
Enhancing Graph Learning Interpretability through
Modulating Cluster Information Flow

Jiayi Yanga, Wei Yeb,∗, Xin Sunc, Rui Fanb, Jungong Hand

aCollege of Electronic and Information Engineering, Tongji University, Shanghai, 201804, China
bCollege of Electronic and Information Engineering, Shanghai Institute of Intelligent Science and

Technology, State Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji
University, Shanghai, 201804, China

cFaculty of Data Science, City University of Macau, Macau, 999078, China
dDepartment of Automation, Tsinghua University, Beijing, 100084, China

Abstract

Interpretable graph learning is essential for scientific applications that depend on learn-

ing models to extract reliable insights from graph-structured data. Recent efforts to

explain GNN predictions focus on identifying vital substructures, such as subgraphs.

However, existing approaches tend to misclassify the neighboring irrelevant nodes as

part of the vital subgraphs. To address this, we propose Cluster Information Flow

Graph Neural Networks (CIFlow-GNN), a built-in model-level method that provides

accurate interpretable subgraph explanations by modulating the cluster information

flow. CIFlow-GNN incorporates two modules, i.e., the graph clustering module and

the cluster prototype module. The graph clustering module partitions the nodes ac-

cording to their connectivity in the graph topology and their similarity in cluster fea-

tures. Specifically, we introduce a cluster feature loss to regulate information flow at

the cluster level. We prove that the proposed cluster feature loss is a lower bound of

the InfoNCE loss. Optimizing the cluster feature loss reduces the mutual information

among clusters and achieves the modulation of cluster information flow. Subsequently,

the graph prototype module uses prototypes as a bridge to select important clusters as

vital subgraphs by integrating information across all graphs. To ensure accurate corre-

∗Corresponding author
Email addresses: 2111125@tongji.edu.cn (Jiayi Yang), yew@tongji.edu.cn (Wei Ye),

sunxin1984@ieee.org (Xin Sun), ranger_fan@outlook.com (Rui Fan), jghan@tsinghua.edu.cn
(Jungong Han)

spondence between clusters and prototypes, we further modulate the cluster informa-

tion flow at the prototype level. Experimental studies on both synthetic and real-world

datasets demonstrate that our proposed CIFlow-GNN can identify vital subgraphs ef-

fectively and efficiently.

Keywords: Graph neural networks, model-level explanation, cluster information flow,

graph clustering, graph classification

1. Introduction

Graph neural networks (GNNs) [1–3] have gained significant attention due to their

effectiveness in learning node and graph representations. Graph classification [4] is

a fundamental problem in GNNs with applications in fields such as biochemistry [5]

and social network analysis [6]. However, most GNNs are black-box models that lack

the ability to explain their predictions in the graph classification task, limiting their

applicability in critical areas like medical diagnosis [6]. Therefore, it is necessary to

investigate the interpretability of GNNs.

Over the past few years, interest has been growing in exploring interpretable GNNs.

These explainers provide explanations for GNNs by identifying the vital substructures,

such as edges [7–9], nodes [10–12], and subgraphs [13–16], which are most relevant

to the graph label. Compared with explainers focusing on edges or nodes, those that

use subgraphs usually impose explicit connectivity constraints among nodes. Some

works [13, 14] extract a single connected subgraph for each graph, while others [15, 16]

employ regularization terms to capture multiple connected components as vital sub-

graphs. Since graph properties are often determined by subgraphs, using subgraphs

as intrinsic explanations for graph predictions is more intuitive and effective. For ex-

ample, in molecular graphs, the functional groups -NO2 and -NH2 play a critical role

in mutagenicity, while -OH impacts solubility. Current research in interpreting GNNs

through subgraph recognition can be categorized into two main branches: post-hoc ap-

proaches and built-in approaches. Post-hoc approaches first pretrain GNNs and then

optimize a separate explanatory module to generate explanations while freezing the

pretrained GNNs. However, since the explanatory module is not jointly trained with

2

the pretrained GNNs, it may fail to provide or even approximate the optimal solu-

tion [17]. In contrast, built-in methods jointly optimize the GNNs and the explanatory

module to enhance graph learning interpretability.

Nevertheless, research on built-in approaches for subgraph recognition remains

limited. ProtGNN [14] assigns prototypes to each class and makes predictions for input

graphs by measuring the similarity between the graph embeddings and the trained pro-

totype embeddings. It then introduces a prototype projection module that maps each

prototype to the nearest training subgraphs as explanations using Monte Carlo Tree

Search (MCTS) [18]. Since the prototypes in ProtGNN capture graph-level charac-

teristics, the identified subgraphs may include uninformative substructures. Recently,

some approaches [15, 16, 19] have leveraged the concept of Graph Information Bot-

tleneck (GIB) [19, 20] to identify compressed yet informative subgraphs. Compared

with ProtGNN, they first partition the input graph into the predicted vital subgraphs

and irrelevant complements. Then, they employ a selective noise injection method that

injects less noise into the predicted vital subgraphs, while injecting more noise into the

complements. The noise injection method, combined with the GIB objective function,

modulates the label-relevant information flow from the input graph to the predicted sub-

graphs in the graph learning process. Concurrently, by preserving more label-relevant

information in the selected node representations, the identification of vital subgraphs

is enhanced. In addition, PGIB [16] conveys information of vital subgraphs to the pro-

totypes and makes predictions based on the similarity between the identified subgraph

embeddings and the trained prototype embeddings.

However, nodes adjacent to the vital subgraphs inevitably aggregate information

from them during message passing in GNNs, leading to their misclassification as part

of the vital subgraphs. As shown in Fig. 1, since the GIB approaches cannot prevent

this issue, nodes on the ring structures connected to the vital functional groups receive

label-relevant information and are mistakenly predicted as vital subgraphs. Therefore,

it is crucial to reduce the information flow between vital subgraphs and their comple-

ments, especially the irrelevant neighboring nodes. From the perspective of clustering,

the similarities of nodes in each vital subgraph should be strengthened while those

between vital subgraphs and their complements should be weakened. In this paper,

3

Vital subgraph

mean1

mean1

mean2

mean3
prototype1

prototype1 prototype2

prototype3

Information flow

within cluster

Information flow

among clusters

Information flow

among cluster prototypes
Information flow

between clusters and prototypes

Cluster level Prototype level

mean1

Selective

noise injection

Cluster I

Cluster II

Cluster III

Information

flow

Label-relevant

information

Label-relevant

information

GIB

Ours

Figure 1: Comparison of the information flow of GIB methods and the cluster information flow of CIFlow-

GNN. The GIB methods employ a selective noise injection method to modulate the label-relevant informa-

tion flow among nodes from the input graph to the predicted subgraphs. In contrast, our method modulates

cluster information flow by identifying clusters and adjusting inter-/intra-cluster interactions at both the clus-

ter and prototype levels.

we focus on identifying the most important cluster as the vital subgraphs rather than

extraneous neighboring nodes.

To this end, we propose Cluster Information Flow Graph Neural Networks

(CIFlow-GNN), a built-in model-level method that provides vital subgraphs as expla-

nations for GNNs by modulating the cluster information flow. In general, CIFlow-GNN

introduces a novel graph clustering module to partition the graphs and a model-level

cluster prototype module to select the most important clusters as the vital subgraphs

for prediction. In the graph clustering module, we use spectral clustering [21] to parti-

tion the nodes into different clusters according to the graph topology. Simultaneously,

we modulate the cluster information flow at the cluster level as shown in Fig. 1, by

pulling nodes in each cluster close to their cluster centroid and pushing apart different

cluster centroids. Theoretically, we prove that our cluster feature loss is a lower bound

of the InfoNCE loss [22]. By optimizing the cluster feature loss, the mutual informa-

tion among clusters is reduced, realizing the modulation of cluster information flow.

4

Subsequently, in the cluster prototype module, we design CIFlow-GNN as a model-

level explainer. We integrate information from all graphs to refine the clusters and

generate cluster importance masks for each graph. To achieve this, we classify clus-

ters into shared prototypes and introduce two learnable matrices to learn the relative

importance of prototypes within and across classes. It is worth noting that the pro-

totypes act as a bridge between classes and clusters, therefore improper management

of the cluster-prototype correspondence can lead to degradation in the accuracy of the

cluster importance mask. To mitigate this, we modulate the cluster information flow

at the prototype level. To be specific, we strengthen the connection between clusters

and prototypes while simultaneously forcing diverse prototypes. Finally, we select the

cluster corresponding to the highest score in the cluster importance mask as the inter-

pretable vital subgraph, which may contain multiple connected components. Our main

contributions are as follows:

• We enhance the interpretability of graph learning by modulating the cluster in-

formation flow at both the cluster and prototype levels.

• We propose a model-level approach that leverages prototypes as a bridge to iden-

tify the important clusters as vital subgraphs for each graph.

• Empirical results show that CIFlow-GNN outperforms other state-of-the-art

GNN explainers on various datasets in the graph interpretation and classifica-

tion tasks.

2. Related Work

As the application of GNNs continues to expand, understanding the rationale be-

hind their predictions becomes increasingly critical. Existing research on GNN in-

terpretation can be categorized into two branches: post-hoc approaches and built-

in approaches, with most focusing on the former. Among the post-hoc approaches,

PGExplainer [23] learns a parameterized mask generator to identify important edges,

whereas GAFExplainer [24] improves the interpretability of edge masks through node

attribute augmentation and feature fusion. EiG-Search [7] proposes a training-free,

5

linear-complexity method that ranks edges by importance. GSCExplainer [8] adopts

edge-cut partitioning and contrastive learning to alleviate the absence of ground-truth

explanations. ConfExplainer [9] explicitly integrates confidence estimation into the

explanation generation process by introducing a confidence matrix to quantify the re-

liability of each edge. Recent works extend the explanation granularity from edges

to subgraphs for a more holistic understanding of GNN decisions. SubgraphX [13]

leverages Shapley values to access subgraph importance and leverages MCTS [18] for

efficient exploration. PAGE [25] clusters graph embeddings using a Gaussian mix-

ture model and selects the top k class-discriminative graph embeddings near the cluster

centroid. It then iteratively searches for a common subgraph for a given class among

the selected graphs via a scoring function. FORGE [26] enhances the accuracy and

faithfulness of explanations by leveraging higher-order structural information. Graph-

Trail [27] evaluates the global importance of subgraph concepts via Shapley values, and

employs symbolic regression to translate GNN predictions into human-interpretable

Boolean formulas. While Shapley values focus on individual node importance, they

neglect inter-node interactions. To overcome this limitation, MAGE [28] employs the

Myerson-Taylor interaction index to embed graph structure into node and interaction

attributions. Furthermore, FlowX [29] treats all continuous node sequences as message

flows and explains GNNs by identifying and quantifying important message flows us-

ing Shapley values via a flow sampling scheme. In contrast, CIFlow-GNN depicts the

cluster information flow from a macro perspective, akin to GIB methods [15, 16, 19].

Far fewer works address built-in interpretability. SUNNY-GNN [30] leverages

structural augmentation and contrastive learning to generate sufficient and necessary

explanations. Recently, GIB methods [15, 16, 19] have been proposed to encourage

identified subgraphs to be informative to the graph labels while minimizing mutual

information with the input graphs, based on the information bottleneck theory [20].

However, these methods struggle to classify vital subgraphs from adjacent nodes cor-

rectly. To address this, GIP [31] employs Normalized Cut (Ncut) [21, 32] to partition

graphs into clusters and uses random walk graph kernels to compute similarity between

clusters and T learnable subgraphs. Our method is also inspired by the Ncut problem

and introduces a robust orthogonal loss function to enhance clustering performance.

6

3. Preliminaries

Notations. A graph is represented as G = (V , E ,X), where V = {v1, . . . , vn} denotes

the set of vertices, E is the set of edges, and X = [x1; . . . ; xn] ∈ Rn×r is the feature

matrix. Each graph G is labeled by a ground-truth one-hot vector y ∈ {0, 1}C , where C

is the number of graph classes. The adjacency and degree matrices are A,D ∈ {0, 1}n×n,

respectively. The normalized Laplacian matrix is defined as L = I−D− 1
2 AD− 1

2 , where I

is the identity matrix. Matrix L can be decomposed as UΛU⊺, where U ∈ Rn×n contains

the eigenvectors, and Λ = diag([λ1, . . . , λn]) is the diagonal matrix of eigenvalues. For

a graph with self-loops, the adjacency matrix is modified to Ã = A + I, and the degree

matrix becomes D̃. The normalized adjacency matrix with self-loops W̃ is expressed

as D̃− 1
2 ÃD̃− 1

2 . Detailed notations used in this paper are listed in Table 1.

Table 1: Notations and their descriptions.

Notations Descriptions

K Number of clusters of G

C Number of graph classes

M Number of prototypes for all the graphs

L Number of node embedding layers

X ∈ Rn×r Raw node features of G

A,D,L ∈ Rn×n Adjacency/ Degree/ Normalized Laplacian matrix of G

W̃ ∈ Rn×n Normalized adjacency matrix with self-loops of G

H ∈ Rn×d Node embeddings of G

S ∈ Rn×K Soft cluster assignment matrix of G

µk ∈ Rd Centroid embedding for the k-th cluster of G

E ∈ RK×d Cluster embeddings of G

Q ∈ RK×M Prototype assignment matrix of G

Pintra,Pinter,P ∈ RC×M Intra/ Inter/Whole correspondence matrices for all the graphs

o ∈ RK Cluster importance mask of G

M ∈ RM×d Prototype embeddings for all the graphs

EG , ẼG ∈ RKd Graph embeddings/Masked graph embeddings of G

y1, y2 ∈ RC Class prediction/Masked class prediction of G

7

GNN Explanation. In the graph classification task, a GNN model f is trained to clas-

sify a graph G into its corresponding graph label y, i.e., f (G) 7−→ y. In this paper, we

focus on discovering vital subgraphs Gsub that has the greatest impact on the label of

graph G, serving as explanations for the graph. From a mutual information perspec-

tive, we maximize the mutual information I between Gsub and the graph label y, thereby

encouraging Gsub to retain predictive capabilities regarding the graph label y.

max
Gsub

I (Gsub, y) =: min
Gsub,g, f

LCE(g ◦ f (Gsub), y) (1)

Here, an explanatory module g is introduced to identify Gsub. Post-hoc approaches first

pretrain GNNs model f , and then optimize the explanatory module g while freezing

model f . In contrast, built-in approaches jointly optimize both f and g.

4. Method: CIFlow-GNN

While existing methods tend to misclassify the neighboring irrelevant nodes as part

of the vital subgraphs, we propose to explicitly separate them by graph clustering. To

enhance clustering quality, we modulate the cluster information flow at both the cluster

and prototype levels. As shown in Fig. 2, CIFlow-GNN consists of two modules: a

graph clustering module and a cluster prototype module. The graph clustering module

uses spectral clustering to partition the graph into dense subgraphs (clusters) while

simultaneously modulating the cluster information flow at the cluster level. The cluster

prototype module further refines clusters across graphs and learns cluster importance

masks at the prototype level. In the following, we introduce the architecture of CIFlow-

GNN in detail.

4.1. Graph Clustering Module

In this module, each graph is partitioned into K clusters through node assignments

informed by structural connectivity and feature similarity. To encourage the formation

of semantically meaningful clusters, we introduce two complementary objectives: a

cluster connectivity loss and a cluster feature loss. These objectives jointly guide the

clustering process by modulating the information flow at the cluster level within each

graph. The nodes in the clusters are then aggregated into cluster embeddings.

8

𝝈(෪𝑾𝟎𝑿𝚯)

MLP𝜽

···

Input Graph

Node

Embeddings 𝑯

𝓛𝒄𝒐𝒏

𝓛𝒇𝒆𝒂
+

Prediction

𝒚𝟏

෤𝑦~𝑪𝒂𝒕(𝐶, 𝑦1)

𝐶

⨀
Repeat

𝐾 times

𝑀
𝑷𝒊𝒏𝒕𝒆𝒓

෤𝑦 = 𝑐1

Prototype

Embeddings 𝑴

𝓛𝒑𝒓𝒐𝒕𝒐

⨀

Sum

Pooling

⨀

Classifier*

𝓛𝟏

Important Nodes

Cluster

Embeddings 𝑬

𝐾

𝑀

𝐾

𝑀

𝑷𝒓𝒆

⨀: Hadamard product
𝑪𝒂𝒕(·,·): Categorical distribution

Classifier*: share the same weights

: Important prototype

: Important cluster

𝝈(෪𝑾𝟏𝑿𝚯)

𝝈(෪𝑾𝑳𝑿𝚯)

MLP𝝋 𝑁

𝐾

MLP𝝍

෤𝑦 = 𝑐1

𝑷𝒊𝒏𝒕𝒓𝒂

Graph Clustering Cluster Prototype

Cluster Assignment

Matrix 𝑺

Cluster Assignment

Matrix 𝑸

Cluster Importance

Mask 𝒐

Concat

Prediction

𝒚𝟐

Classifier*

𝓛𝟐

Concat

Correspondence Matrix

Figure 2: Overview of the proposed CIFlow-GNN framework.

4.1.1. Cluster Assignment Matrix

The goal of this step is to obtain cluster assignment matrix S. First, we compute

cluster-friendly node embeddings at layer l following [33]:

H(l) = σ
(
W̃lXΘ

)
(2)

where Θ is the weight matrix. The initial embeddings, H(0) = XΘ, can be gained

by applying a linear layer on the node feature matrix X. This design forms cluster

structures in the embedding space [33].

Then, to better leverage the intermediate node embeddings, we propagate l = L

times to generate a sequence of intermediate matrices
{
H(0),H(1), ...,H(L)

}
. The final

node embeddings H ∈ Rn×d is achieved by combining all the intermediate node em-

bedding matrices with Multi-Layer Perceptrons (MLP):

H = MLPθ
(
concat

(
H(l) | l = 0, 1, . . . , L

))
(3)

Finally, we partition each graph into K clusters and aggregate the embeddings of

the nodes in each cluster into a single vector using the cluster assignment matrix. To

learn the soft cluster assignment matrix S ∈ Rn×K , we use an MLP followed by a

row-normalized softmax function:

S = Softmax(MLPφ(H)) (4)

where Si,k represents the probability that node vi belongs to the k-th cluster.

While Eq. (4) assigns nodes to clusters, it lacks explicit constraints on preserv-

ing structural and feature properties within clusters. To address this, we employ the

9

cluster connectivity loss to partition the graph into densely connected clusters and the

cluster feature loss to modulate the cluster information flow at the cluster level, i.e.,

intra-cluster node similarities are strengthened and inter-cluster node similarities are

weakened.

4.1.2. Cluster Connectivity Loss

To ensure nodes in each cluster are densely connected, we optimize the loss of

spectral clustering, specifically the normalized cut (Ncut) [21]:

min
T∈Rn×K

Tr(T⊺D̃−1/2L̃D̃−1/2T) subject to T⊺T = I (5)

where the matrix T contains the first K eigenvectors of L̃ = I − W̃ as columns. We

define column vector z(0) to be a column of matrix H(0). Then, z(l) can be computed

recursively as z(l) = W̃z(l−1). This leads to the following expression:

z(l) = W̃z(l−1) = W̃2z(l−2) = · · · = W̃lz(0)

= W̃l (c1u1 + c2u2 + · · · + cnun)

= c1λ
l
1u1 + c2λ

l
2u2 + · · · + cnλ

l
nun

(6)

where [λ1, λ2, . . . , λn] are the eigenvalues and [u1, u2, . . . ,un] are the eigenvectors of

W̃, which means each column of H(l) is a combination of the eigenvectors of W̃. Since

W̃ and L̃ share the same eigenvectors, H can be considered as a combination of the

eigenvectors of L̃. Consequently, as S is constructed by combining the columns of H,

we treat S as spectral embeddings, i.e., T in Eq. (5). This approach avoids the explicit,

expensive, and non-differentiable eigendecomposition of the Laplacian matrix. The

cluster connectivity loss is defined as follows:

Lcon = min
S∈Rn×K

Tr(Norm(S)⊺D̃−1/2L̃D̃−1/2Norm(S))︸ ︷︷ ︸
spectral loss

+ ∥Norm(S)⊺Norm(S) − IK∥F︸ ︷︷ ︸
orthogonal loss

(7)

where Norm(S) is obtained by applying the Euclidean norm to each column of ma-

trix S and ∥·∥F denotes the Frobenius norm. Notably, our orthogonal loss allows for

partitioning the clusters into varying sizes, making it robust for real-world scenarios.

10

mean2

mean3

mean1

prototype1 prototype2

prototype3

∙∙∙

mean1

mean2

Prototype Level

Cluster Level Cluster Level

Pull together

Push apart

𝑮𝒊 𝑮𝒋

Vital subgraphsCluster I

Cluster II

Cluster III

Before

After

Cluster I

Cluster II

Cluster III

Figure 3: Illustration of modulating the cluster information flow in CIFlow-GNN at both the cluster level

(Lfea) and the prototype level (Lproto). As a model-level method, the prototypes are shared across clusters

within all graphs.

4.1.3. Cluster Feature Loss

To ensure that nodes within the same cluster exhibit similar embeddings and col-

lectively represent specific group characteristics, whereas dissimilar clusters maintain

distinct properties, we design a cluster feature loss. This loss pulls each node close to

its cluster centroid while pushing apart different cluster centroids:

Lfea =

K∑
k=1

1
|Ck |

∑
i∈Ck

∥∥∥hi − µk

∥∥∥2 − 1
K − 1

K∑
k=1

K∑
k̂=1,k̂,k

∥∥∥µk − µk̂

∥∥∥2 ,
Ck = {{i} | Si,k = max(Si,:), i = 1, 2, . . . ,N}

(8)

where ∥·∥ denotes the Euclidean norm, Ck represents the set of nodes assigned to the

k-th cluster, hi denotes the embeddings of node i, and µk/µk̂ is the centroid of the k/k̂-th

cluster. The term Si,k denotes the probability that node vi in graph G belongs to the

k-th cluster. A node vi is allocated to cluster Ck if it exhibits the highest probability of

membership in that cluster. Since employing argmax for this allocation yields a non-

differentiable problem, we sample from the matrix S using a categorical distribution,

i.e., S̃i ∼ Cat(K,Si). Then, we apply the reparameterization trick [34] as follows.

S̃i,k =


1,
∑k−1

j=0 Si, j < ξ ≤
∑k

j=0 Si, j

0, otherwise
(9)

where ξ ∼ U(0, 1) (uniform distribution). Finally, µk ∈ Rd is computed as µk =

1
|Ck |

SUMcol(S̃:,k ⊙H) using the sum pooling operation applied to each column.

11

Our cluster feature loss is a proxy of the well-known InfoNCE loss [22] in con-

trastive learning [35]. Optimizing the cluster feature loss reduces the mutual informa-

tion among clusters, realizing the modulation of cluster information flow. We analyze

the theoretical connection between cluster feature loss and the InfoNCE loss. Specif-

ically, we treat the nodes and their corresponding cluster centroid as positive pairs,

while considering the nodes and the centroids from other clusters as negative pairs.

Then we have the following theorem:

Theorem 1. The cluster feature loss is a lower bound of the InfoNCE loss. Formally,

Lfea ≤
K

K−1LInfoNCE, where K is the number of clusters.

Proof. See the proof in the Appendix.

In Fig. 3, we use two graphs from the Mutagenicity dataset to illustrate the whole

process of modulating the cluster information flow. In graph Gi, the two subgraphs in

cluster I (blue dashed box) are vital subgraphs to the graph label prediction. However,

they are separated by the nodes in cluster II (yellow dashed box), thus causing an

information mixture in every message-passing step. To address this, we partition the

graph into K = 3 clusters and modulate both the intra- and inter-cluster information

flow at the cluster level, which facilitates direct information flow within the subgraphs

in the same cluster while mitigating the information mixture across distinct clusters.

4.1.4. Cluster Embeddings

The embeddings of the clusters for each graph are computed as:

E = S⊺H (10)

where the k-th row of E ∈ RK×d is the embedding of the k-th cluster. The graph

embedding EG ∈ RKd is formed by concatenating each row of the cluster embeddings

E. We feed EG into a classifier to compute class prediction y1.

4.2. Cluster Prototype Module

Our CIFlow-GNN aims to identify label-relevant subgraphs (clusters) that serve as

explanations for graph classification tasks. Thus, the importance of each cluster should

12

be evaluated. A straightforward way is to apply an MLP to the cluster embeddings E in

each graph and learn their importance values. However, such an instance-level method

lacks a global understanding of the whole dataset. In this module, we use prototype

learning to learn a model-level cluster importance mask for each cluster. The proto-

types are designed to capture common representative patterns of similar clusters across

graphs. Nevertheless, improper cluster-prototype correspondence could introduce irrel-

evant cluster information through backpropagation and thus lead to misclassification of

neighboring irrelevant nodes. To mitigate this, we propose a cluster prototype loss to

modulate the information flow at the prototype level.

4.2.1. Cluster Importance Mask

The cluster importance mask o ∈ RK represents the significance values of clusters

within each graph. To compute this mask, we develop a three-step framework that

integrate information from all graphs. First, we classify all the clusters across differ-

ent classes in the dataset into different prototypes and learn the prototype assignment

matrix. Then, we introduce two correspondence matrices to demonstrate the relative

importance of prototypes both within a class and across classes. Finally, we compute

the mask o by performing a Hadamard product over the above matrices. We allocate a

pre-determined number M of prototypes for all clusters across the dataset.

The first step in the module is to learn the prototype assignment matrix Q ∈ RK×M

for each graph, where Qk,m represents the probability that the k-th cluster belongs to the

m-th prototype. We use an MLP combined with a row-normalized softmax function to

compute matrix Q:

Q = Softmax(MLPψ(E)) (11)

The next step involves learning the correspondence matrix P ∈ RC×M between the

classes and the prototypes, where C is the number of graph classes. In particular, we

introduce two learnable matrices: Pintra ∈ RC×M and Pinter ∈ RC×M . The y-th row of

Pintra is softmax-normalized, representing the relative importance of prototypes within

the y-th class. Similarly, the m-th column of Pinter is softmax-normalized, indicating the

relative importance of the m-th prototype across different classes. Note that the m-th

prototype is crucial to the y-th class when both [Pintra]c,m and [Pinter]c,m have large val-

13

ues. Therefore, we define the correspondence matrix P that displays the corresponding

significance of prototypes for each class using the Hadamard product:

P = Pintra ⊙ Pinter (12)

A direct way to select the row in P that indicates the significance of prototypes

is to apply the argmax operation to the class prediction y1. However, the argmax op-

eration is inherently non-differentiable, which prevents the cluster prototype module

from being jointly optimized with the parameters in the graph clustering module. To

address this, we sample from the class prediction y1 by the categorical distribution, i.e.,

ỹ ∼ Cat(C, y1). Then, we apply the reparameterization trick [34] to enable differentia-

bility. Specifically, we reparameterize the pseudo-label ỹ as:

ỹ[c] =


1,
∑c−1

j=0 y1[j] < ξ ≤
∑c

j=0 y1[j]

0, otherwise
(13)

where ξ ∼ U(0, 1) (uniform distribution), [c] indexes the c-th entry of a vector. The c-th

row in matrix P corresponding to ỹ[c] = 1 is selected as the target row. Subsequently,

we replicate the selected row K times to form the matrix Pre ∈ RK×M , with the size K

chosen to be compatible with the matrix Q in Eq. (14).

The final step involves obtaining a customized cluster importance mask o =

[o1, ..., oK]T ∈ RK for the K clusters in each graph. We consider the importance of

the k-th cluster indirectly by the integration of the probability it corresponds to the

prototypes and the probability of these prototypes corresponds to classes. The clus-

ter importance mask o is computed via the Hadamard product of matrices Q and Pre,

followed by sum pooling on each row:

o = SUMrow(Q ⊙ Pre) (14)

where a larger value of ok indicates greater importance of the k-th cluster.

As shown in the framework in Fig. 2, the input graph is partitioned into K = 3

clusters using the graph clustering module. The resulting cluster embeddings are then

assigned to M = 3 prototypes, as defined in Eq. (11), to generate the prototype as-

signment matrix Q. In this example, the first, second, and third clusters are mapped

14

to the first, second, and third prototypes, respectively. Simultaneously, by employing

the reparameterization trick on prediction y1, we derive the pseudo-label ỹ[c1] = 1 for

the input graph, as specified in Eq. (13). The c1-th row of the correspondence matrix

P is selected and replicated K = 3 times to form matrix Pre. From Pre, it is evident

that the third prototype is the most significant for the given class. Next, Eq. (14) is

applied to compute the importance values for each cluster. In this example, the third

cluster, which aligns most closely to the third prototype in matrix Q, achieves the high-

est cluster significance value o3. Consequently, the third cluster is identified as the

interpretable vital subgraph in the input graph.

4.2.2. Cluster Prototype Loss

As a model-level approach, our method establishes connections between similar

clusters by associating them with shared prototypes, thereby facilitating their alignment

across different graphs. Therefore, it reduces the risk of bias in identifying important

clusters due to incorrect predictions in individual graphs and further promotes cluster-

ing refinement. Nevertheless, this prototype learning method concurrently introduces

information from other less relevant prototypes when computing cluster importance

masks.

The significance of a cluster to a specific class is indirectly represented through

its association with the prototypes, i.e., matrix Q, as derived from Eq. (11), and the

importance of these prototypes to the class, i.e., matrix Pre, as specified in Eq. (14).

A prototype is designed to capture the common characteristics of a group of clusters

within the dataset and each cluster should generally be close to one prototype. How-

ever, the prototype assignment matrix Q is a soft matrix containing continuous values

between [0, 1]. During the calculation of the cluster importance mask o, interference

from other prototypes may occur if the row values of Q do not closely resemble one-

hot encodings. To ensure accurate correspondence assignment between clusters and

prototypes, we design a cluster prototype loss to clear the membership of each cluster

by modulating inter-cluster information flow at the prototype level.

First, we define the prototype embeddings M ∈ RM×d, which are shared among

clusters across all graphs in the dataset. As shown in Fig. 4, Gi and G j are partitioned

15

𝑮𝒊

𝑮𝒋

Graph clusters
(Subgraphs)
𝐾 = 3

Graph
clustering

Graph
clustering

(),

(),

(),

(),

MLP

(),

(),

Graph cluster
Embeddings

Cluster
Assignment

Matrix

Prototype
Embeddings
𝐌 ∈ ℝ𝑀×𝑑

𝐄 ∈ ℝ𝐾×𝑑 𝐐 ∈ ℝ𝐾×𝑀

𝑀 = 4

Figure 4: Illustration of the prototype embeddings computation process.

into K = 3 clusters, generating corresponding cluster embeddings E and prototype

assignment matrix Q. Then, similar clusters from Gi and G j are mapped to the same

prototype in the latent space based on the matrix Q, yielding the prototype embed-

dings. Specifically, for a batch of size B, the set of prototype assignment matrices is{
Q(1), . . . ,Q(B)

}
, where Q(b) ∈ RK×M represents the prototype assignment matrix of

the b-th graph. By concatenating these matrices along the first dimension, we obtain

Q(All) ∈ RBK×M . Similarly, concatenating all cluster embeddings
{
E(1), . . . ,E(B)

}
yields

E(All) ∈ RBK×d. The prototype embeddings are then computed as follows:

M =
Q(All)T E(All)

SUMcol(Q(All))
(15)

where SUMcol(·) denotes the sum pooling operation applied to each column. The nor-

malization term SUMcol(Q(All)) ensures that the prototype embeddings are not influ-

enced by the varying number of clusters associated with each prototype.

Then, we increase the separation among different prototype embeddings as demon-

strated at the prototype level in Fig. 3. As CIFlow-GNN is a built-in approach, reg-

ulating the prototype information through backpropagation not only drives prototype

assignment matrix Q closer to one-hot encodings but also strengthens the separation

of clusters. Additionally, we ensure that each prototype is associated with at least one

cluster by enforcing that each column of matrix Q(All) contains at least one value close

16

to 1. Our cluster prototype loss function is as follows:

Lproto = −
1

2M(M − 1)

M−1∑
i=1

M∑
j=i+1

∥∥∥Mi,: −M j,:
∥∥∥2 + 1

M

M∑
i=1

min(1 −Q(All)
:,i) (16)

where Mi,: represents the embedding of the i-th prototype, 1 is an all-ones matrix, and

Q(All) is the concatenation of prototype assignment matrices between the clusters and

prototypes across a batch of graphs.

4.2.3. Masked Cluster Embeddings

We use the vector o ∈ RK to mask the graph cluster embeddings E =
{
Ek,:
}K
k=1,

preserving only the predictive portion Ẽ = {Ẽk,:}
K
k=1 by the Hadamard product:

Ẽk,: = Ek,: ⊙ ok k = 1, . . . ,K (17)

Similar to EG , the masked graph embeddings ẼG is constructed by sequentially con-

catenating each row of the masked cluster embeddings Ẽ. The resulting ẼG is then fed

into the same classifier as used for EG to compute masked class prediction y2.

4.3. Model Training

Our goal is to learn a built-in interpretable GNN that can identify vital subgraphs

while maintaining comparable accuracy. For better prediction performance, we mini-

mize the cross-entropy loss on the training dataset:

L1 = LCE(y1, y) (18)

where y ∈ {0, 1}C is the one-hot ground truth label and y1 ∈ RC is the class prediction

using the graph embeddings EG . For better interpretation performance, we consider a

cluster accuracy loss that encourages the clusters selected by the cluster prototype mod-

ule to preserve more label-relevant information and achieve a comparable classification

performance as using all the clusters:

L2 = LCE(y2, y) (19)

where y2 ∈ RC is the prediction using the masked graph embeddings ẼG . Since the

pseudo-label ỹ, which serves as one of the inputs for the cluster prototype module,

17

Table 2: Statistics of four datasets for graph interpretation.

Ground truth subgraph Graph number Class number

Labeled-Motif Tree motif (class 0); Grid motif, Hexagon motif (class 1) 2,000 2

Mutagenicity [36] Nitro groups (-NO2), Amino groups (-NH2) 4,337 2

Solubility [37] Hydroxyl groups (-OH) 1,144 2

Benzene [38] Benzene structure (excluding hydrogen atoms) 12,000 2

is derived from prediction y1, improving class prediction performance consequently

enhancing interpretation. To sum up, in conjunction with the previous constraints on

the cluster connectivity loss Lcon and cluster feature loss Lfea, as well as the cluster

prototype loss Lproto in Eq. (7), Eq. (8), and Eq. (16), the full objective is defined as

follows:

L = L1 + λ2L2 + λconLcon + λfeaLfea + λprotoLproto (20)

where λ2, λcon, λfea, λproto are hyperparameters controlling the importance of each part.

5. Experimental Evaluation

5.1. Baselines and Hyperparameters

We choose the following methods that integrate explanation functionality internally

as baselines, including 6 post-hoc models (PGExplainer [23], SubgraphX [13], EiG-

Search [7], MAGE [28], GAFExplainer [24], and ConfExplainer [9]), and 4 built-in

models (ProtGNN [14], VGIB [15], PGIB [16], and GIP [31]). Since the subgraphs

generated by GIP do not directly correspond to node sets in the original graph, we

report only its classification performance and efficiency results. Moreover, we exclude

the confidence loss term for ConfExplainer in the graph classification task, as ground-

truth edge labels are not available.

For CIFlow-GNN, we adopt Adam with a learning rate of 0.01, training 350

epochs for graph classification and 100 epochs for graph interpretation, with batch

sizes of 32 and 128, respectively. The hyperparameters λcon and λfea are selected from

{0.01, 0.05, 0.1, 0.3}, λ2 is selected from {0.1, 0.3, 0.5, 1}, and λproto is selected from

18

Table 3: Interpretation performance (ROC AUC ↑) of different methods on 4 interpretation datasets. The best

results for each dataset are highlighted in bold, while the runner-up results are indicated with underlines.

Dataset
Methods

PG
Explainer

Sub
graphX ProtGNN VGIB PGIB

EiG-
Search MAGE

GAF
Explainer

Conf
Explainer

CIFlow-
GNN

Labeled-Motif 77.1±5.1 93.9±2.2 58.0±4.7 68.4±12.6 41.5±1.4 94.0±3.3 93.2±2.7 50.3±4.5 91.2±1.6 95.6±2.4

Mutagenicity 62.5±1.3 61.6±2.0 67.8±6.6 64.6±1.8 53.2±2.5 76.4±0.9 75.8±2.0 63.6±4.9 77.3±1.9 79.0±2.9

Solubility 77.9±4.9 83.4±4.2 56.2±12.1 67.5±4.7 65.0±2.6 85.9±4.7 88.2±2.4 85.2±3.6 80.5±3.5 93.2±3.9

Benzene 48.2±1.4 77.1±3.1 66.4±9.1 62.2±2.4 61.3±1.8 77.6±3.0 77.4±4.1 22.2±8.3 75.3±4.4 79.9±4.2

{0.05, 0.1, 0.15}. The number of node embedding layers L is selected from {2, 3, 4, 5, 6}.

The number of clusters per graph K is selected from {2, 3, 4, 5}. We select the number

of prototypes M from C to KC. For all comparison methods, the hyperparameters are

configured based on the settings described in the respective original papers. All ex-

periments are conducted on a server equipped with a dual-core Intel(R) Xeon(R) Gold

6226R CPU @ 2.90GHz, 256 GB memory, an Nvidia GeForce RTX 3090 GPU, and

the Ubuntu 18.04.1 LTS operating system. We make our code and datasets publicly

available at https://github.com/YJYTJ/CIFlow-GNN.

5.2. Graph Interpretation

5.2.1. Datasets and Experimental Settings

We evaluate our CIFlow-GNN using 4 datasets for GNN interpretation, including a

synthetic dataset and 3 real-world biological datasets. We split the 3 real-world datasets

randomly into training/validation/test sets in a ratio of 80%/10%/10%. In Table 2, we

detail the statistics of the datasets for graph interpretation.

5.2.2. Interpretation Performance for Graphs

To evaluate the explanations for graphs, we report ROC AUC on 4 interpretation

datasets with ground truth. We calculate the ROC AUC between the ground truth

subgraphs related to graph properties and the vital subgraphs selected by our method.

Each experiment is repeated 3 times.

19

https://github.com/YJYTJ/CIFlow-GNN

Table 4: Interpretation performance (ROC AUC ↑) on two variants of CIFlow-GNN: a) only-Pinter, which

only utilizes Pinter as the correspondence matrix; and b) only-Pintra, which only utilizes Pintra as the corre-

spondence matrix in the cluster prototype module.

Dataset only Pinter only Pintra CIFlow-GNN

Labeled-Motif 94.2±3.7 95.0±1.5 95.6±2.4

Mutagenicity 73.5±2.8 78.6±1.4 79.0±2.9

Solubility 89.8±4.1 80.3±3.6 93.2±3.9

Benzene 77.8±5.3 75.6±3.7 79.9±4.2

As shown in Table 3, our method significantly outperforms the baselines by 3.1% ↑

on average and up to 5.7% ↑ at most. CIFlow-GNN achieves excellent results on

the Labeled-Motif dataset, indicating its effectiveness on datasets with clearly sepa-

rable graph structures and distinct cluster features. The suboptimal performance of

GAFExplainer on the Benzene dataset may be attributed to the scarcity of informative

node attributes in the dataset, as the model primarily depends on node feature informa-

tion for edge mask generation. As shown in Table 4, the variant only-Pinter achieves

the second-best performance on the Solubility and Benzene datasets, while only-Pintra

ranks second on the Labeled-Motif and Mutagenicity datasets. These results highlight

the effectiveness of our approach, which incorporates the relative importance of proto-

types both within a specific class and among different classes.

5.2.3. Interpretation Performance for Graph Classification Models

We adopt the fidelity metric F , as proposed in [16], to assess the faithfulness of

explanations to the GNN models. Formally, let yi and ŷi denote the ground truth and

predicted values for the i-th input graph. We use a binary importance mask mi ∈ Rn,

where a value of 1 indicates important nodes and its complement mask 1−mi represents

the remaining nodes. The fidelity score is computed as follows:

F = 1
N

N∑
i=1

(
I
(
ŷmi

i = yi

)
− I
(
ŷ1−mi

i = yi
))

(21)

where N is the number of test graphs. Moreover, we use Sparsity to quantify the

proportion of nodes selected in the explanations. Effective explanations should yield a

20

(a) Labeled-Motif (b) Mutagenicity (c) Solubility (d) Benzene

Figure 5: Comparisons of fidelity scores (F ↑) across different sparsity levels. PGExplainer, EiG-Search,

and GAFExplainer are edge-based methods, whereas others are subgraph-based methods similar to ours.

high F score at a given level of sparsity. The sparsity is computed as follows:

Sparsity =
1
N

N∑
i=1

(1 −
|Mi|

|Gi|
) (22)

where |Mi| and |Gi|mean the number of important nodes in the mask mi and the number

of nodes in Gi, respectively.

Fig. 5 illustrates the fidelity scores of CIFlow-GNN and baseline methods across

varying sparsity levels. As shown in the figure, CIFlow-GNN achieves the best model

interpretability on the Labeled-Motif, Solubility, and Mutagenicity datasets, and se-

cures the second-best performance at higher sparsity levels on the Benzene dataset.

Additionally, we observe that subgraph-based methods generally outperform their

edge-based counterparts. An exception is EiG-Search, as it achieves relatively high

fidelity despite being an edge-based approach, possibly because it is the only training-

free method among the compared approaches.

5.2.4. Interpretation Performance of Information Evaluation

An effective GNN explainer should be capable of distinguishing vital subgraphs

and complementary components. To this end, we introduce GInfo, an information

evaluation metric that is a variant of the InfoNCE loss [22]. It is computed as follows:

GInfo =
1

NK

N∑
i=1

K∑
k=1

1
|Ck |

∑
v∈Ck

log
ε · exp(sim(hv,µk))

exp(sim(hv,µk)) + 1
K−1
∑K

k̂=1,k̂,k
exp(sim(hv,µk̂))

(23)

21

Table 5: Information evaluation (GInfo ↓) of different methods on 4 interpretation datasets. The best results

for each dataset are highlighted in bold, while the runner-up results are indicated with underlines.

Dataset
Methods

PG
Explainer

Sub
graphX ProtGNN VGIB PGIB

EiG-
Search MAGE

GAF
Explainer

Conf
Explainer

CIFlow
-GNN

Labeled-Motif 0.62±0.01 0.32±0.02 0.58±0.01 0.32±0.01 0.44±0.01 0.48±0.01 0.45±0.01 0.52±0.02 0.37±0.01 0.04±0.02

Mutagenicity 0.61±0.01 0.54±0.06 0.59±0.01 0.20±0.03 0.60±0.01 0.56±0.02 0.54±0.02 0.47±0.02 0.17±0.02 0.13±0.01

Solubility 0.45±0.07 0.49±0.06 0.49±0.09 0.30±0.01 0.50±0.02 0.51±0.06 0.47±0.04 0.38±0.03 0.42±0.06 0.28±0.02

Benzene 0.42±0.07 0.59±0.01 0.61±0.01 0.33±0.04 0.52±0.01 0.55±0.06 0.54±0.02 0.44±0.03 0.40±0.04 0.30±0.04

where hv denotes the embedding of node v, and µk represents the centroid of the cluster

Ck. The Euclidean norm is used as the similarity function sim(·), with similarity values

normalized using min-max normalization. The hyperparameter ε is set to 1+e, keeping

the metric within the range of [0, 1]. We repeat each experiment 3 times.

For a node v, the centroid of its cluster serves as the positive sample, while the

centroids of other clusters act as negatives. A GInfo value closer to 0 indicates greater

information disparity. As shown in Table 5, CIFlow-GNN outperforms all baselines

across the datasets, with notable improvements on the Labeled-Motif and Mutagenicity

datasets. Among the baselines, VGIB performs competitively, while PGIB shows sub-

optimal performance. This is likely because PGIB only maps the identified subgraphs

to the prototypes while neglecting to project complement components onto prototypes,

and fails to maintain separation between prototype embeddings. In contrast, our ap-

proach maps each cluster to a prototype and enforces prototype diversity. ConfEx-

plainer achieves the second-best performance on the Mutagenicity dataset. It employs

a confidence-aware GIB mechanism that effectively directs information flow toward

vital subgraphs. As shown in the table, other methods demonstrate weaker capabilities

in distinguishing between vital subgraphs and complementary components.

5.2.5. Effect of cluster connectivity loss and cluster feature loss

We perform graph clustering by jointly optimizing cluster connectivity loss and

cluster feature loss, leveraging both the graph structure and cluster features. Fig. 6

shows the impact of the two losses on a molecular graph from the Mutagenicity dataset.

22

(a) only Lcon (b) only Lfea (c) both losses

Figure 6: Illustration of the impact of cluster connectivity loss (Lcon) and cluster feature loss (Lfea) on graph

clustering performance for a molecule in the Mutagenicity dataset.

Table 6: Statistical significance of cluster connectivity loss (Lcon) and cluster feature loss (Lfea) across 4

datasets, evaluated via t-tests. The table reports interpretation performance (ROC AUC ↑) and corresponding

p-values for CIFlow-GNN with and without each loss. A p-value < 0.05 indicates that the comparison is

statistically significant. The p-values that represent statistically significant results are highlighted in bold.

Dataset λcon = 0 λcon = 0.3 p-value λfea = 0 λfea = 0.3 p-value

Labeled-Motif 97.1±1.5 97.9±1.0 0.1464 92.7±1.0 99.3±0.23 8.74 × 10−8

Mutagenicity 63.1±3.4 70.7±7.2 0.0456 58.8±9.5 73.6±8.4 0.0013

Solubility 65.5±4.8 78.4±9.0 0.0195 61.2±17.8 79.3±13.5 0.0232

Benzene 66.6±7.5 78.3±1.5 0.0029 75.7±3.1 79.5±2.3 0.0190

Specifically, (a) uses only the cluster connectivity loss (λcon = 0.3), (b) uses only

the cluster feature loss (λfea = 0.3), and (c) combines both losses (λcon = 0.3 and

λfea = 0.3). As shown in Fig. 6(a), the benzene ring and the functional groups -CH3 are

incorrectly grouped into the same cluster due to the Ncut concept inherent in spectral

clustering. Fig. 6(b) shows that the carbon atoms on the benzene ring connected to

the functional groups form distinct clusters. This occurs because their embeddings

incorporate information from neighboring functional groups, leading to differences

compared to other carbon atoms. The cluster feature loss promotes separation among

clusters, thus further amplifying this discrepancy. Fig. 6(c) demonstrates a clearer and

more accurate partitioning of functional groups that exhibits stronger alignment with

the physio-chemical properties of the molecules in the real world.

We further conduct t-tests to evaluate the effectiveness of the cluster connectivity

loss Lcon and cluster feature loss Lfea, with results summarized in Table 6. Specifically,

23

Figure 7: Interpretation performance (ROC AUC↑) on 4 datasets (C = 2) across different cluster numbers

(K = 2, 3, 4) over 3 experiments.

we run 10 trials to compare the interpretation performance (ROC AUC) of CIFlow-

GNN with/without cluster connectivity loss (λcon = 0.3/λcon = 0), and calculate the cor-

responding p-values. A similar comparison is conducted to CIFlow-GNN with/without

cluster feature loss (λfea = 0.3/λfea = 0). Both losses have a statistically significant ef-

fect on the model performance across all datasets except the Labeled-Motif dataset,

where the p-value for cluster connectivity loss is 0.1464 (> 0.05). This is likely due to

the varying node features across motifs in Labeled-Motif, which makes cluster feature

loss the dominant factor in the clustering process. The notably lower p-value for clus-

ter feature loss on this dataset supports the hypothesis. Overall, these findings affirm

the statistical significance of both losses in improving model performance.

5.2.6. Hyperparameter Sensitivity of Interpretation Performance

As defined in the objective function Eq. (20), CIFlow-GNN employs 4 key hyper-

parameters: λ2, λcon, λfea, and λproto. To evaluate the impact of their interactions on the

model stability, we conduct sensitivity analyses across 4 datasets. For each analysis,

we fix one hyperparameter and vary the values of the remaining three. The results are

shown in Fig. 8, in which the dot color represents interpretation performance (ROC

AUC ↑). As illustrated in the figure, the model exhibits superior performance on the

Labeled-Motif dataset when the hyperparameters λ2, λfea, and λproto are set to relatively

large values. For Mutagenicity dataset, higher values of λcon, λfea, and λproto yield the

best results. On Solubility dataset, the optimal performance is achieved when λ2, λcon,

24

(a) Interpretation performance with respect to the parameters λ2, λcon, and λfea on 4 datasets

(b) Interpretation performance with respect to the parameter λ2, λcon, and λproto on 4 datasets

(c) Interpretation performance with respect to the parameter λ2, λfea, and λproto on 4 datasets

(d) Interpretation performance with respect to the parameter λcon, λfea, λproto on 4 datasets

Figure 8: Interpretation performance (ROC AUC ↑) with respect to the hyperparameters λ2, λcon, λfea,

and λproto on 4 datasets. These 4-D figures use color to represent ROC AUC values, indicating the fourth

dimension.

25

Table 7: Optimal CIFlow-GNN hyperparameters for interpretation (ROC AUC ↑).

Dataset
Hyperparameters

λ2 λcon λfea λproto K M L

Labeled-Motif 0.3 0.05 0.1 0.15 2 3 4

Mutagenicity 0.3 0.01 0.1 0.05 4 6 4

Solubility 1 0.05 0.01 0.05 4 5 5

Benzene 0.5 0.1 0.3 0.1 3 5 4

and λfea are large, while λproto remains small. Finally, the Benzene dataset benefits most

from larger λcon and λfea.

We further perform a hyperparameter analysis on the number of clusters K in Fig.

7. The results show that Labeled-Motif achieves the best ROC AUC at K = 2, Benzene

at K = 3, and the remaining two datasets at K = 4. These findings demonstrate that

the selection of K is determined not only by C, but also by the structural and feature

characteristics of individual graphs. In addition, we provide the optimal hyperparam-

eter configurations of CIFlow-GNN for achieving the best interpretation performance

(ROC AUC ↑) on 4 interpretation datasets in Table 7.

5.2.7. Visualization of Label-relevant Subgraphs

Fig. 9 illustrates the label-relevant subgraphs identified by CIFlow-GNN and two

comparison models: PGIB and SubgraphX on 4 datasets. PGIB is a subgraph-based

built-in method and SubgraphX is a subgraph-based post-hoc method. As shown in the

figure, both PGIB and SubgraphX misclassify nodes adjacent to the vital subgraphs

as part of them. SubgraphX only identifies tightly connected subgraphs and fails to

handle cases where multiple subgraphs are disconnected. In contrast, our CIFlow-

GNN demonstrates superior performance in identifying label-relevant subgraphs. In

Fig. 9(a)-(c), CIFlow-GNN accurately separates vital subgraphs from their comple-

ments in the Labeled-Motif dataset. Fig. 9(d)-(f) present that CIFlow-GNN is capa-

ble of detecting both -NO2 and -NH2 structures simultaneously in the Mutagenicity

dataset. Fig. 9(g)-(i) show CIFlow-GNN can identify multiple non-connected -OH

motifs within a single graph in the Solubility dataset. Fig. 9(j)-(l) demonstrate CIFlow-

26

(a) CIFlow (b) PGIB (c) SubgraphX (d) CIFlow (e) PGIB (f) SubgraphX

(g) CIFlow (h) PGIB (i) SubgraphX (j) CIFlow (k) PGIB (l) SubgraphX

Figure 9: Visualization of label-relevant subgraphs on Labeled-Motif (a-c), Mutagenicity (d-f), Solubility

(g-i), and Benzene (j-l) datasets. Bold edges connect the nodes that the models consider important. Green

arrows mark correctly predicted subgraphs, while red arrows highlight incorrect predictions, including both

missed important subgraphs and falsely identified unimportant subgraphs.

GNN not only identifies benzene rings but also distinguishes motifs resembling ben-

zene rings, such as a ring composed of one nitrogen atom and five carbon atoms.

5.3. Graph Classification

5.3.1. Datasets and Experimental Settings

We adopt 10 real-world benchmark graph datasets to evaluate our method for graph

classification performance, including 8 biological datasets and 2 social media datasets.

For a fair comparison, we follow the cross-validation procedure proposed in [39] which

involves using a 10-fold cross-validation for model evaluation and an inner holdout

method with 90%/10% training/validation split for model selection.

27

Table 8: Classification performance (Accuracy ↑) of different methods on 10 benchmark datasets. In general,

CIFlow-GNN outperforms the baseline methods on 8 out of 10 datasets. The best results per benchmark are

highlighted in bold, while the runner-up results are indicated with underlines. OOT indicates Out-Of-Time,

meaning the execution time exceeded 24 hours. OOM denotes Out-Of-Memory, indicating that the method

exceeded available memory resources.

Dataset
Methods

PG
Explainer

Sub
graphX ProtGNN VGIB PGIB GIP

EiG-
Search MAGE

GAF
Explainer

Conf
Explainer

CIFlow
-GNN

MUTAG 78.6±11.4 61.7±18.2 77.6±4.7 72.1±21.6 76.6±6.8 83.5±5.1 82.3±9.0 82.7±7.2 72.9±10.9 82.5±6.7 89.4±7.1

BZR 82.9±2.7 69.5±21.3 82.5±2.5 79.8±3.9 83.7±5.8 80.9±7.0 85.1±3.3 84.9±5.1 77.0±4.5 83.1±5.2 86.9±3.7

BZR_MD 69.0±3.3 63.1±10.7 67.6±9.0 51.6±6.2 61.4±10.0 63.4±5.5 65.7±9.8 67.1±7.8 54.9±5.7 60.8±7.1 70.8±7.3

DHFR 69.0±6.4 61.9±4.9 70.8±2.3 51.7±10.5 77.4±4.1 74.5±10.9 76.2±6.1 77.5±5.3 63.1±5.4 71.8±8.2 79.2±3.4

COX2 72.2±2.7 77.1±9.3 79.2±3.1 80.0±4.2 75.8±2.3 79.4±2.8 80.2±5.9 80.6±6.5 78.4±2.3 75.5±3.8 82.0±2.6

PROTEINS 72.5±3.5 72.6±11.9 74.3±2.6 68.4±6.5 74.7±3.1 79.5±3.5 74.1±5.0 73.1±5.1 62.1±5.5 72.5±5.2 75.2±5.3

NCI1 66.8±9.1 52.8±3.5 75.5±1.1 52.2±4.6 73.8±2.1 74.1±2.9 73.7±1.7 73.9±2.0 54.4±3.1 68.0±6.1 75.8±2.5

DD 68.0±4.2 OOT 81.8±1.8 67.5±8.1 67.3±3.3 OOM 70.9±5.9 OOT 55.9±4.6 74.8±2.7 77.6±2.5

IMDB-B 62.2±4.0 67.3±6.2 58.3±7.3 50.8±3.7 57.0±2.9 66.5±4.5 70.3±4.7 69.8±5.0 49.4±6.5 65.6±5.4 71.7±5.6

IMDB-M 40.0±6.5 46.7±2.3 36.0±5.7 33.9±3.1 37.0±3.9 41.9±4.3 45.9±3.7 46.1±3.5 45.1±2.5 44.9±4.5 47.9±3.4

5.3.2. Prediction Performance for Graph Classification Models

As shown in Tabel 8, our method achieves the best results on 8 out of 10 datasets

while securing the second-best performance on the PROTEINS and DD datasets.

CIFlow-GNN achieves an improvement of over 2% across multiple datasets, including

MUTAG, BZR, BZR_MD, DHFR, and IMDB-MULTI. Specifically, it outperforms the

runner-up method by 7.1% on the MUTAG dataset. This demonstrates that our method

achieves not only high interpretability but also outstanding predictive performance. In

comparison, ProtGNN achieves the highest accuracy on the DD dataset and ranks as

the runner-up on the NCI1 dataset. However, its performance degrades significantly

on the IMDB-BINARY and IMDB-MULTI datasets. A potential reason for this per-

formance gap is that ProtGNN is better suited for identifying simpler prototypes in bi-

ological datasets while struggling to adapt to the complexity of social media datasets.

EiG-Search achieves the second-best performance on the BZR and IMDB-BINARY

datasets, while MAGE ranks second on the DHFR and COX2 datasets. Additionally,

28

Table 9: Efficiency studies of different methods on MUTAG and DD datasets. The unit of running time is

second (s). The best results are highlighted in bold, while the runner-up results are indicated with underlines.

OOT indicates Out-Of-Time, meaning the execution time exceeded 6 hours. OOM denotes Out-Of-Memory,

indicating that the method exceeded available memory resources.

Methods
PGEx
plainer

Sub
graphX ProtGNN VGIB PGIB GIP

EiG-
Search MAGE

GAFEx
plainer

ConfEx
plainer

CIFlow
-GNN

MUTAG
Pre-training 13.4 13.6 0 0 0 0 13.6 13.9 106.4 14.1 0

Training 1.6×10−4 40.9 3.7×10−2 5.3×10−3 4.3×10−3 0.75 8.9 9.9 9.1×10−2 0.82 4.1×10−3

DD
Pre-training 218.7 106.2 0 0 0 0 102.1 105.9 113.7 103.5 0

Training 4.6×10−4 3766.4 160.4 5.4×10−3 4.9 OOM 353.8 OOT 9.4×10−2 1.1 5.7×10−3

GIP achieves the highest accuracy on the PROTEINS dataset, demonstrating its supri-

ority on datasets with prominent cluster structures.

5.4. Efficiency Studies

We evaluate the efficiency of our proposed method on two graph datasets: the small

dataset MUTAG, with an average of 17.9 nodes per graph, and the large dataset DD,

with an average of 284.3 nodes per graph. Using 100 graphs, we report the averaging

time cost required to generate explanations for each graph in 1 epoch. Additionally, we

report the pre-training time over 350 epochs for each post-hoc method following [13].

Each experiment is repeated 3 times, and the results are summarized in Table 9.

Among the six post-hoc methods, MAGE and SubgraphX exhibit significantly high

computational costs. This is mainly attributed to the calculation of the Myerson–Taylor

index and the use of Monte Carlo Tree Search (MCTS) for subgraph exploration, re-

spectively. In addition, GAFExplainer requires a longer pretraining time compared

with the other post-hoc methods, since it employs a GAT with 8 attention heads as its

GNN module, whereas the others adopt the GIN. The built-in methods are all subgraph-

based. Our method is significantly faster than ProtGNN and PGIB, as both rely on

MCTS to update prototype values, whereas our method does not. GIP encounters an

OOM issue on the DD dataset due to its use of dense adjacency matrices for comput-

ing the random walk kernels. Among all the methods, the time cost of PGExplainer

is shorter than ours. However, PGExplainer is an edge-based method where the se-

29

lected edges are often loosely connected, and it also requires a pre-training step. In

summary, our method demonstrates good computational efficiency compared to other

subgraph-based approaches.

6. Conclusion

We propose a novel framework for enhancing the interpretability of GNNs, named

Cluster Information Flow Graph Neural Networks (CIFlow-GNN), which modulates

the cluster information flow at both the cluster and prototype levels. Experimental re-

sults show that CIFlow-GNN achieves high-quality graph interpretation and classifica-

tion performance, along with competitive computational efficiency compared to other

subgraph-based approaches. However, there are still limitations in our work. Firstly,

our work primarily targets graphs with well-defined structural patterns, such as molec-

ular graphs. Due to the lack of ground-truth labels for vital subgraphs in existing social

network datasets, we have not been able to evaluate interpretability performance in

those domains. Secondly, we select the cluster corresponding to the highest score in

the cluster importance mask as the vital subgraph. For cases involving multiple impor-

tant subgraphs distributed across different clusters, we can employ a threshold to select

the Top-A clusters. For example, if the sum of the top-A cluster importance scores

exceeds a predefined threshold (e.g., 0.5) times the total sum of all cluster importance

scores, we treat these Top-A clusters as the vital subgraphs. However, determining the

optimal threshold is non-trivial and left for future work.

7. Acknowledgments

We thank the anonymous reviewers for their valuable and constructive comments.

This work was partially supported by the National Natural Science Foundation of China

under Grants 62176184 and 62473288, the Fundamental Research Funds for the Cen-

tral Universities, the Xiaomi Young Talents Program, and the Science and Technology

Development Fund, Macao SAR No. 0006/2024/RIA1.

30

Appendix A. The proof of Theorem 1

Proof. Without loss of generality, we calculate Lfea for the first cluster.

Lk=1
fea =

1
|C1|

∑
i∈C1

∥∥∥hi − µ1

∥∥∥2 − 1
K − 1

K∑
k̂=2

∥∥∥µ1 − µk̂

∥∥∥2
=

1
|C1|

∑
i∈C1

∥∥∥hi − µ1

∥∥∥2 − 1
K − 1

K∑
k̂=2

∥∥∥∥∥∥∥ 1
|C1|

∑
i∈C1

hi − µk̂

∥∥∥∥∥∥∥
2

=
1
|C1|

(
∑
i∈C1

∥∥∥hi − µ1

∥∥∥2 − 1
K − 1

K∑
k̂=2

∥∥∥∥∥∥∥∑i∈C1

(hi − µk̂)

∥∥∥∥∥∥∥
2

)

=
1
|C1|

(
∑
i∈C1

∥∥∥hi − µ1

∥∥∥2 − 1
K − 1

K∑
k̂=2

[
∑
i∈C1

∥∥∥hi − µk̂

∥∥∥2 + 2
∑

i, j∈C1 ,i, j

(hi − µk̂)T (h j − µk̂)])

=
1
|C1|

(
∑
i∈C1

∥∥∥hi − µ1

∥∥∥2 − 1
K − 1

∑
i∈C1

K∑
k̂=2

∥∥∥hi − µk̂

∥∥∥2) + A (*)

≤
1
|C1|

∑
i∈C1

(
∥∥∥hi − µ1

∥∥∥2 − 1
K − 1

K∑
k̂=2

∥∥∥hi − µk̂

∥∥∥2)

=
K

K − 1
·

1
|C1|

∑
i∈C1

(
∥∥∥hi − µ1

∥∥∥2 − 1
K

K∑
k̂=1

∥∥∥hi − µk̂

∥∥∥2)

= −
K

K − 1
·

1
|C1|

∑
i∈C1

(log exp
(
−
∥∥∥hi − µ1

∥∥∥2)

− [
1
K

K∑
k̂=1

log exp
(
−
∥∥∥hi − µk̂

∥∥∥2)])

≤ −
K

K − 1
·

1
|C1|

∑
i∈C1

(log exp
(
−
∥∥∥hi − µ1

∥∥∥2) − log[
1
K

K∑
k̂=1

exp
(
−
∥∥∥hi − µk̂

∥∥∥2)]) (**)

= −
K

K − 1
·

1
|C1|

∑
i∈C1

log
exp
(
−
∥∥∥hi − µ1

∥∥∥2)
1
K

∑K
k̂=1 exp

(
−
∥∥∥hi − µk̂

∥∥∥2)
=

K
K − 1

Lk=1
InfoNCE (A.1)

Since hi and h j progressively approach µ1 throughout the optimization process, the

term A in Eq. (∗) can be approximated as:

A = −
2

|C1|(K − 1)

K∑
k̂=2

∑
i, j∈C1 ,i, j

(hi − µk̂)T (h j − µk̂)

≈ −
2

|C1|(K − 1)

K∑
k̂=2

∑
i, j∈C1 ,i, j

||µ1 − µk̂ ||
2 ≤ 0 (A.2)

31

Additionally, we use Jensen’s inequality in Eq. (∗∗). By aggregating the loss across all

clusters, we derive the following inequality:

Lfea ≤
K

K − 1
LInfoNCE (A.3)

Thus, the cluster feature loss serves as a lower bound of the InfoNCE loss, thereby

completing the proof.

References

[1] X. Pan, X. Han, C. Wang, Z. Li, S. Song, G. Huang, C. Wu, A unified framework

for convolution-based graph neural networks, Pattern Recognition (2024) 110597.

[2] M. Jiang, G. Liu, Y. Su, X. Wu, Self-attention empowered graph convolutional

network for structure learning and node embedding, Pattern Recognition 153

(2024) 110537.

[3] Y. Wang, V. D. Calhoun, G. D. Pearlson, P. Kochunov, T. G. van Erp, Y. Du,

A graph transformer-based foundation model for brain functional connectivity

network, Pattern Recognition (2025) 111988.

[4] X. Fan, M. Gong, Y. Xie, F. Jiang, H. Li, Structured self-attention architecture for

graph-level representation learning, Pattern Recognition 100 (2020) 107084.

[5] X.-b. Ye, Q. Guan, W. Luo, L. Fang, Z.-R. Lai, J. Wang, Molecular substructure

graph attention network for molecular property identification in drug discovery,

Pattern Recognition 128 (2022) 108659.

[6] Y. Leng, L. Yu, Incorporating global and local social networks for group recom-

mendations, Pattern Recognition 127 (2022) 108601.

[7] S. Lu, B. Liu, K. G. Mills, J. He, D. Niu, Eig-search: Generating edge-induced

subgraphs for GNN explanation in linear time, in: ICML, 2024.

32

[8] Z. Wang, J. Guo, J. Liang, J. Liang, S. Cheng, J. Zhang, Graph segmentation

and contrastive enhanced explainer for graph neural networks, in: AAAI, Vol. 39,

2025, pp. 21393–21401.

[9] J. Zhang, X. Liu, D. Luo, H. Wei, Is your explanation reliable: Confidence-aware

explanation on graph neural networks, KDD (2025).

[10] A. Duval, F. D. Malliaros, Graphsvx: Shapley value explanations for graph neural

networks, in: ECML PKDD, Springer, 2021, pp. 302–318.

[11] M. Vu, M. T. Thai, Pgm-explainer: Probabilistic graphical model explanations

for graph neural networks, NeurIPS 33 (2020) 12225–12235.

[12] W. He, M. N. Vu, Z. Jiang, M. T. Thai, An explainer for temporal graph neural

networks, in: GLOBECOM, IEEE, 2022, pp. 6384–6389.

[13] H. Yuan, H. Yu, J. Wang, K. Li, S. Ji, On explainability of graph neural networks

via subgraph explorations, in: ICML, 2021, pp. 12241–12252.

[14] Z. Zhang, Q. Liu, H. Wang, C. Lu, C. Lee, Protgnn: Towards self-explaining

graph neural networks, in: AAAI, Vol. 36, 2022, pp. 9127–9135.

[15] J. Yu, J. Cao, R. He, Improving subgraph recognition with variational graph in-

formation bottleneck, in: CVPR, 2022, pp. 19396–19405.

[16] S. Seo, S. Kim, C. Park, Interpretable prototype-based graph information bottle-

neck, NeurIPS 36 (2024).

[17] S. Miao, M. Liu, P. Li, Interpretable and generalizable graph learning via stochas-

tic attention mechanism, in: ICML, 2022, pp. 15524–15543.

[18] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton, et al., Mastering the game of go without

human knowledge, nature 550 (7676) (2017) 354–359.

[19] J. Yu, T. Xu, Y. Rong, Y. Bian, J. Huang, R. He, Graph information bottleneck for

subgraph recognition, ICLR (2021).

33

[20] N. Tishby, F. C. Pereira, W. Bialek, The information bottleneck method, Proceed-

ings of the 37th Annual Allerton Conference on Communication, Control, and

Computing (2000) 368–377.

[21] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Transactions on

pattern analysis and machine intelligence 22 (8) (2000) 888–905.

[22] A. v. d. Oord, Y. Li, O. Vinyals, Representation learning with contrastive predic-

tive coding, arXiv preprint arXiv:1807.03748 (2018).

[23] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, X. Zhang, Parameterized

explainer for graph neural network, NeurIPS 33 (2020) 19620–19631.

[24] W. Hu, J. Wu, Q. Qian, Gafexplainer: Global view explanation of graph neural

networks through attribute augmentation and fusion embedding, IEEE Transac-

tions on Knowledge and Data Engineering (2025).

[25] Y.-M. Shin, S.-W. Kim, W.-Y. Shin, Page: prototype-based model-level explana-

tions for graph neural networks, IEEE transactions on pattern analysis and ma-

chine intelligence (2024).

[26] A. Sinha, S. Vennam, C. Sharma, P. Kumaraguru, Higher order structures for

graph explanations, in: AAAI, Vol. 39, 2025, pp. 20514–20521.

[27] B. Armgaan, M. Dalmia, S. Medya, S. Ranu, Graphtrail: Translating gnn predic-

tions into human-interpretable logical rules, NeurIPS 37 (2024) 123443–123470.

[28] N. Bui, H. T. Nguyen, V. A. Nguyen, R. Ying, Explaining graph neural networks

via structure-aware interaction index, in: ICML, 2024.

[29] S. Gui, H. Yuan, J. Wang, Q. Lao, K. Li, S. Ji, Flowx: Towards explainable graph

neural networks via message flows, IEEE Transactions on Pattern Analysis and

Machine Intelligence (2023).

[30] J. Deng, Y. Shen, Self-interpretable graph learning with sufficient and necessary

explanations, in: AAAI, Vol. 38, 2024, pp. 11749–11756.

34

[31] Y. Wang, S. Liu, T. Zheng, K. Chen, M. Song, Unveiling global interactive pat-

terns across graphs: Towards interpretable graph neural networks, in: KDD, 2024,

pp. 3277–3288.

[32] J. Wang, M. Liu, F. Nie, X. Li, Normalized cut co-clustering with out-of-sample

extension, Pattern Recognition (2025) 111881.

[33] W. Ye, Z. Huang, Y. Hong, A. Singh, Graph neural diffusion networks for semi-

supervised learning, arXiv preprint arXiv:2201.09698 (2022).

[34] W. Guo, J. Yang, H. Yin, Q. Chen, W. Ye, Picnn: A pathway towards interpretable

convolutional neural networks, in: AAAI, Vol. 38, 2024, pp. 2003–2012.

[35] H. Zhong, J. Wu, C. Chen, J. Huang, M. Deng, L. Nie, Z. Lin, X.-S. Hua, Graph

contrastive clustering, in: ICCV, 2021, pp. 9224–9233.

[36] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, C. Han-

sch, Structure-activity relationship of mutagenic aromatic and heteroaromatic ni-

tro compounds. correlation with molecular orbital energies and hydrophobicity,

Journal of medicinal chemistry 34 (2) (1991) 786–797.

[37] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,

A. Aspuru-Guzik, R. P. Adams, Convolutional networks on graphs for learning

molecular fingerprints, NeurIPS 28 (2015).

[38] B. Sanchez-Lengeling, J. Wei, B. Lee, E. Reif, P. Wang, W. Qian, K. Mc-

Closkey, L. Colwell, A. Wiltschko, Evaluating attribution for graph neural net-

works, NeurIPS 33 (2020) 5898–5910.

[39] F. Errica, M. Podda, D. Bacciu, A. Micheli, A fair comparison of graph neural

networks for graph classification, in: ICLR, 2020.

35

	Introduction
	Related Work
	Preliminaries
	Method: CIFlow-GNN
	Graph Clustering Module
	Cluster Assignment Matrix
	Cluster Connectivity Loss
	Cluster Feature Loss
	Cluster Embeddings

	Cluster Prototype Module
	Cluster Importance Mask
	Cluster Prototype Loss
	Masked Cluster Embeddings

	Model Training

	Experimental Evaluation
	Baselines and Hyperparameters
	Graph Interpretation
	Datasets and Experimental Settings
	Interpretation Performance for Graphs
	Interpretation Performance for Graph Classification Models
	Interpretation Performance of Information Evaluation
	Effect of cluster connectivity loss and cluster feature loss
	Hyperparameter Sensitivity of Interpretation Performance
	Visualization of Label-relevant Subgraphs

	Graph Classification
	Datasets and Experimental Settings
	Prediction Performance for Graph Classification Models

	Efficiency Studies

	Conclusion
	Acknowledgments
	The proof of Theorem 1

