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Abstract

Nanobodies are compact, stable, and highly specific binding proteins that can1

access epitopes inaccessible to conventional antibodies, making them ideal scaf-2

folds for therapeutic design. We present a masked discrete denoising framework3

for nanobody generation (NanoMDLM) that learns to reconstruct CDRs on a4

fixed scaffold, with region-specific masking that emphasizes diversity in CDR3.5

For inference, we develop a platform for Nanobody Optimization for Selective6

Interaction and Enhanced properties (NOSIE) via discrete simplex refinement7

(DSR), a gradient-free, black-box guidance method that samples CDR comple-8

tions and reweights them using Pareto-weighted softmax over predicted binding9

and stability scores. At inference time, DSR steers NanoMDLM toward high-10

performing sequences without retraining or differentiable reward access. Across11

multiple antigens, including the GPCR MRGPRX2, NOSIE produces nanobodies12

with competitive or superior in silico binding, thermostability, and CDR3 quality,13

as assessed by NanoNet structure prediction, AlphaFold-Multimer co-folding, and14

feature combination-based ranking. Together, these results provide a scalable,15

sequence-only framework for multi-objective nanobody design, enabling numerous16

therapeutic applications.17

1 Introduction18

Nanobodies, or VHH single-domain antibodies derived from camelids, are attractive therapeutic and19

diagnostic agents due to their small size, stability, solubility, and ability to access buried epitopes20

[Jovčevska and Muyldermans, 2020, Jin et al., 2023, Salvador et al., 2019, Uchański et al., 2020].21

Their binding function is localized to three complementarity-determining regions (CDRs), with22

CDR3 contributing most to antigen specificity [Mitchell and Colwell, 2018]. In silico design of23

nanobody CDRs offers a scalable alternative to experimental screening [Longsompurana et al., 2023,24

Ferraz et al., 2025], but remains challenging due to the combinatorial space of loop conformations25

and the need to optimize multiple properties including affinity, immunogenicity, and thermostability26

[Tadokoro et al., 2024].27

Structure-based nanobody models, such as a fine-tuned RFdiffusion (RFantibody), have enabled28

scaffold-aware design of nanobodies but require accurate 3D structures [Watson et al., 2023, Sumida29

et al., 2024, Bennett et al., 2025]. In contrast, masked discrete diffusion language models (MDLMs)30

offer a scalable sequence-only alternative and have been applied to peptide and protein design [Sahoo31

et al., 2024, Shi et al., 2024, Wang et al., 2024, Goel et al., 2025, Tang et al., 2025, Vincoff et al.,32

2025a]. Recent guidance strategies for discrete diffusion, including CFG [Ho and Salimans, 2022],33

LaMBO-2/NOS [Gruver et al., 2023], and PepTune’s MCTS-guided sampling [Tang et al., 2025],34

have enabled post-hoc optimization of pretrained models. However, these methods assume full-35

sequence mutation and do not address modular protein design settings, such as nanobodies, where36
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CDRs are preferentially altered for re-targeting. In this work, we introduce a nanobody-specific37

MDLM (NanoMDLM) trained with CDR-only corruption and region-dependent masking rates38

(Figure 1), combined with a discrete simplex refinement (DSR) framework that conducts Nanobody39

Optimization for Selective Interaction and Enhanced properties (NOSIE). DSR uses black-box40

binding and stability predictors to guide NanoMDLM generation via Pareto-weighted reweighting41

over sampled completions, without requiring gradients or retraining (Figure 2). Across diverse42

antigens, including the GPCR MRGPRX2, our NOSIE (NanoMDLM + DSR) framework generates43

nanobody candidates with superior in silico performance compared to structure-based baselines,44

matching or exceeding them in predicted binding, thermostability, and CDR3 quality.45

Our contributions are as follows:46

• We develop a CDR-constrained NanoMDLM trained with region-specific, rate-dependent47

masking, emphasizing CDR3 while keeping the scaffold fixed.48

• We introduce discrete simplex refinement (DSR): a gradient-free, black-box inference-time49

guidance algorithm over categorical denoising distributions.50

• We frame DSR as a constrained stochastic optimization problem over the discrete simplex,51

enabling modular, multi-objective generation.52

• We benchmark our integrated NanoMDLM + DSR framework, NOSIE, against structure-53

based models for nanobody design and show superior or comparable performance in binding,54

stability, and structural plausibility.55

2 Problem Formulation56

Here we present the formulation of NOSIE. Detailed dataset and implementation methods can be57

found in Appendix Sections C and D.58

2.1 Nanobody Sequence Representation and CDR Masking59

Let x ∈ ΣL be a nanobody amino acid sequence of length L, where Σ is the alphabet of 20 canonical60

amino acids. The sequence is partitioned into:61

x = (xFR1, xCDR1, xFR2, xCDR2, xFR3, xCDR3, xFR4),

where the CDR regions C = {CDR1,CDR2,CDR3} ⊂ {1, . . . , L} define the support over which62

generation will occur. The framework regions (FRs) are treated as fixed context, derived from63

a canonical humanized scaffold xscaffold, and are never perturbed or predicted during training or64

inference.65

2.2 Nanobody Masked Discrete Diffusion Model (NanoMDLM)66

We define a forward corruption process q(x(t) | x(t−1)) over timesteps t = 1, . . . , T that progressively67

masks only the complementarity-determining regions (CDRs) of the nanobody sequence, while68

treating the scaffold residues as fixed context. Let x(0) denote the uncorrupted input sequence, and69

x(T ) the fully masked CDRs.70

We adopt a domain-specific corruption schedule, assigning each masked position i ∈ C a fixed71

corruption strength γ(i) ∈ {γweak, γstrong} based on its membership in the CDRs:72

γ(i) =

{
γweak if i ∈ CDR1 or CDR2,
γstrong if i ∈ CDR3,

with γstrong > γweak.

Given a masking schedule αt ∈ [0, 1], the corruption process is defined as:73

q(x(t) | x(t−1)) =
∏
i∈C

Cat
(
x
(t)
i | α

γ(i)
t δ

x
(t−1)
i

+
(
1− α

γ(i)
t

)
u
)
,

where u is the uniform distribution over amino acids and δ is the Kronecker delta.74

Scaffold positions j /∈ C are never corrupted and remain fixed: x(t)
j = x

(0)
j for all t.75
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Figure 1: NanoMDLM. Continuous-time training of discrete masked diffusion model NanoMDLM
under Region-Specific masking schedules, with SUBS parametrization and RoFormer as the denoising
backbone.

The denoising model pθ(x(t−1) | x(t)) learns to invert this process by reconstructing masked CDRs76

given the corrupted sequence and fixed scaffold. The training objective is:77

LMDLM = Et,x(0),x(t)∼q

[
−
∑
i∈C

log pθ

(
x
(0)
i | x(t)

)]
.

2.3 Inference-Time Optimization via Discrete Simplex Refinement (NOSIE)78

Let x(t) denote the corrupted CDR sequence at time t, and let pθ(x(t−1) | x(t)) be the model’s79

categorical output distribution over each masked CDR position. Denote this distribution over tokens80

at position i as π(t)
i ∈ ∆|Σ|, where ∆|Σ| is the probability simplex.81

Our goal is to guide the generation process toward satisfying black-box reward functions:82

fbind : ΣL → R, fstab : ΣL → R,
corresponding to predicted binding affinity and thermostability, respectively. These functions are not83

differentiable and cannot be backpropagated through.84

At each denoising step, we sample K candidate completions from the model:85

{x(t−1)
k }Kk=1 ∼ pθ(x

(t−1) | x(t)),

evaluate their rewards, and define a scalarized objective:86

R
(λ)
k = λbindfbind(x

(t−1)
k ) + λstabfstab(x

(t−1)
k ),

for scalarization weights λ = (λbind, λstab) ∈ ∆2.87

We then compute Pareto-weighted sampling probabilities using softmax:88

wk =
exp(βR

(λ)
k )∑K

j=1 exp(βR
(λ)
j )

,

and update the token probabilities via empirical reweighting:89

π̃
(t)
i (a) =

K∑
k=1

wk · ⊮{x(t−1)
k,i = a}, ∀i ∈ C, a ∈ Σ.
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This yields a refined distribution π̃(t) that remains on the categorical simplex and concentrates90

probability mass on reward-optimal trajectories.91

Figure 2: Discrete Simplex Refinement. Sampling with Discrete Simplex Refinement (DSR)
where humanized scaffolds with masked CDRs are iteratively refined by candidate sampling, reward
evaluation, and tradeoff vector weighting, producing ranked nanobody sequences with optimized
binding, stability, and multi-objective performance.

2.4 Theoretical Framing of NOSIE92

We frame this process as a constrained stochastic optimization problem over a product of cate-93

gorical simplices. The denoising process is viewed as a policy over discrete action sequences94

{x(0), . . . , x(T )}, and the guidance procedure acts as a black-box policy improvement step at each95

time t, satisfying the update:96

π̃(t) = arg min
π∈∆|Σ||C|

KL(π∥π(t))− η
K∑

k=1

R
(λ)
k log π(xk),

where π(t) is the base model distribution and π̃(t) is the refined posterior, as in mirror descent with97

KL divergence.98

This update guarantees an ascent in the expected scalarized reward under the current sampling99

distribution (See Appendix Section B for proof). Moreover, by varying λ over a Das-Dennis100

scalarization lattice on ∆2, we approximate the Pareto frontier of reward-optimal CDR sequences101

across tradeoffs between binding and stability.102

3 Results103

3.1 Guided Generation Scores104

We assessed NOSIE’s ability to generate nanobodies with high predicted binding affinity and ther-105

mostability across a panel of diverse antigens. For each target, we compared unconditional sampling,106
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MCTS-guided optimization introduced in PepTune [Tang et al., 2025], and our DSR method using107

DeepNano [Deng et al., 2024] and NanoMelt [Ramon et al., 2025] predictors as evaluation metrics108

for nanobody-antigen interaction and thermostability respectively. Figure 3 shows results for antigen109

PD-L1. While the unconditional model produces plausible but suboptimal sequences, both MCTS and110

NOSIE improve over this baseline. Notably, NOSIE consistently yields nanobody candidates with111

stronger predicted binding and stable thermostability, outperforming MCTS across the top-ranked112

sequences. These trends are further supported across additional antigens in Figure A6, with NOSIE113

recovering sequences that frequently match or exceed the experimental nanobodies in affinity while114

maintaining favorable developability.115

Figure 3: Comparison of generated nanobody scores with antigen PD-L1, topK=100. Reference point
represents the scores of the known binding VHH (PDB: 7CZD_2). All three sampling methods were
run with 32 sampling timesteps. The x-axis shows antigen interaction scores predicted by DeepNano,
while y-axis shows thermostability scores regularized from NanoMelt-predicted melting temperatures.
For unconditional and MCTS methods, the top 100 sequences were ranked by the average of the
antigen interaction and thermostability scores, whereas NOSIE sequences were ranked according to
scalar rewards defined by the algorithm.

Even in more challenging cases such as the high-affinity antigen CTLA-4 (PDB:7DV4_1) [Gan et al.,116

2022](Figure A6F), where reference binders are already near optimal, DSR produces competitive117

alternatives with improved stability. This suggests that simplex-guided denoising effectively identifies118

viable CDR variants even when the scope for affinity improvement is narrow, and excels in discovering119

high-quality solutions in moderate-to-difficult design settings.120

3.2 Validation on MRGPRX2121

MRGPRX2 is an orphan G protein–coupled receptor expressed on mast cells that mediates IgE-122

independent hypersensitivity and inflammatory responses, making it an attractive therapeutic target123

for drug-induced pseudo-allergic reactions and related diseases [Al Hamwi et al., 2025].124

We selected MRGPRX2 as the benchmark antigen for two main reasons: (1) biologically, its shallow125

binding pocket, promiscuous ligand recognition, and clinical relevance make it a strong candidate126

for in silico nanobody design [Al Hamwi et al., 2022], and (2) computationally, recent work shows127

that AlphaFold-Multimer (AFM) [Evans et al., 2021] can reliably distinguish positive from negative128

binding pairs for MRGPRX2 (a discriminative capability not established for most other antigens)129

making it a robust test-bed for benchmarking nanobody design methods [Harvey et al., 2025].

Table 1: Comparison of average AFM metrics (mean with SEM in parentheses) across 20 pilot
nanobody sequences targeting MRGPRX2, generated with RFantibody (RFa) and NOSIE, evaluated
using the best-ranked AFM model for each complex. The input to RFa-AF is an AF2 predicted
structure of MRGPRX2, while the input to RFa-PDB is the PDB:7VV6 structure of MRGPRX2.

Method LCF ↑ pTM ↑ ipTM ↑ pAE ↓ pDockQ ↑
RFa-AF 0.039 (0.006) 0.679 (0.011) 0.402 (0.031) 15.637 (0.830) 0.290 (0.025)
RFa-PDB 0.045 (0.009) 0.690 (0.013) 0.428 (0.051) 14.401 (1.335) 0.317 (0.042)
NOSIE 0.045 (0.005) 0.681 (0.011) 0.450 (0.031) 13.289 (0.637) 0.288 (0.018)

130
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Figure 4: AlphaFold2-Multimer-predicted structures of the three top NOSIE nanobody binders to
MRGPRX2

We benchmarked three nanobody libraries using AFM confidence metrics, including the Linear131

Combination Feature (LCF) [Harvey et al., 2025]. A pilot set of 20 RFantibody Bennett et al.132

[2025] sequences was compared to 20 NOSIE designs. Despite the small sample size, AFM consis-133

tently showed NOSIE performing on par or better: its mean LCF matched RFantibody (0.045 vs.134

0.039/0.045) but with lower variance, and it outperformed on pAE (13.289 vs. 15.637/14.401) and135

ipTM (0.450 vs. 0.402/0.428) (Table 1). Predicted complexes show confident binding interfaces136

and plausible CDR3 structures (Figure 4), highlighting NOSIE’s ability to generate high-quality137

nanobodies without structural input. Unlike RFantibody, which benefits from access to experimental138

antigen structures (as seen in the performance gap between RFa-AF and RFa-PDB) Bennett et al.139

[2025], NOSIE operates with only the antigen sequence, yet is still able to produce a meaningful140

fraction of quality binders, suggesting its strong potential for generalizable applications.141

4 Discussion142

Our results demonstrate that CDR-constrained masked discrete denoising, combined with black-box143

multi-objective simplex refinement, enables potent nanobody design – all without requiring structural144

input or differentiable objectives. By restricting corruption to CDRs and emphasizing CDR3 through145

region-dependent masking, our NanoMDLM captures functional diversity while preserving scaffold146

integrity. DSR further improves sequence quality through gradient-free inference-time guidance,147

projecting Pareto-weighted reward estimates back onto the categorical simplex. Benchmarking148

against RFantibody Bennett et al. [2025], our method achieves strong performance in predicted149

binding, buried surface area, and stability, with structurally plausible CDR3 loops validated via150

NanoNet prediction Cohen et al. [2022] and AFM-based co-folding Evans et al. [2021].151

Looking ahead, the NOSIE framework is extensible to additional black-box objectives such as152

immunogenicity, pH sensitivity, or expression propensity, and can be integrated with high-throughput153

wet-lab selection Xia et al. [2025], which are currently ongoing. Moreover, by conditioning reward154

models on target isoforms Vincoff et al. [2025b,a] or post-translational states Peng et al. [2025],155

future work can expand this strategy toward highly specific nanobody generation that discriminates156

between closely related proteoforms, enabling a new class of programmable and precision-targeted157

biologics.158
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A Algorithm273

We present the full pseudocode for nanobody generation via masked discrete denoising and inference-274

time multi-objective guidance. The framework comprises two stages: training a CDR-constrained275

MDLM, and guided generation using discrete simplex refinement.276

Algorithm 1 Training CDR-Constrained MDLM for Nanobody Generation
1: Input: Nanobody sequence dataset D, scaffold mask S, CDR mask C, corruption schedule
{αt}Tt=1, CDR-specific exponents γweak, γstrong

2: for each training step do
3: Sample sequence x(0) ∼ D
4: Initialize x(t) ← x(0)

5: for each position i ∈ C do

6: Determine γ(i)←
{
γweak, i ∈ CDR1 or CDR2
γstrong, i ∈ CDR3

7: Sample masking with probability 1− α
γ(i)
t

8: end for
9: Construct corrupted input x(t) with sampled masks; leave x

(t)
j = x

(0)
j for j ∈ S

10: Compute model logits pθ(x
(0)
i | x(t)) for i ∈ C

11: Compute cross-entropy loss:

LMDLM = −
∑
i∈C

log pθ(x
(0)
i | x(t))

12: Update model parameters θ using gradient∇θLMDLM
13: end for
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Algorithm 2 Multi-Objective Discrete Simplex Refinement (DSR) for Nanobody Generation

1: Input: Trained MDLM pθ(x
(t−1) | x(t)), reward models fbind, fstab, temperature β, number of

tradeoffs L, number of seeds S, candidates per seed K, top-k output size
2: Generate tradeoff vectors {λ(ℓ)}Lℓ=1 over ∆2 (e.g., via Das-Dennis lattice)
3: Initialize empty list C ← ∅
4: for ℓ = 1 to L do ▷ Loop over tradeoff weights
5: for s = 1 to S do ▷ Loop over independent seeds
6: Initialize x(T ) ∼ MASKED_CDR_NOISE()
7: for t = T to 1 do
8: Sample {x(t−1)

k }Kk=1 ∼ pθ(x
(t−1) | x(t))

9: for k = 1 to K do
10: Evaluate rewards:

Rk = λ
(ℓ)
bindfbind(x

(t−1)
k ) + λ

(ℓ)
stabfstab(x

(t−1)
k )

11: end for
12: Compute softmax weights:

wk =
exp(βRk)∑K
j=1 exp(βRj)

13: for each CDR position i ∈ C do
14: for each token a ∈ Σ do
15: Update:

π̃i(a) =

K∑
k=1

wk · ⊮{x(t−1)
k,i = a}

16: end for
17: end for
18: Sample x(t−1) from π̃ at each i ∈ C
19: end for
20: Add final sequence x(0) and its reward to list C
21: end for
22: end for
23: Sort C by scalarized reward: R(x) = λT [fbind(x), fstab(x)]
24: Return: Top-k nanobody sequences from C
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B Discrete Simplex Refinement Proof277

We provide a proof that Discrete Simplex Refinement (DSR) updates at each denoising step guarantee278

a monotonic improvement in expected scalarized reward.279

Theorem B.1 (DSR Monotonic Improvement). Let π(t) be the uniform distribution over K samples280

{xk}Kk=1 drawn from the base model at timestep t, i.e., π(t)(xk) = 1
K for all k. Let Rk :=281

R(λ)(xk) ∈ R be the corresponding scalarized rewards. Define the DSR-updated distribution as:282

π̃(t)(xk) :=
exp(βRk)∑K
j=1 exp(βRj)

=: wk,

where β > 0 is the temperature parameter. Then:283

Ex∼π̃(t) [R(x)] ≥ Ex∼π(t) [R(x)],

with strict inequality whenever the rewards {Rk} are not all equal.284

Proof. The expected reward under the original uniform distribution is:285

Ex∼π(t) [R(x)] =

K∑
k=1

1

K
Rk =

1

K

K∑
k=1

Rk.

The expected reward under the DSR-updated distribution is:286

Ex∼π̃(t) [R(x)] =

K∑
k=1

wkRk =

K∑
k=1

exp(βRk)∑K
j=1 exp(βRj)

Rk.

To establish monotonic improvement, we show that:287

K∑
k=1

wkRk ≥
1

K

K∑
k=1

Rk.

Case 1: If all rewards are equal, i.e., Rk = c for some constant c and all k, then:288

wk =
exp(βc)∑K
j=1 exp(βc)

=
exp(βc)

K exp(βc)
=

1

K
,

so π̃(t) = π(t) and equality holds.289

Case 2: If the rewards are not all equal, we use the following key lemma:290

Lemma B.2 (Softmax Improvement Property). For any non-constant vector (R1, . . . , RK) and291

β > 0:292
K∑

k=1

exp(βRk)∑K
j=1 exp(βRj)

Rk >
1

K

K∑
k=1

Rk.

Proof of Lemma. Define f(β) =
∑K

k=1
exp(βRk)∑K
j=1 exp(βRj)

Rk. Note that:293

• f(0) = 1
K

∑K
k=1 Rk (uniform weighting)294

• f ′(β) = Varsoftmaxβ (R) ≥ 0, with strict inequality when Rk are not all equal295

To see this, compute:296

f ′(β) =

K∑
k=1

wkR
2
k −

(
K∑

k=1

wkRk

)2

= E[R2]− (E[R])2 = Var(R),

where the expectation is taken with respect to the softmax distribution with temperature β−1.297

Since Var(R) > 0 when Rk are not all equal, we have f ′(β) > 0 for all β > 0. Therefore,298

f(β) > f(0) for any β > 0.299
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C Data Curation and Processing300

C.1 Pre-training Dataset and Tokenization301

The pre-training dataset comprises 3,395,594 unpaired heavy chain sequences curated by HuDiff [Ma302

et al., 2024], sourced from the OAS database, and aligned using the IMGT numbering scheme. All303

sequences were aligned to a length of 152 residues. For tokenization, we employed an amino acid304

tokenizer with a vocabulary of 23 tokens, comprising the 20 canonical amino acids, an ‘X’ token for305

unknown residues, a ‘-’ token for padding, and a ‘<mask>’ token for masked positions.306

C.2 Benchmark Dataset307

The experimental antigens and their paired reference nanobodies were obtained from SAbDab-nano308

[Schneider et al., 2022]. After filtering for Homo Sapiens species, a resolution cutoff of 3.0 Å, and309

complexes containing only two molecules, the initial pool consisted of 35 complex structures. Manual310

screening was then performed to remove redundant antigens with identical sequences, yielding 25311

distinct antigen sequences used for unconditional sequence generation screening in Figure A1.312

C.3 Humanized Scaffold for Sampling Inference313

During inference, we employed a universal humanized nanobody scaffold [Vincke et al., 2009] for314

the framework regions, while sampling the CDRs from our model. To construct the input sequence,315

the h-NbBcII10FGLA sequence was first aligned to a fixed length of 152 residues using the IMGT316

numbering scheme, consistent with our training sequences. The CDR regions were then substituted317

with mask tokens for model inference.318

D NanoMDLM Implementation Details319

D.1 Region-Dependent Masking320

Building on state-dependent [Shi et al., 2024] and bond-dependent masking for peptides [Tang et al.,321

2025], we propose a masking schedule where the probability of masking tokens in CDR1 and CDR2322

increases more slowly at early timesteps t compared to CDR3 tokens. This design reflects the more323

conserved nature of CDR1 and CDR2, while allowing greater diversity in CDR3 sequences (as shown324

in Figure A2). We define the discrete-time log-linear masking schedule σ(t) = − log(1− t1/γweak)325

for CDR1 and CDR2, and the log-polynomial schedule σ(t) = − log(1− t1/γstrong) for CDR3.326

The masking probabilities αt = exp(−σ(t)) for the CDR tokens are thus:327

α
γ(i)
t =

{
1− t1/γweak if i ∈ CDR1 or CDR2,
1− t1/γstrong if i ∈ CDR3,

with γstrong > γweak.

In our implementation, we set γweak = 1/3 and γstrong = 1.328

For the forward corruption process q(x(t)|x(t−1)), this approach ensures a slower masking rate in329

CDR1 and CDR2 at earlier stages of the diffusion process, while CDR3 are masked more quickly330

with a stronger exponent γstrong. This enables the model to first focus331

D.2 Training Strategy and Model Architecture332

Pretraining of NanoMDLM for nanobodies was conducted on 4 NVIDIA DGX B200 GPUs, using333

the AdamW optimizer with a learning rate of 0.0003 and weight decay of 0.075. At each reverse step,334

token probabilities are modeled using a RoFormer network [Su et al., 2024]. The full set of model335

hyperparameters is listed below.336
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Table 2: Roformer Architecture Hyperparameters

Hyperparameter PepTune
Input Dimension 23 (vocab size)
Hidden Dimension 768
Intermediate Dimension 3072
Number of Layers 8
Attention Heads 8
Max Positional Embeddings 256
Hidden and Attention Dropout Probability 0.1

Table 3: Training and Validation Loss of NanoMDLM. Loss values are taken after convergence at 45
epochs when training NanoMDLM on 3 million unpaired human heavy chain sequences.

Model Train Loss (↓) Train PPL (↓) Val Loss (↓) Val PPL (↓)
Standard Masking 0.661 2.025 0.676 1.988
Region-Dependent Masking 0.600 1.983 0.642 1.948

E Additional Studies on Sampling337

E.1 Unconditional Generation Quality338

Figure A1: Interaction scores with human antigens of experimental and unconditionally generated
nanobody sequences. Experimental human antigens and nanobody sequences were obtained from
SAbDab-nano. After filtering for one-to-one interaction complexes and applying redundancy reduc-
tion, 25 distinct antigens were selected. Interaction scores were predicted using DeepNano. For
each antigen, the score corresponding to its original experimental nanobody is shown as a purple
line. Scores for 1,000 unconditionally generated nanobody sequences from the base MDLM are
represented as skyblue dots.
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Figure A2: Unconditional-generated nanobody sequence analysis. A-B: Shannon entropy of the
unconditionally generated sequences (N=1000); C-D: Minimum Levenshtein distance of the uncondi-
tionally generated sequences (N=1000)

To evaluate sequence diversity, we calculated Shannon entropy and Jaccard similarity. Shannon339

entropy H(X) = −
∑

p(x) log2 p(x) measures the variability of the amino acid distribution, with340

higher values indicating greater diversity. As shown in Figure A2 (Panels A-B), region-dependent341

masking results in slightly higher entropy across all CDR regions, suggesting it promotes greater342

sequence diversity, particularly in CDR3.343

Jaccard similarity J(A,B) = |A∩B|
|A∪B| assesses the overlap with reference sequences, with higher344

values indicating better fidelity. Table 4 shows that standard masking yields higher Jaccard similarity345

to the training and validation sequences, suggesting a stronger resemblance to the existing database.346

In contrast, region-specific masking slightly reduces similarity but increases diversity.347

Table 4: Mean pairwise Jaccard similarity for unconditionally generated nanobody sequence (N=1000)

Masking Method Full Sequence CDR1 CDR2 CDR3
Standard Masking 0.980503 0.529960 0.511030 0.580592
Region-Specific Masking 0.977800 0.463944 0.418981 0.528402
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Figure A3: Scores of unconditionally generated nanobodies with selected antigens. The antigens in
A-E are with experimental nanobodies that exhibit moderate interaction scores (0.4-0.65).

Figure A4: NanoNet-predicted structures of NbBCII10 humanized (FGLA mutant) and three
NanoMDLM unconditional generated nanobodies
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E.2 DSR Generation Quality348

Figure A5: Hyperparameter search for DSR sampling conducted on antigen CTLA-4 (PDB:7DV4_1),
topK=100.

In this analysis, we conducted a hyperparameter search for DSR sampling on antigen CTLA-4 [Gan349

et al., 2022]. Each subplot compares different combinations of training epochs, sampling timesteps350

(T), and sampling seeds (S), showing the antigen interaction and thermostability scores of the top351

100 sequences generated in each configuration. Panels B–C correspond to the base model trained352

for only 10 epochs. As observed, while the antigen interaction scores exhibit moderate variation,353

these shorter training runs result in noticeably lower thermostability scores. This suggests that longer354

training allows the base model to better capture the underlying biological properties of the CDRs.355

In contrast, the results from the epoch-45 base model (panels A, D–F) highlight that intermediate356

sampling timesteps and number of seeds—particularly in panels E—achieve a favorable balance,357

producing high-quality candidates while avoiding excessive variance.358
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Figure A6: Scores of DSR-generated nanobodies with selected antigens. The antigens in A-E are
with experimental nanobodies that exhibit moderate interaction scores (0.4-0.65).

Figure A7: Comparison of generated nanobody scores with antigen MRGPRX2, topK=100. All
three sampling methods were run with 32 sampling timesteps. There are no reference scores for this
antigen as known nanobody-MRGPRX2 pair was not found in PDB.
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E.3 MCTS Generation Quality359

Figure A8: MCTS property scores over iteration on two epochs version of the base MDLM model

Figure A8 presents the progression of antigen interaction and thermostability scores among MCTS360

iterations for the two base MDLM models trained for 45 or 10 epochs. Consistent with previous361

observations in DSR sampling, panels B and D (10-epoch models) show that while antigen interaction362

scores improve with iterations, the thermostability scores remain comparatively lower than those363

of the 45-epoch models (panels A and C). This echoes the earlier finding that sufficient training364

until convergence enables the model to better capture the underlying biological properties of CDRs,365

leading to more stable and higher-quality sequence generation.366

Figure A9: Scores of MCTS-generated nanobodies with antigens (topK=100). The antigens shown
here are the same as in A6. The ones in A-E are with a experimental nanobodies that exhibit moderate
interaction scores (0.4-0.65).
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