Knowledge Graph Injection
We fine-tune the DeepSeek-R1-Distill-Llama-8B model using the
QLoRA framework with 4-bit quantization and low-rank adapter
injection. Instruction-style training data are tokenized and format-
ted into causal language modeling prompts. A LoRA adapter is
trained over three epochs using standard Transformer optimiza-
tion settings, and the resulting adapter weights are exported for
subsequent inference and interpretability analysis. Table. 2 shows
more detailed parameters and configurations.

Category Setting

LoRA Configuration

LoRA rank (𝑟 ) 8
LoRA scaling factor (𝛼 ) 32
LoRA dropout rate 0.05
Applied to modules q_proj, k_proj, v_proj, o_proj
Bias adaptation None

Task type Causal Language Modeling

Quantization Settings (QLoRA)

Quantization precision 4-bit
Quantization type NF4 (NormalFloat 4-bit)

Computation data type float16
Double quantization Enabled

Training Hyperparameters

Per-device batch size 4
Gradient accumulation steps 2

Effective batch size 8
Number of training epochs 3

Learning rate 2e-4
Mixed precision float16 (training), bfloat16
Flash Attention Disabled

Table 2: Configuration and training settings of QLoRA fine-
tuning.

Figure 9: Loss and gradient norm curve for LoRA training

The adapter introduces only 6.8M trainable parameters out of
8.0B total, yielding a trainable ratio of merely 0.0848%. As shown
in Figure 9, the training loss decreases sharply in the early stages
and converges to a stable level below 0.05 within a few hundred
steps, indicating successful knowledge injection into the adapter.

The gradient norm exhibits natural oscillation throughout training.
Such fluctuations are typical in parameter-efficient setups, where a
small number of parameters carry most of the gradient updates.

B Baseline experiment details

Figure 10: Binary Graph Masks under Different Perturbation
Strategies

Figure. 10 presents adjacency matrix heatmaps illustrating the
retention and removal of nodes and edges in each perturbed graph
in Section. 4.2. The colors on the diagonal are used to indicate the
retention status of each node. Red denotes retention, Blue represents
removal. The colors used for edges indicate their retention status.
Yellow represents retained edges, while White indicates deleted
edges.

Since the graph is directed, the adjacency matrix is asymmetric,
meaning that the relationship between node 𝑖 and node 𝑗 may not be
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identical to the relationship between node 𝑗 and node 𝑖 . Therefore,
the values of edge retention may differ depending on the direction
of the edge.

Experiment Name Extracted Tool Chain

G_base Gffcompare, Hisat2, Samtools, Scallop
Gc_base NCBI, Hisat2, Gffcompare
G_adapter Gffcompare, Hisat2, Samtools, Scallop
Gc_adapter (Ours) Ballgown, Cufflinks, Ensembl, Hisat2, IGV,

StringTie, VEP
Randomnodesmask1_base Hisat2, Scallop, Gffcompare
Randomnodesmask2_base NCBI, Hisat2, Scallop, Gffcompare, StringTie
Randomnodesmaskalign_base NCBI, Hisat2, Scallop, Gffcompare
Randomedgemask1_base NCBI, Hisat2, Samtools
Randomedgemask2_base Hisat2, Samtools, Gffcompare
Randomnodeedgemask1_base Hisat2, Scallop, Gffcompare
Randomnodeedgemask2_base Hisat2, Scallop
Randomnodeedgemaskalign_base Samtools, Scallop
Lowerattention_base NCBI, Hisat2, Scallop
Higherattention_base NCBI, Samtools, Gffcomapre
Randomnodesmask1_adapter Hisat2, Scallop, Gffcompare, custom script
Randomnodesmask2_adapter NCBI, Hisat2, Scallop, GTF Annotation, Gffcompare
Randomnodesmaskalign_adapter Hisat2, Scallop, Gffcompare, custom script
Randomedgemask1_adapter NCBI, FastQC, Trimmonmatic, HISAT2, Samtools,

Stringtie, GATK, VEP
Randomedgemask2_adapter Hisat2, Samtools, Stringtie, Cufflinks, Gffcompare
Randomnodeedgemask1_adapter Hisat2, Scallop, Gffcompare
Randomnodeedgemask2_adapter Trimmomatic, TrimGalaxy, Hisat2, Scallop, Stringtie,

BLAST, T-coffee
Randomnodeedgemaskalign_adapter Samtools, Scallop, STAR, Hisat2, TransABySS,

VarScan, Ensembl API
Lowerattention_adapter NCBI, Hisat2, Scallop
Higherattention_adapter NCBI, Hisat2, STAR, StringTie

Table 3: Extracted toolchains from model outputs under dif-
ferent structural perturbation settings.

Table. 3 presents the extracted toolchains from the results ob-
tained in different baseline experiments, where various graph con-
structions (Figure. 10) were used as prompt templates in different
LLMs. It is important to note that the presence of the NCBI database
in the table indicates that, during the construction process, this
node is retained, and the LLM generates new nodes around it. Given
its significant role in the graph, it is preserved in the toolchain. Ad-
ditionally, the position of NCBI in the graph allows for a quick
assessment of the completeness of the toolchain.
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