
What Makes Partial-Label Learning Algorithms
Effective?

Jiaqi Lv1,5, Yangfan Liu1, Shiyu Xia1, Ning Xu1,5, Miao Xu2,
Gang Niu3,1, Min-Ling Zhang1,5, Masashi Sugiyama3,4, Xin Geng1,5∗

1Southeast University 2The University of Queensland
3RIKEN Center for Advanced Intelligence Project 4The University of Tokyo

5Key Laboratory of New Generation Artificial Intelligence Technology and
Its Interdisciplinary Applications (Southeast University), Ministry of Education, China

{is.jiaqi.lv, gang.niu.ml}@gmail.com,
miao.xu@uq.edu.au, sugi@k.u-tokyo.ac.jp,

{liuyangfan, shiyu_xia, xning, zhangml, xgeng}@seu.edu.cn

Abstract

A partial label (PL) specifies a set of candidate labels for an instance and partial-
label learning (PLL) trains multi-class classifiers with PLs. Recently, many meth-
ods that incorporate techniques from other domains have shown strong potential.
The expectation that stronger techniques would enhance performance has resulted
in prominent PLL methods becoming not only highly complicated but also quite
different from one another, making it challenging to choose the best direction for
future algorithm design. While it is exciting to see higher performance, this leaves
open a fundamental question: what makes a PLL method effective? We present a
comprehensive empirical analysis of this question and summarize the success of
PLL so far into some minimal algorithm design principles. Our findings reveal that
high accuracy on benchmark-simulated datasets with PLs can misleadingly amplify
the perceived effectiveness of some general techniques, which may improve repre-
sentation learning but have limited impact on addressing the inherent challenges of
PLs. We further identify the common behavior among successful PLL methods as
a progressive transition from uniform to one-hot pseudo-labels, highlighting the
critical role of mini-batch PL purification in achieving top performance. Based on
our findings, we introduce a minimal working algorithm that is surprisingly simple
yet effective, and propose an improved strategy to implement the design principles,
suggesting a promising direction for improvements in PLL.

1 Introduction

Partial-label learning (PLL) [14, 12, 42] has been an established discipline in the weakly supervised
learning field [50, 51] for decades. It aims to train multi-class classifiers from instances with partial-
labels (PLs)—a PL for an instance is a set of candidate labels, where a fixed but unknown candidate
is the true label.

As benchmarking on simulated PLL versions of vision datasets becomes standard practice for evalu-
ating PLL methods, new PLL approaches are emerging that integrate diverse advanced techniques
to enhance the performance. While many methods show great promise and some headway has
been made in understanding the methodology against ambiguous label assignments [24], we find
that state-of-the-art (SOTA) approaches look quite complicated and differ significantly from each
other (Table 1), making it challenging to choose the best direction for better algorithm design.

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

0 50 100 150 200
Epoch

55

60

65

70

75

80

85

90

Tr
ai

n_
ac

c
iter=50944
iter=398
iter=199
iter=19
iter=3
iter=1

(a) Acc of IBS

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

M
ar

gi
n

(b) Margin of IBS

0 50 100 150 200
Epoch

80

82

84

86

88

90

92

Tr
ai

n_
ac

c

neg

maxi
CLPL

(c) Acc of ABS

0 50 100 150 200
Epoch

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

M
ar

gi
n

(d) Margin of ABS

Figure 1: Training accuracy and confidence margin of predicted pseudo-labels for traditional IBS
and ABS methods on FMNIST with PLs: (a-b) show the granularity of EM execution in classical
IBS methods is refined from a single step to an entire epoch, facilitating a smoother transition from
uniform to one-hot pseudo-labels; (c-d) demonstrate that when ABS methods are optimized using
SGD, the optimization targets for candidate labels can gradually become distinct.

In this paper, we aim to summarize the success of PLL so far, and understand the indispensable
elements in a well-performing PLL method, which can be condensed into minimal algorithm design
principles. For this purpose, we think of the taxonomy of PLL approaches first, comb the evolution
and trends in this field, thereby uncovering key factors that drive their effectiveness and motivating
future research.

The widely accepted PLL taxonomy [47, 24] divides methods based on the treatment of PLs into
identification-based strategy (IBS) and average-based strategy (ABS):
• IBS disambiguates each PL to select the most likely true label for training;
• ABS treats all candidate labels equally for training.
However, the boundary between these two categories is vague, resulting in a lack of consensus on
the category of many recent approaches which purifies each PL on the fly during model training [25,
37, 39]. They initially look like ABS, since uniform targets are always used to prepare for true-label
selection, and as training progresses, the optimization targets for candidate labels become distinct
gradually, such that they exhibit IBS-like characteristics. The tricky fact is that such approaches are
classified as ABS or IBS hinging on which definition of category researchers are willing to relax
(e.g., [45] versus [35])! In light of the evolving approaches within PLL, is there a need to establish
a third category within the taxonomy to capture the "hybrid strategy", as attempted by recent work
like [43, 5]?

We suggest that the answer is in the negative, since our analysis confirms the fluidity of method
categorization within PLL, emphasizing that IBS, ABS, and so-called hybrid strategy often overlap
due to the dynamic nature of their implementation:
• Training manner of IBS. Typical IBS approaches [48, 13] perform one-step EM to identify the true

label in each PL (E step) and then train a supervised classifier (M step). To mitigate overfitting to
wrongly identify labels, multi-step EM IBS [11, 10] are proposed. As iterations are executed more
frequently, the identifocation of true labels becomes increasingly smooth (Figure 1).

• Implicit differentiation in ABS. Typical ABS approaches [19, 6] design a loss function that does not
differentiate candidate labels, e.g., enforcing the softmax outputs of them to sum to 1 [19]. However,
stochastic optimization algorithms can implicitly lead to distinct outputs for each candidate label
and show a progressive purification characteristic (Figure 1 and Lemma 3.1).

• Execution matters. Whether a method truly exhibits progressive characteristics and the extent of
progression also depend on the optimizers used and hyperparameters like the learning rate and
batch size (Figure 4).

Therefore, predefining a method’s category and then asserting its utility can limit our understanding
of its true nature and effectiveness. Further, our empirical incestigations reveal a key insight: all
successful PLL algorithms exhibit a common behavior characterized by a progressive transition from
uniform to one-hot pseudo-labels, facilitated by the combination of PL purification and model updates
in a mini-batch-wise manner. Building on this core strategy, modern methods also integrate various
techniques from other domains, exemplified by Match from semi-supervised learning [3, 29], aiming
to further enhance model performance. While intuitively, better performance could be achieved if
stronger techniques are employed, our findings indicate that these enhancements often yield marginal
gains when compared to the primary benefits derived from mini-batch PL purification. Notably, even

2

Table 1: Comparison of techniques used in eight prominent PLL methods. ✓/× indicates whether a
technique is used, and an underline denotes the key components of the respective methods.

PLL methods
Mini-b.

Mixup
Data Exp.Mov Match

Main assumption
purif. augment. Average DA DM

PRODEN [25] ✓ × × × × ✓ DNNs learn pattern first
CC [12] ✓ × × × × × PLs are generated uniformly
LWC [37] ✓ × × × × ✓ PLs are class-dependent
PiCO [34] ✓ × ✓ ✓ ✓ ✓ Same class representations cluster
DPLL [38] ✓ × ✓ × ✓ × Input is invarient to the translations
SoLar [33] ✓ ✓ ✓ ✓ ✓ × High-confid. sample is likely correct
PaPi [40] ✓ ✓ ✓ ✓ ✓ ✓ Same class representations cluster
CroSel [30] ✓ ✓ ✓ ✓ ✓ ✓ Stable high-confid. sample is correct

when these additional techniques result in significant improvements, they tend to boost the model’s
ability to learn representations rather than resolving the inherent ambiguities of PLs.

The main contributions of our paper can be summarized as follows: (i) We advance the understanding
of PLL taxonomy and establish minimal algorithm design principles. At the core of these principles
is mini-batch PL purification, a fundamental aspect that goes beyond using supervised information.
These principles not only enhance the efficiency of algorithm development but also act as a conclusive
work to prevent redundant efforts in future research. (ii) We analyze the design philosophies and
component frameworks of SOTA PLL methods, conducting comprehensive studies on benchmark-
simulated datasets with PLs. Building on this, we highlight a minimal working algorithm that adheres
to our design principles, and propose an enhancement strategy to mini-batch PL purification that have
the potential to elevate performance across all existing SOTA methods.

2 Preliminaries

2.1 Notation

Consider a k-class classification problem. Let x ∈ X be features and y ∈ Y .
= {1, 2, . . . , k}

be labels. Then one has (x, y) sampled from the ground-truth joint density p(x, y) over X × Y
in supervised learning. PLL deals with PLL data (x, S), which is independently drawn from a
corrupted distribution p(x, S) of p(x, y) with p(x) unchanged. S ∈ {2[k]\∅\[k]} denotes a PL,
and D = (xi, Si)

n
i=1 is a PLL dataset. The key assumption of PLL is that the latent true label of

an instance is always included in its PL, i.e., p(y ∈ S|x, S) = 1. Let ∆k−1 ⊂ [0, 1]k denote the
k-dimensional simplex. Let f : X → ∆k−1 be a multi-label classifier to be trained, specifically, a
composite of a backbone (e.g., ResNet [18]) and an inverse link function ψ−1 [27] (e.g., softmax),
so that f(x) can be interpreted as probabilities. Let ℓ : ∆k−1×Y → R+ be a surrogate loss function,
e.g., cross-entropy loss. The classification risk of f is defined as R(f) = Ep(x,y)[ℓ(f(x), y)], which
is the performance measure we would like to optimize.

2.2 Backgrounds

In this section, we review recent prominent PLL works. In PLL, a common practice is to adopt a
weighted objective of the form

R(f) = Ep(x,S)

[∑
z∈S

w(x, z)ℓ(f(x), z)
]
, (1)

with the optimal weights w(x, z) = p(z|x). If ℓ is the cross-entropy loss, the weight can be
integrated directly into the loss function, acting as optimization target (pseudo-label) for x directly.
In classical taxonomy for PLL [47], IBS trains predictive models based on fixed weights assigned to
the training instances, i.e., ŵ(x, z) = {0, 1}k, while ABS sets uniform weights during training, i.e.,
ŵ(x, z) = 1/|S|.

3

Definition 2.1 (Mini-batch PL purification). Mini-batch PL purification is a process where for each
mini-batch B ⊂ D selected at iteration t, the weights are updated such that the distinction among
candidate labels’ contributions increases over iterations:

wt+1(x; f, S) = g(model’s confidence for x based on current and previous iterations), (2)
with g being a strictly increasing function that increases the weight for more likely candidate labels
according to the model’s confidence. The model’s parameters θt are updated by optimizing a weighted
loss over B:

θt+1 = θt − ηt∇θ

∑
(x,S)∈B

ℓ(f(x; θt), S;wt+1(x)). (3)

The standard practice is initializing the weights uniformly w0
i = 1/|S| if i ∈ S and w0

i = 0 otherwise,
and let f0 be initialized randomly. The model f0 is then updated for at least one epoch to perform
a preliminary training phase. Then in each mini-batch of t-epoch, w(x) is computed where f is
fixed, and then f is updated by the weighted objective where w keeps fixed in backpropagation.
An instantiation of mini-batch PL purification was first introduced by [25]. They use a delayed
mechanism, i.e., w(x) is computed by the output of historical model f t−1 on x, implicitly assuming
that DNNs learn pattern first [2], and the delayed mechanism mitigates the accumulation of errors.
Then, some methods replace the delayed mechanism with Match techniques to estimate w, which may
rely on either Siamese networks [4] applied to two or more inputs (dual-augmentation match, i.e., DA),
or co-teaching networks [16] where one network’s outputs serve as targets for the other (dual-model
match, i.e., DM). Furthermore, some methods advocate DA+DM framework; for example, PiCO [34]
involves mutual guidance of two heterogeneous classifiers, with one built on top of a supervised
contrastive learning architecture [20]. In addition techniques borrowed from various communities
have propelled PLL methods to top performance, such as mixup [46] and data augmentation like
cropping and flipping [28], which have become mainstream.

As shown in Table 1, prominent methods in recent years rely on the mini-batch PL purification
strategy and specific enhanced tools. However, our research reveals a significant disparity in the
impact of these components, at least on current benchmarks. Mini-batch PL purification is sufficient
to provide a reliable guarantee of performance, while the additional tools contribute relatively little.
Although techniques like data augmentation can enhance the performance by improving the model’s
robustness to input variations, they primarily boost representation learning, but not benefits the
disambiguition for PLL.

3 Understanding Minimal Algorithm Design Principles

In this section, we inverstigate four SOTA PLL methods that have consistently demonstrated top
accuracy across various benchmark tasks. By methodically dissecting these methods and analyzing
the components credited for their robustness against PLs, we distill the essential elements contributing
to their success. We defer the experiments details to Appendix.

3.1 PLL with DA Match

Algorithm details. The key contribution of DPLL [38] lies in incorporating neighborhood consis-
tency, a technique adapted from semi-supervised learning, into PLL. This technique maximizes the
similarity among several perturbed views of the same instance, thereby inducing smoothness in the
structure of learned representations, referred to as dual-augmentation match (DA Match).

Specifically, DA Match instantiates Eq. 1 by specifying the loss function as the KL divergence and
estimating the weights by a weighted sum of outputs of all augmentations in A(x):

R(x, f) = −
∑

A(x)
ŵ(x)⊤ log f(A(x)), (4)

ŵ(x, z) =


(
∏

α∈A(x) fz(α))
1/|A(x)|∑

j∈S(
∏

α∈A(x) fj(α))
1/|A(x)| z ∈ S,

0 otherwise.
(5)

ŵ is updated in a mini-batch-wise manner along with the model parameters and is initialized
uniformly (mini-batch PL purification). In addition, the learning objective of DPLL includes another
loss function as

ℓ(x, f) = −
∑

i/∈S
log(1− fi(A(x))), (6)

4

where the vector subscript indicates the element is that position. It encourages the output of each
non-candidate label to be zero.

Evaluation 1. Specific implementations do not matter. First, we replace the two terms in learning
objective with alternative approaches. Eq. 6 is conceptually equivalent to encouraging the sum of the
outputs for the candidate labels to be close to one, i.e,

ℓ(x, f) = − log
∑

i∈S
fi(A(x)). (7)

Instead of using a shared target for all views, we modifies the optimization target for each view
separately based on the output of the other view:

R(x, f) = −
(
ŵ2(x)

⊤ log f(x1) + ŵ1(x)
⊤ log f(x2)

)
, (8)

where x1,x2 ∈ A(x), and

ŵ2(1)(x, z) =

{
fz(x1(2))/

∑
j∈S fj(x1(2)) z ∈ S,

0 otherwise.
(9)

We combine two DA Match terms and two loss functions in pairs, respectively. As can be seen from
Table 2, there was no significant difference between the results of these four combinations. This
indicates that the specific implementation methods of DA Match, including the exact form of the loss
function, is not critical.

Evaluation 2. Additional losses do not matter. We then split the combined learning objectives
into two separate objectives to examine the difference in the contribution of these two components
to learning. We found that Eq. 6 and Eq. 8 were comparable under the relatively simple settings,
but Eq. 8 outperformed Eq. 4 in challenging scenarios (CIFAR-100 and mini-ImageNet). Note that
Eq.6 is a traditionally considered ABS loss, and Eq. 8 implements mini-batch PL purification. It is
commonly believed that ABS does not require identifying the true labels during training, leading to
over-parameterized DNNs memorizing all candidate labels [44], which results in poor performance.
However, as discussed in Section 1, ABS can still achieve acceptable performance because the
optimization process may induce differentiated outputs. We will elaborate on this in more detail
in Section 3.4. Another noteworthy observation is that Eq. 8 not only did not lead to a decrease
in accuracy compared to the original DPLL, but even showed some improvement, which is likely
because Eq. 8 can model neighborhood consistency better than Eq. 4.

So far, we have extracted a core unit from DPLL, which takes the form of Siamese networks [4]: a
weight-sharing network applied on two (or more) inputs for comparing, and PLs prevent the model
from collapsing, i.e., outputting a constant for all inputs. We call Eq. 8 dual augmentations single
model (DASM), as depicted in Figure 5. However, it remains to be seen whether the effectiveness of
DASM is due to mini-batch PL purification or neighborhood consistency.

Evaluation 3. Mini-batch PL purification does matter. We modify the learning strategy of DASM
by either altering the mini-batch PL purification strategy or removing the consistency component.
We compare them in Table 2, where the "-H", "-S" or "-E" suffix means using the hard pseudo-labels,
one-step iteration or epoch-wise iteration. Specifically, DASM-H uses hard labels as optimization
targets for Eq. 8:

ŵ2(x) = ei, ŵ1(x) = ej , where i = argmax f(x1) and j = argmax f(x2), (10)

where ei denotes the i-th standard canonical vector, i.e., ei ∈ {0, 1}k,1⊤ei = 1. DASM-S simulates
one-step EM methods by training the model with uniform targets for the first 50 epochs, and then
transforming PLL into supervised learning by using one-hot pseudo-labels (i.e., the argmax of the
model’s output for each instance at the 50th epoch) for the next 450 epochs. The results indicated
that the performance of DASM-H and DASM-S was inferior to DASM. This can be attributed to the
models’ inability to adjust learning targets at the appropriate time based on the underlying learned
patterns: Since DNNs tend to fit easy patterns first and gradually memorize harder ones, a phenomenon
known as memorization effects [2], DASM-H may remember unreliable information due to random
initialization, and DASM-S may lead remember too much undesired memorization [15]. DASM-E
shifts from a mini-batch-wise manner to an epoch-wise manner, performing pseudo-label estimation
and model updates at the epoch level, which resulted in decreased accuracy. Compared to DASM-E,
mini-batch manner benefits from using the up-to-date model for generating optimization objectives

5

Table 2: Conceptual and empirical comparisons (%) of various simplifications of DPLL. ✓/×
indicates whether a technique is used.

Methods
Mini-b. ABS Data

DA
FMNIST CIFAR-100 mini-I.Net

purif. loss augment. 0.3 0.7 0.05 0.1 ins.-dep.

Eq. 4+6 DPLL ✓ ✓ ✓ ✓ 93.82 92.68 76.81 75.93 52.22
Eq. 4+7 ✓ ✓ ✓ ✓ 93.80 92.44 79.35 78.85 53.40
Eq. 8+6 ✓ ✓ ✓ ✓ 93.49 92.19 79.75 78.87 53.78
Eq. 8+7 ✓ ✓ ✓ ✓ 93.57 92.20 79.53 78.85 54.09

Eq. 6 × ✓ ✓ × 93.58 92.12 76.96 75.94 44.69
Eq. 8 DASM ✓ × ✓ ✓ 93.89 92.85 79.70 79.62 54.71

DASM-H × × ✓ ✓ 93.86 92.37 78.25 33.22 34.59
DASM-S × × ✓ ✓ 93.28 90.75 78.65 76.22 36.71
DASM-E × × ✓ × 93.80 92.35 79.30 79.11 53.44
SASM ✓ × ✓ × 93.83 92.18 79.38 78.19 55.45

DASM w/o.aug ✓ × × ✓ 90.86 89.60 60.18 56.39 30.85

and also improves computational efficiency. In addition, we change the dual feedforwarding to single.
The optimization target of an input is modified in place according to its own output, which we term
single augmentations single model (SASM). It was somewhat surprising that this method does not
require additional components, performed remarkably well, implying DA may not be necessary.

Evaluation 4. Does data augmentation matter? Additionally, removing data augmentation from
DASM, as in DASM w/o.aug, causes a decrease in accuracy as expected. We will discuss its impact
further in Section 3.3.

3.2 PLL with DA+DM Match

Algorithm details. PiCO [34] enhances representation learning by incorporating supervised con-
trastive learning into PLL. It utilizes two heterogeneous classifiers sharing a backbone (one linear
and one contrastive-based), guiding each other to instantiate Eq. 1. PaPi [40] investigates PiCO and
identifies limitations in the contrastive learning module. Thus PaPi adopts a more efficient approach
inspired by the delayed mechanism in PRODEN, instantiating Eq. 1 without the need to maintain two
separate models. Besides, PaPi also uses the zero-and-normalized outputs of historical models to
guide a prototypical classifier that shares the same backbone with the linear classifier. Both methods
feed forward different views of the same input. We refer to such franework as dual-augmentation and
dual-model match (DA+DM Match). CroSel [30] is the latest PLL method that, in addition to using
the DM framework to generate optimization targets for each other, also selects samples with more
accurate pseudo-labels for the other model to compute supervised loss.

Evaluation. At a high level, PiCO draws inspiration from co-teaching [16]: instead of training a
single classifier, it trains two classifiers simultaneously and lets them teach each other in every mini-
batch. We simplify this idea by removing the contrastive-based classifier and using two networks with
the same architecture but different initialization, which is also CroSel without its sample selection
module. We call such method dual augmentations dual models (DADM). Taking it a step further,
single augmentation dual models (SADM) removes one data augmentation, feeding both networks
the same view of an instance within the same epoch. Conversely, if we cancel DADM from CroSel,
the remaining implementation is co-teaching adapted for PLL (Coteaching in Tabel 4). For PaPi,
we strip away the prototypical classifier, resulting in a streamlined version akin to PRODEN with
added data augmentation (PRODEN+), to explore whether the specific instantiation of DM makes a
difference. Figure 5 illustrates their basic workflow.

Our results are shown in Table 4. Both DADM and SADM outperformed PiCO and were comparable
with CroSel, and PRODEN+ generally matches the performance of PaPi. Deleting the implementation
of mini-batch PL purification, whether by altering the iteration frequency or replacing soft pseudo-

6

0 100 200
Epoch

40

50

60

70

80

90

Pr
ed

ict
_a

cc

SADM
ori.->aug.
aug.->ori.

(a) Acc of pseudo-labels

0 50 100 150 200
Epoch

55

60

65

70

75

80

85

90

Te
st

_a
cc

(b) Test Acc

Figure 2: Comparative results of different
training setups of DASM on FMNIST with
PLs. (a) shows the pseudo-label accuracy,
while (b) presents the test accuracy.

0 100 200 300 400 500
Epoch

65

70

75

80

85

90

Tr
ai

n_
ac

c

warm-up iter=1
warm-up iter=5
warm-up iter=500

(a) Train Acc

0 100 200 300 400 500
Epoch

60

65

70

75

80

85

90

Va
lid

at
io

n_
ac

c

(b) Validation Acc

Figure 3: Warm up different iterations on FM-
NIST with PLs. Red lines mean terminating
the warm-up phase at a local maximum in val-
idation accuracy.

labels with hard pseudo-labels, consistently leads to a decline in performance. The observations
reaffirm that mini-batch PL purification is essential for achieving top performance. By comparing the
performance of the DM framework with the SM framework, we discover that the DM framework’s
edge often comes from the diverse capabilities of the two networks, which help handle the noise
introduced by PLs. On the other hand, the DA methods without any special design (DASM, DADM,
PRODEN+) showed suboptimal performance than the SA methods, perhaps hinting at the importance
of exploring different augmentation methods [31] to discover appropriate choices for class-invariant
patterns, remaining for future research.

3.3 Does Data Augmentation Help Identification Better?

Our findings indicate that mini-batch PL purification and data augmentation are pivotal for PLL,
achieving competitive performance when both techniques are implemented. Data augmentation is a
well-established regularization tool, enhancing model robustness to input variations. In the following,
we explore whether its role in PLL extends beyond this conventional purpose, specifically whether it
facilitates the crucial task of identifying the true label among candidate labels. If data augmentation
aids true-label identification, we would expect that augmented examples generate more accurate
pseudo-labels, then enhancing the performance. Specifically, we experiment with DASM by setting
one view as augmented and the other as non-augmented. We also use different training setups: (i)
using zero-and-normalized pseudo-labels generated from original x to supervise augmented x, and
(ii) the reverse, using augmented x to supervise original x. The results are presented in Figure 2.

Switching from dual paths to a single path while retaining supervised learning on augmented instances
with pseudo-labels from the original instances showed little change in accuracy. However, when using
pseudo-labels from augmented instance to supervise original one, performance drops significantly.
This suggests that data augmentation alone is insufficient to preserve the mutual information between
examples and their true labels, as augmented views may discard task-relevant information, thereby
degrading performance. Following this reasoning, our results suggest that data augmentation indirectly
benefits the classifiers built upon representation learning rather than aiding in label disambiguation.
Therefore, it should NOT be considered a design principle for PLL.

3.4 PLL through Pseudo-Label Manipulation vs.Loss Minimization

Mainstream methods mentioned above conduct mini-batch PL purification primarily by directly
manipulating the optimization targets of candidate labels. However, as analyzed in Section 1 and
observed in Eq. 6 of Table 2, using stochastic algorithms to minimize loss functions, even ABS loss
funtions that are traditionally considered to "treat all candidate labels equally", can also implicitly
result in a progressive effect of pseudo-labels. To our knowledge, no existing research has explored
the relationship between pseudo-label manipulation and loss minimization. Our findings raise the
question: how do these two methods compare in terms of their effectiveness and mechanisms in the
context of PL identification?

We investigate several representative PLL losses, which are traditionally thought as ABS:
• Modified negative log likelihood loss (Eq. 6) [38]: ℓneg(x, f) = −

∑
i/∈S log(1− fi(x));

• APL loss [24]: ℓAPL(x, f) =
1
|S|

∑
i∈S ℓ̃(f(x), i), with GCE loss [49] as the component ℓ̃;

7

• Maximum likelihood loss [19]: ℓmaxi(x, f) = − log
∑

i∈S fi(x).
Denote the scores of x outputted by the last layer before softmax as z, i.e., ψ−1(z) = f(x) where
f = (ψ−1 ◦ f (n) ◦ · · · ◦ f (1)). Let us look at the gradients of ℓneg and ℓAPL:

∂ℓneg
∂zk

=

{
−fk

∑
i/∈S

ezi∑
j∈Y ezj−ezi

k ∈ S,

fk(1−
∑

i/∈S,i ̸=k
ezi∑

j∈Y ezj−ezi
) otherwise,

(11)

∂ℓAPL

∂zk
=

{
− 1

|S| (fk
∑

i∈S,i ̸=k f
q
i − fqk (1− fk)) k ∈ S,

1
|S|fk

∑
i∈S f

q
i otherwise,

(12)

where q ∈ (0, 1] is a tunable parameter of GCE. From a gradient perspective, we observe that while
the implicit optimization targets for all candidate labels are the same for each loss function, their
optimization speeds differ. Specifically, the gradients of the candidate labels are consistently negative
until one candidate label accumulates all the probabilities, which implies that both loss functions
promote the output of each candidate label to converge to 1. As a result, the candidate labels compete
for dominance. A label with a higher output probability experiences a larger gradient and thus
becomes the winner. According to the memorization effects of DNNs, such a label is more likely to
be the true label receiving a larger gradient at the beginning, which explains why the labels become
distinguishable with these two losses. However, since the optimization targets for all candidate labels
remain the same, minimizing these two losses does not align with our definition of mini-batch PL
purification where the optimization targets are expected to diverge progressively.

Then we focus on the third loss ℓmaxi. We examine its gradients as

∂ℓmaxi

∂zk
=

{
fk − ezk∑

i∈S ezi
k ∈ S,

fk otherwise.
(13)

It is crucial to recognize two key points: (i) The philosophy of ℓmaxi is to ensure that the output of all
candidate labels sums to 1, which is exactly the same as that of ℓneg, which requires the output of all
non-candidates to sum to 0. However, their gradients are completely different, indicating that they lead
to different optimal empirical solutions even with identical initialization and stochastic optimizer. (ii)
When learning with ℓmaxi, the implicit optimization target of an instance is the zero-and-normalized
outputs of current model on this instance itself, exhibiting consistent behavior with pseudo-label
manipulation in SASM.
Lemma 3.1. Suppose using the same stochastic optimizer, then performing SASM is mathematically
equivalent to minimizing ℓmaxi.

Empirical results in Table 5 also verified the theoretical findings. However, pseudo-label manipulation
offers greater flexibility as it allows for more arbitrary modifications to the optimization targets, as
DASM, SADM, etc. have done, and additional steps over generating soft pseudo-labels, such as
sharpening [29], but the targets of loss functions are fixed.

Now, our empirical investigations have firmly established the necessity of mini-batch PL purification
along with using supervision. Supervision can be used in two ways: directly within the loss function
as it in supervised learning, or to manipulate pseudo-labels on-the-fly. We identify SASM is the
minimal working algorithm. It achieved superior or at least comparable performance compared with
SOTA PLL methods in most cases, while not requiring multiple forward propagations or additional
components.

3.5 Probing the Implementation of Mini-Batch PL Purification

Here, we examine the implementation of mini-batch PL purification, raising at least two questions:
Q1. Does different initialization methods impact the performance? Q2. Why does model confidence
in PLs is effective to disambiguation?

In early training stages, our primary concern is if initialization methods might cause certain candidate
labels to receive significantly higher confidence. Consider a neural network where weights are
independently drawn from a standard normal distribution with zero mean and variance σ2 (as in
normal initialization, Xavier initialization [1], He initialization [17]). For an instance x, the output
z of a neuron after a ReLU activation is given by z = max(0,wx + b), where w represents the

8

weight vector and b is a small constant bias. By the Central Limit Theorem, the mean of the weights
w̄ = 1/n

∑n
i=1 wi for a sufficiently large number of neurons n approaches a normal distribution with

mean zero and variance δ2/n. Applying Chebyshev’s inequality, we have P (|w̄| ≥ a) ≤ δ2/(na2).
As n→ ∞, w̄ is close to zero with high probability. Then the output for each neuron z will be close
to b. By a similar reasoning, this result generalizes to deeper layers, suggesting that the initial outputs
across classes approximate a uniform distribution regardless of the number of layers.

Lemma 3.2. For a neural network initialized with weights w drawn from a normal distribution
N (0, δ2), the initial outputs across classes approximate a uniform distribution as the number of
neurons n→ ∞.

Then we explain why using model’s output as a proxy for the probability that a candidate label is the
true label works. This practice of using the high-confidence label as the true label, introduced to PLL
by [25], has long been foundational in noisy-label learning (e.g., [16, 23]). Its success in PLL hinges
on a key assumption: the true label has a higher probability of appearing among the candidate labels
than any incorrect label. In fact, the experimental setups employed across PLL methods impose a
further restriction on this assumption, that is, p(y ∈ S|x, S) = 1, p(i ∈ S|x, S) > 1,∀i ̸= y. This
setup implies that, within any sufficiently small neighborhood in the data space, the true label will
dominate. Consequently, when stochastic gradient-based optimizers are used, the true label tends to
contribute more frequently to the objective function, making it more likely to be learned first.

4 Improving Mini-Batch PL Purification

4.1 Motivation

The standard practice involves initiating the process with uniform pseudo-labels for one epoch to
bootstrap the classifier’s basic capabilities. Our first observation is that the effect of warming up for
one epoch is nearly indistinguishable from not warming up at all, prompting further investigation
into the actual efficacy of the warm-up phase. Suppose a neural network is initialized with weights
drawn from a Gaussian distribution with mean zero and a sufficiently small variance. If the inputs are
normalized, the pre-activation values across a neural network tend to be small and centered around
zero. When these values are input to a softmax function, the resulting distribution across classes
tends to uniformity.

Our second observation is that a prolonged warm-up using uniform pseudo-labels often leads to the
network overfitting to candidate labels, as illustrated in Figure 3, evident around 50 epochs with a
decline in validation accuracy. While overfitting to the training data becomes apparent about 120
epochs, marked by a drop in training accuracy after previously reaching a peak.

We simply terminate the warm-up phase at a local maximum in validation accuracy, about 5 epoch,
preventing excessive memorization while preserving more information beneficial for generalization.
Then the results showed a little improvement. Several approaches [34, 24] have used multiple epochs
for warm-up and treat the number of warm-up epochs as a hyperparameter. However, due to the
varying difficulty levels across samples, using a uniform duration for the warm-up phase could result
in performance disparities among different subgroups within the dataset. This suggests the need for
an adaptive warm-up strategy.

4.2 StreamPurify: An Instance-Dependent Warm-Up Strategy

Building upon the analysis and our established design principles, we propose StreamPurify, a novel
instance-dependent warm-up strategy, which fine-tunes the entry into the mini-batch PL purification
phase based on each instance’s readiness. During the initial training phase, it selectively channels
instances that have higher confidence in the accuracy of their pseudo-labels into the PL purification
phase, while others continue training with uniform targets until they meet the readiness criteria.
This filtered progression helps prevent DNNs from harmfully memorizing incorrect pseudo-labels
and mitigate the accumulation of errors from inadequately learned samples. Differing from sample
selection techniques used in noisy-label learning [36] that reevaluated samples in every iteration, our
filter approach is conducted without replacement. Once the training samples are transitioned to the
purification phase, they do not revert to uniform targets, ensuring that the strategy remains in line
with mini-batch PL purification.

9

Table 3: Classification accuracy (%) improvement of PLL methods with StreamPurify.

Methods
FMNIST CIFAR-10 CIFAR-100 mini-I.Net

0.3 0.7 0.3 0.7 0.05 0.1 ins.-dep.

SASM 0.15 0.09 0.02 0.34 0.30 0.21 1.82
SADM 0.05 0.22 0.10 0.18 0.19 0.58 0.99
DADM 0.03 0.02 0.03 0.46 0.66 0.51 0.72
DASM 0.36 0.26 0.13 0.29 0.22 0.42 1.41
DPLL 0.11 0.00 0.06 0.40 0.85 0.47 0.95
PiCO 0.29 0.43 0.60 0.49 0.35 0.62 1.03
PaPi 0.17 0.36 0.30 0.20 0.68 0.47 0.89

StreamPurify is compatible to existing PLL methods and can absorb various sample selection criteria,
such as small-loss trick. We adopt the sample selection method from CroSel [30] that chooses
the samples with stable and high confidence as a filter criterion within StreamPurify, and combine
it with the mini-batch PL purification approaches discussed in our paper. Empirical evaluations
indicate that methods augmented with StreamPurify generally exceed the performance of their
conventional counterparts, validating the effectiveness of StreamPurify, especially in complicated
learning scenarios. This substantiates the robustness and adaptability of instance-dependent warm-up,
suggesting it as a promising direction for future improvements in PLL.

5 Discussion and Future Work

We have systematically delineated the core components underlying successful PLL methods, centering
our insights around the pivotal effect of mini-batch PL purification. We have proposed StreamPurify,
an enhanced mini-batch PL purification strategy that tailors the learning path for each sample based
on its state of readiness. We reaffirm that strictly categorizing PLL methods as IBS or ABS may
oversimplify the dynamics of how these methods operate in practice. In the future, we wish to explore
advanced PLL approaches guided by the minimal algorithm design principles. We also wish to extend
the applicability and understanding of PLL methods to domains beyond vision tasks.

Acknowledgements

This research was supported by the National Science Foundation of China (62406066, 62206050,
62125602, 62176055, 62076063), Jiangsu Province Science Foundation for Youths (BK20241297,
BK20210220), China Postdoctoral Science Foundation (2021M700023), Young Elite Scientists
Sponsorship Program of Jiangsu Association for Science and Technology (TJ-2022-078), the Aus-
tralian Research Council Discovery Early Career Research Award (DE230101116), the Fundamental
Research Funds for the Central Universities (2242024k30035), the Big Data Computing Center of
Southeast University, JST CREST Grant Number JPMJCR18A2 and a grant from Apple, Inc. Any
views, opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and should not be interpreted as reflecting the views, policies or position, either expressed
or implied, of Apple Inc.

References
[1] X. G. andnY. Bengio. Understanding the difficulty of training deep feedforward neural net-

works. In Proceedings of 13th International Conference on Artificial Intelligence and Statistics
(AISTATS’10), pages 249–256, 2010.

[2] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj, A. Fischer,
A. C. Courville, Y. Bengio, and S. Lacoste-Julien. A closer look at memorization in deep
networks. In Proceedings of 34th International Conference on Machine Learning (ICML’17),
volume 70, pages 233–242, 2017.

10

[3] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel. Mixmatch: A
holistic approach to semi-supervised learning. In Advances in Neural Information Processing
Systems 32 (NeurIPS’19), pages 5050–5060, 2019.

[4] J. Bromley, I. Guyon, Y. LeCun, E. Sackinger, and R. Shah. Signature verification using a
siamese time delay neural network. In Advances in neural information processing systems 7
(NeurIPS’94), pages 737–744, 1994.

[5] X. Cheng, D. Wang, L. Feng, M. Zhang, and B. An. Partial-label regression. In Proceedings of
37th AAAI Conference on Artificial Intelligence (AAAI’23), pages 7140–7147, 2023.

[6] T. Cour, B. Sapp, and B. Taskar. Learning from partial labels. Journal of Machine Learning
Research, 12(5):1501–1536, 2011.

[7] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le. Autoaugment: Learning
augmentation strategies from data. In Proceedings of 32nd IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’18), pages 113–123, 2019.

[8] T. Devries and G. W. Taylor. Improved regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552, 2017.

[9] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

[10] L. Feng and B. An. Partial label learning by semantic difference maximization. In Proceedings
of 28th International Joint Conference on Artificial Intelligence (IJCAI’19), pages 2294–2300,
2019.

[11] L. Feng and B. An. Partial label learning with self-guided retraining. In Proceedings of 33rd
AAAI Conference on Artificial Intelligence (AAAI’19), pages 3542–3549, 2019.

[12] L. Feng, J. Lv, B. Han, M. Xu, G. Niu, X. Geng, B. An, and M. Sugiyama. Provably consistent
partial-label learning. In Advances in Neural Information Processing Systems 33 (NeurIPS’20),
pages 10948–10960, 2020.

[13] C. Gong, T. Liu, Y. Tang, J. Yang, J. Yang, and D. Tao. A regularization approach for instance-
based superset label learning. IEEE Transactions on Cybernetics, 48(3):967–978, 2018.

[14] Y. Grandvalet and Y. Bengio. Learning from partial labels with minimum entropy. 2004.

[15] B. Han, G. Niu, X. Yu, Q. Yao, M. Xu, I. Tsang, and M. Sugiyama. Sigua: Forgetting may
make learning with noisy labels more robust. In Proceedings of 37th International Conference
on Machine Learning (ICML’20), pages 4006–4016, 2020.

[16] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama. Co-teaching:
Robust training of deep neural networks with extremely noisy labels. In Advances in Neural
Information Processing Systems 31 (NeurIPS’18), pages 8527–8537, 2018.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of 15th IEEE International Conference
on Computer Vision (ICCV’15), 2015.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of 29th IEEE conference on Computer Vision and Pattern Recognition (CVPR’16),
pages 770–778, 2016.

[19] R. Jin and Z. Ghahramani. Learning with multiple labels. In Advances in Neural Information
Processing Systems 16 (NeurIPS’03), pages 921–928, 2003.

[20] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and
D. Krishnan. Supervised contrastive learning. In Advances in Neural Information Processing
Systems 33 (NeurIPS’20), 2020.

[21] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Citeseer,
2009.

11

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[23] J. Li, R. Socher, and S. C. H. Hoi. Dividemix:learning with noisy labels as semi-supervised learn-
ing. In Proceedings of 8th International Conference on Learning Representations (ICLR’20),
2020.

[24] J. Lv, B. Liu, L. Feng, N. Xu, M. Xu, B. An, G. Niu, X. Geng, and M. Sugiyama. On the
robustness of average losses for partial-label learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 46(5):2569–2583, 2024.

[25] J. Lv, M. Xu, L. Feng, G. Niu, X. Geng, and M. Sugiyama. Progressive identification of true
labels for partial-label learning. In Proceedings of 37th International Conference on Machine
Learning (ICML’20), pages 6500–6510, 2020.

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Processing Systems 32 (NeurIPS’19), pages
8024–8035, 2019.

[27] M. D. Reidand and R. C. Williamson. Composite binary losses. The Journal of Machine
Learning Research, 11:2387–2422, 2010.

[28] C. Shorten and T. M. Khoshgoftaar. A survey on imagedata augmentation for deep learning.
Journal of Big Data, 6:1146–1151, 2019.

[29] K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. Raffel, E. D. Cubuk, A. Kurakin, and
C. Li. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. In
Advances in Neural Information Processing Systems 33 (NeurIPS’20), 2020.

[30] S. Tian, H. Wei, Y. Wang, and L. Feng. Crosel: Cross selection of confident pseudo labels for
partial-label learning. In Proceedings of 37th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’24), 2024.

[31] Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola. What makes for good views for
contrastive learning? In Advances in Neural Information Processing Systems 33 (NeurIPS’20),
2020.

[32] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks
for one shot learning. In Advances in neural information processing systems 29 (NeurIPS’16),
pages 3630–3638, 2016.

[33] H. Wang, M. Xia, Y. Li, Y. Mao, L. Feng, G. Chen, and J. Zhao. Solar: Sinkhorn label refinery
for imbalanced partial-label learning. In Advances in Neural Information Processing Systems
35 (NeurIPS’22), 2022.

[34] H. Wang, R. Xiao, Y. Li, L. Feng, G. Niu, G. Chen, and J. Zhao. Pico: Contrastive label
disambiguation for partial label learning. In Proceedings of 10th International Conference on
Learning Representations (ICLR’22), 2022.

[35] W. Wang and M. Zhang. Partial label learning with discrimination augmentation. In Proceedings
of 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’08), pages
1920–1928, 2022.

[36] Z. Wang, J. Jiang, B. Han, L. Feng, B. An, G. Niu, and G. Long. Seminll: A framework of
noisy-label learning by semi-supervised learning. Transactions on Machine Learning Research,
2022, 2022.

[37] H. Wen, J. Cui, H. Hang, J. Liu, Y. Wang, and Z. Lin. Leveraged weighted loss for partial label
learning. In Proceedings of 36th International Conference on Machine Learning (ICML’21),
pages 11091–11100, 2021.

[38] D. Wu, D. Wang, and M. Zhang. Revisiting consistency regularization for deep partial label
learning. In Proceedings of 37th International Conference on Machine Learning (ICML’22),
volume 162, pages 24212–24225, 2022.

12

[39] Z. Wu, J. Lv, and M. Sugiyama. Learning with proper partial labels. Neural Computation,
35(1):58–81, 2022.

[40] S. Xia, J. Lv, N. Xu, G. Niu, and X. Geng. Towards effective visual representations for partial-
label learning. In Proceedings of 36th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’23), pages 15589–15598, 2023.

[41] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[42] N. Xu, C. Qiao, X. Geng, and M. Zhang. Instance-dependent partial label learning. In Advances
in Neural Information Processing Systems 34 (NeurIPS’21), pages 3615–3621, 2021.

[43] Y. Yao, C. Gong, J. Deng, and J. Yang. Network cooperation with progressive disambiguation
for partial label learning. In The European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML-PKDD), pages 471–488, 2020.

[44] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning
requires rethinking generalization. In Proceedings of 5th International Conference on Learning
Representations (ICLR’17), 2017.

[45] F. Zhang, L. Feng, B. Han, T. Liu, G. Niu, T. Qin, and M. Sugiyama. Exploiting class activation
value for partial-label learning. In Proceedings of 10th International Conference on Learning
Representations (ICLR’22), 2022.

[46] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In Proceedings of 6th International Conference on Learning Representations (ICLR’18),
2018.

[47] M. Zhang. Disambiguation-free partial label learning. In Proceedings of the 14th SIAM
International Conference on Data Mining, pages 37–45, 2014.

[48] M. Zhang, B. Zhou, and X. Liu. Partial label learning via feature-aware disambiguation. In
Proceedings of 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’16), pages 1335–1344, 2016.

[49] Z. Zhang and M. Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. In Advances in Neural Information Processing Systems 31 (NeurIPS’18),
pages 8778–8788, 2018.

[50] Z. Zhou. A brief introduction to weakly supervised learning. National Science Review, 5(1):44–
53, 2017.

[51] Z. Zhou. Open-environment machine learning. National Science Review, 2022.

13

Appendix

A Experiments Details

As benchmarking on partially labeled vision datasets has become standard practice in evaluating deep
PLL methods, we conduct experiments on FMNIST [41], CIFAR-100 [21] and mini-ImageNet [32].
We generated PLs by the Flipping strategy [24] for FMNIST, CIFAR-10 and CIFAR-100. Each
label i is added into PL with a flipping probability ηyi = p(i ∈ S|y) independently and features are
untouched: p(s|x, y) = M

∏
i∈S η

y
i

∏
i/∈S(1 − ηyi) where M = 1/

(
1 −

∏
i ̸=y η

y
i

)
. We assumed

ηyi = η,∀i ̸= y and ηyy = 1, and set η = {0.3, 0.7} on FMNIST and CIFAR-10, η = {0.05, 0.1} on
CIFAR-100. For mini-ImageNet and ablation experiments (Figure 1, 2, 3, 4), we simulated the real
scenario by setting the flipping probability for each incorrect label individually for each instance. We
first trained a classifier with clean labels, and then for each instance, set the confidence prediction of
the classifier as the flipping probability [42].

Our explorations used three backbones: 5-layer LeNet [22] on FMNIST, 18-layer ResNet [18] on
CIFAR-10 and CIFAR-100, and 34-layer ResNet [18] on mini-ImageNet. All the methods were
trained for 500 epochs with a standard SGD optimizer [9] with a momentum of 0.9 and the batch
size was 256 (128 for mini-ImageNet). We left out 10% of the corrupted training samples as a
validation set, and searched the initial learning rate from {0.1, 0.07, 0.05, 0.03} with cosine learning
rate scheduling. We conducted 3 trials for each experiment, and recorded the mean test accuracy in
percentage. There were two kinds of random augmentations involved. “Weak” augmentation was a
random horizontal flips and crops [3]. For “strong” augmentation on FMNIST and CIFAR-10, we
added Cutout [8] to the weak augmentation, and on CIFAR-100 and mini-ImageNet, we additional
leveraged AutoAugment [7]. We denote the augmentation by A(·), with method clear from context.
The implementation was based on PyTorch [26] and experiments were carried out with GeForce RTX
4090 D.

Notably, we focused on the core components of the SOTA PLL methods mentioned in this paper,
rather than strictly adhering to the settings detailed in their original implementations. This approach
was taken to ensure fair and meaningful comparisons. For instance, we did not include techniques
such as mixup in PaPi or the triple augmentation used in DPLL. As a result, the reported performance
metrics in our paper might be slightly lower than those presented in the original publications.

B Experimental Results

In Figure 1 (c-d), CLPL is a traditionally considered ABS loss from [6]. Figure 4 illustrates the
dynamic changes in the same method under different hyperparameters and optimization methods.
One can expect that with more extreme hyperparameters or optimization methods, the approach
may degrade to one-step EM or persist with nearly uniform optimization targets. This indicates that
method categorization must be assessed on a case-by-case basis post hoc. Figure 5 is the workflow of
several key methods proposed in the paper. Table 4 provides conceptual and empirical comparisons
of various simplifications of PiCO, PaPi and CroSel. Consistent with Table 2, the results reiterate
that mini-batch PL purification is pivotal to achieve top performance. Table 5 presents the results of
minimizing three loss functions. It is evident that ℓmaxi yield similar results with SASM, and owing
to the mini-batch PL purification, and due to the implementation of mini-batch PL purification, the
accuracy is higher than the other two losses.

14

Table 4: Conceptual and empirical comparisons (%) of various simplifications of PiCO, PaPi and
CroSel.

Methods
Mini-b. Data

DA DM
FMNIST CIFAR-100 mini-I.Net

purif. augment. 0.3 0.7 0.05 0.1 ins.-dep.

PiCO ✓ ✓ ✓ ✓ 93.40 91.64 76.11 75.65 48.36
DADM ✓ ✓ ✓ ✓ 93.59 92.40 80.28 79.13 53.69
DADM-H × ✓ ✓ ✓ 92.60 85.13 79.99 35.72 36.30
DADM-S × ✓ ✓ ✓ 92.12 87.81 78.16 74.66 36.42
DADM-E × ✓ ✓ ✓ 93.66 92.22 80.08 78.49 52.18
SADM ✓ ✓ × ✓ 94.02 92.36 80.11 79.65 54.64
SADM-E × ✓ × ✓ 93.72 92.51 89.85 78.66 53.08

PaPi ✓ ✓ ✓ ✓ 93.54 91.54 80.10 79.62 57.10
PRODEN+ ✓ ✓ ✓ ✓ 93.70 92.52 79.85 79.51 52.39
PRODEN ✓ × × ✓ 91.61 90.45 62.47 59.10 29.21

CroSel ✓ ✓ ✓ ✓ 93.84 92.31 80.40 80.06 53.58
Coteaching × ✓ ✓ ✓ 93.86 92.37 79.25 33.22 41.34

Table 5: Average training / test accuracy (%) of learning with three loss functions.

FMNIST CIFAR-100 mini-I.Net

0.3 0.7 0.05 0.1 ins.-dep.
training test training test training test training test training test

ℓneg 94.98 92.28 92.05 91.29 89.66 74.91 86.35 74.20 30.40 28.04
ℓAPL 93.53 93.01 88.10 89.09 87.15 72.68 78.31 68.10 45.92 43.01
ℓmaxi 95.39 93.77 93.01 92.17 93.45 78.91 90.56 78.20 55.39 54.72

0 50 100 150 200
Epoch

40

50

60

70

80

90

Tr
ai

n_
ac

c

lr=1e-1
lr=1e-4

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

M
ar

gi
n

0 50 100 150 200
Epoch

82

84

86

88

90

92

Tr
ai

n_
ac

c

SGD-0.9
SGD-0
Adam

0 50 100 150 200
Epoch

0.75

0.80

0.85

0.90

0.95

1.00

M
ar

gi
n

Figure 4: Training accuracy and confidence margin of predicted pseudo-labels for SASM with
different learning rate or optimizer on FMNIST with PLs.

x

f(x2)

Model fModel f

f(x1)

x1 x2

……

w(x1) loss

DASM

f2(x1)

Model f1

f1(x1)

Model f2

x1

x

……

w1(x1) loss

SADM
x

f2(x2)

Model f1

f1(x1)

x1 x2

Model f2

……

w1(x1) loss

DADM

w(x1) loss

(x1)

… …

(x2)

Model

x1

x

x2

x

Model

PRODEN+

Figure 5: Illustrations of four effective units of SOTA PLL methods. We omit a symmetric loss from
the other path, except PRODEN+ which can only compute one-path losses. ”//” means stop gradient.

15

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

16

Justification: The paper discuss the limitations of the work performed by the authors.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper provide the full set of assumptions and a complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper.
Guidelines:

17

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper focuses on understand existing algorithms rather than to fundamen-
tally improve them.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specify all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper report appropriate information about the statistical significance of
the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: The paper does not involve large-scale model training or extensive computa-
tional experiments.

Guidelines:

19

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper does not delve into the broader societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

20

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper has cited them appropriately.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper has cited them appropriately.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

21

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

	Introduction
	Preliminaries
	Notation
	Backgrounds

	Understanding Minimal Algorithm Design Principles
	PLL with DA Match
	PLL with DA+DM Match
	Does Data Augmentation Help Identification Better?
	PLL through Pseudo-Label Manipulation vs.Loss Minimization
	Probing the Implementation of Mini-Batch PL Purification

	Improving Mini-Batch PL Purification
	Motivation
	StreamPurify: An Instance-Dependent Warm-Up Strategy

	Discussion and Future Work
	Experiments Details
	Experimental Results

