
Published as a conference paper at ICLR 2022

TACKLING THE GENERATIVE LEARNING TRILEMMA
WITH DENOISING DIFFUSION GANS

Zhisheng Xiao∗
The University of Chicago
zxiao@uchicago.edu

Karsten Kreis
NVIDIA
kkreis@nvidia.com

Arash Vahdat
NVIDIA
avahdat@nvidia.com

ABSTRACT

A wide variety of deep generative models has been developed in the past decade.
Yet, these models often struggle with simultaneously addressing three key require-
ments including: high sample quality, mode coverage, and fast sampling. We call
the challenge imposed by these requirements the generative learning trilemma, as
the existing models often trade some of them for others. Particularly, denoising
diffusion models have shown impressive sample quality and diversity, but their ex-
pensive sampling does not yet allow them to be applied in many real-world appli-
cations. In this paper, we argue that slow sampling in these models is fundamen-
tally attributed to the Gaussian assumption in the denoising step which is justified
only for small step sizes. To enable denoising with large steps, and hence, to re-
duce the total number of denoising steps, we propose to model the denoising distri-
bution using a complex multimodal distribution. We introduce denoising diffusion
generative adversarial networks (denoising diffusion GANs) that model each de-
noising step using a multimodal conditional GAN. Through extensive evaluations,
we show that denoising diffusion GANs obtain sample quality and diversity com-
petitive with original diffusion models while being 2000× faster on the CIFAR-10
dataset. Compared to traditional GANs, our model exhibits better mode coverage
and sample diversity. To the best of our knowledge, denoising diffusion GAN is
the first model that reduces sampling cost in diffusion models to an extent that al-
lows them to be applied to real-world applications inexpensively. Project page and
code: https://nvlabs.github.io/denoising-diffusion-gan.

1 INTRODUCTION
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Figure 1: Generative learning trilemma.

In the past decade, a plethora of deep generative models has
been developed for various domains such as images (Kar-
ras et al., 2019; Razavi et al., 2019), audio (Oord et al.,
2016a; Kong et al., 2021), point clouds (Yang et al., 2019)
and graphs (De Cao & Kipf, 2018). However, current gener-
ative learning frameworks cannot yet simultaneously satisfy
three key requirements, often needed for their wide adop-
tion in real-world problems. These requirements include (i)
high-quality sampling, (ii) mode coverage and sample diver-
sity, and (iii) fast and computationally inexpensive sampling.
For example, most current works in image synthesis focus on
high-quality generation. However, mode coverage and data
diversity are important for better representing minorities and for reducing the negative social im-
pacts of generative models. Additionally, applications such as interactive image editing or real-time
speech synthesis require fast sampling. Here, we identify the challenge posed by these requirements
as the generative learning trilemma, since existing models usually compromise between them.

Fig. 1 summarizes how mainstream generative frameworks tackle the trilemma. Generative adver-
sarial networks (GANs) (Goodfellow et al., 2014; Brock et al., 2018) generate high-quality samples
rapidly, but they have poor mode coverage (Salimans et al., 2016; Zhao et al., 2018). Conversely,
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variational autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014) and normalizing
flows (Dinh et al., 2016; Kingma & Dhariwal, 2018) cover data modes faithfully, but they often
suffer from low sample quality. Recently, diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021c) have emerged as powerful generative models. They demonstrate surpris-
ingly good results in sample quality, beating GANs in image generation (Dhariwal & Nichol, 2021;
Ho et al., 2021). They also obtain good mode coverage, indicated by high likelihood (Song et al.,
2021b; Kingma et al., 2021; Huang et al., 2021). Although diffusion models have been applied to
a variety of tasks (Dhariwal & Nichol; Austin et al.; Mittal et al.; Luo & Hu), sampling from them
often requires thousands of network evaluations, making their application expensive in practice.

In this paper, we tackle the generative learning trilemma by reformulating denoising diffusion mod-
els specifically for fast sampling while maintaining strong mode coverage and sample quality. We
investigate the slow sampling issue of diffusion models and we observe that diffusion models com-
monly assume that the denoising distribution can be approximated by Gaussian distributions. How-
ever, it is known that the Gaussian assumption holds only in the infinitesimal limit of small denoising
steps (Sohl-Dickstein et al., 2015; Feller, 1949), which leads to the requirement of a large number of
steps in the reverse process. When the reverse process uses larger step sizes (i.e., it has fewer denois-
ing steps), we need a non-Gaussian multimodal distribution for modeling the denoising distribution.
Intuitively, in image synthesis, the multimodal distribution arises from the fact that multiple plausi-
ble clean images may correspond to the same noisy image.

Inspired by this observation, we propose to parametrize the denoising distribution with an expressive
multimodal distribution to enable denoising for large steps. In particular, we introduce a novel gen-
erative model, termed as denoising diffusion GAN, in which the denoising distributions are modeled
with conditional GANs. In image generation, we observe that our model obtains sample quality and
mode coverage competitive with diffusion models, while taking only as few as two denoising steps,
achieving about 2000× speed-up in sampling compared to the predictor-corrector sampling by Song
et al. (2021c) on CIFAR-10. Compared to traditional GANs, we show that our model significantly
outperforms state-of-the-art GANs in sample diversity, while being competitive in sample fidelity.

In summary, we make the following contributions: i) We attribute the slow sampling of diffusion
models to the Gaussian assumption in the denoising distribution and propose to employ complex,
multimodal denoising distributions. ii) We propose denoising diffusion GANs, a diffusion model
whose reverse process is parametrized by conditional GANs. iii) Through careful evaluations, we
demonstrate that denoising diffusion GANs achieve several orders of magnitude speed-up compared
to current diffusion models for both image generation and editing. We show that our model over-
comes the deep generative learning trilemma to a large extent, making diffusion models for the first
time applicable to interactive, real-world applications at a low computational cost.

2 BACKGROUND

In diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), there is a forward process that
gradually adds noise to the data x0 ∼ q(x0) in T steps with pre-defined variance schedule βt:

q(x1:T |x0) =
∏
t≥1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where q(x0) is a data-generating distribution. The reverse denoising process is defined by:

pθ(x0:T ) = p(xT )
∏
t≥1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I), (2)

where µθ(xt, t) and σ2
t are the mean and variance for the denoising model and θ denotes its param-

eters. The goal of training is to maximize the likelihood pθ(x0) =
∫
pθ(x0:T )dx1:T , by maximizing

the evidence lower bound (ELBO, L ≤ log pθ(x0)). The ELBO can be written as matching the true
denoising distribution q(xt−1|xt) with the parameterized denoising model pθ(xt−1|xt) using:

L = −
∑
t≥1

Eq(xt) [DKL (q(xt−1|xt)‖pθ(xt−1|xt))] + C, (3)

where C contains constant terms that are independent of θ and DKL denotes the Kullback-Leibler
(KL) divergence. The objective above is intractable due to the unavailability of q(xt−1|xt). Instead,
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Figure 2: Top: The evolution of 1D data distribution q(x0) through the diffusion process. Bottom:,
The visualization of the true denoising distribution for varying step sizes conditioned on a fixed x5.
The true denoising distribution for a small step size (i.e., q(x4|x5 = X)) is close to a Gaussian
distribution. However, it becomes more complex and multimodal as the step size increases.

Sohl-Dickstein et al. (2015) show that L can be written in an alternative form with tractable distribu-
tions (see Appendix A of Ho et al. (2020) for details). Ho et al. (2020) show the equivalence of this
form with score-based models trained with denoising score matching (Song & Ermon, 2019; 2020).

Two key assumptions are commonly made in diffusion models: First, the denoising distribution
pθ(xt−1|xt) is modeled with a Gaussian distribution. Second, the number of denoising steps T
is often assumed to be in the order of hundreds to thousands of steps. In this paper, we focus on
discrete-time diffusion models. In continuous-time diffusion models (Song et al., 2021c), similar
assumptions are also made at the sampling time when discretizing time into small timesteps.

3 DENOISING DIFFUSION GANS

We first discuss why reducing the number of denoising steps requires learning a multimodal denois-
ing distribution in Sec. 3.1. Then, we present our multimodal denoising model in Sec. 3.2.

3.1 MULTIMODAL DENOISING DISTRIBUTIONS FOR LARGE DENOISING STEPS

As we discussed in Sec. 2, a common assumption in the diffusion model literature is to approximate
q(xt−1|xt) with a Gaussian distribution. Here, we question when such an approximation is accurate.

The true denoising distribution q(xt−1|xt) can be written as q(xt−1|xt) ∝ q(xt|xt−1)q(xt−1) us-
ing Bayes’ rule where q(xt|xt−1) is the forward Gaussian diffusion shown in Eq. 1 and q(xt−1)
is the marginal data distribution at step t. It can be shown that in two situations the true denoising
distribution takes a Gaussian form. First, in the limit of infinitesimal step size βt, the product in the
Bayes’ rule is dominated by q(xt|xt−1) and the reversal of the diffusion process takes an identical
functional form as the forward process (Feller, 1949). Thus, when βt is sufficiently small, since
q(xt|xt−1) is a Gaussian, the denoising distribution q(xt−1|xt) is also Gaussian, and the approx-
imation used by current diffusion models can be accurate. To satisfy this, diffusion models often
have thousands of steps with small βt. Second, if data marginal q(xt) is Gaussian, the denoising dis-
tribution q(xt−1|xt) is also a Gaussian distribution. The idea of bringing data distribution q(x0) and
consequently q(xt) closer to Gaussian using a VAE encoder was recently explored in LSGM (Vah-
dat et al., 2021). However, the problem of transforming the data to Gaussian itself is challenging
and VAE encoders cannot solve it perfectly. That is why LSGM still requires tens to hundreds of
steps on complex datasets.

In this paper, we argue that when neither of the conditions are met, i.e., when the denoising step is
large and the data distribution is non-Gaussian, there are no guarantees that the Gaussian assumption
on the denoising distribution holds. To illustrate this, in Fig. 2, we visualize the true denoising
distribution for different denoising step sizes for a multimodal data distribution. We see that as the
denoising step gets larger, the true denoising distribution becomes more complex and multimodal.

3.2 MODELING DENOISING DISTRIBUTIONS WITH CONITIONAL GANS

Our goal is to reduce the number of denoising diffusion steps T required in the reverse process of
diffusion models. Inspired by the observation above, we propose to model the denoising distribution
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with an expressive multimodal distribution. Since conditional GANs have been shown to model
complex conditional distributions in the image domain (Mirza & Osindero, 2014; Ledig et al., 2017;
Isola et al., 2017), we adopt them to approximate the true denoising distribution q(xt−1|xt).

Specifically, our forward diffusion is set up similarly to the diffusion models in Eq. 1 with the main
assumption that T is assumed to be small (T ≤ 8) and each diffusion step has larger βt. Our training
is formulated by matching the conditional GAN generator pθ(xt−1|xt) and q(xt−1|xt) using an
adversarial loss that minimizes a divergence Dadv per denoising step:

min
θ

∑
t≥1

Eq(xt) [Dadv(q(xt−1|xt)‖pθ(xt−1|xt))] , (4)

whereDadv can be Wasserstein distance, Jenson-Shannon divergence, or f-divergence depending on
the adversarial training setup (Arjovsky et al., 2017; Goodfellow et al., 2014; Nowozin et al., 2016).
In this paper, we rely on non-saturating GANs (Goodfellow et al., 2014), that are widely used in
successful GAN frameworks such as StyleGANs (Karras et al., 2019; 2020b). In this case, Dadv

takes a special instance of f-divergence called softened reverse KL (Shannon et al., 2020), which is
different from the forward KL divergence used in the original diffusion model training in Eq. 31.

To set up the adversarial training, we denote the time-dependent discriminator as Dφ(xt−1,xt, t) :
RN × RN × R→ [0, 1], with parameters φ. It takes the N -dimensional xt−1 and xt as inputs, and
decides whether xt−1 is a plausible denoised version of xt. The discriminator is trained by:

min
φ

∑
t≥1

Eq(xt)
[
Eq(xt−1|xt)[−log(Dφ(xt−1,xt, t)] + Epθ(xt−1|xt)[−log(1−Dφ(xt−1,xt, t))]

]
, (5)

where fake samples from pθ(xt−1|xt) are contrasted against real samples from q(xt−1|xt). The first
expectation requires sampling from q(xt−1|xt) which is unknown. However, we use the identity
q(xt,xt−1) =

∫
dx0q(x0)q(xt,xt−1|x0) =

∫
dx0q(x0)q(xt−1|x0)q(xt|xt−1) to rewrite the first

expectation in Eq. 5 as:

Eq(xt)q(xt−1|xt)[− log(Dφ(xt−1,xt, t))] = Eq(x0)q(xt−1|x0)q(xt|xt−1)[− log(Dφ(xt−1,xt, t))].

Given the discriminator, we train the generator by maxθ
∑
t≥1 Eq(xt)Epθ(xt−1|xt)[log(Dφ(xt−1,xt, t))],

which updates the generator with the non-saturating GAN objective (Goodfellow et al., 2014).

Parametrizing the implicit denoising model: Instead of directly predicting xt−1 in the denoising
step, diffusion models (Ho et al., 2020) can be interpreted as parameterizing the denoising model
by pθ(xt−1|xt) := q(xt−1|xt,x0 = fθ(xt, t)) in which first x0 is predicted using the denoising
model fθ(xt, t), and then, xt−1 is sampled using the posterior distribution q(xt−1|xt,x0) given xt
and the predicted x0 (See Appendix B for details). The distribution q(xt−1|x0,xt) is intuitively the
distribution over xt−1 when denoising from xt towards x0, and it always has a Gaussian form for
the diffusion process in Eq. 1, independent of the step size and complexity of the data distribution
(see Appendix A for the expression of q(xt−1|x0,xt)). Similarly, we define pθ(xt−1|xt) by:

pθ(xt−1|xt) :=

∫
pθ(x0|xt)q(xt−1|xt,x0)dx0 =

∫
p(z)q(xt−1|xt,x0 =Gθ(xt, z, t))dz, (6)

where pθ(x0|xt) is the implicit distribution imposed by the GAN generatorGθ(xt, z, t) : RN×RL×
R→ RN that outputs x0 given xt and an L-dimensional latent variable z ∼ p(z) := N (z;0, I).

Our parameterization has several advantages: Firstly, our pθ(xt−1|xt) is formulated similar to
DDPM (Ho et al., 2020). Thus, we can borrow some inductive bias such as the network struc-
ture design from DDPM. The main difference is that, in DDPM, x0 is predicted as a deterministic
mapping of xt, while in our case x0 is produced by the generator with random latent variable z. This
is the key difference that allows our denoising distribution pθ(xt−1|xt) to become multimodal and
complex in contrast to the unimodal denoising model in DDPM. Secondly, note that for different
t’s, xt has different levels of perturbation, and hence using a single network to predict xt−1 directly
at different t may be difficult. However, in our case the generator only needs to predict unperturbed
x0 and then add back perturbation using q(xt−1|xt,x0). Fig. 3 visualizes our training pipeline.

1At early stages, we examined training a conditional VAE as pθ(xt−1|xt) by minimizing∑T
t=1 Eq(t) [DKL (q(xt−1|xt)‖pθ(xt−1|xt))] for small T . However, conditional VAEs consistently resulted

in poor generative performance in our early experiments. In this paper, we focus on conditional GANs and we
leave the exploration of other expressive conditional generators for pθ(xt−1|xt) to future work.
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Figure 3: The training process of denoising diffusion GAN.

Advantage over one-shot generator:
One natural question for our model is,
why not just train a GAN that can gen-
erate samples in one shot using a tra-
ditional setup, in contrast to our model
that generates samples by denoising it-
eratively? Our model has several advan-
tages over traditional GANs. GANs are
known to suffer from training instability
and mode collapse (Kodali et al., 2017;
Salimans et al., 2016), and some possi-
ble reasons include the difficulty of di-
rectly generating samples from a com-
plex distribution in one-shot, and the
overfitting issue when the discriminator
only looks at clean samples. In contrast, our model breaks the generation process into several con-
ditional denoising diffusion steps in which each step is relatively simple to model, due to the strong
conditioning on xt. Moreover, the diffusion process smoothens the data distribution (Lyu, 2012),
making the discriminator less likely to overfit. Thus, we expect our model to exhibit better training
stability and mode coverage. We empirically verify the advantages over traditional GANs in Sec. 5.

4 RELATED WORK

Diffusion-based models (Sohl-Dickstein et al., 2015; Ho et al., 2020) learn the finite-time reversal
of a diffusion process, sharing the idea of learning transition operators of Markov chains with Goyal
et al. (2017); Alain et al. (2016); Bordes et al. (2017). Since then, there have been a number of im-
provements and alternatives to diffusion models. Song et al. (2021c) generalize diffusion processes
to continuous time, and provide a unified view of diffusion models and denoising score matching
(Vincent, 2011; Song & Ermon, 2019). Jolicoeur-Martineau et al. (2021b) add an auxiliary adversar-
ial loss to the main objective. This is fundamentally different from ours, as their auxiliary adversarial
loss only acts as an image enhancer, and they do not use latent variables; therefore, the denoising
distribution is still a unimodal Gaussian. Other explorations include introducing alternative noise
distributions in the forward process (Nachmani et al., 2021), jointly optimizing the model and noise
schedule (Kingma et al., 2021) and applying the model in latent spaces (Vahdat et al., 2021).

One major drawback of diffusion or score-based models is the slow sampling speed due to a large
number of iterative sampling steps. To alleviate this issue, multiple methods have been proposed,
including knowledge distillation (Luhman & Luhman, 2021), learning an adaptive noise schedule
(San-Roman et al., 2021), introducing non-Markovian diffusion processes (Song et al., 2021a; Kong
& Ping, 2021), and using better SDE solvers for continuous-time models (Jolicoeur-Martineau et al.,
2021a). In particular, Song et al. (2021a) uses x0 sampling as a crucial ingredient to their method,
but their denoising distribution is still a Gaussian. These methods either suffer from significant
degradation in sample quality, or still require many sampling steps as we demonstrate in Sec. 5.

Among variants of diffusion models, Gao et al. (2021) have the closest connection with our method.
They propose to model the single-step denoising distribution by a conditional energy-based model
(EBM), sharing the high-level idea of using expressive denoising distributions with us. However,
they motivate their method from the perspective of facilitating the training of EBMs. More impor-
tantly, although only a few denoising steps are needed, expensive MCMC has to be used to sample
from each denoising step, making the sampling process slow with ∼180 network evaluations. Im-
ageBART (Esser et al., 2021a) explores modeling the denoising distribution of a diffusion process
on discrete latent space with an auto-regressive model per step in a few denoising steps. However,
the auto-regressive structure of their denoising distribution still makes sampling slow.

Since our model is trained with adversarial loss, our work is related to recent advances in improving
the sample quality and diversity of GANs, including data augmentation (Zhao et al., 2020; Karras
et al., 2020a), consistency regularization (Zhang et al., 2020; Zhao et al., 2021) and entropy regu-
larization (Dieng et al., 2019). In addition, the idea of training generative models with smoothed
distributions is also discussed in Meng et al. (2021a) for auto-regressive models.
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5 EXPERIMENTS

In this section, we evaluate our proposed denoising diffusion GAN for the image synthesis problem.
We begin with briefly introducing the network architecture design, while additional implementation
details are presented in Appendix C. For our GAN generator, we adopt the NCSN++ architecture
from Song et al. (2021c) which has a U-net structure (Ronneberger et al., 2015). The conditioning
xt is the input of the network, and time embedding is used to ensure conditioning on t. We let the
latent variable z control the normalization layers. In particular, we replace all group normalization
layers (Wu & He, 2018) in NCSN++ with adaptive group normalization layers in the generator,
similar to Karras et al. (2019); Huang & Belongie (2017), where the shift and scale parameters in
group normalization are predicted from z using a simple multi-layer fully-connected network.

5.1 OVERCOMING THE GENERATIVE LEARNING TRILEMMA

One major highlight of our model is that it excels at all three criteria in the generative learning
trilemma. Here, we carefully evaluate our model’s performances on sample fidelity, sample diversity
and sampling time, and benchmark against a comprehensive list of models on the CIFAR-10 dataset.

Evaluation criteria: We adopt the commonly used Fréchet inception distance (FID) (Heusel et al.,
2017) and Inception Score (IS) (Salimans et al., 2016) for evaluating sample fidelity. We use the
training set as a reference to compute the FID, following common practice in the literature (see Ho
et al. (2020); Karras et al. (2019) as an example). For sample diversity, we use the improved recall
score from Kynkäänniemi et al. (2019), which is an improved version of the original precision and
recall metric proposed by Sajjadi et al. (2018). It is shown that an improved recall score reflects
how the variation in the generated samples matches that in the training set (Kynkäänniemi et al.,
2019). For sampling time, we use the number of function evaluations (NFE) and the clock time
when generating a batch of 100 images on a V100 GPU.

Results: We present our quantitative results in Table 1. We observe that our sample quality is com-
petitive among the best diffusion models and GANs. Although some variants of diffusion models
obtain better IS and FID, they require a large number of function evaluations to generate samples
(while we use only 4 denoising steps). For example, our sampling time is about 2000× faster than
the predictor-corrector sampling by Song et al. (2021c) and ∼20× faster than FastDDPM (Kong &
Ping, 2021). Note that diffusion models can produce samples in fewer steps while trading off the
sample quality. To better benchmark our method against existing diffusion models, we plot the FID
score versus sampling time of diffusion models by varying the number of denoising steps (or the er-
ror tolerance for continuous-time models) in Figure 4. The figure clearly shows the advantage of our
model compared to previous diffusion models. When comparing our model to GANs, we observe
that only StyleGAN2 with adaptive data augmentation has slightly better sample quality than ours.
However, from Table 1, we see that GANs have limited sample diversity, as their recall scores are
below 0.5. In contrast, our model obtains a significantly better recall score, even higher than several
advanced likelihood-based models, and competitive among diffusion models. We show qualitative
samples of CIFAR-10 in Figure 5. In summary, our model simultaneously excels at sample quality,
sample diversity, and sampling speed and tackles the generative learning trilemma by a large extent.

10
2

10
1

10
0

10
1

10
2

10
3

Sampling Time (s)

0

5

10

15

20

25

30

FI
D

Denoising Diffusion GAN (ours)
FastDDPM (Kong & Ping)
DDIM (Song et al.)
DDPM (Ho et al.)
LSGM (Vahdat et al.)
Probability Flow (Song et al.)
Score SDE, PC (Song et al.)
SNGAN+DGflow (Ansari et al.)
StyleGAN w/o ADA (Karras et al.)
StyleGAN w/ ADA (Karras et al.)

Figure 4: Sample quality vs sampling time trade-off. Figure 5: CIFAR-10 qualitative samples.
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Table 1: Results for unconditional generation on CIFAR-10.

Model IS↑ FID↓ Recall↑ NFE ↓ Time (s) ↓
Denoising Diffusion GAN (ours), T=4 9.63 3.75 0.57 4 0.21

DDPM (Ho et al., 2020) 9.46 3.21 0.57 1000 80.5
NCSN (Song & Ermon, 2019) 8.87 25.3 - 1000 107.9
Adversarial DSM (Jolicoeur-Martineau et al., 2021b) - 6.10 - 1000 -
Likelihood SDE (Song et al., 2021b) - 2.87 - - -
Score SDE (VE) (Song et al., 2021c) 9.89 2.20 0.59 2000 423.2
Score SDE (VP) (Song et al., 2021c) 9.68 2.41 0.59 2000 421.5
Probability Flow (VP) (Song et al., 2021c) 9.83 3.08 0.57 140 50.9
LSGM (Vahdat et al., 2021) 9.87 2.10 0.61 147 44.5
DDIM, T=50 (Song et al., 2021a) 8.78 4.67 0.53 50 4.01
FastDDPM, T=50 (Kong & Ping, 2021) 8.98 3.41 0.56 50 4.01
Recovery EBM (Gao et al., 2021) 8.30 9.58 - 180 -
Improved DDPM (Nichol & Dhariwal, 2021) - 2.90 - 4000 -
VDM (Kingma et al., 2021) - 4.00 - 1000 -
UDM (Kim et al., 2021) 10.1 2.33 - 2000 -
D3PMs (Austin et al., 2021) 8.56 7.34 - 1000 -
Gotta Go Fast (Jolicoeur-Martineau et al., 2021a) - 2.44 - 180 -
DDPM Distillation (Luhman & Luhman, 2021) 8.36 9.36 0.51 1 -

SNGAN (Miyato et al., 2018) 8.22 21.7 0.44 1 -
SNGAN+DGflow (Ansari et al., 2021) 9.35 9.62 0.48 25 1.98
AutoGAN (Gong et al., 2019) 8.60 12.4 0.46 1 -
TransGAN (Jiang et al., 2021) 9.02 9.26 - 1 -
StyleGAN2 w/o ADA (Karras et al., 2020a) 9.18 8.32 0.41 1 0.04
StyleGAN2 w/ ADA (Karras et al., 2020a) 9.83 2.92 0.49 1 0.04
StyleGAN2 w/ Diffaug (Zhao et al., 2020) 9.40 5.79 0.42 1 0.04

Glow (Kingma & Dhariwal, 2018) 3.92 48.9 - 1 -
PixelCNN (Oord et al., 2016b) 4.60 65.9 - 1024 -
NVAE (Vahdat & Kautz, 2020) 7.18 23.5 0.51 1 0.36
IGEBM (Du & Mordatch, 2019) 6.02 40.6 - 60 -
VAEBM (Xiao et al., 2021) 8.43 12.2 0.53 16 8.79

5.2 ABLATION STUDIES

Here, we provide additional insights into our model by performing ablation studies.

Number of denoising steps: In the first part of Table 2, we study the effect of using a different
number of denoising steps (T ). Note that T = 1 corresponds to training an unconditional GAN,
as the conditioning xt contains almost no information about x0. We observe that T = 1 leads
to significantly worse results with low sample diversity, indicated by the low recall score. This
confirms the benefits of breaking generation into several denoising steps, especially for improving
the sample diversity. When varying T >1, we observe that T =4 gives the best results, whereas there
is a slight degrade in performance for larger T . We hypothesize that we may require a significantly
higher capacity to accommodate larger T , as we need a conditional GAN for each denoising step.

Diffusion as data augmentation: Our model shares some similarities with recent work on applying
data augmentation to GANs (Karras et al., 2020a; Zhao et al., 2020). To study the effect of perturbing
inputs, we train a one-shot GAN with our network structure following the protocol in (Zhao et al.,
2020) with the forward diffusion process as data augmentation. The result, presented in the second
group of Table 2, is significantly worse than our model, indicating that our model is not equivalent
to augmenting data before applying the discriminator.

Parametrization for pθ(xt−1|xt): We study two alternative ways to parametrize the denoising
distribution for the same T = 4 setting. Instead of letting the generator produce estimated samples of
x0, we set the generator to directly output denoised samples xt−1 without posterior sampling (direct
denoising), or output the noise εt that perturbs a clean image to produce xt (noise generation). Note
that the latter case is closely related to most diffusion models where the network deterministically
predicts the perturbation noise. In Table 2, we show that although these alternative parametrizations
work reasonably well, our main parametrization outperforms them by a large margin.

Importance of latent variable: Removing latent variables z converts our denoising model to a
unimodal distribution. In the last line of Table 2, we study our model’s performance without any
latent variables z. We see that the sample quality is significantly worse, suggesting the importance
of multimodal denoising distributions. In Figure 8, we visualize the effect of latent variables by
showing samples of pθ(x0|x1), where x1 is a fixed noisy observation. We see that while the majority
of information in the conditioning x1 is preserved, the samples are diverse due to the latent variables.
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Table 2: Ablation studies on CIFAR-10.

Model Variants IS↑ FID↓ Recall↑
T = 1 8.93 14.6 0.19
T = 2 9.80 4.08 0.54
T = 4 9.63 3.75 0.57
T = 8 9.43 4.36 0.56

One-shot w/ aug 8.96 13.2 0.25

Direct denoising 9.10 6.03 0.53
Noise generation 8.79 8.04 0.52

No latent variable 8.37 20.6 0.42

Table 3: Mode coverage on StackedMNIST.

Model Modes↑ KL↓
VEEGAN (Srivastava et al.) 762 2.173
PacGAN (Lin et al.) 992 0.277
PresGAN (Dieng et al.) 1000 0.115
InclusiveGAN (Yu et al.) 997 0.200
StyleGAN2 (Karras et al.) 940 0.424
Adv. DSM (Jolicoeur-Martineau et al.) 1000 1.49
VAEBM (Xiao et al.) 1000 0.087

Denoising Diffusion GAN (ours) 1000 0.071

5.3 ADDITIONAL STUDIES

Mode Coverage: Besides the recall score in Table 1, we also evaluate the mode coverage of
our model on the popular 25-Gaussians and StackedMNIST. The 25-Gaussians dataset is a 2-D toy
dataset, generated by a mixture of 25 two-dimensional Gaussian distributions, arranged in a grid. We
train our denoising diffusion GAN with 4 denoising steps and compare it to other models in Figure
6. We observe that the vanilla GAN suffers severely from mode collapse, and while techniques
like WGAN-GP (Gulrajani et al., 2017) improve mode coverage, the sample quality is still limited.
In contrast, our model covers all the modes while maintaining high sample quality. We also train
a diffusion model and plot the samples generated by 100 and 500 denoising steps. We see that
diffusion models require a large number of steps to maintain high sample quality.

Real samples GAN WGAN-GP Ours, T=4 DDPM, T=500 DDPM, T=100

Figure 6: Qualitative results on the 25-Gaussians dataset.

StackMNIST contains images generated by randomly choosing 3 MNIST images and stacking them
along the RGB channels. Hence, the data distribution has 1000 modes. Following the setting of Lin
et al. (2018), we report the number of covered modes and the KL divergence from the categorical
distribution over 1000 categories of generated samples to true data in Table 3. We observe that our
model covers all modes faithfully and achieves the lowest KL compared to GANs that are specifi-
cally designed for better mode coverage or StyleGAN2 that is known to have the best sample quality.

Training Stability: We discuss the training stability of our model in Appendix D.

High Resolution Images: We train our model on datasets with larger images, including CelebA-
HQ (Karras et al., 2018) and LSUN Church (Yu et al., 2015) at 256 × 256px resolution. We report
FID on these two datasets in Table 4 and 5. Similar to CIFAR-10, our model obtains competitive
sample quality among the best diffusion models and GANs. In particular, in LSUN Church, our
model outperforms DDPM and ImageBART (see Figure 7 and Appendix E for samples). Although,
some GANs perform better on this dataset, their mode coverage is not reflected by the FID score.

Stroke-based image synthesis: Recently, Meng et al. (2021b) propose an interesting application of
diffusion models to stroke-based generation. Specifically, they perturb a stroke painting by the for-
ward diffusion process, and denoise it with a diffusion model. The method is particularly promising
because it only requires training an unconditional generative model on the target dataset and does
not require training images paired with stroke paintings like GAN-based methods (Sangkloy et al.,
2017; Park et al., 2019). We apply our model to stroke-based image synthesis and show qualita-
tive results in Figure 9. The generated samples are realistic and diverse, while the conditioning in
the stroke paintings is faithfully preserved. Compared to Meng et al. (2021b), our model enjoys a
1100× speedup in generation, as it takes only 0.16s to generate one image at 256 resolution vs. 181s
for Meng et al. (2021b). This experiment confirms that our proposed model enables the application
of diffusion models to interactive applications such as image editing.
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Table 4: Generative results on CelebA-HQ-256

Model FID↓
Denoising Diffusion GAN (ours) 7.64

Score SDE (Song et al., 2021c) 7.23
LSGM (Vahdat et al., 2021) 7.22
UDM (Kim et al., 2021) 7.16

NVAE (Vahdat & Kautz, 2020) 29.7
VAEBM (Xiao et al., 2021) 20.4
NCP-VAE (Aneja et al., 2021) 24.8

PGGAN (Karras et al., 2018) 8.03
Adv. LAE (Pidhorskyi et al., 2020) 19.2
VQ-GAN (Esser et al., 2021b) 10.2
DC-AE (Parmar et al., 2021) 15.8

Table 5: Generative results on LSUN Church 256

Model FID↓
Denoising Diffusion GAN (ours) 5.25

DDPM (Ho et al., 2020) 7.89
ImageBART (Esser et al., 2021a) 7.32
Gotta Go Fast (Jolicoeur-Martineau et al.) 25.67

PGGAN (Karras et al., 2018)) 6.42
StyleGAN (Karras et al., 2019) 4.21
StyleGAN2 (Karras et al., 2020b) 3.86
CIPS (Anokhin et al., 2021) 2.92

Figure 7: Qualitative results on CelebA-HQ 256 and LSUN Church Outdoor 256.

Additional results: Additional qualitative visualizations are provided in Appendix E, F, and G.

Figure 8: Multi-modality of denoising dis-
tribution given the same noisy observation.
Left: clean image x0 and perturbed image
x1. Right: Three samples from pθ(x0|x1).

Figure 9: Qualitative results on stroke-based
synthesis. Top row: stroke paintings. Bottom
two rows: generated samples corresponding to
the stroke painting (best seen when zoomed in).

6 CONCLUSIONS

Deep generative learning frameworks still struggle with addressing the generative learning trilemma.
Diffusion models achieve particularly high-quality and diverse sampling. However, their slow sam-
pling and high computational cost do not yet allow them to be widely applied in real-world appli-
cations. In this paper, we argued that one of the main sources of slow sampling in diffusion models
is the Gaussian assumption in the denoising distribution, which is justified only for very small de-
noising steps. To remedy this, we proposed denoising diffusion GANs that model each denoising
step using a complex multimodal distribution, enabling us to take large denoising steps. In extensive
experiments, we showed that denoising diffusion GANs achieve high sample quality and diversity
competitive to the original diffusion models, while being orders of magnitude faster at sampling.
Compared to traditional GANs, our proposed model enjoys better mode coverage and sample diver-
sity. Our denoising diffusion GAN overcomes the generative learning trilemma to a large extent,
allowing diffusion models to be applied to real-world problems with low computational cost.
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7 ETHICS AND REPRODUCIBILITY STATEMENT

Generating high-quality samples while representing the diversity in the training data faithfully has
been a daunting challenge in generative learning. Mode coverage and high diversity are key require-
ments for reducing biases in generative models and improving the representation of minorities in a
population. While diffusion models achieve both high sample quality and diversity, their expensive
sampling limits their application in many real-world problems. Our proposed denoising diffusion
GAN reduces the computational complexity of diffusion models to an extent that allows these mod-
els to be applied in practical applications at a low cost. Thus, we foresee that in the long term,
our model can help with reducing the negative social impacts of existing generative models that fall
short in capturing the data diversity.

We evaluate our model using public datasets, and therefore this work does not involve any human
subject evaluation or new data collection.

Reproducibility Statement: We currently provide experimental details in the appendices with a
detailed list of hyperparameters and training settings. To aid with reproducibility further, we will
release our source code publicly in the future with instructions to reproduce our results.
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A DERIVATION FOR THE GAUSSIAN POSTERIOR

Ho et al. (2020) provide a derivation for the Gaussian posterior distribution. We include it here for
completeness. Consider the forward diffusion process in Eq. 1, which we repeat here:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (7)

Due to the Markov property of the forward process, we have the marginal distribution of xt given
the initial clean data x0:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (8)

where we denote αt := 1−βt and ᾱt :=
∏t
s=1 αs. Applying Bayes’ rule, we can obtain the forward

process posterior when conditioned on x0:

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)

=
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
, (9)

where the second equation follows from the Markov property of the forward process. Since all three
terms in Eq. 9 are Gaussians, the posterior q(xt−1|xt,x0) is also a Gaussian distribution, and it can
be written as

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI) (10)

with mean µ̃t(xt,x0) and variance β̃t. Plugging the expressions in Eq. 7 and Eq. 8 into Eq. 10, we
obtain

µ̃t(xt,x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt and β̃t :=

1− ᾱt−1
1− ᾱt

βt (11)

after minor simplifications.

B PARAMETRIZATION OF DDPM

In Sec. 3.2, we mention that the parametrization of the denoising distribution for current diffusion
models such as Ho et al. (2020) can be interpreted as pθ(xt−1|xt) := q(xt−1|xt,x0 = fθ(xt, t)).
However, such a parametrization is not explicitly stated in Ho et al. (2020) but it is discussed by
Song et al. (2021a). To avoid possible confusion, here we show that the parametrization of Ho et al.
(2020) is equivalent to what we describe in Sec 3.2.

Ho et al. (2020) train a noise prediction network εθ(xt, t) which predicts the noise that perturbs data
x0 to xt, and a sample from pθ(xt−1|xt) is obtained as (see Algorithm 2 of Ho et al. (2020))

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

εθ (xt, t)

)
+ σtz, (12)

where z ∼ N (0, I) except for the last denoising step where z = 0, and σt =

√
β̃t is the standard

deviation of the Gaussian posterior distribution in Eq. 11.

Firstly, notice that predicting the perturbation noise εθ(xt, t) is equivalent to predicting x0. We
know that xt is generated by adding ε ∼ N (0, I) noise as:

xt =
√
ᾱtx0 +

√
1− ᾱtε,

Hence, after predicting the noise with εθ(xt, t) we can obtain a prediction of x0 using:

x0 =
1√
ᾱt

(
xt −

√
1− ᾱtεθ(xt, t)

)
. (13)
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Next, we can plug the expression for x0 in Eq. 13 into the mean of the Gaussian posterior distribution
in Eq. 11, and we have

µ̃t(xt,x0) = µ̃t

(
xt,

1√
ᾱt

(
xt −

√
1− ᾱtεθ(xt, t)

))
(14)

=
1
√
αt

(
xt −

1− αt√
1− ᾱt

εθ(xt, t)

)
(15)

after simplifications. Comparing this with Eq. 12, we observe that Eq. 12 simply corresponds
to sampling from the Gaussian posterior distribution. Therefore, although Ho et al. (2020) use
an alternative re-parametrization, their denoising distribution can still be equivalently interpreted
as pθ(xt−1|xt) := q(xt−1|xt,x0 = fθ(xt, t)), i.e, first predicting x0 using the time-dependent
denoising model, and then sampling xt−1 using the posterior distribution q(xt−1|xt,x0) given xt
and the predicted x0.

C EXPERIMENTAL DETAILS

In this section, we present our experimental settings in detail.

C.1 NETWORK STRUCTURE

Generator: Our generator structure largely follows the U-net structure (Ronneberger et al., 2015)
used in NCSN++ (Song et al., 2021c), which consists of multiple ResNet blocks (He et al., 2016)
and Attention blocks (Vaswani et al., 2017). Hyper-parameters for the network design, such as
the number of blocks and number of channels, are reported in Table 6. We follow the default
settings in Song et al. (2021c) for other network configurations not mentioned in the table, including
Swish activation function, upsampling and downsampling with anti-aliasing based on Finite Impulse
Response (FIR) (Zhang, 2019), re-scaling all skip connections by 1√

2
, using residual block design

from BigGAN (Brock et al., 2018) and incorporating progressive growing architectures (Karras
et al., 2020b). See Appendix H of Song et al. (2021c) for more details on these configurations.

We follow Ho et al. (2020) and use sinusoidal positional embeddings for conditioning on integer
time steps. The dimension for the time embedding is 4× the number of initial channels presented in
Table 6. Contrary to previous works, we did not find the use of Dropout helpful in our case.

The fundamental difference between our generator network and the networks of previous diffusion
models is that our generator takes an extra latent variable z as input. Inspired by the success of Style-
GANs, we provide z-conditioning to the NCSN++ architecture using mapping networks, introduced
in StyleGAN (Karras et al., 2019). We use z ∼ N (0, I) for all experiments. We replace all the
group normalization (GN) layers in the network with adaptive group normalization (AdaGN) layers
to allow the input of latent variables. The latent variable z is first transformed by a fully-connected
network (called mapping network), and then the resulting embedding vector, denoted by w, is sent
to every AdaGN layer. Each AdaGN layer contains one fully-connected layer that takes w as input,
and outputs the per-channel shift and scale parameters for the group normalization. The network’s
feature maps are then subject to affine transformations using these shift and scale parameters of the
AdaGN layers. The mapping network and the fully-connected layer in AdaGN are independent of
time steps t, as we found no extra benefit in incorporating time embeddings in these layers. Details
about latent variables are also presented in Table 6.

Discriminator: We design our time-dependent discriminator with a convolutional network with
ResNet blocks, where the design of the ResNet blocks is similar to that of the generator. The dis-
criminator tries to discriminate real and fake xt−1, conditioned on xt and t. The time conditioning
is enforced by the same sinusoidal positional embedding as in the generator. The xt conditioning
is enforced by concatenating xt and xt−1 as the input to the discriminator. We use LeakyReLU
activations with a negative slope 0.2 for all layers. Similar to Karras et al. (2020b), we use a mini-
batch standard deviation layer after all the ResNet blocks. We present the exact architecture of
discriminators in Table 7.
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Table 6: Hyper-parameters for the generator network.

CIFAR10 CelebA-HQ LSUN Church

# of ResNet blocks per scale 2 2 2
Initial # of channels 128 64 64
Channel multiplier for each scale (1, 2, 2, 2) (1, 1, 2, 2, 4, 4) (1, 1, 2, 2, 4, 4)
Scale of attention block 16 16 16
Latent Dimension 100 100 100
# of latent mapping layers 3 3 3
Latent embedding dimension 256 256 256

Table 7: Network structures for the discriminator. The number on the right indicates the number of
channels in each residual block.

CIFAR-10

1× 1 conv2d, 128
ResBlock, 128

ResBlock down, 256
ResBlock down, 512
ResBlock down, 512
minibatch std layer

Global Sum Pooling
FC layer→ scalar

CelebA-HQ and LSUN Church

1× 1 conv2d, 128
ResBlock down, 256
ResBlock down, 512
ResBlock down, 512
ResBlock down, 512
ResBlock down, 512
ResBlock down, 512
minibatch std layer

Global Sum Pooling
FC layer→ scalar

C.2 TRAINING

Diffusion Process: For all datasets, we set the number of diffusion steps to be 4. In order to com-
pute βt per step, we use the discretization of the continuous-time extension of the process described
in Eq. 1, which is called the Variance Preserving (VP) SDE by Song et al. (2021c). We compute
βt based on the continuous-time diffusion model formulation, as it allows us to ensure that variance
schedule stays the same independent of the number of diffusion steps. Let’s define the normalized
time variable by t′ := t

T which normalizes t ∈ {1, 2, . . . , T} to [0, 1]. The variance function of VP
SDE is given by:

σ2(t′) = 1− e−βmint
′−0.5(βmax−βmin)t

′2
,

with the constants βmax = 20 and βmin = 0.1. Recall that sampling from tth step in the forward
diffusion process can be done with q(xt|x0) = N (xt;

√
ᾱtx0, (1−ᾱt)I). We compute βt by solving

1− ᾱt = σ2( tT ):

βt = 1− αt = 1− ᾱt
ᾱt−1

= 1−
1− σ2( tT )

1− σ2( t−1T )
= 1− e−βmin(

1
T )−0.5(βmax−βmin)

2t−1

T2 , (16)

for t ∈ {1, 2, . . . T}. This choice of βt values corresponds to equidistant steps in time according to
VP SDE. Other choices are possible, but we did not explore them.

Objective: We train our denoising diffusion GAN with the following adversarial objective:

min
φ

T∑
t=1

Eq(x0)q(xt−1|x0)q(xt|xt−1)

[
− log(Dφ(xt−1,xt, t) + Epθ(xt−1|xt)[− log(1−Dφ(xt−1,xt, t))]

]
max
θ

T∑
t=1

Eq(x0)q(xt−1|x0)q(xt|xt−1)

[
Epθ(xt−1|xt)[log(Dφ(xt−1,xt, t))]

]
where the outer expectation denotes ancestral sampling from q(x0,xt−1,xt) and pθ(xt−1|xt) is our
implicit GAN denoising distribution.
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Table 8: Optimization hyper-parameters.

CIFAR10 CelebA-HQ LSUN Church

Initial learning rate for discriminator 10−4 10−4 10−4

Initial learning rate for generator 1.6× 10−4 1.6× 10−4 2× 10−4

Adam optimizer β1 0.5 0.5 0.5
Adam optimizer β2 0.9 0.9 0.9
EMA 0.9999 0.999 0.999
Batch size 256 32 64
# of training iterations 400k 750k 600k
# of GPUs 4 8 8

Similar to Ho et al. (2020), during training we randomly sample an integer time step t ∈ [1, 2, 3, 4]
for each datapoint in a batch. Besides the main objective, we also add an R1 regularization term
(Mescheder et al., 2018) to the objective for the discriminator. The R1 term is defined as

R1(φ) =
γ

2
Eq(x0)q(xt−1|x0)q(xt|xt−1)

[∥∥∇xt−1
Dφ(xt−1,xt, t)

∥∥2] ,
where γ is the coefficient for the regularization. We use γ = 0.05 for CIFAR-10, and γ = 1 for
CelebA-HQ and LSUN Church. Note that theR1 regularization is a gradient penalty that encourages
the discriminator to stay smooth and improves the convergence of GAN training (Mescheder et al.,
2018).

Optimization: We train our models using the Adam optimizer (Kingma & Ba, 2015). We use cosine
learning rate decay (Loshchilov & Hutter, 2016) for training both the generator and discriminator.
Similar to Ho et al. (2020); Song et al. (2021c); Karras et al. (2020a), we observe that applying an
exponential moving average (EMA) on the generator is crucial to achieve high performance. We
summarize the optimization hyper-parameters in Table 8.

We train our models on CIFAR-10 using 4 V100 GPUs. On CelebA-HQ and LSUN Church we
use 8 V100 GPUs. The training takes approximately 48 hours on CIFAR-10, and 180 hours on
CelebA-HQ and LSUN Church.

C.3 EVALUATION

When evaluating IS, FID and recall score, we use 50k generated samples for CIFAR-10 and LSUN
Church, and 30k samples for CelebA-HQ (since the CelebA HQ dataset contains only 30k samples).

When evaluating sampling time, we use models trained on CIFAR-10 and generate a batch of 100
samples. We benchmark the sampling time on a machine with a single V100 GPU. We use Pytorch
1.9.0 and CUDA 11.0.

C.4 ABLATION STUDIES

Here we introduce the settings for the ablation study in Sec. 5.2. We observe that training requires a
larger number of training iterations when T is larger. As a result, we train the model for each T until
the FID score does not increase any further. The number of training iteration is 200k for T = 1 and
T = 2, 400k for T = 4 and 600k for T = 8. We use the same network structures and optimization
settings as in the main experiments.

For the data augmentation baseline, we follow the differentiable data augmentation pipeline in Zhao
et al. (2020). In particular, for every (real or fake) image in the batch, we perturbed it by sampling
from a random timestep at the diffusion process (except the last diffusion step where the informa-
tion of data is completely destroyed). We find the results insensitive to the number of possible
perturbation levels (i.e, the number of steps in the diffusion process), and we report the result using
a diffusion process with 4 steps. Since the perturbation by the diffusion process is differentiable
due to the re-parametrization trick (Kingma & Welling, 2014), we can train both the discriminator
and generator with the perturbed samples. See Zhao et al. (2020) for a detailed explanation for the
training pipeline.
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For the experiments on alternative parametrizations, we use T = 4 for the diffusion process and
keep other settings the same as in the main experiments.

For the experiment on training a model without latent variables, similar to the main experiments,
the generator takes the conditioning xt as its input, and the time conditioning is still enforced by
the time embedding. However, the AdaGN layers are replaced by plain GN layers, such that no
latent variable is needed, and the mapping network for z is removed. Other settings follow the main
experiments.

C.5 TOY DATA AND STACKEDMNIST

For the 25-Gaussian toy dataset, both our generator and discriminator have 3 fully-connected layers
each with 512 hidden units and LeakyReLU activations (negative slope of 0.2). We enforce both
the conditioning on xt and t by concatenation with the input. We use the Adam optimizer with a
learning rate of 10−4 for both the generator and discriminator. The batch size is 512, and we train
the model for 50k iterations.

Our experimental settings for StackedMNIST are the same as those for CIFAR-10, except that we
train the model for only 150k iterations.

D TRAINING STABILITY

In Fig. 10, we plot the discriminator loss for different time steps in the diffusion process when
T = 4. We observe that the training of our denoising diffusion GAN is stable and we do not see
any explosion in loss values, as is sometimes reported for other GAN methods such as Brock et al.
(2018). The stability might be attributed to two reasons: First, the conditioning on xt for both
generator and discriminator provides a strong signal. The generator is required to generate a few
plausible samples given xt and the discriminator requires classifying them. The xt conditioning
keeps the discriminator and generator in a balance. Second, we are training the GAN on relatively
smooth distributions, as the diffusion process is known as a smoothening process that brings the
distributions of fake and real samples closer to each other (Lyu, 2012). As we can see from Fig.
10, the discriminator loss for t > 0 is higher than t = 0 (the last denoising step). Note that t > 0
corresponds to training the discriminator on noisy images, and in this case the true and generator
distributions are closer to each other, making the discrimination harder and hence resulting in higher
discriminator loss. We believe that such a property prevents the discriminator from overfitting,
which leads to better training stability.

E ADDITIONAL QUALITATIVE RESULTS

We show additional qualitative samples of CIFAR-10, CelebA-HQ and LSUN Church Outdoor in
Figure 11, Figure 12 and Figure 13, respectively.

F ADDITIONAL VISUALIZATION FOR pθ(x0|xt)

In Figure 14 and Figure 15, we show visualizations of samples from pθ(x0|xt) for different t. Note
that except for pθ(x0|x1), the samples from pθ(x0|xt) do not need to be sharp, as they are only
intermediate outputs of the sampling process. The conditioning is less preserved as the perturbation
in xt increases, and in particular xT (x4 in our example) contains almost no information of clean
data x0.

G NEAREST NEIGHBOR RESULTS

In Figure 16 and Figure 17, we show the nearest neighbors in the training dataset, corresponding to
a few generated samples, where the nearest neighbors are computed using the feature distance of a
pre-trained VGG network (Simonyan & Zisserman, 2014). We observe that the nearest neighbors
are significantly different from the samples, suggesting that our models generalize well.
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Figure 10: The discriminator loss per denoising step during training.
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Figure 11: Additional qualitative samples on CIFAR-10.
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Figure 12: Additional qualitative samples on CelebA-HQ.
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Figure 13: Additional qualitative samples on LSUN Church Outdoor.
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Figure 14: Visualization of samples from pθ(x0|xt) for different t on CelebA-HQ. For each exam-
ple, the top row contains xt from diffusion process steps, where x0 is a sample from the dataset.
The bottom rows contain 3 samples from pθ(x0|xt) for different t’s.
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Figure 15: Visualization of samples from pθ(x0|xt) for different t on LSUN Church. For each
example, the top row contains xt from diffusion process steps, where x0 is a sample from the
dataset. The bottom rows contain 3 samples from pθ(x0|xt) for different t’s.
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Figure 16: CIFAR-10 nearest neighbors in VGG feature space. Generated samples are in the
leftmost column, and training set nearest neighbors are in the remaining columns.
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Figure 17: CelebA-HQ nearest neighbors in the VGG feature space. Generated samples are in the
leftmost column, and training set nearest neighbors are in the remaining columns.
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