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ABSTRACT

We introduce an open dataset for video event spotting focused on fast-paced events
in shadowboxing videos captured at high frame rates. The dataset features ac-
curate frame-level annotations for diverse punch types alongside pose keypoint
annotations, enabling the development of robust event recognition models. This
work presents a novel benchmark exploring two distinct approaches to event spot-
ting: direct prediction from image data and a staged approach involving interme-
diate pose estimation followed by event detection based on the detected keypoints.
We provide baseline neural network solutions incorporating temporal information
for both tracks, facilitating comparative analysis of these methodologies. This
shadowboxing dataset advances the field of automatic sports analysis and con-
tributes to the broader understanding of video events recognition.

1 INTRODUCTION

Understanding and interpreting video content is a fundamental challenge in computer vision with
vast real-world implications. From autonomous driving and surveillance systems to sports analytics
and human-computer interaction, accurate video analysis enables us to extract meaningful infor-
mation about events and actions occurring within visual data streams. One critical task of video
understanding is event spotting: the task of precisely identifying specific event of interest occur-
rences within a video sequence. Specifically, this involves highlighting the exact frame in which a
fast-paced event occurs.

However, accurately spotting fast-paced events remains a significant challenge because it often re-
quires detecting minute features within vast amounts of data from two modalities: spatial and tem-
poral. Existing approaches often struggle with the high temporal resolution required to capture
subtle movements and nuances characteristic of rapid actions. Moreover, many datasets used for
benchmarking event detection either focus on slower-paced activities or lack detailed frame-level
annotations essential for training robust models.

To address these critical needs and challenges, we introduce ShadowPunch, a novel open dataset
specifically designed for video event spotting in the sports domain of shadow boxing. Shadow
boxing is a high-intensity activity characterized by rapid punches and intricate movements, making
it an ideal testbed for developing robust event recognition models.

Our dataset features accurate frame-level annotations for a diverse range of punch types, includ-
ing jabs, hooks and uppercuts. Furthermore, ShadowPunch includes pose keypoint annotations,
capturing the positions of key body joints in different moments of the video sequences. This addi-
tional layer of information allows researchers to explore sophisticated event recognition pipelines
that leverage intermediate spatial cues. By providing this rich and comprehensive dataset, we aim
to empower the computer vision community with a valuable resource for developing and evaluating
advanced models capable of accurately spotting fast-paced events in video data.

This work makes the following key contributions to the field of event recognition:

• Introduction of ShadowPunch dataset: We present ShadowPunch, a novel open dataset
for video event spotting in the domain of shadowboxing. This high-intensity activity
presents unique challenges due to rapid movements. ShadowPunch provides accurate
frame-level annotations for various punches and incorporates pose keypoint annotations.
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• Benchmark for Comparing Event Spotting Approaches: We propose a novel benchmark
comparing two distinct methodologies for event spotting: direct prediction from image data
and a staged approach incorporating intermediate pose estimation. This benchmark allows
researchers to directly compare the effectiveness of end-to-end versus staged approaches
for event spotting.

• Baseline Solutions: To facilitate further research, we provide baseline implementations for
both the direct prediction and staged approaches, providing researchers with a foundation
to develop and evaluate their own methods.
The code and the dataset are publicly available at LINK.

2 RELATED WORK

Video understanding tasks. Advances in deep learning and available computing power have driven
remarkable progress in video understanding in recent years. The video understanding sphere in-
cludes several related tasks ordered by their temporal resolution (coarsest to finest): Action classifi-
cation involves assigning a label from a predefined list to an entire video clip based on its content.
Temporal Action Segmentation (TAS) involves identifying the start and end points in time of an ac-
tion within an untrimmed video sequence and assigning a class label to the action. Action spotting
is a task of detecting the presence and precise temporal location of an event within a video, typically
pinpointing it to a single frame and providing corresponding class label. These events are usually
brief.

Hong et al. (2022) further differentiates these tasks by introducing precise temporal event spotting.
This defines correct prediction as follows: The predicted event frame timestamp must fall within δ
frames (a small window of just a few video frames) of the labeled ground-truth event and also have
the correct class label. We will further focus on this task formulation.

Public datasets. Several public datasets are available for action detection or spotting in general
and particularly within the sports domain; these datasets usually come with extra annotations to
provide more context or in-depth information on actions. Historically, many sport-related datasets
have focused on temporal segmentation of prolonged events. For example, FineDiving (Xu et al.,
2022) features 3000 video samples from various diving competitions. Each annotation includes not
only the type and difficulty level of the diving action but also the judges’ scores.

Some datasets provide action annotations with both class and temporal boundaries along with spa-
tial boundaries of the actor performing an action on a playground, allowing for both action analysis
and multi-object tracking (MoT). For example, FineSports (Xu et al., 2024) consists of 16,000 an-
notated events in basketball videos, accompanied by approximately 123,000 spatial bounding boxes
of players.

There are also datasets focusing primarily on event spotting tasks. For instance, SoccerNet-v2 con-
tains a large collection of football broadcast videos (764 hours) with 110,458 annotated action times-
tamps over 17 in-game event types. It provides other annotations as well, which enable comprehen-
sive football analysis, but contains no human pose data. However, it is worth noting that the videos
are recorded at a resolution of 1280×720 pixels and a frame rate of 25 frames per second, making it
challenging to pinpoint the exact frame of occurrence for some fast events in difficult cases such as
very short ball touches.

On the other end of the spectrum, there is a high-frame-rate video dataset OpenTTGames (Voeikov
et al., 2020), which features table tennis videos sampled at 1080×1920 pixels and 120 frames per
second. This dataset offers annotations for 4,271 fast-paced events of three classes and also includes
semantic segmentation maps of the players.

There are multiple publicly available pose estimation datasets in the sports domain, such as Hu-
man3.6M (Ionescu et al., 2014) and SportsPose (Ingwersen et al., 2023), which do not provide
precise action timestamps for event spotting tasks.

However, there is a very limited set of datasets that feature both action labels and pose data. A
notable recent example is FS-Jump3D (Tanaka et al., 2024), which includes 86 3D pose keypoints
obtained through optical markerless motion capture and temporal action segmentation labels for fig-
ure skating jumps. Notably, all these datasets mainly contain video data collected within laboratory
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environments, which limits the diversity of backgrounds and lighting conditions. The FS-Jump3D
dataset, in particular, contains data from only four subjects in a single ice rink laboratory environ-
ment.

Video understanding models. Early approaches were based on 2D CNNs to extract spatial features
from each frame independently. These frame-level features are then aggregated using temporal
pooling or recurrent networks such as Long Short-Term Memory (LSTM) or Gated Recurrent Units
(GRUs) to capture temporal dependencies across frames (Donahue et al., 2015). To directly model
the spatiotemporal dynamics of a video, 3D CNNs extend traditional 2D convolution operations by
adding a temporal dimension to the convolutional kernels. Architectures such as C3D (Tran et al.,
2015) and I3D (Carreira & Zisserman, 2017) learn to represent both spatial and temporal patterns
jointly, making them well-suited for action recognition and temporal action localisation.

Another approach employed a two-stream architecture introduced by Simonyan & Zisserman
(2014). This involves a separate network to process RGB frames, capturing spatial appearance cues,
while another stream processes optical flow inputs to focus on temporal features. Enhancements
to this approach, introduced by Wang et al. (2016), integrated short-term and long-term temporal
dependencies to improve robustness against variations in video content, as well as utilised extra
modalities such as RGB difference and warped optical flow fields. The latter was meant to compen-
sate for camera motion so that the optical flow field highlights features of human action rather than
background.

More recent approaches adopt transformer-based architectures to model both short- and long-term
temporal relations within a video. For example, TallFormer (Cheng & Bertasius, 2022) utilises a
transformer-based encoder to extract short-term features from a video clip. ActionFormer (Zhang
et al., 2022) uses a convolutional-based video frames encoder with the embedding features being
further encoded into a feature pyramid using a multi-scale Transformer, while employing a convo-
lutional decoder to solve the action localisation task. The ASTRA architecture combines several
temporal embeddings for visual and audio modalities using a transformer encoder-decoder archi-
tecture (Xarles et al., 2023) to address the SoccerNet-v2 action spotting challenge (Deliege et al.,
2021).

Meanwhile, there has been growing popularity in approaches that are not directly based on video
frames but rather on features from intermediate representations such as pose skeletal data to extract
temporal information from videos (Yeung et al., 2024; Ibh et al., 2024; Deyzel & Theart, 2023). For
example, TemPose (Ibh et al., 2023) uses skeleton-based temporal self-attention for action prediction
by utilising a transformer-based model to process pose-estimation skeleton sequences as well as
encoded auxiliary data on players’ positions on the court and the shuttlecock position for action
recognition in badminton video. This approach minimises reliance on non-human-related visual
context by decreasing the effect of background actions, as the model consumes manually crafted
intermediate representations that are focused on action-specific features. These models often offer
lighter computational loads due to reduced amounts of raw data to be processed.

Despite significant advances in event spotting within video understanding tasks, there remains a
notable lack of fast-paced action spotting datasets, particularly for shadowboxing. Existing datasets
often lack precise action timestamp annotations and human pose data. Additionally, current datasets
are predominantly laboratory-based, limiting their applicability to real-world scenarios with varying
lighting conditions and background complexity. Our work aims to address these limitations by
introducing a new dataset with detailed shadow boxing action labels and skeletal pose information.
We also propose a benchmark for evaluating event spotting models, suggesting comparison of direct
prediction versus intermediate representation approaches.

3 SHADOWPUNCH DATASET

We introduce a comprehensive boxing dataset, ShadowPunch, designed for advanced pose esti-
mation and action classification in boxing. This dataset comprises over 27 high-definition videos
capturing a diverse array of boxing movements and techniques across 230,502 frames, recorded at
60 frames per second. This framerate, which is higher than the conventionally used 25-30 fps, pro-
vides more detailed temporal information for analysing the dynamics of fast boxing actions. An
example of frame sequences with corresponding annotation is given in Fig. 1. Each video includes
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Figure 1: A sequence of frames from a dataset video with a highlighted frame annotated as a punch
event, along with corresponding skeletal pose data.

recordings of multiple punches and punch series performed by boxers of diverse levels ranging from
beginners to seasoned world-level professionals. This variety ensures comprehensive coverage of
boxing techniques and skills, providing a rich and varied portrayal of the sport’s technical aspects
and broadening its applicability for research in sports science.

Each video has just one person in the field of view. The videos in the dataset were captured in
different environments: indoors and outdoors, in professional training venues and residential houses
(Fig. 2, more examples are provided in Appendix B). The annotation was performed by four experts
with deep knowledge of the sport. Quality of the annotation was ensured by double cross-check of
the labels by another annotator.

Our dataset features a combination of annotations: it includes punch actions of three types (straight,
hook, uppercut), no-punch event and punch side (left or right hand). Each punch event is pinpointed
to the exact video frame number in which the punch takes place and is defined as the precise moment
of maximum hand extension during a punch hand movement.

Table 1: ShadowPunch dataset statistics, showing the number of frames with pose and event spotting
annotation. Events column indicates the total number of events, frames - number of video frames.

Type Poses Events Left Right Hook Uppercut Straight No punch Frames
Train 3584 3744 1557 1395 678 1397 878 790 174754
Test 1177 1096 423 341 321 225 218 332 55748
Total 4761 4840 1980 1736 999 1622 1096 1122 230502

The dataset features 4761 frames with annotated poses with a 17-keypoint skeleton model, and the
number of annotated poses is roughly equal to the number of annotated actions. Notably, about half
of these annotations coincide in the same frames, providing a unique opportunity to analyse specific
postures adopted during various punches by different athletes. This overlap between actions and
poses within the same frames can be beneficial for understanding movement execution and offers
invaluable data for in-depth biomechanical studies. Detailed statistics on the dataset are provided
in Table 1. The high-speed nature of boxing punches is evident from the dataset, which has more
than one event per second on average. The data are spread over 21 videos in the Train subset and 6
videos in the Test subset.

In addition, video frames with pose estimation annotations are also equipped with the boxer bound-
ing boxes. These bounding boxes can be used for cropping regions of interest before further pro-
cessing with a deep learning model.

One challenging aspect to boxing shadow fight movements is that some actions may appear similar
to the beginning of punches but are actually dives or other sport-specific movements, which can
confuse some computer vision models leading to false-positive predictions. To facilitate addressing
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Figure 2: Several screenshots from different videos in the dataset, showcasing the diversity of back-
ground settings and individuals performing shadowboxing.

this issue, our dataset also includes annotations for no-punch events, marking moments when an
actual punch should not be predicted.

In summary, our comprehensive boxing dataset provides high-resolution temporal and spatial infor-
mation, extensive expert annotations, and a diverse participant pool, making it an invaluable resource
for research in human motion dynamics and the specificities of boxing techniques. Potential appli-
cations include:

• Pose Estimation Studies: Evaluate pose estimation algorithms using detailed skeletal an-
notations for humans performing rapid movements.

• Action Spotting Models: Research machine learning models to accurately classify and
temporally spot boxing movements.

• Sports Science Research: Analyse the biomechanics of different punch types to improve
training methods.

4 BENCHMARK

We propose the dataset and benchmark for comparison between two families of approaches: a direct
approach that predicts punch events directly from the imagery data, utilising its temporal modality;
or, alternatively, a multistage approach with an intermediate representation of skeletal keypoints,
where final action spotting predictions are based on a sequential stream of pose keypoints.

By directly predicting punch events from raw imagery data, the model can learn a comprehensive
representation of temporal dynamics without relying on artificially predefined forms of intermediate
representations. This approach may be more robust to noise in the input data since it does not depend
on the accuracy of an intermediate step like pose keypoint detection. Additionally, such models
may have lower inference latency and could potentially be more efficient for real-time applications.
However, the direct approach may be more difficult to extend with auxiliary tasks and may lack
interpretability because they do not provide an intermediate representation that could offer insights
into the reasoning behind the predictions.

On the other hand, the multistage approach allows for greater modularity, where each stage can be
optimised independently, potentially improving the pipeline prediction quality and offering some
insights via the intermediate representation. This can be particularly useful in scenarios where de-
tailed analysis of individual stages is necessary. For instance, evaluating the accuracy of keypoint
detection separately from action spotting could help identify specific areas that need improvement.
Nevertheless, cumulative error propagation can occur, with errors from earlier stages (e.g., keypoint
detection) propagating through subsequent stages and amplifying, leading to poor final predictions.

Given the arguments for and against both options, it seems to us a non-trivial to predict without
further experimentation which approach will be optimal. Although the answer in actual application
may depend on various specific aspects of particular implementations and business requirements, the
general question of whether a direct approach or a staged approach with artificially defined interme-
diate representation may achieve better results seems an interesting research direction. Therefore,
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we open this benchmark for the wider computer vision community to facilitate further investigation
and advance the state-of-the-art in action spotting.

In this work, we evaluate the performance of our punch event spotting models using several well-
established metrics: F1-score, confusion matrix, accuracy, and frame displacement. The F1-score
is the harmonic mean of precision and recall, providing a balanced measure between false positives
and false negatives. It is computed as:

F1 = 2 · Precision ·Recall

Precision+Recall

where precision is defined as Precision = TP
TP+FP and recall as Recall = TP

TP+FN , where TP -
total count of true positives, FP - false positives count, FN - false negatives count (Powers, 2011).

Accuracy is another metric we consider. It is defined as the ratio of correct predictions to total
predictions:

Accuracy =
TP + TN

TP + TN + FP + FN

Although accuracy provides an overall measure of the model’s performance, it can be misleading
when dealing with imbalanced datasets (Powers, 2011). We also use a confusion matrix, which
summarizes the model’s performance classification capability Bishop (2006).

Depending on the specific calculation, identifying the exact frame where the punch took place is
crucial for accurate event detection. One approach to measure temporal precision is through frame
displacement, which is defined as the difference between the predicted frame and the actual ground
truth frame number:

∆t = |tpredicted − tgroundtruth|

Determining the correct frame can be particularly challenging in the presence of fast movements and
sequences involving double punches of the same type. These scenarios can lead to false positives,
false negatives, or significant temporal deviations between punch events. Depending on the spe-
cific model architecture, heuristics, and hyperparameters must be carefully identified to accurately
pinpoint the best frame for detecting the punch.

5 BASELINE

The baseline architectures are not optimised to reach the best possible metrics; their main purpose
is to provide the community with a reasonable quality simple starting point solution, while leaving
further improvements in prediction accuracy in both tracks to the community.

5.1 DIRECT METHOD

The end-to-end baseline architecture employs a ResNet34-3D backbone (Tran et al., 2018), which
has been pretrained on the Kinetics-400 dataset (Zisserman et al., 2017). The input to the model
comprises rescaled stacks of seven consecutive video frames at a resolution of 224x224 pixels,
normalised to the range [0..1]. These stacks are sampled from the dataset such that the annotated
events coincide with the last frame in each stack. To maintain simplicity and reproducibility of the
baseline, no data augmentation techniques were applied.

The output tensor from the backbone is processed through two linear layers to generate two predic-
tion vectors: one consisting of four elements for punch type classification and another containing
two values for determining the punch side.

A Softmax layer serves as the final activation function. The model was trained using Focal loss (Lin
et al., 2017) with parameters α = 1.0 and γ = 2.0. Loss values were computed independently for
both branches (punch type and side classification) and then summed with equal weights. Training
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was conducted using the AdamW optimizer (Loshchilov & Hutter, 2019) over 50 epochs with a
learning rate of 0.0001, selecting the best epoch checkpoint based on the highest accuracy achieved
during validation.

5.2 STAGED APPROACH

The staged approach involves a two-step pipeline for punch type and side classification using human
pose keypoint extraction followed by event classification.

In the first step, 17 keypoints (e.g., nose, shoulders, elbows, wrists) are extracted from each frame of
the video using the DEKR-HRNet architecture (Geng et al., 2021), pretrained on the COCO dataset
(Lin et al., 2014). The DEKR-HRNet architecture was utilised through the MMPose framework
(OpenMMLab, 2020). Keypoints are detected for seven consecutive frames, sampled similarly to
the direct method. Their x and y coordinates are normalised by dividing by the width and height
of the video frames, respectively. After normalisation, the input tensor becomes B×34×7, where
B is the batch size (16 in our case), 34 represents the 17 keypoints with their respective x and y
coordinates, and 7 is the number of frames in the sequence.

In the second step, the normalised keypoints are passed into an architecture designed to capture
temporal dynamics. A linear projection layer first transforms the keypoints into a higher-dimensional
space (512 dimensions). The sequence is then processed by a Transformer encoder (Vaswani et al.,
2017), which models temporal dependencies across the frames. Our model uses a Transformer with
16 attention heads and two layers. Then, attention pooling, inspired by the self-attentive pooling
mechanism from Chen et al. (2023), is applied to weigh the most relevant frames, aggregating them
into a single vector representation. The pooling layer is followed by Dropout with p = 0.3. This
same Dropout probability is also applied in the Transformer backbone. Finally, the resulting feature
map is processed by two linear layers to produce predicted probabilities for punch type and side
predictions, similar to the direct method described above. Layer normalisation was applied after the
linear projection and transformer layers to stabilise training and improve convergence.

The loss function, optimizer, and training strategy were the same as those used in the direct method,
with the only difference being the total number of epochs. For this approach, the model was trained
for 250 epochs.

6 RESULTS AND DISCUSSION

6.1 DIRECT METHOD

In the direct method, we trained a deep neural network to classify punch types and sides directly
from the video frames stacks without using intermediate representation. The approach yielded an
overall accuracy of 94.89%. The side classification achieved an accuracy of 99.45% (See Tab. 2 and
3). Confusion matrices are presented in Fig. 4.

Table 2: Punch Type classification metrics for the direct method.
Class F1-Score Precision Recall
Hook 0.9654 0.9721 0.9587
Uppercut 0.9091 0.8494 0.9778
Straight Punch 0.9377 0.9862 0.8938
No Punch 0.9774 0.9789 0.9759

Table 3: Side Classification Metrics for the direct method.
Class F1-Score Precision Recall
Left 0.9965 0.9930 1.0000
Right 0.9956 1.0000 0.9912
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Figure 3: Confusion Matrices for Direct approach showing: punch type prediction results (left) and
side classification (right).

6.2 STAGED APPROACH

In the staged approach, we used the DEKR-HRNet pose estimation model via the MMPose frame-
work (OpenMMLab, 2020) to extract 17 human pose keypoints from individual video frames. As
the classification model’s accuracy in the staged approach is dependent on the quality of keypoint
detection during the pose estimation stage, we assessed the predicted pose points against the ground
truth annotation included in the dataset with the results presented in Tab. 4.

Table 4: Pose Estimation Deviations (X, Y coordinates).
Body Part X Deviation Y Deviation
Nose 0.714 5.998
Left Eye 0.742 0.760
Right Eye 0.627 1.206
Left Ear 9.186 6.035
Right Ear 8.345 4.344
Left Shoulder 22.982 9.164
Right Shoulder 2.583 21.083
Left Elbow 3.051 17.981
Right Elbow 5.527 8.992
Left Wrist 22.815 29.491
Right Wrist 11.922 5.121
Left Hip 18.819 72.740
Right Hip 9.871 64.815
Left Knee 15.663 23.437
Right Knee 3.292 1.347
Left Ankle 1.993 15.383
Right Ankle 2.764 5.113

As observed from pose estimation deviations, notable errors occurred in key areas such as shoulders,
wrists and hips regions that are crucial for accurately identifying punch types. These deviations
could be attributed to two factors: firstly, there could be some discrepancies in the definition of
keypoints, such as in the case of hips; secondly, as the dataset contains fast movements during
punch actions, motion blur contributes to keypoint position uncertainty, which can lead to inaccurate
predicted keypoint locations. Moreover, poses adopted by actors during shadowboxing activity may
be out of distribution for mainstream zero-shot models. This observation highlights the difficulty
of using intermediate keypoints for action classification, meaning that challenging data may require
pose model fine-tuning based on the provided annotation.

Inaccuracies in pose estimation tend to propagate throughout the pipeline, ultimately affecting final
action spotting accuracy. However, these errors could potentially be mitigated by training the pose
estimation model on specific training data rather than relying on zero-shot predictions, which would
likely lead to more accurate keypoint detection and improved classification performance. However,
optimisation of the pose estimation model is beyond the scope of this work. The punch type classifi-
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cation in the staged approach achieved an accuracy of 90.50% (Tab. 5), while the side classification
achieved an accuracy of 92.40% (Tab. 6).

Figure 4: Confusion Matrices for the Staged approach showing: punch type prediction results (left)
and side classification (right).

Table 5: Side Classification Metrics for the staged approach.
Class F1-Score Precision Recall
Hook 0.9224 0.9182 0.9266
Uppercut 0.9028 0.9420 0.8667
Straight Punch 0.8854 0.8896 0.8812
No Punch 0.9136 0.8889 0.9398

Table 6: Side Classification Metrics for Staged Approach.
Class F1-Score Precision Recall
Left 0.9344 0.8959 0.9764
Right 0.9097 0.9669 0.8588

A detailed analysis of temporal action spotting displacement is provided in Appendix A. Briefly,
the temporal prediction quality follows the patterns observed in the classification metrics above.
Specifically, 85.6% of correctly predicted events exhibit no temporal error (the predicted frame
number matches the one annotated as correct in the ground truth data) compared to 74.3% for the
two-stage approach.

6.3 RESULTS DISCUSSION

When comparing the direct and staged approaches, we observe that the direct method outperforms
the staged approach in both punch type and side classification, achieving higher overall accuracy
(94% vs. 91% for punch type classification and 99% vs. 94% for side classification). This could
be attributed to the fact that the direct approach allows the model to learn directly from the raw
video frames without relying on imperfect intermediate representations (human pose keypoints in
this case).

Interestingly enough, side classification is less accurate for the staged approach, despite the task
seeming straightforward. One possible explanation is that in some cases during a punch action,
from the viewpoint prevalent in the dataset, the left hand wrist may appear closer to the right side
of the video frame than the right hand wrist, and vice versa. This could confuse the temporal model
used in the second step of the process.

Despite its lower accuracy demonstrated in our baseline, the staged approach offers practical advan-
tages. By leveraging pose estimation, it provides a modular pipeline that enables not only punch
recognition but also detailed analysis of biomechanics and shadowboxing technique. The quality
of pose estimation plays a critical role in subsequent classification performance. Errors in keypoint

9
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detection may directly influence the classification results. Nonetheless, the staged approach offers
valuable insights into the biomechanics of punches, potentially allowing for technique improve-
ment suggestions in computer-vision-based virtual trainer applications and more granular analysis
of movement. It is worth noting that fine-tuning of the pose estimation model on the dataset annota-
tion will likely improve the accuracy of the staged method.

In practice, the staged approach can also be advantageous in other scenarios where detailed pose
analysis is essential, such as injury prevention methods, where understanding the specifics of body
movement is just as important as the classification accuracy of the punch itself (Stenum et al., 2021).

6.4 LIMITATIONS AND FUTURE WORK

The dataset features only front-facing videos of shadowboxing, which is sufficient for punch type
and side recognition, as well as for detecting some types of boxing mistakes. However, the data
cannot be viewed as a general dataset for shadowboxing processing since other angles of view are
not included; thus, some mistakes and intricate movements may be challenging to recognise. This
makes it an open area for the next version of the dataset to include such videos.

The work also raises the question of the optimal form of data representation: using imagery data di-
rectly for end-to-end event spotting pipelines or using a staged approach with intermediate keypoints
representations. Currently, we do not offer a ready answer and leave further research to the commu-
nity. It is likely that the answer will depend on particular details of one’s application priorities, such
as flexibility for auxiliary tasks addition, inference latency, and edge device performance.

Additionally, future work could explore the impact of fine-tuning the pose-estimation model specif-
ically on this dataset. This could provide insights into how much accuracy can be improved through
tailored optimisation. Another promising avenue is exploring temporal pose prediction to better cap-
ture the dynamic nature of boxing movements over time. Furthermore, investigating the use of 3D
pose predictions instead of the currently included 2D pose results may offer more comprehensive
and accurate analysis of movement in a three-dimensional space.

7 CONCLUSION

In this work, we introduced ShadowPunch, a novel dataset designed to support advanced pose esti-
mation, action classification, and spotting tasks within the context of boxing. The dataset comprises
high-resolution videos with precise frame-level annotations for various punch types, providing a
valuable resource for research into fast-paced action recognition.

We evaluated two key approaches: a direct method where models classify punch types and sides
directly from video frames, and a staged approach that leverages pose estimation as an intermediate
step. Our results indicate that the direct method outperformed the staged approach in terms of overall
accuracy. However, the staged approach offers critical insights into body mechanics and technique,
making it particularly useful for detailed sports analysis.

Our findings also highlighted the importance of reducing errors in pose estimation, as deviations
in pose keypoints can significantly affect subsequent classifications. Future work could explore in-
tegrating more sophisticated pose estimation models and action recognition techniques, potentially
leveraging temporal pose prediction and 3D pose predictions to enhance accuracy and comprehen-
siveness.

The dataset and benchmarks set a foundation for further exploration in both sports science and video-
based action spotting. By addressing the limitations identified in this study, researchers can develop
more robust and versatile systems both sports science and video-based fast-paced action spotting.
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A APPENDIX A: TEMPORAL DISPLACEMENT RESULTS

In our method of calculating frame displacement, we infer the punch type at the target frame and
compare it against the ground truth label. If the predicted punch type matches the target punch type,
we proceed to compute displacement for that event. Displacement is calculated by examining a
sequence of seven frames before and seven frames after the target frame (the target frame is labelled
as frame 0). If the predicted punch type in any of these surrounding frames matches the target
punch type and has a significantly higher probability than at frame 0 (i.e., greater than a predefined
threshold (θ = 0.15), the displacement is recorded based on that frame.

The displacement formula can be expressed as:

∆t = arg max
t∈[−7,7]

{
P (punch typet)
such that punch typet = punch type0
and P (punch typet) > P (punch type0) + θ

where: - ∆t is the frame displacement, - P (punch typet) is the probability of the punch type at
frame t, - punch typet is the predicted punch type at frame t, - punch type0 is the predicted punch
type at the target frame, - t = 0 represents the target frame, and - θ is the threshold (in this case,
0.15).

This evaluation method can be refined further depending on the model architecture. Notably, dis-
placement at larger frames (e.g., (t = 7)) could be attributed to various phenomena such as unfil-
tered cases with two punches with a very small gap in time or fast movements. In such cases, more
complex heuristics can be developed to capture and handle these events.

A.1 ONE-STAGE APPROACH DISPLACEMENT RESULTS

Table 7: One-Stage Approach Displacement Results
Displacement (Frames) Count Percentage (%)

0 840 85.6
1 25 2.6
2 11 1.1
3 14 1.4
4 20 2.0
5 13 1.3
6 12 1.2
7 23 2.3

A.2 STAGED APPROACH DISPLACEMENT RESULTS

Table 8: Staged Approach Displacement Results
Displacement (Frames) Count Percentage (%)

0 694 74.3
1 12 1.3
2 12 1.3
3 16 1.7
4 14 1.5
5 16 1.7
6 23 2.5
7 46 4.9

B APPENDIX B: DATASET DATA SAMPLES
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Figure 5: Example of three punch types frame sequences from the ShadowPunch dataset: Straight –
top, Uppercut – middle, and Hook – bottom.
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