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ABSTRACT

Data imputation, the process of filling in missing feature elements for incomplete
data sets, plays a crucial role in data-driven learning. A fundamental belief is that
data imputation is helpful for learning performance, and it follows that the pursuit
of better classification can guide the data imputation process. While some works
consider using label information to assist in this task, their simplistic utilization
of labels lacks flexibility and may rely on strict assumptions. In this paper, we
propose a new framework that effectively leverages supervision information to
complete missing data in a manner conducive to classification. Specifically, this
framework operates in two stages. Firstly, it leverages labels to supervise the opti-
mization of similarity relationships among data, represented by the kernel matrix,
with the goal of enhancing classification accuracy. To mitigate overfitting that
may occur during this process, a perturbation variable is introduced to improve
the robustness of the framework. Secondly, the learned kernel matrix serves as
additional supervision information to guide data imputation through regression,
utilizing the block coordinate descent method. The superiority of the proposed
method is evaluated on four real-world data sets by comparing it with state-of-
the-art imputation methods. Remarkably, our algorithm significantly outperforms
other methods when the data is missing more than 60% of the features.

1 INTRODUCTION

The presence of missing data poses significant challenges in machine learning and data analy-
sis (Garcı́a-Laencina et al., 2010; Little & Rubin, 2019; Emmanuel et al., 2021). In a given sequence
of triplets {(xi,oi, yi)}Ni=1, where xi 2 Rd and yi 2 R, we typically use the set of observable fea-
tures oi ✓ 2{1,··· ,d} and missing features ⇤ to represent the missing data xi

oi 2 (R [ {⇤})d. This
sequence is then consolidated into an incomplete data set D = {xi

oi , yi}
N
i=1. The presence of these

missing entries can be attributed to various reasons. Firstly, it may occur due to limitations in
data collection, such as time constraints or limited resources, resulting in certain observations being
omitted. Secondly, data can be intentionally designed to have missing values, for instance, in survey
studies where participants may choose not to answer certain questions, thereby introducing miss-
ing values into the data set. By completing missing data, researchers can uncover the underlying
structure and relationships within the data set, optimizing the utilization of the complete data set
to enhance the performance and efficiency of subsequent analyses. Therefore, the significance of
filling in missing data becomes self-evident.

The existing data imputation methods primarily focus on the relationships among features. For
example, mean imputation (MI, (Schafer, 1997)) considers the mean value of the feature, while
other methods consider the low-rank property of the imputed matrix (Sheikholesalmi et al., 2014;
Xu et al., 2020) or incorporate similarity information (Troyanskaya et al., 2001; Batista & Monard,
2002; Śmieja et al., 2019). Some methods also utilize label information (Smola et al., 2005; Allison,
2009; Goldberg et al., 2010). However, the effective utilization of label information has not been
fully explored yet. Considering a fundamental observation that data are helpful for distinguishing
the labels, we can derive an imputation criterion:

data imputation should lead to improved classification performance.
Thus we expect imputation results that can perform better on subsequent tasks. Let us consider a toy
example illustrated in Figure 1. In the synthetic two moons data set, we have a positive data with
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Figure 1: Imputation of the two moons data set. Positive and negative data are denoted by X and
O, while the solid curve denotes the ideal decision boundary of the classifier. The gray dashed lines
M1 and M2 represent all possible imputations for a positive data with a missing x1 dimension and
a negative data with a missing x2 dimension, respectively. Among them, the red results are more
likely to lead to better outcomes in the subsequent classification task compared to the pink results,
making them more desirable.

a missing value in the x1 dimension, and a negative data with a missing value in the x2 dimension.
All possible imputations for these two data are represented by gray dashed lines, labeled as M1 and
M2. By applying the proposed imputation criterion, we prioritize selecting the red results over the
pink results to improve the subsequent classification task.

The task now becomes to find suitable missing values that aid in classification. Classification relies
on the relationships among the data, which are captured by kernel functions in kernel-based learning
algorithms, e.g., support vector machine (SVM, (Vapnik, 1999; Schölkopf & Smola, 2002; Steinwart
& Christmann, 2008)). Specifically, a kernel matrix or Gram matrix, denoted as K 2 RN⇥N , is
constructed, where Ki,j = k(xi,xj) represents the similarity between data xi and xj using a proper
positive definite kernel function k(·, ·) : Rd

⇥ Rd
! R. A classifier is then trained based on this

kernel matrix K. When handling missing data, represented as x
i
oi

, the value of Ki,· is unknown.
Thus, it is necessary to find K̃i,j for data with missing features in order to establish appropriate
relationships with other data. We will accomplish this by improving the prediction accuracy of the
subsequent classification task while considering prior knowledge of the missing values and imposing
constraints on the adjustment of the kernel matrix. The next step is to recover the missing values
from the imputed matrix K̃. This step is relatively easy, particularly in the traditional scenario
where N � d. Because for each data, there is N–1 available supervised information stored in
the kernel matrix to guide the imputation of d or fewer elements. In this paper, we propose a
two-stage learning framework for data imputation: I) the kernel matrix is completed by pursuing
high classification accuracy; II) the missing features are reconstructed to approximate the optimized
kernel matrix. With the proposed method, we can find good estimates for missing values that lead to
better classification performance in the subsequent task. Therefore, when faced with situations like
the one shown in Figure 1, we are able to obtain the imputation results indicated by the red crosses
and circles.

In the first stage, specifically, we begin by computing the initial kernel matrix based on the observed
features. This matrix is then further modified through a process referred to as kernel matrix impu-
tation throughout this paper. Recent studies (Liu et al., 2020; Wang et al., 2023) have demonstrated
that integrating kernel learning and classifier optimization tasks, and alternating between them, can
improve classification performance and naturally lead to a fine-tuned kernel matrix. Inspired by
these ideas, we adopt a similar approach by combining the tasks of kernel matrix imputation and
classifier training into a maximum-minimum optimization problem. However, we encounter a chal-
lenge during the kernel matrix imputation process. The flexibility of modifying the similarity re-
lationships between data within our framework can make the classifier susceptible to overfitting.
To address this issue, we introduce an additional perturbation matrix during the optimization of the
kernel matrix, thereby enhancing the classifier’s robustness. In the second stage, we utilize the block
coordinate descent (BCD, (Tseng, 2001)) method to solve a non-convex problem. Although find-
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ing the global optimal solution is challenging, our numerical experiments demonstrate that when
the data size is much larger than the feature dimension, the abundant supervisory information from
the kernel matrix effectively guides the imputation process. As a result, we can still achieve highly
accurate solutions. The main contributions of this paper are summarized as follows:

• To fully leverage label information, we propose a novel two-stage data imputation frame-
work. This framework optimizes the similarity relationships between data by utilizing
supervision information and guides the data imputation process accordingly.

• We have developed a nonparametric method to impute the kernel matrix, which is per-
formed alternately with the training of the classifier. By introducing a perturbation variable,
we enhance the robustness of the classifier.

• We provide a solving algorithm based on the BCD to accurately recover missing data from
a given kernel matrix. This algorithm effectively utilizes the learned similarity information
among the training data.

• Experimental results on real data sets indicate that the imputed data generated by our frame-
work exhibits excellent performance in classification tasks. Notably, when the missing ratio
exceeds 60%, our algorithm outperforms other imputation methods significantly.

2 RELATED WORK

The task of learning a classifier from data with missing values has been extensively studied in the
past few decades, leading to the development of three main approaches as below.

Filling Data Before Classification. A large portion of the research focuses on filling the data
before using it in the subsequent classification task. For instance, Ghahramani & Jordan (1993)
introduces a framework based on maximum likelihood density estimation for coping with missing
data, utilizing mixture models and the expectation-maximization principle. And Bhattacharyya et al.
(2004) modeled the missing values as Gaussian random variables and estimated their mean and
covariance from the observed data and labels, which were then used in a modified SVM. Later,
Williams et al. (2007) used a Gaussian mixture model to estimate the conditional probability of
missing values given the observed data and imputed them using expectations. Additionally, some
work estimated complete data by computing the corresponding marginal distributions of the missing
data (Smola et al., 2005) or assumed a low-rank subspace for the data and treated labels as an
additional feature to handle missing values (Goldberg et al., 2010). But these methods separate
the imputation process from the classification task, which may not necessarily lead to improved
classification performance with their imputation outcomes.

Filling the kernel matrix Before Classification. Another research direction focuses on kernel-
based machine learning algorithms. In this approach, classification or regression tasks only require
the kernel matrix based on the training data. Therefore, methods have been explored to compute ker-
nel function values between data with missing values instead of directly imputing the missing data.
Hazan et al. (2015) proposed a parameterized kernel function based on the low-rank assumption of
data, which allows for input vectors with missing values. However, when computing similarities,
only the dimensions present in both data are considered, and the rest are discarded. There is also
work that modeled the squared distance between two missing data as a random variable following
a gamma distribution and computed the expectation of the Gaussian kernel function under missing
data (Mesquita et al., 2019). Similarly, Śmieja et al. (2019) modeled possible outcomes of missing
values with the data distribution and computed the expectation of similarity between two missing
data. Still, these methods have limitations in flexibly utilizing the supervision information from
labels during the imputation process, which consequently restricts their performance in practical
tasks.

Direct Classification of Incomplete Data. Furthermore, researchers have explored methods for
directly classifying missing data. In the study by Pelckmans et al. (2005), they defined a modified
risk to address the uncertainty in prediction results caused by missing data. And in (Chechik et al.,
2008), they maximized the margin of the subspace correlated with the observed data. However,
when computing kernel values, they encounter similar issues of incomplete information utilization
as in (Hazan et al., 2015). In a different approach, Dekel et al. (2010) treated missing values as a spe-
cific type of noise and developed a linear programming problem that resembled SVM formulation in

3



Under review as a conference paper at ICLR 2024

order to learn a robust binary classifier. And some work optimize the nonlinear classifier while seek-
ing the linear subspace where the data might lie (Sheikholesalmi et al., 2014; Xu et al., 2020). Due
to the necessity of predefining the dimension of the subspace in these methods, they may fail to fully
capture the intrinsic structure of the data, thus constraining its flexibility in practical applications.
Recently, a neural network-based method called NeuMiss was introduced (Le Morvan et al., 2020;
2021). NeuMiss utilized a Neumann-series approximation of the optimal predictor and demonstrated
robustness against various missing data mechanisms. In addition to the aforementioned algorithmic
work that are more application-oriented, there are also efforts dedicated to theoretical derivations
related to missing data. For example, Bullins et al. (2016) provided the information-theoretic upper
and lower bounds of precision limits for vanilla SVM in the context of learning with missing data.
Josse et al. (2019) proved that a predictor designed for complete observations can achieve optimal
predictions on incomplete data by utilizing multiple imputation.

3 TWO-STAGE DATA IMPUTATION

3.1 PRELIMINARIES

Notations. The set of real numbers is written as R. The set of integers from 1 to N is written as
[N ]. The cardinality of the set A is written as |A| denotes. We take a, a, and A to be a scalar, a
vector, and a matrix, respectively. Let 0 and 1 denote vectors consisting of all zeros and all ones
with the appropriate size. The inner product of two vectors in the given space is written as h·, ·i. We
take diag(a) to be an operator that extends a vector to a diagonal matrix. The Frobenius norm of a
matrix is written as k · kF. The set of positive semi-definite (PSD) matrices is written as S+. The
Hadamard product is written as �.

We begin by introducing the vanilla SVM and then demonstrate how to fill in missing data to achieve
improved classification performance. In the hard-margin SVM, the objective is to find a hyperplane
w

>
x + b = 0 that maximally separates the data x 2 Rd of different classes with zero training

errors. When the data is not linearly separable, the soft-margin SVM is proposed, which allows
for some training errors by introducing slack variables denoted as ⇠i � 0 for each training sample.
Meanwhile, in order to find a more flexible decision boundary, a nonlinear mapping �(·) from the
Rd to a reproducing kernel Hilbert space Hk is introduced, yielding the decision function f(x) =
sign(w>�(x) + b). With the completed data, the optimization problem can be formulated as

min
w,b,{⇠i}

1

2
kwk

2
2 + C

NX

i=1

⇠i

s.t. yi(w
>�(xi) + b) � 1� ⇠i,

⇠i � 0, 8i 2 [N ],

(1)

where C � 0 is a hyperparameter that controls the balance between maximizing the margin and
minimizing the training errors. For problem (1), previous researchers have proven that we only need
to solve its corresponding dual problem:

max
↵2RN

1>
↵�

1

2
↵

>diag(y)Kdiag(y)↵

s.t. y
>
↵ = 0, 0  ↵  C1,

(2)

where y = [y1; y2 ; . . . ; yN ] 2 RN and each entry Ki,j = h�(xi),�(xj)iHk of the kernel matrix
K 2 RN⇥N represents the similarity between two data. Through a technique known as the kernel
trick, this similarity can be computed using a predefined positive definite kernel function k(xi,xj) :
Rd

⇥ Rd
! R, allowing us to calculate it without knowing the explicit expressions of �. And the

resulting kernel matrix K is guaranteed to be PSD.

3.2 STAGE I: KERNEL MATRIX IMPUTATION WITH SVM

In this stage, our goal is to find a new kernel matrix K̃ that further reduces the objective function
value in (2), aiming to improve the classification accuracy of the trained classifier. We propose a
novel algorithm that integrates kernel matrix imputation with the classification task. Initially, we
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compute the observed kernel matrix Ko, and then optimize an adjustment matrix K� with the same
dimension to derive K̃ = Ko � K� as the optimized kernel matrix. This approach distinguishes
itself from previous algorithms by effectively utilizing each observed feature value. Considering the
Gaussian kernel function k�(x,y) = exp(��kx� yk

2
2) as an example and recalling the definition

of the incomplete data set D = {x
i
oi
, yi}Ni=1, we can decompose Ki,j into an observed part and

unknown parts:
Ki,j = exp (��Di,j) where

Di,j = kx
i
oi

� x
j
oj
k
2
2

=
X

p2oi\oj

�
xi
p � xj

p

�2
+

X

p2oi\oj

�
xi
p � ⇤

�2
+

X

p2oj\oi

�
⇤ � xj

p

�2
+

X

p/2oi[oj

(⇤ � ⇤)2 .
(3)

Recall that ⇤ represents an unknown real number. Methods in (Chechik et al., 2008; Hazan et al.,
2015) only consider the similarity between the intersecting observed features of two data, i.e., the
part related to p 2 oi \ oj , disregarding features such as xi

p : p 2 oi\oj . In contrast, our algorithm
calculates Ko using the first term in the last line of (3), and implicitly utilize features from the
second and third terms by constraining the potential ranges for K�. Assuming x is normalized
within the range of [0, 1], the ranges of the second, third, and fourth terms in (3) are denoted as
[0,

P
p2oi\oj

max{(xi
p)

2, (1�xi
p)

2
}], [0,

P
p2oj\oi

max{(xj
p)

2, (1�xj
p)

2
}], and [0, d� |oi [oj |],

respectively. By computing the range of each entry Ki,j = (Ko)i,j · (K�)i,j , we can determine the
feasible domain of the optimization variable K�, denoted as Bl � K� � Bu. In Stage II and the
experimental sections, we will continue to use the Gaussian kernel as an example. However, it is
important to note that our algorithm is applicable to various kernel functions, and we have provided
several examples in Appendix A.

By leveraging the supervision information of the labels and performing alternating optimization
between the kernel matrix and the classifier, we will obtain a kernel matrix that yields better classi-
fication performance. However, this flexible approach carries the risk of overfitting. To address this
issue, our approach relies on training a robust classifier using optimization principles. Our objective
is to ensure that the classifier performs well not only on K̃ but also on all possible outcomes within
a norm sphere surrounding K̃. To achieve this, we introduce a perturbation variable denoted as E
in the space of RN⇥N . This variable serves as a mechanism to mitigate the potential impact of the
aforementioned issue. Finally, we formulate the following optimization problem for Stage I:

min
K�

max
↵,E

1>
↵�

1

2
↵

>diag(y) (Ko �K� � E) diag(y)↵+ ⌘kK� � 11>
k
2
F

s.t. Bl � K� � Bu, K� 2 S+,

kE � 11>
k
2
F  r2, E 2 S+,

y
>
↵ = 0, 0  ↵  C1,

(4)

where the regularization parameters ⌘ and r are introduced to control the range of modification for
the observed kernel matrix Ko and the intensity of the perturbation, respectively. By imposing PSD
constraints on the variables K� and E , it is ensured that the optimized kernel matrix remains PSD.
As the value of ⌘ increases, K� tends to approach the all-one matrix. In this scenario, the model
approximates to a state where the missing values are filled with zeros. To solve the optimization
problem outlined in (4), we propose an alternating optimization algorithm consisting of three steps.

Step 1. Optimizing K� with fixed E and ↵. In this step, problem in (4) with respect to K� is
equivalent to

min
K�

�
1

2
↵

>diag(y) (Ko �K� � E) diag(y)↵+ ⌘kK� � 11>
k
2
F

s.t. Bl � K� � Bu, K� 2 S+.
(5)

The problem above is a semi-definite program, which is generally computationally expensive to
solve. A common approach is to initially ignore the PSD constraint and solve the problem, followed
by projecting the solution onto the space of PSD matrices (Cai et al., 2010; Liu et al., 2019). Defining
�1 := diag(↵� y) (Kk � E) diag(↵� y), we have the final approximate solution for (5):

K
⇤

� = P+

✓
C[Bl,Bu]

✓
11> +

1

4⌘
�1

◆◆
. (6)
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The operator C[Bl,Bu](X) clips each element of X to the range defined by [(Bl)i,j , (Bu)i,j ]. The
operator P+(X) performs eigenvalue decomposition on X = U⌃U

> and set any negative eigen-
values to 0, resulting in the new matrix X̂ = U⌃+U

>.

Step 2. Optimizing E with fixed K� and ↵. We will first solve the following problem:

min
E

1

2
↵

>diag(y) (Kk �K� � E) diag(y)↵

s.t. kE � 11>
k
2
F  r2.

(7)

Defining the Lagrange function L(E ,�) := 1
2↵

>diag(y) (Kk �K� � E) diag(y)↵ +
�
�
kE � 11>

k
2
F � r2

�
by introducing the Lagrangian multiplier �, we take the partial derivatives

with respect to each of the two variables:

@L

@E
=

1

2
�2 + 2�(E � 11>) = 0, (8a)

@L

@�
= kE � 11>

k
2
F � r2 = 0, (8b)

where �2 := diag(↵ � y) (Kk �K�) diag(↵ � y). From (8a), we can deduce that E � 11> =
�

1
4��2. Substituting it into (8b) yields 1

4� = r
k�2kF

. Therefore, the optimal solution for (7) is
Ê = 11>

�
r

k�2kF
�2. Subsequently, we project this solution onto the PSD matrix space to obtain

the final solution for this step

E
⇤ = P+

✓
11>

�
r

k�2kF
�2

◆
. (9)

Step 3. Optimizing ↵ with fixed K� and E . Given K� and E , the optimization problem is reduced
to the standard SVM problem, which can be solved using various methods. In this case, we employ
the gradient descent method to update ↵ in each iteration, and utilize the Adam optimizer (Kingma
& Ba, 2014) to dynamically adjust the learning rate. After obtaining the updated variable ↵̂, we
proceed to project it onto the feasible set. This is done by first clipping it to the range [0, C] and then
calculating ↵

⇤ = ↵̂�
y>↵̂
N y as the final solution for this step.

3.3 STAGE II: DATA IMPUTATION WITH THE GIVEN MATRIX

In this stage, we will utilize the matrix K̃ obtained from the previous training step to perform data
imputation. We redefine the incomplete data set D = {x

i
oi
, yi}Ni=1 as D = {Xo,y,O}, where

Xo := [x1
o1

x
2
o2

. . . x
N
oN

] 2 Rd⇥N , y 2 RN and O 2 {0, 1}d⇥N is used to indicate which
features are missing (represented by 0) and which features are observed (represented by 1). Next,
we will compute �X := [�x1 �x2 . . . �xN ] 2 Rd⇥N by using the entries of the trained
kernel matrix K̃i,j as supervisory information. The goal is to minimize the discrepancy between the
optimized kernel matrix calculated from the imputed data X̃ = Xo +�X and the original kernel
matrix K̃ through regression, i.e,

min
{�xi}

N
i=1

X

i

X

j


exp

✓
��

���xi
oi

� x
j
oj

+�xi ��xj

���
2

2

◆
� K̃i,j

�2
.

By equivalently replacing the objective function and imposing location and range constraints on the
imputation results, we obtain the following optimization problem for Stage II:

min
�X

X

i

X

j

���xi
oi

� x
j
oj

+�xi ��xj

���
2

2
+

1

�
ln
⇣
K̃i,j

⌘�2

s.t. �X �O = 0,

0 � Xo +�X � 1.

(10)

The essence of this task involves solving a nonlinear system of equations. Additionally, by defining
the missing ratio of data features as m, the aforementioned system consists of N(N�1)/2 equations
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Algorithm 1 Two-Stage Data Imputation Based on Support Vector Machine
Input: the incomplete data set D = {Xo,y,O}, the parameters C, �, ⌘, and r.
Output: the imputed data X̃ and the combination coefficient ↵.

1: Stage I:

2: Compute Ko, Bl, and Bu. Initialize K
(0)
� = E

(0) = 11> and ↵
(0) = C

2 1.
3: repeat

4: Update K
(t1)
� by (6).

5: Update E
(t1) by (9).

6: Update ↵ using gradient descent and project it onto the feasible set.
7: t1 = t1 + 1.
8: until the stop criteria is satisfied.
9: Compute K̃ = Ko �K�.

10: Stage II:

11: Initialize �x
(0)
i = 1

21.
12: repeat

13: for i = 1 to N do

14: Fix {�x
(t2�1)
j : j 6= i} and update �x

(t2)
i in (10).

15: end for

16: t2 = t2 + 1.
17: until the stop criteria is satisfied.

and Ndm variables. Although the objective function in (10) is non-convex with respect to �X , the
entries {Ki,j}

N
i,j=1 still provide abundant supervision information for the data imputation process in

scenarios where the number of observed features (d) is significantly smaller than the total number
of data (N) and the missing ratio (m) ranges between 0 and 1. To address this, we employ the
BCD method to solve the optimization problem mentioned above. In each iteration, we select a
specific column from �X as a variable while keeping the remaining columns constant. We update
the variable iteratively until reaching convergence. The accuracy of this solution is further validated
by the experimental results presented later in this paper. The complete two-stage data imputation
framework is summarized in Algorithm 1.

4 NUMERICAL EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Table 1: Data set statistics: d and N
denote the number of data dimen-
sions and the total number of data.

Data Sets d N

Australian 14 690
German 21 1000
Heart 13 270
Pima 8 768

Data sets and preprocessing. We chose four real-world data
sets from libsvm (Chang & Lin, 2011), namely australian,
german, heart and pima (a.k.a. diabetes). The details of these
data sets are shown in Table 1. For preprocessing, we scaled
xi to [0, 1] and yi to {�1, 1}. The data sets were then divided
into three subsets: a training set, a complete holdout set for
parameter selection, and a complete test set for evaluating and
comparing the final results of the algorithms. The split was
performed in a 4:3:3 ratio. For the training set, we constructed
the missing data by randomly removing a given percentage of
the features, and we defined the missing ratio of a data set as

m :=
# The missing features

# The total features
.

Compared methods and parameters settings. We selected a basic method along with three ad-
vanced methods for comparison with our proposed framework. To quantify the performance of the
individual methods, we compared their classification accuracy on the test data set. All experiments
were repeated 10 times, and the average accuracy of each method was reported. The implementation
was carried out using MATLAB on a machine with an Intelr CoreTM i7-11700KF CPU (3.60 GHz)
and 32GB RAM. The source code will be released.
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• MI: The missing values are imputed by setting them to the mean value of the corresponding
features across all the available data, including both the training and test sets. We chose
the penalty parameter C 2 {2�5, 2�4, . . . , 25} and the bandwidth in the Gaussian kernel
� 2 {2�5, 2�4, . . . , 25} using the holdout set.

• GEOM (Chechik et al., 2008): An iterative framework for optimizing a non-convex prob-
lem was introduced in this work. The main objective is to maximize the margin within the
relevant subspace of the observed data. The parameters C and � are chosen the same as in
MI, and the iteration round t is chosen from the set {2, 3, 4, 5}.

• KARMA (Hazan et al., 2015): This method proposed a new kernel function for the missing
data k�(·, ·) : (R [ {⇤})d ⇥ (R [ {⇤})d ! R. We chose C 2 {2�5, 2�4, . . . , 25} and
� 2 {1, 2, 3, 4} using the holdout set.

• genRBF (Śmieja et al., 2019): It derived an analytical formula for the expected value of
the radial basis function kernel over all possible imputations. The parameters C and � were
chosen the same as in MI.

• Ours: To avoid excessive parameter tuning, we utilized the parameters CMI and �MI from
MI and further selected C 2 {CMI · 2i, i = �1, 0, 1} and � 2 {�MI · 2i, i = �1, 0, 1}.
Additionally, we empirically set the values of ⌘ = k↵MIk2 and r = 0.2Nm.

4.2 EXPERIMENTAL RESULTS

4.2.1 RESULTS OF DATA IMPUTATION FROM GIVEN KERNEL MATRIX

Table 2: Results of data imputation performance using a given kernel
matrix with different Gaussian kernel bandwidths and missing ratios.

Parameter m (eX)max (eX)mean (eK)max (eK)mean

� = 1
10% 3.46e�4 3.00e�7 5.95e�5 8.85e�8
90% 1.27e�1 6.71e�4 5.57e�2 8.28e�5

� = 1
32

10% 2.75e�4 2.88e�7 1.32e�5 4.52e�8
90% 1.52e�1 1.56e�3 3.70e�3 5.83e�5

� = 32
10% 7.30e�4 4.74e�7 3.08e�5 6.81e�9
90% 3.81e�1 3.75e�3 1.03e�1 2.44e�5

In order to ensure the
operation of the entire
framework, we first eval-
uated the performance of
Stage II. We conducted
experiments on the heart
data set, considering var-
ious bandwidths of the
Gaussian kernel and dif-
ferent missing ratios. We
computed the complete
kernel matrix Kgt based
on the complete data Xgt

and the chosen bandwidth
�. Subsequently, we randomly removed Ndm features from the complete data, resulting in Xmiss.
Next, utilizing the algorithm from Stage II in our framework, we performed data imputation on
Xmiss using the complete kernel matrix Kgt, which yielded X̃ . In addition to caring about the
quality of data imputation, we also focus on the quality of the kernel matrix used in predicting the
class of new data. Therefore, we defined four evaluation metrics to assess the error between X̃ and
Xgt, as well as the error between K̃ and Kgt: (eX)max, (eK)mean, (eK)max, and (eK)mean. We
then conducted tests on our data imputation algorithm using different bandwidths of the Gaussian
kernel and missing ratios. The results of these tests were reported in Table 2. We observed that
at a low missing ratio (m = 10%), both the imputed data and kernel matrix closely matched the
ground truth. Even at a high missing ratio (m = 90%), although there were some imputed features
that deviated significantly from the true values, the overall performance of the algorithm in terms of
average imputation remained highly accurate. Additionally, we found that when the Gaussian kernel
parameter was particularly small (� = 1/32) or large (� = 32), the true kernel matrix tended to be a
matrix of all ones or an identity matrix. In these scenarios, although there may be larger errors in the
imputed data compared to when � = 1, the kernel matrix used for actual predictions still maintained
a good level of accuracy.

4.2.2 CLASSIFICATION RESULTS ON REAL-WORLD DATA SETS

Next, we compared different data imputation approaches using four real-world data sets. Since all
imputation algorithms ultimately serve subsequent tasks, we evaluated their performance by cal-
culating the mean and variance of their classification accuracy on the test data. The results were
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Table 3: Comparison of classification accuracy (mean ± std) with a baseline and three state-of-the-
art methods on four real data sets. We conducted testing on the scenarios with different missing
ratios of the data. The best performance is highlighted in bold.

Data Sets Methods m

20% 40% 60% 80%

Australian

MI 0.866 ± 0.022 0.847 ± 0.026 0.825 ± 0.028 0.734 ± 0.044
GEOM 0.849 ± 0.025 0.831 ± 0.037 0.754 ± 0.050 0.632 ± 0.043

KARMA 0.861 ± 0.020 0.848 ± 0.022 0.831 ± 0.045 0.712 ± 0.046
genRBF 0.867 ± 0.016 0.864 ± 0.023 0.796 ± 0.041 0.704 ± 0.058

Ours 0.868 ± 0.018 0.865 ± 0.021 0.850 ± 0.023 0.859 ± 0.026

German

MI 0.722 ± 0.023 0.724 ± 0.028 0.715 ± 0.022 0.700 ± 0.020
GEOM 0.723 ± 0.028 0.704 ± 0.031 0.695 ± 0.024 0.679 ± 0.029

KARMA 0.731 ± 0.019 0.723 ± 0.019 0.706 ± 0.036 0.714 ± 0.025

genRBF 0.747 ± 0.011 0.743 ± 0.021 0.705 ± 0.026 0.687 ± 0.045
Ours 0.721 ± 0.026 0.726 ± 0.029 0.722 ± 0.023 0.706 ± 0.030

Heart

MI 0.816 ± 0.031 0.810 ± 0.033 0.782 ± 0.044 0.762 ± 0.054
GEOM 0.806 ± 0.021 0.752 ± 0.073 0.758 ± 0.053 0.679 ± 0.077

KARMA 0.784 ± 0.040 0.755 ± 0.038 0.756 ± 0.031 0.687 ± 0.083
genRBF 0.813 ± 0.031 0.779 ± 0.087 0.737 ± 0.032 0.732 ± 0.037

Ours 0.819 ± 0.028 0.815 ± 0.032 0.804 ± 0.024 0.770 ± 0.035

Pima

MI 0.765 ± 0.023 0.749 ± 0.036 0.728 ± 0.028 0.691 ± 0.028
GEOM 0.721 ± 0.031 0.695 ± 0.028 0.680 ± 0.058 0.666 ± 0.042

KARMA 0.747 ± 0.034 0.693 ± 0.026 0.668 ± 0.034 0.648 ± 0.036
genRBF 0.781 ± 0.011 0.755 ± 0.017 0.725 ± 0.022 0.659 ± 0.029

Ours 0.751 ± 0.016 0.757 ± 0.017 0.743 ± 0.033 0.695 ± 0.046

presented in Table 3. For situations with a relatively low missing data ratio, such as m = 20%, the
differences between the methods are not significant. Even using a simple method like MI can achieve
decent predictive performance. When m = 40%, our proposed method achieves the highest average
accuracy and the lowest standard deviation on the australian, heart, and pima data sets, demonstrat-
ing the superior stability of our method. On the german data set, our algorithm’s performance is
second only to genRBF. When dealing with high missing data ratios, the prediction accuracy of the
GEOM, KARMA, and genRBF methods fluctuates across different data sets. However, our method
demonstrates even more significant advancements in such scenarios. For instance, at m = 60%,
our approach outperforms the second-ranking method by an additional accuracy improvement of
approximately 0.02. This performance is further reflected in the case of m = 80%, where our algo-
rithm achieves precise and stable classification tasks. Additionally, detailed classification results for
several data sets with inherent missing values can be found in Appendix B.

5 CONCLUSION

This paper proposed a novel two-stage data imputation framework, aiming to optimize the similarity
relationships between data in order to guide the completion of missing features by pursuing better
classification accuracy. In the first stage, we unify the tasks of kernel matrix imputation and classifi-
cation within a single framework, enabling mutual guidance between the two tasks in an alternating
optimization process to improve similarity relationships. The introduction of a perturbation variable
enhances the robustness of the algorithm’s predictions. In the second stage, we achieve, for the first
time, the recovery of data features from a given kernel matrix, effectively utilizing the optimized in-
formation obtained in the first stage. By leveraging the supervision information through two stages,
we have obtained a more flexible approach for data imputation, which provides significant advan-
tages when dealing with high missing data rates. Numerical experiments have validated that our
algorithm achieves higher prediction accuracy and demonstrates more stable performance compared
to other methods on the test data.
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